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Point Cloud Reconstruction Is Insufficient to Learn 3D
Representations
Anonymous Author(s)

ABSTRACT
This paper revisits the development of generative self-supervised
learning in 2D images and 3D point clouds in autonomous driving.
In 2D images, the pretext task has evolved from low-level to high-
level features. Inspired by this, through explore model analysis, we
find that the gap in weight distribution between self-supervised
learning and supervised learning is substantial when employing
only low-level features as the pretext task in 3D point clouds.
Low-level features represented by PoInt Cloud reconsTruction
are insUfficient to learn 3D REpresentations (dubbed PICTURE).
To advance the development of pretext tasks, we propose a unified
generative self-supervised framework. Firstly, high-level features
represented by the Seal features are demonstrated to exhibit seman-
tic consistency with downstream tasks. We utilize the Seal voxel
features as an additional pretext task to enhance the understanding
of semantic information during the pre-training. Next, we propose
inter-class and intra-class discrimination-guided masking (I2Mask)
based on the attributes of the Seal voxel features, adaptively setting
the masking ratio for each superclass. On Waymo and nuScenes
datasets, we achieve 75.13% mAP and 72.69% mAPH for 3D object
detection, 79.4% mIoU for 3D semantic segmentation, and 18.4%
mIoU for occupancy prediction. Extensive experiments have demon-
strated the effectiveness and necessity of high-level features. The
project page is available at https://anonymous-picture.github.io/.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning; Com-
puter vision representations.

KEYWORDS
Self-supervised Learning, Autonomous Driving, Point Cloud Scene
Understanding, Multimedia Foundation Models

1 INTRODUCTION
LiDAR has received widespread attention for its ability to simu-
late the depth and spatial distribution of the surrounding environ-
ment with high quality. In outdoor autonomous driving (AD), many
works are based on LiDAR to achieve 3D perception, such as Point-
Pillars [20], PV-RCNN [32], and SphereFormer [19]. Advanced 3D
perception algorithms can significantly improve the safety of vehi-
cles. However, a large amount of carefully annotated 3D data, such
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Figure 1: Differences in the evolution process of pretext tasks
between 2D images and 3D point clouds.

as 3D boxes or point cloud semantic categories, is costly and time-
consuming [26]. This leads to advanced models being trapped in
fitting specific scenarios, and performance deteriorates significantly
when migrating to other scenarios [17]. Learning the universal rep-
resentation of 3D point clouds from a large amount of unlabeled
data is a promising solution to alleviate the problems above.

Generative self-supervised learning (SSL), represented bymasked
autoencoders [13], has attracted attention in autonomous driving
community. Occupancy-MAE [28] predicted whether each masked
voxel was occupied. This promoted scene understanding by infer-
ring the composition information of 3D scenes. The reconstruction
target of GD-MAE [42] was to reconstruct the 3D coordinates of the
point clouds in eachmasked voxel. GeoMAE [36] further introduced
geometric features, e.g., normal, to enhance spatial understanding.
MV-JAR [40] combined jigsaw and masked autoencoders to under-
stand the spatial relationship between voxels. However, these self-
supervised methods did not perform as expected on downstream
tasks. Let’s revisit the development process of representation learn-
ing in 2D images, as shown in Fig. 1. Low-level features are defined
as unimodal, simple physical properties or spatial composition in-
formation, whereas the opposite is defined as high-level features.
At the beginning, MAE [13] explicitly reconstructed missing raw
pixels in low-level. Subsequently, MaskFeat [39] and MR-MAE [11]
et al. reconstructed high-level features such as histogram of ori-
ented gradient (HOG) and CLIP features. This has been proven to
facilitate the interpretation of the image. However, current gen-
erative self-supervised learning methods for 3D point clouds still
reconstruct explicit spatial information in low-level such as 3D
coordinates. We argue that the representation learning in 3D point
clouds is equivalent to the primitive stage of 2D images.

Downstream tasks, such as semantic segmentation and occu-
pancy prediction, require encoders derived from self-supervised
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learning to be proficient in extracting semantic information. This in-
cludes not only the multimodal features of single point cloud, such
as images and text, but also the collective information from con-
textual point clouds. However, reconstructing spatial information
focuses only on the 3D coordinates of the single point cloud, which
is detrimental to downstream tasks that require semantic informa-
tion. We believe that PoInt Cloud reconsTruction is insUfficient to
learn 3D REpresentations (dubbed PICTURE).

The question we ask is this: Why did representation learning in
3D point clouds not transition from explicit low-level features to
implicit high-level features like in 2D images? Are implicit high-
level features not applicable in 3D point clouds, or have appropriate
methods not been found yet?

Recently, contrastive learning-based methods such as SLidR [31]
and Seal [24] have explored collaborative learning on point cloud-
image pairs obtained from superpixels [1] or vision foundation
model SAM [16]. Through Seal, information is aggregated not only
about the point cloud itself but also about the color of contextual
points. From a qualitative perspective, we have demonstrated the
semantic consistency between the Seal feature heatmap and the
ground truth in downstream tasks through visualization. From a
quantitative perspective, an exploratory model analysis based on
weight distribution has been employed to demonstrate the promo-
tion of using Seal features as pretext tasks on downstream tasks.
Based on these observations, we propose a unified framework for
generative self-supervised learning, PICTURE. We consider recon-
structing Seal voxel features as an additional pretext task. Specifi-
cally, MinkUNet [7] pre-trained by Seal acts on raw point clouds.
The point cloud features within the same voxel are aggregated
to obtain Seal voxel features of the masked voxel. Reconstructing
Seal voxel features implicitly benefits from image supervision and
encourages the model to learn high-level vision concepts. More ef-
ficiently, we complete this process offline to accelerate the training.

The mask sampling strategy is essential to the generative SSL.
Previous random masking treated all non-empty voxels equally.
This neglected the varying difficulties caused by the discrimination
of voxel features. Moreover, it dispersed the focus evenly across
all regions instead of the categories of interest for downstream
tasks. Inspired by Focal Loss [22], AttMask [15], etc., we develop
a mask sampling strategy that is tightly coupled with the target
Seal voxel features to adjust the difficulty. Specifically, we propose
inter-class and intra-class discrimination-guided masking (I2Mask).
Firstly, eight superclasses that can represent autonomous driving
scenarios are obtained unsupervised. On the one hand, for inter-
class, we propose Fastest Class Sampling (FCS), which divides eight
superclasses into three groups based on discriminative cues and
sets base mask ratios. On the other hand, we define the intra-class
consistency coefficient for each superclass and modulate the base
mask ratio. As a result, the visualization of the mask ratio reveals
that the reconstruction is more focused on regions like vehicles.

We conduct experiments on Waymo [34] and nuScenes [4] to
verify promotion for downstream tasks. Compared to other self-
supervised methods, our method achieves state-of-the-art results.

The main contributions of this paper are as follows:

• We propose a unified framework for generative self-supervised
learning, PICTURE, in autonomous driving. Seal features with

strong semantic information serve as additional reconstruction
targets. 3D representation learning has been pushed forward
following the developmental trajectory of 2D images.

• We propose inter-class and intra-class discrimination-guided
masking. We have demonstrated that, compared to random
masking, I2Mask tightly coupled with target features achieves
significant improvements.

• We achieve improvements of 30.4%, 26.1%, and 40.0% compared
to advanced self-supervised methods in downstream tasks such
as object detection, semantic segmentation, and occupancy pre-
diction. We demonstrate the benefits through ablation studies.

2 RELATEDWORK
2.1 Self-supervised Learning in AD
Learning universal features from large-scale point clouds in a self-
supervised manner attracts attention in the autonomous driving
community. Similar to 2D images, contrastive and generative self-
supervised learning are two mainstream approaches. In contrastive
self-supervised learning, ProposalContrast [45] applied random
geometric transformations under two views to construct training
samples. SLidR [31] and Seal [24] performed contrastive learning
between corresponding images and point clouds through SLIC [1]
or SAM [16]. CLIP2 [47] followed the architecture of CLIP [30] and
performed triple contrastive learning between images, point clouds,
and text. TARL [29] required the encoder to extract equivalent fea-
tures at different timesteps. In generative self-supervised learning,
point cloud reconstruction is considered a crucial avenue to un-
derstanding point cloud scenes. 3D coordinates [40, 42] and other
physical properties [14, 18, 36] were used as reconstruction targets.
This method encourages the model to understand the details and
distribution of 3D point clouds, which is the focus of this paper.
Recently, drawing inspiration from language models and content
generation, ViDAR [44] forced the model to predict the future from
history and supervised the scene flow. UniPAD [43] rendered 2D
RGB-D images using raw sparse point clouds.

2.2 Pretext Tasks for Generative SSL in AD
Pretext tasks are exploited by generative self-supervised methods
to extract information from unlabeled datasets. The most common
pretext task was to reconstruct the 3D coordinates of the point
clouds in each masked voxel [14, 23, 40, 42]. Some work [3, 27, 28,
36] predicted whether each masked voxel was occupied. In addition,
some other spatial information was used for pretext tasks, such as
geometric features [36], jigsaw [40], occupation type [14, 18], and
number of point clouds [14, 23]. However, the current pretext task in
autonomous driving scenes is still focused on reconstructing explicit
spatial information in low-level. Implicit semantic features in high-
level have never been introduced as pretext tasks. We believe that
explicit spatial information in low-level is insufficient.

2.3 Mask Sampling Strategy in Generative SSL
The mask sampling strategy determines where pretext tasks are
applied. For 3D point clouds in autonomous driving, most of the
work [3, 14, 36, 40] used random masking. MAELi [18] proposed
that the masking ratio should decrease with the distance from ego,
which not only reduced the difficulty of reconstructing far-range
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Figure 2: (a) The self-supervised learning process in 3D point clouds. (b) Architecture overview of unified generative self-
supervised framework PICTURE. The raw 3D point clouds are fed into (c) the 3D high-level voxel feature generation module
to obtain Seal voxel features. (d) Inter-class and intra-class discrimination-guided masking strategy is applied based on the
attributes of Seal voxel features.

point clouds, but also ensured a consistent sparsity among both
near-range and far-range points to enhance generalization ability of
the model. BEV-MAE [23] applied a lower masking ratio in sparse
areas to ensure a more stable reconstruction process. GD-MAE [42]
implemented separate masking strategies at different granularities
to maintain a consistent masking scope. However, mask sampling
strategies based on feature attributes are less discussed in 3D gener-
ative SSL. In 2D images, AttMask [15] employed the attention map
to establish the masking map. Areas that were highly attended were
masked, making the reconstruction more efficient. SemMAE [21]
and AMT [25] utilized iteration and throwing to make the atten-
tion map focus more on objects, respectively. Inspired by this, we
develop a mask sampling strategy based on the attributes of the
target Seal voxel features to adjust the difficulty and focus.

3 PROPOSED METHOD
In this section, we first introduce the unified self-supervised learn-
ing framework PICTURE in Fig. 2 and the process of exploiting
Seal features in 3D high-level voxel feature generation module (Sec.
3.1). We then propose inter-class (Sec. 3.2) and intra-class (Sec. 3.3)
discrimination-guided masking based on the feature attribute.

3.1 Architecture Overview of PICTURE
Voxelization and Masking. The point cloud can be defined as

P =
{
𝒄ℓ ,𝒇ℓ

�� ℓ = 1, . . . , 𝑁p
}
, where 𝒄ℓ and 𝒇ℓ represent coordinates

and point cloud features. We use the Voxel Feature Encoding (VFE)

[41] for voxelization. The coordinates and features of all non-empty
voxels are defined as Call ∈ R𝑁v×3, Fall ∈ R𝑁v×𝐶 . The masking
sampling strategy will be described in Sec. 3.2 and 3.3. The coordi-
nates of the mask voxels are denoted as Cm. The coordinates and
features of unmasked voxels are denoted as Cum, Fum.

Sparse Encoder and Decoder. To reduce the computational
complexity of the attention, SST [9] and DSVT [37] specifically
designed grouping mechanisms for sparse voxels. The coordinates
Cum and feature Fum of unmasked voxels are input into DSVT
to extract features. The features of masked voxels are replaced by
mask tokens and input into the decoder together with the output
of the encoder. We also use DSVT as the decoder. In this way, the
features of the masked voxels can be reconstructed.

Reconstruction Target. Reconstructing spatial features is not
sufficient for downstream tasks that require semantic information.
Seal [24] transferred image features from pre-trained vision founda-
tion models to 3D networks, progressively aggregating contextual
point clouds as it delves deeper into layers. This process can provide
favorable semantic feature reconstruction signals for generative
self-supervised learning. The Seal feature heatmaps [24] for exam-
ple point cloud scene in nuScenes [4] are shown in Fig. 3(a). At the
same time, the ground truth of the same scene in three downstream
tasks are visualized in Fig. 3(b). It can be seen Seal features and
the real scene have a high semantic consistency. The Seal feature
is strong for road-related objects. Besides, the feature decreases
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(a) Feature heatmap (b) Ground truth visualization

Figure 3: (a) Heatmap for ground truth Seal features and en-
coder output pre-trained w/o and w/ Seal features. (b) Ground
truth visualization for detection, segmentation, and occu-
pancy prediction.

with distance from ego. Based on this observation, we consider
reconstructing Seal voxel features as an additional pretext task.

Specifically, all raw point clouds P that have not been voxelized
are fed intoMinkUNet (Res16UNet34C) [7] pre-trained by Seal. Each
point cloud aggregates spatial and feature information from other
point clouds. We obtain the Seal point features Ps. Subsequently,
voxelization and average pooling are employed to aggregate sparse
features that are located in the same voxel. Finally, we obtain the
Seal voxel features Sall =

{
𝒔 𝑗
�� 𝑗 = 1, . . . , 𝑁v

}
of all non-empty vox-

els. This process can be completed offline in advance to accelerate
training. For masked voxels, the loss between reconstructed and
target Seal voxel features is defined as:

𝐿seal = SmoothL1
(
S
pred
m , S

target
m

)
. (1)

Fig. 3(a) shows the heatmap extracted by the transformer encoder
before and after introducing the pretext task. After introducing Seal
voxel features, the features extracted by encoder have stronger
semantic information, which is crucial for downstream tasks.

3.2 Inter-class Discrimination-guided Masking
We develop a mask sampling strategy based on the target Seal voxel
features. For 22 categories in SemanticKITTI [2], 17 categories
in nuScenes Lidarseg [10], and 22 categories in Waymo Seman-
tic Segmentation [34], we first classify them into eight semantic
classes: ground-related, structures, vehicle, two-wheeled vehicle,
nature, human, object, and outlier. Semantic labels are agnostic in
self-supervised learning. Therefore, we cluster Seal voxel featuress

Algorithm 1 Fastest Class Sampling
Input: The set of all superclasses: K
Parameter: Expected number of partition 𝑛1, 𝑛2, 𝑛3
Output: The set of superclass partition K1,K2,K3
1: Let K1,K2,K3 = {}, 𝑡 = 1.
2: while 𝑡 ≤ 3 do
3: {𝑘1, 𝑘2, . . . , 𝑘𝑛𝑡 } ← select any 𝑛𝑡 superclass from K.
4: compute the distance between clustering centers of any two

superclasses: 𝑑 (𝝁𝑘𝑚 , 𝝁𝑘𝑛 ) = 1
2 (1 − 𝝁

𝑘𝑚𝝁𝑘𝑛 ).
5: compute set of average inter-class distances Dinter.
6: K𝑡 ← select superclass partition {𝑘1, 𝑘2, . . . , 𝑘𝑛𝑡 } with the

fastest average inter-class distance max𝑑∈D 𝑑 .
7: K = K \ K𝑡 .
8: 𝑡 = 𝑡 + 1.
9: end while
10: return K1,K2,K3

Sall using the k-means [6], and the number is set to 8. We obtain
eight superclasses 𝑘𝑖 . Although it is impossible to determine the
correspondence between 𝑘𝑖 and semantic classes, this partition has
considered the semantic attributes of the Seal voxel features.

We set the base masking ratio for each superclass based on the
inter-class discrimination. First, we compute the cluster center 𝝁𝑘𝑖 ,
i.e., the mean of Seal voxel features:

𝝁𝑘𝑖 =

∑𝑁𝑘𝑖

𝑗=1 𝒔
𝑘𝑖
𝑗

𝑁𝑘𝑖

, (2)

where 𝑁𝑘𝑖 is the number of voxels of 𝑘𝑖 . Next, we perform Algo-
rithm 1 Fastest Class Sampling on clustering centers 𝝁𝑘 . We define
the set K = {𝑘𝑖 | 𝑖 = 1, 2, . . . , 8}. Then we select any 𝑛1 superclass
from K and calculate the distance between the cluster centers. The
set Dinter composed of average inter-class distances is:

Dinter =

{
1(𝑛1
2
) 𝑛1−1∑︁
𝑚=1

𝑛1∑︁
𝑛=𝑚+1

𝑑 (𝝁𝑘𝑚 , 𝝁𝑘𝑛 )
����� {𝑘1, 𝑘2, . . . , 𝑘𝑛1 } ∈

(
K

𝑛1

)}
,

(3)
where 𝑑 (𝝁𝑘𝑚 , 𝝁𝑘𝑛 ) represents the distance between the clustering
centers of two superclasses, e.g., cosine similarity. Next, find the
𝑛1 superclass partition with the fastest average inter-class distance,
denoted as K1. Subsequently, the set difference between the origi-
nal set K and K1 is used as the input for the next cycle. Select any
𝑛2 superclass from the remaining set, repeat the above process, and
finally obtain the 𝑛2 superclass partition with the second fastest
average inter-class distance, denoted as K2. The average inter-class
distance of the remaining set is the smallest, denoted as K3.

The average inter-class distance reflects inter-class discrimina-
tion. Larger inter-class differences facilitate more straightforward
distinction and reconstruction, and are typically associated with
dynamic objects such as vehicles. We set a higher base mask ratio
to increase the difficulty and the focus on the reconstruction. Based
on this principle, we set the base mask ratio 𝑟1b , 𝑟

2
b , 𝑟

3
b for each set.

3.3 Intra-class Discrimination-guided Masking
The intra-class discrimination reflects the difficulty of reconstruct-
ing masked voxel features from unmasked voxels. First, we define

4
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Table 1: Comparisons of 3D object detection between PICTURE and other self-supervised learning methods on Waymo val set.
† indicates the results are from the original paper. ∗ presents re-implemented by OpenPCDet. ‘Epochs’ and ‘Fraction’ denote
the pre-training epochs and dataset fraction used for pre-training. The improvement compared to training from scratch is
indicated with red superscripts.

Method Epochs Fraction
L2 (AP/APH)↑

Overall Vehicle Pedestrian Cyclist

SST† [9] - - 68.50 / 65.54 64.96 / 64.56 72.38 / 64.89 68.17 / 67.17
Occupancy-MAE (SST)∗ [28] 30 100% 70.15+1.65 / 67.16+1.62 68.46 / 67.86 72.53 / 65.12 69.47 / 68.50
MV-JAR (SST)∗ [40] 30 100% 70.38+1.88 / 67.37+1.83 68.59 / 68.05 72.77 / 65.23 69.78 / 68.82
GD-MAE (SST)† [42] 30 100% 70.62+2.12 / 67.64+2.10 68.72 / 68.29 72.84 / 65.47 70.30 / 69.16
PICTURE (SST) 30 20% 69.86+1.36 / 66.93+1.39 68.14 / 67.53 72.28 / 64.83 69.15 / 68.43
PICTURE (SST) 30 100% 71.02+2.52 / 68.03+2.49 69.37 / 68.84 73.44 / 66.15 70.26 / 69.09

DSVT† [37] - - 73.20 / 71.00 70.90 / 70.50 75.20 / 69.80 73.60 / 72.70
Occupancy-MAE (DSVT)∗ [28] 30 100% 73.86+0.66 / 71.78+0.78 71.53 / 71.21 76.02 / 70.69 74.02 / 73.44
MV-JAR (DSVT)∗ [40] 30 100% 74.37+1.17 / 72.01+1.01 72.15 / 71.53 76.44 / 70.93 74.52 / 73.58
GeoMAE (DSVT)∗ [36] 30 100% 74.46+1.26 / 72.05+1.05 72.13 / 71.62 76.61 / 71.02 74.64 / 73.52
GD-MAE (DSVT)∗ [42] 30 100% 74.68+1.48 / 72.22+1.22 72.39 / 71.81 76.77 / 71.23 74.88 / 73.63
PICTURE (DSVT) 30 20% 73.84+0.64 / 71.80+0.80 71.66 / 71.35 75.88 / 70.52 73.98 / 73.53
PICTURE (DSVT) 30 100% 75.13+1.93 / 72.69+1.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96

Table 2: Comparisons of 3D object detection between PICTURE and other self-supervised learning methods on nuScenes val set.

Method Epochs Fraction mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

DSVT† [37] - - 66.4 71.1 27.0 24.8 27.2 22.6 18.9
MV-JAR (DSVT)∗ [40] 72 100% 67.6+1.2 72.2+1.1 26.5 24.4 26.8 22.1 18.3
GD-MAE (DSVT)∗ [42] 72 100% 67.7+1.3 72.2+1.1 26.4 24.4 26.9 21.9 18.2
PICTURE (DSVT) 72 100% 68.1+1.7 72.6+1.5 25.8 24.2 26.5 21.6 17.7

the set of the average intra-class distance Dintra:

Dintra =


∑𝑁𝑘𝑖

𝑗=1 1{𝑑 (𝝁
𝑘𝑖 , 𝒔𝑘𝑖

𝑗
) − 𝜆 > 0}𝑑2 (𝝁𝑘𝑖 , 𝒔𝑘𝑖

𝑗
)∑𝑁𝑘𝑖

𝑗=1 1{𝑑 (𝝁𝑘𝑖 , 𝒔
𝑘𝑖
𝑗
) − 𝜆 > 0}

������ 𝑖 ∈ {1, 2, . . . , 8}
,
(4)

where 𝑑 (𝝁𝑘𝑖 , 𝒔𝑘𝑖
𝑗
) represents the distance between the Seal features

of a voxel and its clustering center. The 1{} stands for indicator
function. The denominator of Eq. (4) represents the number of
voxels whose distance from the clustering center exceeds threshold
𝜆. The meaning of Dintra is the average distance that is too far from
the cluster center. This can reflect the consistency between Seal
voxel features in a superclass.

We define intra-class consistency coefficient 𝑟c𝑖 to reflect the
intra-class discrimination:

𝑟c𝑖 = 1 −
D𝑖

intra
max𝑑∈Dintra 𝑑

. (5)

The intra-class consistency coefficient 𝑟c𝑖 for a superclass has the
opposite trend to the average intra-class distance D𝑖

intra. It is easier
to reconstruct masked voxel features from unmasked voxels in
regions with high intra-class consistency coefficient 𝑟c𝑖 . Therefore,
we use 𝑟c𝑖 to modulate the base masking ratio to obtain the unified
masking ratio 𝑟𝑘𝑖 for each superclass:

𝑟𝑘𝑖 = (𝑟
1
b · 1{𝑘𝑖 ∈ K1} + 𝑟2b · 1{𝑘𝑖 ∈ K2} + 𝑟3b · 1{𝑘𝑖 ∈ K3}) · 𝑟c𝑖 .

(6)
Each superclass calculates the unified mask ratio uniquely based
on its inter-class and intra-class discrimination.

4 EXPERIMENTS
4.1 Experimental Settings

Dataset. We demonstrate the performance of PICTURE in 3D
object detection on Waymo Open Dataset [34], 3D semantic seg-
mentation on nuScenes [4], and occupancy prediction on OpenOc-
cupancy [38]. To mitigate the risk of data leakage, we perform
pre-training and fine-tuning on the training set, and report the
results on the val and test set. For semantic segmentation and occu-
pancy prediction, we only report the Intersection over Union (IoU)
for a subset of key objects.

Model. We utilize the popular frameworks OpenPCDet [35] and
MMDetection3D [8]. We fine-tune the transformer-based encoders
SST, DSVT, and Cylinder3D-SST. By default, we employ 4 DSVT
(with 8 attention layers) as encoders and 2 DSVT (with 4 attention
layers) as decoders. The feature dimension is set to 192. Regarding
the number of encoders and decoder types, please refer to the
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Table 3: Comparisons of 3D semantic segmentation between PICTURE and other self-supervised methods on nuScenes val set.

Method mIoU↑ bicycle bus car motorcycle pedestrian trailer truck

Cylinder3D-SST† [9] 76.5 40.0 91.8 94.2 78.1 80.1 62.5 84.7
GeoMAE (Cylinder3D-SST)† [36] 78.6+2.1 42.6 93.5 95.8 79.8 83.5 65.6 87.3
ALSO (Cylinder3D-SST)∗ [3] 78.8+2.3 42.4 93.8 95.5 80.2 83.7 65.6 86.8
PICTURE (Cylinder3D-SST) 79.4+2.9 43.2 94.5 96.3 80.6 84.1 65.7 87.5

Table 4: Comparisons of occupancy prediction between PICTURE and self-supervised methods on OpenOccupancy val set.

Method mIoU↑ bicycle bus car motorcycle pedestrian trailer truck

DSVT∗ [37] 16.3 6.4 13.8 18.5 5.6 10.1 13.8 14.2
Occupancy-MAE (DSVT)∗ [28] 17.2+0.9 6.7 15.1 19.3 6.6 11.3 14.5 15.3
GD-MAE (DSVT)∗ [42] 17.8+1.5 7.2 15.1 20.1 6.8 11.9 15.3 15.5
PICTURE (DSVT) 18.4+2.1 8.1 15.6 20.7 7.4 12.3 15.7 15.8

Table 5: Comparisons of 3D object detection on Waymo test.

Method
L2 (AP/APH)↑

Overall Vehicle

CenterPoint [46] 73.38 / 71.93 73.42 / 72.99
SST [9] 74.41 / 72.81 73.08 / 72.74
DSVT [37] 74.76 / 73.07 75.11 / 74.10
PV-RCNN++ [33] 75.00 / 73.52 76.31 / 75.92
GD-MAE (SST) [42] 76.47 / 73.37 75.83 / 75.46
PICTURE (DSVT) 77.52 / 76.10 77.70 / 77.30

supplementary material for more ablation experiments. ForWaymo,
we set the voxel size to [0.32, 0.32, 0.1875]. For nuScenes (semantic
segmentation and occupancy prediction), we set it to [0.2, 0.2, 0.2].

Training Details. In inter-class discrimination-guided masking,
we set the expected number of superclass partition (𝑛1, 𝑛2, 𝑛3) as (3,
3, 2) and the base mask ratio (𝑟1b , 𝑟

2
b , 𝑟

3
b) as (0.9, 0.45, 0), meaning that

some superclasses are not masked. We set the distance threshold
𝜆 in intra-class discrimination-guided masking to 0.6. For detailed
ablation experiments on hyperparameters, please refer to the sup-
plementary material. During pre-training, we employ AdamW and
train for 30 epochs on Waymo and 72 epochs on nuScenes. For
fine-tuning, we train for 12 epochs on Waymo and 24 epochs on
nuScenes. The loss weights for reconstructing low-level and high-
level features are set to 1.0 and 3.0, respectively. All experiments
are conducted on 8 NVIDIA A100-SXM4-40GB GPUs.

4.2 Comparison with State-of-the-art Methods
We first compare the performance of our method with other self-
supervised learning methods in 3D object detection. Tab. 1 and
Tab. 5 present the performance on the Waymo val set and test set
for the leaderboard, respectively. We employ two 3D transformer
blocks, SST and DSVT, as encoders. The compared low-level fea-
tures include 3D point cloud coordinates (Occupancy-MAE [28],
GD-MAE [42]), geometric features (GeoMAE [36]), and the jigsaw
puzzle (MV-JAR [40]). Our proposed PICTURE outperforms train-
ing from scratch, leading to improvements of 1.93% and 1.69% in

L2 mAP on the Waymo val set. Meanwhile, compared to the best
self-supervised learning method, GD-MAE, our proposed PICTURE
achieves improvements of 0.45% and 0.47%. This is attributed to
the semantic consistency of high-level features and the feature
attribute-related mask sampling strategy I2Mask. Furthermore, it
can be observed that as the pre-training data increases, the perfor-
mance significantly improves from 73.84% to 75.13%, opening up
possibilities for leveraging large-scale unlabeled point clouds.

For 3D object detection, in addition to the Waymo dataset [34],
we have also reported results on the val set of the nuScenes [4] in
Tab. 2. Despite utilizing the robust DSVT as encoder, our proposed
method, PICTURE, still manages to achieve improvements of 1.7%
in mAP and 1.5% in NDS, respectively. Compared to using only
low-level features such as 3D point cloud coordinates and jigsaw,
employing high-level features for reconstruction targets results in
improvements of 0.4% and 0.5% in mAP, respectively. This indicates
that our proposed 3D self-supervised reconstruction target exhibits
strong generalization across various autonomous driving datasets.

Tab. 3 provides a comparison of 3D semantic segmentation on the
nuScenes val set. We consider low-level features such as geometric
features and the occupation type specifically designed for segmenta-
tion (ALSO [3]). Our proposed PICTURE outperforms them by 0.8%
and 0.6%, respectively, and exhibits greater advantages in categories
like bicycle, car, and motorcycle. This effectively demonstrates the
beneficial impact of high-level features on segmentation tasks that
rely on semantic information.

Tab. 4 provides a comparison with other self-supervised methods
in occupancy prediction. Since the Seal feature is aligned with both
images and text, reconstructing the Seal voxel features can enhance
the performance of occupancy prediction. Our proposed PICTURE
surpasses GD-MAE by 0.6%. Furthermore, our proposed I2Mask
places more attention on road-related objects, and improvement in
occupancy prediction accuracy is crucial for driving safety.

4.3 Ablation Studies
Tab. 6 presents the ablation studies on the reconstruction target
and mask sampling strategy. Firstly, with random masking, sup-
plementing with Seal voxel features as a pretext task results in an
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Table 6: Ablation study of pre-training, reconstruction target,
and mask sampling strategy on the Waymo val set.

Pre-train Reconstruction target I2Mask L2 mAP L2 mAPH

None - - 73.20 71.00

PICTURE

Coord. × 74.05 72.11

Coord. + Geo. × 74.26 72.25

Coord. + Seal × 74.74 72.56

Coord. + Seal only inter-class 74.82 72.60

Coord. + Seal only intra-class 74.85 72.58

Coord. + Seal ✓ 75.13 72.69

Table 7: Ablation study of different high-level features for
pretext tasks in 3D object detection on Waymo val set.

Pre-train Reconstruction target L2 mAP L2 mAPH

None - 73.20 71.00

PICTURE

Coord. 74.05 72.11

Coord. + SLidR [31] 74.42 72.20

Coord. + CLIP2 [47] 74.70 72.42

Coord. + CLIP2Scene [5] 74.62 72.26

Coord. + Seal [24] 75.13 72.69

improvement of 0.69% and 0.48% in L2 mAP compared to various
low-level features, such as 3D coordinates and geometric features.
This indicates that the Seal feature exhibits a significant positive
impact on downstream tasks owing to its high semantic consistency.
Secondly, the performance further improves when replacing the
random mask with I2Mask. The base mask ratio 𝑟b and intra-class
consistency coefficient 𝑟c obtained from inter-class and intra-class
discrimination-guided masking further contribute to an additional
improvement of 0.08% and 0.11%, respectively. When both distance
metrics are jointly considered, distinct mask ratios are assigned to
each superclass, resulting in an ultimate improvement of 0.39%.

In addition to Seal features, we also explore alternative high-
level features that could be used for pretext tasks in Tab. 7. It can
be observed that compared to low-level features, all high-level fea-
tures can yield a minimum improvement of 0.37%. This indicates
that using low-level features as the pretext task in 3D point cloud
self-supervised representation learning is insufficient. Various high-
level features can yield benefits, not just Seal features. On the other
hand, although all point cloud encoders are aligned with the seman-
tic information of images or texts through contrastive learning, Seal
features can achieve the best alignment results by locating image-
point cloud pairs via SAM. Seal features yield the best performance,
with improvements ranging from 0.43% to 0.71% compared to other
high-level features. We condense these observations and analyses
into a concise implementation.

4.4 Data Efficiency
Comparison with training from scratch on different data scales for
fine-tuning is shown in Tab. 8. On the one hand, at all data scales,
the encoder pre-trained with PICTURE outperforms no pre-training.

Table 8: Comparison with no pre-training on different data
scale in 3D object detection using L2 mAPH on Waymo val.

DSVT w/ PICTURE 10% 20% 50% 100%

52.71 57.46 67.32 71.00
✓ 56.62+3.91 61.87+4.41 70.56+3.24 72.69+1.69

Specifically, when there is less fine-tuning data, the advantage of
pre-training becomes more pronounced. For instance, when fine-
tuning with 20% of the data, there is a 4.41% increase in L2 mAPH.
On the other hand, with only 50% fine-tuning data required, the
performance of DSVT w/PICURE is close to training from scratch at
100% fine-tuning data, which is beneficial for autonomous driving
communities that severely lack annotated data.

4.5 Study of Time Cost
The time cost of our proposedmethod, PICTURE, compared to other
self-supervised learning methods, is presented in Tab. 9. Despite
the superior performance of Seal features compared to low-level
features, such as geometric features [36], it requires approximately
5× time cost (215h vs. 48h). This represents a trade-off between
performance and time cost. To accelerate the pre-training, we adopt
an offline approach to pre-extract Seal features for the entire dataset
and save them locally. Thus, Seal features can be reused throughout
pre-training. Following offline processing, the time cost for our
PICTURE is approximately 55 hours, which is comparable to the
time required for low-level features (55h vs. 61h, 48h).

4.6 Visualization of Mask Sampling Strategy
Fig. 4 shows the semantic and mask ratio distribution for a certain
scene. Compared to randomly masking all non-empty voxels, our
proposed I2Mask assigns mask ratios with inverse trends for dif-
ferent regions based on their reconstruction difficulty. Moreover, it
can be seen areas such as vehicles and pedestrians, that are highly
focused on in downstream tasks, have a high masking ratio, which
forces complex reconstruction. On the contrary, the masking ratio
is lower for areas such as roads and constructions, which reduces
the attention during the reconstruction.

5 EXPLORATORY MODEL ANALYSIS
Pretext tasks play a pivotal role in self-supervised learning. Ap-
propriately designed pretext tasks guide the network towards the
generalized features from the feature space. Further, the feature
extraction may be quantitatively represented as weights. There-
fore, we explore the differences between pretext tasks from the
perspective of weight distribution. We select the weights of the
value nodes in all attention layers of the encoder as our research
subject, including the weights from multi-heads.

What is the promotion of high-level features in 2D images? We
employ the reconstruction of raw pixels as a low-level pretext
task and the reconstruction of CLIP feature as a high-level pre-
text task. To simplify the analysis, we assume the weights follow a
Gaussian distribution [12] and compute the mean 𝜇2dl , 𝜇2dh and vari-
ance 𝜎22dl , 𝜎22dh using maximum likelihood estimation. We assume

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 9: Time cost of self-supervised learningmethods during
pre-training on 8 A100-SXM4-40GB GPUs on Waymo.

Method Epochs Fraction Time

MV-JAR (DSVT) [40] 30 100% 61h
GeoMAE (DSVT) [36] 30 100% 48h
PICTURE (online) (DSVT) 30 100% 215h
PICTURE (offline) (DSVT) 30 100% 55h

(a)

0.0

0.2
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k : 0.00

: 0.001
k : 0.001
k

8
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k : 0.87
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k : 0.747
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6
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k : 0.61

5
k : 0.455
k : 0.45

4
k : 0.334
k : 0.33

3
k : 0.12

(b)

Figure 4: (a) Ground truth visualization of occupancy pre-
diction. (b) The mask ratio distribution of a certain scene
derived by I2Mask.

the weight distribution derived from supervised learning 𝜇2ds , 𝜎22ds
serves as the ideal weight distribution for self-supervised learning
𝜇2dss , 𝜎

22d
ss . Fig. 5(a) and (b) visualize the disparity in the weight dis-

tribution of each attention layer, which are the mean and variance.
We use differences to measure disparity without loss of generality.
It can be observed that when only reconstructing low-level features,
the amplitude of the differences is erratic, indicating that low-level
features in 2D images are insufficient to guide the network in learn-
ing a weight distribution that is beneficial for downstream tasks.
When high-level features are supplemented, the weight distribution
approaches that of supervised learning.

Are low-level features in 3D point clouds sufficient as pretext tasks?
The same analysis is applied to 3D point clouds. We use DSVT [37]
as the encoder. We employ the reconstruction of 3D point cloud
coordinates as a low-level pretext task, and the reconstruction of
Seal voxel features as a high-level pretext task. The weight dis-
tribution derived from the downstream 3D object detection task
𝜇3ds , 𝜎23ds serves as the ideal weight distribution for self-supervised
learning 𝜇3dss , 𝜎

23d
ss . Fig. 5(c) and (d) visualize the disparity from the

ideal weight distribution when using only low-level features and
when supplementing with high-level features. It can be observed
low-level features are insufficient for learning 3D representations,
as there are significant disparities in mean and variance. After sup-
plementing with Seal voxel features, the parameters advance in a
direction beneficial to downstream tasks. This quantitatively indi-
cates the necessity and feasibility of introducing high-level features
in self-supervised learning for 3D point clouds.

6 LIMITATION
Firstly, compared to existing methods, the improvement is not
sufficiently significant. On the one hand, the capability of the high-
level feature extractor, Seal, is restricted. Due to the lack of large-
scale point cloud-image-text datasets, current high-level feature
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Figure 5: The disparity in the weight distribution of each
attention layer in the encoder. (a) and (b) represent 2D images,
while (c) and (d) correspond to 3D point clouds.

extractors cannot leverage the powerful understanding abilities of
large language models. On the other hand, open-source point cloud
datasets in autonomous driving are significantly smaller compared
to internet-scale datasets, which limits the full potential of self-
supervised learning. Secondly, the framework may perform poorly
in areas far from ego, where the point clouds are sparse. The masked
voxels fail to reconstruct at excessively far distances due to the lack
of nearby unmasked voxels. In our subsequent work, our proposed
I2Mask can consider not only the difficulty of the sample but also
the distance from the ego. Finally, the time cost of extracting
Seal features is significantly higher compared to low-level features
such as geometric features. We pre-extracte Seal features for all
point cloud scenes in the entire dataset. Loading these features
offline during pre-training allows the time cost of PICTURE to be
similar to other self-supervised methods. However, the process of
pre-extracting Seal features incurs a significant time cost.

7 CONCLUSION
Generative self-supervised learning in 3D point clouds is trapped
in low-level features. We present the necessity of introducing high-
level features from four perspectives: field development, consis-
tency visualization with downstream tasks, quantitative experi-
ments, and exploratory model analysis from the perspective of
weight distribution. Reconstructing Seal voxel features during pre-
training brings benefits to downstream tasks that require seman-
tic information. Furthermore, in contrast to random masking, we
propose inter-class and intra-class discrimination-guided masking
(I2Mask) to adaptively set the masking ratio for each superclass,
which explores the potential of the Seal voxel feature. Extensive
experiments confirm our contributions to advancing generative
self-supervised learning in 3D point clouds.
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