
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONE INITIALIZATION TO RULE THEM ALL: FINE-
TUNING VIA EXPLAINED VARIANCE ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-
tuned on a downstream task for a specific application. The most successful and
most commonly used fine-tuning method is to update the pre-trained weights
via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that
are usually initialized at random with a uniform rank distribution across model
weights. Recent works focus on weight-driven initialization or learning of adaptive
ranks during training. Both approaches have only been investigated in isolation,
resulting in slow convergence or a uniform rank distribution, in turn leading to sub-
optimal performance. We propose to enhance LoRA by initializing the new weights
in a data-driven manner by computing singular value decomposition (SVD) on
minibatches of activation vectors. Then, we initialize the LoRA matrices with the
obtained right-singular vectors and re-distribute ranks among all weight matrices
to explain the maximal amount of variance across layers. This results in our new
method Explained Variance Adaptation (EVA). We apply EVA to a variety of
fine-tuning tasks ranging from language generation and understanding to image
classification and reinforcement learning. EVA exhibits faster convergence than
competitors and attains the highest average score across a multitude of tasks per
domain while reducing the number of trainable parameters.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021, FMs) are usually trained on large-scale data and then
fine-tuned towards a particular downstream task. This training paradigm has led to significant
advancements in the realm of language modeling (OpenAI, 2023; Touvron et al., 2023a; Reid et al.,
2024), computer vision (Dehghani et al., 2023; Oquab et al., 2023), and reinforcement learning
(Brohan et al., 2023; Zitkovich et al., 2023). With an increasing number of model parameters,
the process of fine-tuning becomes prohibitively expensive. This results in the need for efficient
alternatives to fine-tuning all parameters of the pre-trained model.

Parameter-efficient fine-tuning (PEFT) approaches are commonly used as an effective alternative to
full fine-tuning (FFT). PEFT methods modify the pre-trained model by introducing a small number
of new trainable parameters, while the pre-trained weights remain frozen. This leads to a substantial
reduction in computational cost, both in terms of time and space. A particularly successful approach,
LoRA (Hu et al., 2022), introduces new weights in the form of a low-rank decomposition for each
weight matrix in the pre-trained model. After training, the new weights can be readily merged
into the pre-trained weights without any additional inference latency. Recent research has explored
various extensions to LoRA, such as different initialization schemes and adaptive rank allocation
(see Table 1). Weight-driven initialization schemes are constrained to the information stored in the
pre-trained weights. Further, adaptive rank allocation techniques usually optimize the ranks during
the fine-tuning process which results in additional complexity for computing importance scores of
ranks. Both approaches have merely been investigated in isolation thus far.

We propose a new method that extends LoRA with adaptive rank allocation and data-driven initializa-
tion by leveraging information from the downstream task. During the fine-tuning process, information
of the downstream task is stored in the newly introduced weights of LoRA. Our aim is to make
fine-tuning more efficient by initializing the LoRA weights in a manner such that they already contain
the maximum possible amount of information from the downstream task. This way, the fine-tuning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sort

Figure 1: Left: We perform incremental SVD on activation vectors for the first T minibatches to ob-
tain the right singular vectors. Middle: We sort all right-singular vectors according to their explained
variance given by their respective singular values and only keep the top-k. Right: We allocate the
top-k vectors as initialization for A and continue the standard LoRA fine-tuning procedure.

process is more efficient as it only needs to be learned what information to maintain or discard which
results in faster convergence and improved downstream performance. We can obtain an initialization
that is optimal in propagating the most amount of information into the linear subspace spanned
by LoRA via SVD on activation vectors after passing minibatches of downstream data through
the model. The right-singular vectors obtained by SVD represent the projection onto the principal
components, and their corresponding singular values quantify each component’s contribution to the
total variance. We initialize the downprojection of LoRA with those vectors to obtain an initialization
that propagates the most information of the downstream data. Given a fixed rank budget, we maximize
the information propagated through the model by sorting the vectors in descending order according
to their singular values and allocate the top-k vectors to their respective weight matrices. This results
in an adaptive rank allocation that can be computed at the beginning of training which allocates more
complexity to weights where components explain less variance. We call the resulting method EVA,
which is short for Explained Variance Adaptation. Importantly, this procedure can be performed
within the first few minibatches of LoRA fine-tuning without significant computational overhead.

We demonstrate the benefits of EVA on an array of downstream tasks, namely language generation
and understanding, image classification, and reinforcement learning (RL). EVA consistently improves
average performance across a multitude of tasks on each domain compared to LoRA and other
recently proposed initialization or rank redistribution methods. For language generation, we fine-tune
7B-9B parameter language models on math and reasoning tasks, where EVA attains the highest
average performance. Further, on a set of language understanding tasks, EVA improves the average
performance compared to competitors. On image classification we fine-tune a pre-trained vision
transformer (Dosovitskiy et al., 2021) on a set of 19 diverse tasks. We find that EVA attains the
highest average score and improves over LoRA and established extensions thereof, with most gains
on in-domain data. For our RL experiments we conduct fine-tuning on continuous control tasks
and find that EVA significantly exceeds performance of LoRA and even exceeds performance of
full fine-tuning (FFT) when combined with DoRA (Liu et al., 2024a). Finally, we demonstrate that
EVA is pareto-dominant as our rank re-distribution reduces the amount of trainable parameters while
improving performance. Our contributions are as follows:

• We propose a novel data-driven initialization scheme for LoRA by leveraging incremental
SVD on minibatches of activation vectors.

• We propose a data-driven heuristic for adaptive rank allocation based on explained variance.
• We demonstrate the effectiveness of EVA across a variety of different domains.

2 RELATED WORK

LoRA (Hu et al., 2022) has sparked widespread interest in leveraging low-rank decompositions for
fine-tuning due to its simplicity. Building on the success of LoRA, a number of other variants have
been proposed (Kopiczko et al., 2024; Zi et al., 2023; Babakniya et al., 2023; Dettmers et al., 2023;
Li et al., 2023; Nikdan et al., 2024; Liu et al., 2024a; Zhang et al., 2023a; Hayou et al., 2024; Chavan

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of EVA to existing initialization schemes for LoRA. Existing works either focus
on weight initialization or adaptive rank allocation. EVA combines data-driven initialization with
adaptive rank allocation to enhance convergence and downstream performance.

Method Initialization Adaptive ranks

LoRA (Hu et al., 2022) Random ✗
AdaLoRA (Zhang et al., 2023a) Random ✓
PiSSA (Meng et al., 2024) Weight-driven ✗
OLoRA (Büyükakyüz, 2024) Weight-driven ✗
LoRA-GA (Wang et al., 2024) Data-driven ✗
EVA (Ours) Data-driven ✓

et al., 2023). The most similar variants to EVA are AdaLoRA (Zhang et al., 2023a) and LoRA-GA
(Wang et al., 2024). AdaLoRA adaptively alters the number of ranks for LoRA matrices during
fine-tuning. Other more recent approaches learn gates to switch ranks on or off during fine-tuning (Liu
et al., 2024b; Meo et al., 2024). In contrast, the data-driven initialization allows EVA to redistribute
ranks for each LoRA matrix prior to fine-tuning. LoRA-GA is concurrent work that approximates the
gradient of the original weight matrix via SVD, requiring computation of the gradients with respect
to the original weights. Contrary, EVA initializes A via the right-singular vectors of minibatches of
activation vectors, and is therefore less computationally expensive.

Initialization of LoRA matrices Common initialization schemes for neural networks (He et al.,
2015; Glorot & Bengio, 2010) were designed to stabilize training of deep neural networks based on
activation functions and depth. In the context of PEFT, Hu et al. (2022) and Liu et al. (2022) explored
data-driven initialization by either pre-training on a different task first, or by unsupervised pre-training
on the task at hand. Contrary, EVA does not require any gradient update steps, therefore it is much
more efficient. Similarly, Nikdan et al. (2024) utilize a warm-up stage in LoRA fine-tuning, where
gradients with respect to LoRA weights are used to initialize a sparse matrix for sparse adaptation
(Sung et al., 2021) in combination with LoRA. Alternatively, Babakniya et al. (2023) initialize LoRA
matrices using SVD on weight matrices obtained after a few steps of full fine-tuning for federated
learning with heterogeneous data. Meng et al. (2024) use the main directions of the pre-trained
weights to initialize the LoRA matrices. In contrast, EVA takes a data-driven approach to initialize
the LoRA matrices. Similar initialization schemes were proposed for training deep networks from
scratch (Mishkin & Matas, 2016; Krähenbühl et al., 2016).

Increasing efficiency of LoRA Several works have investigated how to increase efficiency of LoRA
fine-tuning. Kopiczko et al. (2024) decrease the memory complexity by keeping both A and B frozen
while merely training newly-introduced scaling vectors. This way, only random seeds for initializing
A and B need to be stored. Another prominent approach is quantization (Dettmers et al., 2022),
which has been successfully combined with LoRA (Dettmers et al., 2023). Other LoRA variants are
compatible with quantization (Nikdan et al., 2024; Valipour et al., 2023; Meng et al., 2024). It has
also been shown that initialization can improve fine-tuning quantized models (Li et al., 2023).

3 METHOD

We aim at initializing LoRA weights in a data-driven manner by leveraging data from the downstream
task. Since EVA builds on LoRA (Hu et al., 2022), we first briefly explain LoRA in Section 3.1.
Then, we explain the two essential steps conducted in EVA, namely (i), computing a data-driven
initialization for the low-rank decomposition of LoRA matrices via SVD on activation vectors
(Section 3.2), and (ii), adaptive assignment of ranks across all layers to maximize the explained
variance throughout the pre-trained model (Section 3.3).

3.1 LOW-RANK ADAPTATION (LORA)

LoRA adds new trainable weights which are computed via an outer product of low-rank matrices (Hu
et al., 2022). This is motivated by the low intrinsic dimensionality of language models (Aghajanyan

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gr
ad

ie
nt

 N
or

m

EVA PiSSA OLoRA Random

Figure 2: Left: Training loss for fine-tuning Llama-3.1-8B on the MetaMathQA dataset. We compare
EVA to other initialization methods OLoRA, PiSSA, and random initialization (LoRA). We show
mean and standard deviation across three random seeds. Right: Mean and standard deviation of
gradient norm at the beginning of training for EVA, PiSSA, OLoRA and Random initialization of
LoRA matrices. EVA exhibits significantly larger gradient norm.

et al., 2021) and relies on the assumption that the gradients during fine-tuning are also of low rank
(Gur-Ari et al., 2018; Zhang et al., 2023b; Gauch et al., 2022). Let x ∈ Rd×1 be the input to a
pre-trained weight matrix W ∈ Rk×d. Then, LoRA introduces new weight matrices A and B as
a low-rank decomposition h = Wx +BAx, where B ∈ Rk×r and A ∈ Rr×d. The rank r is a
hyperparameter with r ≪ k. During fine-tuning, W remains frozen while A and B are updated.
Usually, B is initialized with zeros and A at random, such that fine-tuning starts from the pre-trained
model. Additionally, a hyperparamter α is used to scale BAx by α

r .

3.2 DATA-DRIVEN INITIALIZATION OF LOW-RANK ADAPTATION

Our aim is to obtain an effective initialization for A to find a linear subspace that preserves the most
information of the downstream task, i.e. that explains the most variance. To this end, we perform
SVD on batches of activation vectors X ∈ Rb×d to obtain the right-singular vectors, which constitute
the directions that capture most of the variance (see Figure 1, left). More formally, we collect batches
of activations Xi for N pre-trained weight matrices W i ∈ {W 1, ...,WN} that are selected for
fine-tuning. Subsequently, we compute the SVD on each Xi to obtain the right-singular vectors vi

j,:

and their respective singular values σi
j as

Xi = U iΣiV i⊤ ≈
k∑

j=1

ui
:,jσ

i
jv

i
j,:. (1)

Here, U and V are the left- and right-singular vectors, respectively, and Σ is a diagonal matrix
containing the singular values. Note that in practice we compute only the top-k components and not
the full SVD using truncated SVD (Halko et al., 2011) which is the optimal approximation of Xi as
verified by the Eckart-Young theorem (Eckart & Young, 1936). Generally, the stacked right-singular
vectors V i

:r,: are equivalent to a projection onto the principal components of the covariance matrix of
Xi (see proof in Appendix H). Therefore, V i

:r,: propagates the maximum amount of information of
Xi. By setting Ai = V i

:r,: the downprojection XiAi must contain the most information about Xi

according to the data processing inequality (Beaudry & Renner, 2012), as the maximum amount of
information B can contribute is Bi = V i⊤

:r,: . The gradient w.r.t. Ai and Bi is

∂L
∂Bi

=
∂L
∂W

Ai⊤ and
∂L
∂Ai

= Bi⊤ ∂L
∂W

, (2)

respectively. The fine-tuning process is concerned with storing information about the data in the
weights BiAi. By choosing Ai = V i

:r we guarantee that the maximum amount of information is
available at the beginning of training, such that it only needs to be learned what information to keep,
i.e. what parts of XiAi are relevant for the downstream task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Naively, we could simply collect batches of activations and stack them into a single matrix and perform
SVD. However, this results in excessive memory overhead as we usually deal with large datasets and
models. To reduce the memory requirements, we incrementally update V i

:r,: as proposed in Ross et al.
(2008) which is based on the sequential Karhunen-Loeve algorithm (Levy & Lindenbaum, 2000).
This process is independent of the dataset size, therefore the computation of the singular values
and their respective vectors is constant in time and memory complexity. For further details on the
incremental update step of the SVD we refer to Appendix F.

After each update step in the incremental SVD we check whether V i has converged via cosine
similarity, i.e. cossim(vi,t−1

j,: ,vi,t
j,:) ≥ τ ∀ 1 ≤ j ≤ r. Then, we initialize Ai = V i

:r,: and
stop computing incremental SVD for inputs to W i. We continue this procedure until all V i

:r,: have
converged. We illustrate the full incremental SVD procedure on a sequence of data batches in
Algorithm 2 and discuss complexity of this procedure in Appendix F.

3.3 ADAPTIVE RANK ALLOCATION
Algorithm 1 Fine-tuning via EVA
Input: FM ψ(·), ρ, rank r, dataset D

1: while not all_converged(ψ) do
2: X ← ψ(next(D)) ▷ get activations
3: Vnew, ξ ← Incremental-SVD(X, ρr)
4: if isclose(Vold,vnew) then
5: wrap_and_initialize(Wj ,Vnew)
6: end if
7: Vold ← Vnew

8: end while
9: redistribute_ranks(ψ, ξ,Vnew)

10: lora_finetune(ψ,X)

The singular values provide an estimate of the
amount of variance each component in V i

:r,:
explains. Leveraging this, we can redistribute
ranks across weight matrices of the pre-trained
model such that the maximum amount of vari-
ance is explained. This can be done by allocat-
ing more ranks to layers that propagate more
information, i.e., explain more variance. The
variance explained by each component in V i

:r,:
is given by their explained variance ratio

ξij =
σi2

j

(M − 1)||σi||1
, (3)

where || · ||1 denotes the ℓ1 norm, σi is a vector containing all r singular values, and M is the total
number of samples used for the incremental SVD. We sort the components vi

j,: for each weight
matrix in descending order according to their explained variance ratio ξij (see Figure 1, middle).
Then, we assign the top-k components to their respective pre-trained weights, which results in
adaptive rank allocation (see Figure 1, right). Additionally, we introduce a hyperparameter ρ ∈ [1,∞)
which controls the uniformity of the rank distribution. ρ determines the number of ranks that we
compute during SVD and increasing ρ allows for an increasingly heterogeneous rank distribution.
Further, ρ controls the maximum number of ranks a weight matrix can receive. For each W i we
compute rρ components, i.e., we assign k = rρ in Equation (1), resulting in Nrρ components in
total. For the redistribution we only use the top-l, with l = Nr, components according to their
explained variance ratio ξij . Thus, setting ρ = 1, results in a uniform rank distribution as in LoRA, but
initialized according to EVA. Therefore, ρ provides us with the means to change the rank distribution
in a controlled manner prior to fine-tuning at the initialization stage. In practice we found that the
redistribution converges for values of ρ > 2 (see Appendix G). Finally, we initialize B with zeros
and perform standard LoRA fine-tuning. In Algorithm 1 we provide pseudocode for EVA.

4 EXPERIMENTS

First, we elaborate on implementation details of EVA in Section 4.1. Then, we show results for
fine-tuning large language models (LLMs) on math and reasoning tasks in Section 4.2 and language
understanding tasks in Section 4.3. Further we show results for image classification in Section 4.4 and
decision making tasks in Section 4.5. Finally, in Section 4.6 we demonstrate that the computational
overhead induced by EVA over LoRA is negligible and that incremental SVD converges and is
invariant to batch order and batch size.

4.1 IMPLEMENTATION DETAILS

We follow the standard LoRA training procedure from Hu et al. (2022). Similar to Kalajdzievski
(2023), we found LoRA training to be very sensitive to the scaling parameter α. Therefore, we set

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

17M 18M 19M 20M 21M 22M 23M 24M 25M
Trainable parameters

82

84

86

88

90

92
P

er
fo

rm
an

ce

Common sense

EVA
LoRA
OLoRA
PiSSA
AdaLoRA
LoRA­GA
Llama­2­7B
Llama­3.1­8B
Gemma­2­9B

17M 18M 19M 20M 21M 22M 23M 24M 25M
Trainable parameters

60

65

70

75

80

P
er

fo
rm

an
ce

GSM8K

EVA
LoRA
OLoRA
PiSSA
AdaLoRA
LoRA­GA
Llama­2­7B
Llama­3.1­8B
Gemma­2­9B

Figure 3: Performance of EVA, OLoRA, PiSSA, LoRA-GA, and LoRA for fine-tuning Llama-2-7B,
Llama-3.1-8B, and Gemma-2-9B on eight common sense reasoning tasks (left), and MetaMathQA,
subsequently evaluated on GSM8K (right).

α = 1 for all our experiments as we found this to be the most stable setting and only tuned the
learning rate. We apply EVA to pre-trained weights only, i.e., we do not initialize newly introduced
classifier heads. Following Zhang et al. (2023a), we apply LoRA adapters to all pre-trained weight
matrices except for the embedding layer. For EVA we always search over ρ ∈ {1, 2} to cover both
uniform uniform and adaptive rank allocation and report the best score. For ρ = 2 we also set
α = α rnew

rold
to preserve the same scaling factor as set initially. All models we used for fine-tuning are

publicly available on the huggingface hub (Wolf et al., 2020). For the implementation of baselines we
leverage the widely used PEFT library (Mangrulkar et al., 2022). Across experiments we highlight
the highest scores in boldface and underline the second-highest.

4.2 LANGUAGE GENERATION

We fine-tune three different LLMs, namely Llama-2-7B (Touvron et al., 2023b), Llama-3.1-8B
(Dubey et al., 2024), and Gemma-2-9B (Rivière et al., 2024) on common sense and math reasoning
benchmarks. For common sense reasoning we follow Liu et al. (2024a) and amalgamate a training
set consisting of BoolQ (Christopher et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), ARC-e and ARC-c (Clark
et al., 2018) and OpenBookQA (Mihaylov et al., 2018). We apply all methods listed in Table 1 to all
three models and additionally add a comparison to DoRA (Liu et al., 2024a) and EVA+DoRA, which
combines EVA with DoRA. We train all methods with rank r = 16 and a learning rate of 5e− 4 for
three random seeds. Further details on the fine-tuning settings can be found in Appendix B.

We present average performance over all eight common sense reasoning tasks in Figure 3, left. Across
models we found that ρ = 2 yields the highest performance while it also notably decreases the number
of trainable parameters compared to all other LoRA-based methods (see Table 11 in Appendix B),
resultin in an improved pareto-front. For a comparison to EVA with uniform rank distribution see
Table 10 in Appendix B. We report the per-task results in Table 7 in Appendix B. Even though there
is a fluctuation on a per-task basis, EVA attains the highest average score across all tasks. Moreover,
we conduct experiments where we add rank-stabilization (Kalajdzievski, 2023), different learning
rates for A and B, or different values for α in Table 9 in Appendix B. Additionally, we provide
results for leveraging the components that explain the least amount of variance in Table 12, which
results in worse performance compared to EVA. Finally, EVA as well as EVA+DoRA are consistently
among the best performing methods on all individual tasks. This highlights the effectiveness of EVA’s
data-driven initialization and rank allocation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

17M 18M 19M 20M 21M 22M 23M 24M 25M
Trainable parameters

10

15

20

25

30

35

40

P
er

fo
rm

an
ce

MATH

EVA
LoRA
OLoRA
PiSSA
AdaLoRA
LoRA­GA
Llama­2­7B
Llama­3.1­8B
Gemma­2­9B

Figure 4: Performance of EVA, OLoRA, PiSSA,
LoRA-GA, and LoRA for fine-tuning Llama-2-7B,
Llama-3.1-8B, and Gemma-2-9B on MATH after
fine-tuning on the MetaMathQA dataset.

For the math fine-tuning experiments, we fine-
tune all models on the MetaMathQA dataset
(Yu et al., 2024) for one epoch with the same
hyperparameters as for the common sense rea-
soning tasks and evaluate them on GSM8K
(Cobbe et al., 2021) (see Figure 3, left) and
MATH (Hendrycks et al., 2021) (see Figure 4)
datasets. We also report the performances for
each method on each model and task in Ta-
ble 8 in Appendix B. Generally, we again ob-
serve that EVA is pareto-dominant compared
to all competitors on both datasets as it trains
fewer parameters while mostly resulting in im-
proved performance. Specifically, EVA attains
the highest performance on the GSM8K dataset
for Gemma-2-9B using ρ = 2. For Llama-2-7B
and Llama-3.1-8B the best performing method
is EVA+DoRA using ρ = 1 closely followed by
EVA. On MATH, EVA+DoRA performs best for
Llama-2-7B with ρ = 1, while EVA attains the
highest score for Llama-3.1-8B with ρ = 1 and
Gemma-2-9B with ρ = 2. For a comprehensive
overview on the effect of rank re-distribution
on different model types for both downstream
tasks see Table 10. Our results indicate that
the performance of adaptive rank allocation depends on a combination of the selected model and
the downstream task. We further analyze the resulting rank distributions for different values of ρ
for Llama-2-7B and their effect on downstream performance in Appendix G. Finally, we provide
additional results for Llama-2-7B on code fine-tuning tasks in Appendix B.

4.3 LANGUAGE UNDERSTANDING

We train RoBERTaLarge (Liu et al., 2019) and DeBERTav3Base (He et al., 2023) on the GLUE bench-
mark (Wang et al., 2019). The GLUE benchmark comprises eight downstream tasks, such as natural
language inference, or sentiment analysis. Additionally to learning rate, we also search over different
ranks within a maximal rank budget (r ≤ 16). For further details about datasets, implementation, or
hyperparameters, we refer to Appendix C. We also add FFT as a baseline, but neglect EVA+DoRA
due to time constraints and report Matthew’s correlation for CoLA, Pearson correlation for STS-B,
and accuracy for the remaining tasks in Table 2. EVA (ρ = 2) attains the highest average score across
all tasks for both RoBERTaLarge and DeBERTav3Base. Interestingly, DoRA usually only slightly
improves over LoRA on low resource tasks (RTE, MRPC), while performing worse in high resource
tasks (MNLI, QNLI, QQP, SST2). We also compare LoRA to EVA in Table 17 in Appendix C for
different rank budgets, where EVA consistently improves over LoRA. We visualize resulting rank
distribution patterns for different GLUE tasks in Appendix C. More ranks are assigned to higher
layers of the query, key, and value projections in the self-attention, while the remaining weights often
receive less ranks. This is a consistent pattern for both, DeBERTav3Base and RoBERTaLarge and in
line with the reduced number of trainable parameters for larger models.

4.4 IMAGE CLASSIFICATION

We investigate the efficacy of EVA on the VTAB-1K (Zhai et al., 2019) benchmark, which has been
widely used to evaluate PEFT methods. VTAB-1K comprises 19 image classification tasks that are
divided into natural images, specialized images (medical images and remote sensing), and structured
images (e.g. orientation prediction, depth estimation or object counting). We fine-tune a DINOv2-g/14
model (Oquab et al., 2023) that consists of around 1.1B parameters. For implementation details and
hyperparameters see Appendix D. Our results are shown in Table 3 and we additionally report error
bars in Table 20. EVA and EVA+DoRA with (ρ = 2) attain the best and second-best average accuracy
across all tasks, respectively. Interestingly, EVA mainly improves over competitors on the natural
tasks, i.e. in-domain datasets. LoRA performs best on the specialized tasks and full fine-tuning (FFT)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of all methods for RoBERTaLarge (top) and DeBERTav3Base (bottom) on GLUE
tasks. We report mean and standard deviation of Matthew’s correlation for CoLA, Pearson correlation
for STS-B, matched accuracy for MNLI, and accuracy for remaining tasks. For CoLA, RTE, MRPC,
and STS-B we average over five seeds and for the remaining tasks over three seeds.

Method MNLI QNLI QQP SST2 CoLA MRPC RTE STS-B Avg

FFT 90.2 94.7 92.2 96.4 68.0 90.9 86.6 92.4 88.93
LoRA 90.7±.1 94.8±.1 92.0±.0 96.2±.3 69.1±.5 91.1±.6 88.1±1.1 92.3±.1 89.29
AdaLoRA 90.5±.1 94.8±.2 90.6±.1 96.1±.2 68.2±.7 90.7±.6 84.4±.9 91.8±.1 88.39
PiSSA 90.1±.1 94.7±.0 91.0±.0 96.1±.2 68.7±1.3 90.4±.6 87.6±.5 92.5±.3 88.89
OLoRA 90.9±.1 95.0±.1 92.0±.2 96.3±.3 69.0±1.5 91.0±1.0 87.9±1.2 92.4±.1 89.32
EVA 90.8±.1 95.0±.2 92.1±.1 96.2±.1 69.5±1.4 91.4±.8 88.8±1.2 92.6±.1 89.55
DoRA 89.5±.1 94.6±.1 89.9±.1 96.1±.1 69.3±.8 91.0±.6 88.4±1.2 92.4±.1 88.90

FFT 90.1 94.0 92.4 95.6 69.2 89.5 83.8 91.6 88.28
LoRA 90.5±.1 94.3±.1 92.4±.1 95.2±.3 72.0±1.3 91.4±.7 88.9±.5 91.7±.1 89.64
AdaLoRA 90.8 94.6 92.2 96.1 71.5 90.7 88.1 91.8 89.46
PiSSA 90.1±.3 94.1±.1 91.8±.1 95.8±.1 72.7±1.7 90.9±.6 86.5±1.2 91.6±.2 89.19
OLoRA 90.5±.1 94.4±.1 92.6±.1 96.2±.2 72.0±1.0 91.6±.7 89.1±.9 92.0±.2 89.80
EVA 90.6±.1 94.4±.1 92.4±.04 96.2±.2 72.5±1.3 91.8±.6 89.4±.7 92.0±.2 89.91
DoRA 89.0±.2 94.1±.1 88.0±.1 94.6±.4 70.3±.5 91.9±.6 87.8±.7 91.8±.1 88.44

Table 3: Fine-tuning DINOv2-g/14 on the VTAB-1K benchmark. Best average performance is
highlighted in boldface. We report average accuracy across five seeds.

Natural Specialized Structured

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
ve

ra
ge

FFT 73.1 89.7 78.4 99.7 92.2 89.5 55.5 74.8 95.0 88.2 70.5 93.6 64.2 63.6 68.8 92.0 64.3 50.2 56.8 76.8
LoRA 85.9 92.2 82.2 99.7 94.5 64.1 63.6 88.8 97.0 92.6 76.6 97.7 65.3 62.1 83.6 90.6 63.0 37.1 52.3 78.4
AdaLoRA 85.4 92.5 81.4 99.7 95.2 90.5 62.2 87.1 96.4 91.2 76.6 94.4 64.4 60.3 83.7 85.4 61.0 32.9 46.0 78.2
PiSSA 85.5 93.6 82.3 99.7 94.6 92.8 62.3 87.1 96.6 91.9 76.3 95.0 66.3 63.2 84.9 90.5 60.1 36.3 48.6 79.4
OLoRA 85.5 93.0 82.1 99.7 95.1 78.3 62.1 86.7 96.3 91.9 76.8 94.3 66.0 62.4 71.3 89.0 60.9 34.3 49.5 77.6
EVA 85.6 93.9 82.2 99.7 95.9 93.2 63.6 86.8 96.6 92.3 76.1 96.1 65.1 61.1 83.3 91.4 61.6 35.0 55.0 79.7
DoRA 85.9 92.7 82.1 99.7 95.2 34.4 61.4 88.6 96.8 92.4 76.8 97.6 65.4 62.7 84.4 43.2 63.1 37.8 52.6 74.4
EVA+DoRA 86.2 92.1 81.9 99.7 94.9 93.8 62.4 88.3 96.6 92.6 76.7 97.2 65.5 54.1 83.7 93.3 62.3 37.5 54.5 79.6

performs best on the structured task. However, both LoRA and FFT perform worse on the remaining
tasks, leading to a worse average score compared to EVA and EVA+DoRA.

4.5 DECISION MAKING

We follow the single task fine-tuning experiments in Schmied et al. (2024) and fine-tune a Decision
Transformer (Chen et al., 2021a, DT) on the Meta-World benchmark suite (Yu et al., 2020). Meta-
World consists of a diverse set of 50 tasks for robotic manipulation, such as object manipulation,
grasping, or pushing buttons. We split Meta-World according to Wolczyk et al. (2021) into 40
pre-training tasks (MT40) and 10 fine-tuning tasks (CW10). We pre-train a 12 M parameter DT on
MT40 and fine-tune it on the CW10 holdout tasks. We report success rates and standard errors for
each task of CW10 in Table 4. We observe that EVA significantly reduces that gap between LoRA and
FFT. Furthermore, DoRA performs particularly well in this experiment and exceeds FFT performance.
Finally, our EVA+DoRA even improves upon DoRA and attains the best average performance across
all tasks. We report results for different rank budgets in Table 22, as well as implementation details
and hyperparameters in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results for single task fine-tuning experiments on the Meta-World benchmark. We report
mean success rates and standard error across three seeds for every task.

fa
uc

et
-c

lo
se

ha
m

m
er

ha
nd

le
-p

re
ss

pe
g-

un
pl

ug

pu
sh

-b
ac

k

pu
sh

pu
sh

-w
al

l

sh
el

f-
pl

ac
e

st
ic

k-
pu

ll

w
in

do
w

-c
lo

se

A
ve

ra
ge

FFT 1.0±.0 0.97±.03 1.0±.0 0.77±.05 0.87±.05 1.0±.0 1.0±.0 1.0±.0 0.63±.03 1.0±.0 0.92

LoRA 1.0±.0 1.0±.0 1.0±.0 0.6±.05 0.63±.1 1.0±.0 1.0±.0 1.0±.0 0.4±.09 1.0±.0 0.86

AdaLoRA 1.0±.0 0.97±.03 1.0±.0 0.4±.09 0.57±.1 0.97±.03 0.97±.03 1.0±.0 0.13±.07 1.0±.0 0.80

PiSSA 1.0±.0 1.0±.0 1.0±.0 0.43±0.11 0.57±0.03 1.0±.0 1.0±.0 1.0±.0 0.53±0.1 1.0±.0 0.85

OLoRA 1.0±.0 0.97±0.03 1.0±.0 0.57±0.1 0.63±0.03 1.0±.0 1.0±.0 1.0±.0 0.6±0.12 1.0±.0 0.88

EVA 1.0±.0 0.97±.03 1.0±.0 0.63±.03 0.77±.05 1.0±.0 1.0±.0 1.0±.0 0.63±.07 1.0±.0 0.90

DoRA 1.0±.0 1.0±.0 1.0±.0 0.6±1.2 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.67±1.5 1.0±.0 0.93

EVA+DoRA 1.0±.0 1.0±.0 1.0±.0 0.8±.08 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.63±.03 1.0±.0 0.94

0 100 200 300 400
Time in seconds

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f c
on

ve
rg

ed
 c

om
po

ne
nt

s

Incremental SVD convergence

4
8
16
32

Figure 5: Left: Time in seconds until convergence of incremental SVD components for different
batch sizes for Llama-2-7B on the MetaMathQA dataset. The dashed line indicates the total number
of components. Right: Average cosine similarity between SVD components across 10 random
seeds for permuting the batch order. The first 10 components remain mostly consistent across all
permutations. While the remaining components vary, they strongly correlate with each other.

4.6 SVD CONVERGENCE ANALYSIS

The data-driven initialization of EVA relies on incremental SVD on minibatches of activations in
the initial training stage. In Figure 5, left, we show that this process converges for Llama-2-7B on
MetaMathQA for different minibatch sizes. Using a minibatch size of 4 the computation for EVA’s
initialization lasts for approximately 80 seconds, which corresponds to around 90 minibatches. For a
batch size of 32 the computation of the SVD components takes around 500 seconds. In Figure 5, right,
we additionally show, that the main components obtained via SVD mostly remain consistent across
different batch orders for a batch size of 4, again for Llama-2-7B on MetaMathQA. To this end, we
plot cosine similarity between components obtained via incremental SVD after rank redistribution.
These results indicate that these models exhibit certain activation patterns that remain consistent
across different batch orders which lead to a robust initialization for EVA. We also show that the
components for different batch sizes converge to mostly the same final initialization in Appendix F.

5 DISCUSSION AND LIMITATIONS

Alternative data-driven initialization schemes. We also investigated alternative data driven ini-
tialization schemes. Such alternatives include, but are not limited to, Kernel-PCA (Schölkopf et al.,
1997) or Linear Discriminant Analysis (Fisher, 1936, LDA). While Kernel-PCA can account for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

non-linearities in the data, it scales with the number of datapoints, which is impractical in our setting.
Further, we observed convergence instabilities for incrementally updating LDA.

Additional latency of SVD. EVA leads to performance improvements over LoRA, but introduces
additional latency in the beginning of training for computing the data-driven initialization. In Table 23
we demonstrate that this process constitutes merely 0.2% of the actual training time for Llama-2-7B
on MetaMathQA. Further, in Appendix F we also show that this process is mostly invariant to the
batch size, meaning that smaller batch sizes may be used for the SVD computation, resulting in
additional speedup. Since, the SVD computation does not require backpropagation and storing of
optimizer states there is no overhead with respect to memory.

Effect of rank redistribution. Our experiments on language understanding tasks indicate that the
effect of rank redistribution strongly depends on the downstream task, i.e. all models benefit from
the redistribution on the common sense reasoning tasks, whereas for the math tasks a uniform rank
distribution appears to perform best. In our experiments on language understanding and image
classification, adaptive ranks performed best, while on decision making uniform ranks performed
best. Generally the performance gap between the two is not big and since rank redistribution also
leads to fewer trainable parameters we recommend to use it by default.

What method performs well on which tasks? We conducted fine-tuning experiments across 51
tasks and four domains and found that EVA or EVA+DoRA performs best on expectation. This is
evidenced by the higher average score across multiple tasks per domain. Despite this finding, there is
usually variation in the ranking of methods considering single tasks, i.e. LoRA performed better on
specialized, and FFT performed best on structured images. Therefore there is no one algorithm that
performs best on every single task, verifying that there is no free lunch (Wolpert & Macready, 1997).

Reproducibility. We provide the source code along with the submission (see Appendix A) to ensure
reproducibility. Further, to make EVA more accessible to the community, we will integrate it into the
widely used PEFT library (Mangrulkar et al., 2022).

6 CONCLUSION AND BROADER IMPACT

We propose a novel method named Explained Variance Adaptation (EVA), extending the widely
used LoRA with data-driven initialization and rank re-distribution. We initialize LoRA matrices
in a data-driven manner by performing SVD on minibatches of activation vectors. Further, we
re-distribute ranks across weight matrices according to the amount of variance they explain. In this
regard, we also introduce a hyperparameter that allows for a controlled investigation of different
rank distributions. Thereby, in EVA we bind the benefits of adaptive rank allocation and data-driven
initialization, resulting in one initialization to rule them all. We demonstrate performance gains of
EVA over LoRA and initialization schemes thereof on a variety of domains, ranging from language
to vision and RL. Our results demonstrate that EVA variants consistently reach the highest average
performance on a wide range of tasks across all domains.

We believe that EVA sheds a novel view on LoRA fine-tuning, where initialization of the newly
introduced weights is guided by the downstream data. As we have shown, this can boost performance
on a wide variety of domains. We believe that EVA can have a significant impact on future research
on fine-tuning of foundation models, because it inherits all benefits of LoRA while improving
performance at no significant additional cost. In the future, we aim at investigating the effect of
rank redistribution on other initialization schemes and quantization, as well as alternative data-driven
initialization schemes in more detail.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJC-
NLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp. 7319–7328. Association
for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.568.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H. Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of
language models. CoRR, abs/2308.06522, 2023. doi: 10.48550/ARXIV.2308.06522.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016.

Normand J. Beaudry and Renato Renner. An intuitive proof of the data processing inequality.
Quantum Inf. Comput., 12(5-6):432–441, 2012. doi: 10.26421/QIC12.5-6-4. URL https:
//doi.org/10.26421/QIC12.5-6-4.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong T. Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: robotics transformer for real-world control at scale. In Kostas E. Bekris,
Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu,
Republic of Korea, July 10-14, 2023, 2023. doi: 10.15607/RSS.2023.XIX.025.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. CoRR,
abs/2406.01775, 2024. doi: 10.48550/ARXIV.2406.01775.

Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Algorithms for computing the sample
variance: Analysis and recommendations. The American Statistician, 37(3):242–247, 1983. ISSN
00031305, 15372731.

Arnav Chavan, Zhuang Liu, Deepak K. Gupta, Eric P. Xing, and Zhiqiang Shen. One-for-all:
Generalized lora for parameter-efficient fine-tuning. CoRR, abs/2306.07967, 2023. doi: 10.48550/
ARXIV.2306.07967.

11

https://doi.org/10.26421/QIC12.5-6-4
https://doi.org/10.26421/QIC12.5-6-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021b.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proc. IEEE, 105(10):1865–1883, 2017. doi: 10.1109/JPROC.2017.2675998.

Clark Christopher, Lee Kenton, Chang Ming-Wei, Kwiatkowski Tom, Collins Michael, and Toutanova
Kristina. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pp. 3606–3613. IEEE Computer Society,
2014. doi: 10.1109/CVPR.2014.461.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training
text encoders as discriminators rather than generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenat-
ton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias
Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin Fathy
Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark
Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas
Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua
Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil Houlsby. Scaling vision transformers to 22
billion parameters. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 7480–7512. PMLR, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3.int8(): 8-bit matrix
multiplication for transformers at scale. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
30318–30332. Curran Associates, Inc., 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936. doi: 10.1007/BF02288367.

Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. IEEE Trans.
Pattern Anal. Mach. Intell., 28(4):594–611, 2006. doi: 10.1109/TPAMI.2006.79.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals Eugenics, 7:
179–188, 1936.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi:
10.1080/14786440109462720.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024.

Martin Gauch, Maximilian Beck, Thomas Adler, Dmytro Kotsur, Stefan Fiel, Hamid Eghbal-zadeh,
Johannes Brandstetter, Johannes Kofler, Markus Holzleitner, Werner Zellinger, Daniel Klotz, Sepp
Hochreiter, and Sebastian Lehner. Few-shot learning by dimensionality reduction in gradient space.
In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.), Conference on Lifelong Learning
Agents, CoLLAs 2022, 22-24 August 2022, McGill University, Montréal, Québec, Canada, volume
199 of Proceedings of Machine Learning Research, pp. 1043–1064. PMLR, 2022.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
KITTI dataset. Int. J. Robotics Res., 32(11):1231–1237, 2013. doi: 10.1177/0278364913491297.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and D. Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna
Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceedings, pp. 249–256. JMLR.org,
2010.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
CoRR, abs/1812.04754, 2018.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):
217–288, 2011. doi: 10.1137/090771806.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models,
2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034. IEEE
Computer Society, 2015. doi: 10.1109/ICCV.2015.123.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding sharing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth
Obs. Remote. Sens., 12(7):2217–2226, 2019. doi: 10.1109/JSTARS.2019.2918242.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.319.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1988–1997. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.215.

Kaggle and EyePacs. Kaggle diabetic retinopathy detection, July 2015.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. CoRR,
abs/2312.03732, 2023. doi: 10.48550/ARXIV.2312.03732.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. ELoRA: Efficient low-rank adaptation
with random matrices. In The Twelfth International Conference on Learning Representations,
2024.

Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. Data-dependent initializations
of convolutional neural networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. CoRR, pp. 32–33, 2009.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2004), with CD-ROM, 27 June - 2 July 2004, Washington, DC,
USA, pp. 97–104. IEEE Computer Society, 2004. doi: 10.1109/CVPR.2004.144.

Avraham Levy and Michael Lindenbaum. Sequential karhunen-loeve basis extraction and its applica-
tion to images. IEEE Trans. Image Process., 9(8):1371–1374, 2000. doi: 10.1109/83.855432.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao.
Loftq: Lora-fine-tuning-aware quantization for large language models. CoRR, abs/2310.08659,
2023. doi: 10.48550/ARXIV.2310.08659.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. CoRR,
abs/2402.09353, 2024a. doi: 10.48550/ARXIV.2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
adaptation for fine-tuning large language models. In Kevin Duh, Helena Gómez-Adorno, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 622–641. Association for
Computational Linguistics, 2024b. doi: 10.18653/V1/2024.NAACL-LONG.35.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,
2017.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods, 2022.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models, 2024.

Cristian Meo, Ksenia Sycheva, Anirudh Goyal, and Justin Dauwels. Bayesian-lora: Lora based pa-
rameter efficient fine-tuning using optimal quantization levels and rank values trough differentiable
bayesian gates. CoRR, abs/2406.13046, 2024. doi: 10.48550/ARXIV.2406.13046.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. Rosa: Accurate parameter-efficient fine-tuning
via robust adaptation. CoRR, abs/2401.04679, 2024. doi: 10.48550/ARXIV.2401.04679.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing, ICVGIP
2008, Bhubaneswar, India, 16-19 December 2008, pp. 722–729. IEEE Computer Society, 2008.
doi: 10.1109/ICVGIP.2008.47.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael G.
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision.
CoRR, abs/2304.07193, 2023. doi: 10.48550/ARXIV.2304.07193.

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21,
2012, pp. 3498–3505. IEEE Computer Society, 2012. doi: 10.1109/CVPR.2012.6248092.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. CoRR, 2019.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia
Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James
Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,
Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530.

Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna
Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda
Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben Bastian,
Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris Welty,
Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vijaykumar,
Dominika Rogozinska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra, Harsh Dhand, Ivan Nardini,
Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon,
Josh Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black,
Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe
Sjösund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, and Lilly McNealus. Gemma
2: Improving open language models at a practical size. CoRR, abs/2408.00118, 2024. doi:
10.48550/ARXIV.2408.00118.

David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning for robust
visual tracking. Int. J. Comput. Vis., 77(1-3):125–141, 2008. doi: 10.1007/S11263-007-0075-7.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6399.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. CoRR, abs/1904.09728, 2019.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing
Systems, 36, 2024.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In Wulfram Gerstner, Alain Germond, Martin Hasler, and Jean-Daniel Nicoud (eds.),
Artificial Neural Networks — ICANN’97, pp. 583–588, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg. ISBN 978-3-540-69620-9.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
24193–24205, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. In Andreas Vlachos
and Isabelle Augenstein (eds.), Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2023, pp. 3266–3279. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EACL-MAIN.239.

Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos,
Carlos Alberola-López, and Gabor Fichtinger (eds.), Medical Image Computing and Computer
Assisted Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain, September
16-20, 2018, Proceedings, Part II, volume 11071 of Lecture Notes in Computer Science, pp.
210–218. Springer, 2018. doi: 10.1007/978-3-030-00934-2_24.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
CoRR, abs/2407.05000, 2024. doi: 10.48550/ARXIV.2407.05000.

Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Information
Processing Systems, 34:28496–28510, 2021.

Maciej Wolczyk, Michal Zajkac, Razvan Pascanu, Lukasz Kuciński, and Piotr Miloś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Information
Processing Systems, 34:28496–28510, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.585893.

Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. SUN database:
Large-scale scene recognition from abbey to zoo. In The Twenty-Third IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010,
pp. 3485–3492. IEEE Computer Society, 2010. doi: 10.1109/CVPR.2010.5539970.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, André Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil
Houlsby. The visual task adaptation benchmark. CoRR, abs/1910.04867, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023a.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Zhong Zhang, Bang Liu, and Junming Shao. Fine-tuning happens in tiny subspaces: Exploring
intrinsic task-specific subspaces of pre-trained language models. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1701–1713, Toronto, Canada, July 2023b.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.95.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
https://arxiv.org/abs/2402.14658, 2024.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora:
Fine-tuning high-rank parameters with the delta of low-rank matrices. CoRR, abs/2309.02411,
2023. doi: 10.48550/ARXIV.2309.02411.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong T. Tran, Radu Soricut,
Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk Michalewski, Yao Lu,
Sergey Levine, Lisa Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov,
Ryan Julian, Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Herzog, Karol
Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Florence, Chelsea Finn, Kumar Avinava
Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebotar,
Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and Kehang Han.
RT-2: vision-language-action models transfer web knowledge to robotic control. In Jie Tan,
Marc Toussaint, and Kourosh Darvish (eds.), Conference on Robot Learning, CoRL 2023, 6-9
November 2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine Learning Research,
pp. 2165–2183. PMLR, 2023.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

CONTENTS

A Reproducibility Statement 21

B Natural language generation 21
B.1 Implementation details . 21

B.2 Hyperparameter search . 21

B.3 Additional results . 23

C Natural language understanding 26
C.1 Dataset Statistics . 26
C.2 Implementation Details . 26

C.3 Hyperparameter search . 27

C.4 Additional results . 28

D Image Classification 30
D.1 Dataset statistics . 30
D.2 Implementation details . 30

D.3 Hyperparameter search . 35

D.4 Additional results . 35

E Decision Making 35
E.1 Dataset statistics . 35
E.2 Implementation details . 36

E.3 Hyperparameter search . 36

E.4 Additional results . 38

F Incremental SVD convergence analysis 38
F.1 Complexity . 39

F.2 Batch Size invariance . 39
F.3 Excluding ignored tokens for SVD . 40

F.4 Efficiency of EVA initialization . 40

G Rank re-distribution analysis 40

H Relation between SVD and PCA 41

I Ablation Studies 43

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A REPRODUCIBILITY STATEMENT

We provide the source code to reproduce all our experiments in the supplementary material as a
zip archive. The archive contains two sub-directories named NLU and NLG, which can be used
to reproduce the results on language understanding and generation. For image classification and
decision making experiments we used custom implementations which we will open-source as well.
Both code directories contain instructions how to install the environment and how to execute all
the parameter searches and obtain our results. Additionally, we provide a package that contains
implementations for EVA along with different LoRA variants, such as DoRA, and ELoRA in the
NLU code directory. We will release a unified codebase upon publication and also integrate EVA into
the widely used PEFT library (Mangrulkar et al., 2022).

B NATURAL LANGUAGE GENERATION

We follow the experiments conducted in Hu et al. (2023) and fine-tune Llama-2-7B, Llama-3.1-8B
and Gemma-2-9B on 8 common sense reasoning tasks with qa style prompts. We keep the original
prompt templates unchanged aside from two minor modifications: For BoolQ we prepend the the
passage field before the question and for WinoGrande we add a line "Answer format: ..." analogous
to the other prompts. As done by Hu et al. (2023) as well as Liu et al. (2024a) we perform joint
finetuning on all 8 tasks. We furthermore evaluate the pre-trained models mentioned above on the
mathematical reasoning tasks GSM8K (Cobbe et al., 2021) and Math (Yu et al., 2024) after finetuning
on MetaMathQA (Yu et al., 2024) as done in Meng et al. (2024). We keep the original prompt
template for finetuning and evaluation. For all datasets we run finetuning for one epoch.

B.1 IMPLEMENTATION DETAILS

Table 6: hyperparameters for finetuning on com-
mon sense reasoning and math reasoning

Training

Optimizer AdamW
Weight Decay 0.0
Lora Dropout 0.0
Batch Size 32
#Epoch 1
LR Schedule Linear
Warmup ratio 0.03
Label Smooth 0.0
Learning Rate 5e-4
LoRA Dim 16
LoRA α 1
Batch Size SVD (EVA) 16
τ 0.99

Inference

Beam Size 1.0
Length Penalty 1.0
repetition penalty 1.0

For finetuning our code base leverages peft
implementations of adapter methods LoRA,
AdaLoRA, PiSSA, OLoRA and DoRA. The ini-
tialization step for EVA is a custom implementa-
tion but for finetuning we can reformulate EVA
as a LoRA adapter leveraging the rank_pattern
argument of peft.LoraConfig. For evaluation
we leverage scripts provided by the MetaMath
github repository (Yu et al., 2024) for math rea-
soning tasks. For common sense reasoning we
make use of the lm evaluation harness project
(Gao et al., 2024) and define custom tasks us-
ing the finetuning prompts. For the SVD com-
putation for joint finetuning on the common
sense reasoning tasks we experiment with ran-
dom and stratified sampling of examples from
the 8 tasks and do not notice a difference in
performance. All training and evaluation runs
for Llama-2-7B were done on 4 A100 GPUs.
Runs for Llama-3.1-8B and Gemma-2-9B uti-
lized two different nodes, one with 4 A100
GPUs and one with 4 H200 GPUs.

B.2 HYPERPARAMETER SEARCH

The reported results on language generation
tasks in Table 7 and Table 8 are the best setting based on a grid search over different learning
rates. We apply adapters to all linear layers including the language modelling head. Furthermore
we set α = 1 for all our experiments. We use AdamW with weight decay and a linear learning
rate schedule with warm-up. We train for 1 epoch and use the final checkpoint for evaluation. All
hyperparameters are summarized in Table 6

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Prompt templates with examples (red) used for finetuning on common sense and math
reasoning tasks.

Dataset Fine-tuning Data Template
BoolQ Passage: Drinking in public – Drinking in public is most commonly accepted.

After reading this passage, please answer the following question with true or
false, question: can you drink on the street in china
Answer format: true/false
the correct answer is true

PIQA Please choose the correct solution to the question: When boiling butter, when
it’s ready, you can
Solution1: Pour it onto a plate
Solution2: Pour it into a jar
Answer format: solution 1/solution2
the correct answer is solution2

SIQA Please choose the correct answer to the question: Carson relocated somewhere
new. How would you describe Carson?
Answer1: mobile
Answer2: anxious
Answer3: lonely
Answer format: answer1/answer2/answer3
the correct answer is answer1

HellaSwag Please choose the correct ending to complete the given sentence: Playing
drums: People are standing behind large drums. A man
Ending1: is playing a bag pipe.
Ending2: starts to play around the drums.
Ending3: begins playing a drum set.
Ending4: begins playing the drums.
Answer format: ending1/ending2/ending3/ending4
the correct answer is ending4

WinoGrande Please choose the correct answer to fill in the blank to complete the given
sentence: Ian volunteered to eat Dennis’s menudo after already having a bowl
because _ despised eating intestine.
Option1: Ian
Option2: Dennis
Answer format: option1/option2
the correct answer is option2

ARC-e &
ARC-c

Please choose the correct answer to the question: Which factor will most
likely cause a person to develop a fever?
Answer1: a leg muscle relaxing after exercise
Answer2: a bacterial population in the bloodstream
Answer3: several viral particles on the skin
Answer4: carbohydrates being digested in the stomach
Answer format: answer1/answer2/answer3/answer4
the correct answer is answer2

OBQA Please choose the correct answer to the question: The sun is responsible for
Answer1: puppies learning new tricks
Answer2: children growing up and getting old
Answer3: flowers wilting in a vase
Answer4: plants sprouting, blooming and wilting
Answer format: answer1/answer2/answer3/answer4
the correct answer is answer4

MetaMathQA Below is an instruction that describes a task. Write a response that
appropriately completes the request.

Instruction:
What is the value of the cosine of 90 degrees?

Response:
s $\\boxed{0}$.The answer is: 0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Comparison of LoRA and DoRA to different initialization and rank re-distribution methods
on NLG tasks. We report average performance across three seeds and respective standard deviation in
Table 14. EVA+DoRA and EVA consistently attain the highest average performance across all tasks.

Model Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

Llama-2-7B

LoRA 67.2 83.9 82.0 94.7 84.0 87.8 74.1 84.0 82.2
AdaLoRA 74.8 82.2 80.5 93.3 79.4 86.1 71.1 80.6 81.0
PiSSA 62.6 84.8 81.2 94.5 84.8 87.8 74.8 85.4 82.0
OLoRA 68.7 84.8 82.2 95.0 85.0 88.1 74.9 85.2 82.9
LoRA-GA 69.0 85.6 82.3 95.0 85.0 88.7 75.9 85.8 83.4

EVA 68.3 85.3 82.9 95.2 85.2 88.6 75.8 86.3 83.4
DoRA 68.3 85.1 82.2 94.9 84.3 88.7 74.8 86.3 83.1
EVA+DoRA 73.5 85.3 82.4 95.2 84.8 88.9 76.0 87.3 84.2

Llama-3.1-8B

LoRA 85.7 90.3 83.0 96.9 88.4 94.2 84.8 90.1 89.2
AdaLoRA 83.9 89.5 81.7 96.2 86.3 93.7 82.7 86.8 87.6
PiSSA 72.9 87.3 81.6 95.3 87.8 91.7 81.2 87.6 85.7
OLoRA 86.0 90.4 83.9 97.0 88.6 94.5 84.7 90.3 89.4
LoRA-GA 83.7 89.7 83.1 96.7 88.8 94.2 85.3 90.4 89.0

EVA 85.3 90.4 83.4 97.0 89.0 94.4 86.0 90.3 89.5
DoRA 86.2 90.8 83.4 96.9 88.6 94.3 84.9 89.4 89.3
EVA+DoRA 85.8 90.8 83.9 97.1 89.2 94.4 85.9 90.5 89.7

Gemma-2-9B

LoRA 88.3 92.9 85.2 97.8 92.3 97.2 89.9 94.4 92.2
AdaLoRA 87.3 91.8 84.6 97.3 91.3 97.0 90.0 92.6 91.5
PiSSA 81.4 90.0 82.5 95.5 89.0 93.6 83.5 90.8 88.3
OLoRA 87.7 92.5 85.2 97.5 92.5 96.6 88.7 93.7 91.8
LoRA-GA 87.3 92.1 84.5 97.4 93.2 96.4 89.2 94.3 91.8

EVA 88.6 93.0 85.3 97.9 92.8 97.5 90.5 94.5 92.5
DoRA 88.3 92.6 84.9 97.7 92.2 97.1 89.9 94.5 92.1
EVA+DoRA 88.6 93.1 85.1 97.9 92.5 97.3 89.6 94.8 92.4

B.3 ADDITIONAL RESULTS

First, we present the per-task performance for the eight common sense reasoning tasks in Table 7. The
respective standard deviations are shown in Table 14. Further, we show the results for all methods on
the two math reasoning datasets in Table 8.

We present additional loss curves for Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B on the common
sense and math reasoning tasks in Figure 6. We find that EVA converges the fastest for all the different
models on the different tasks.

Another experiment we conduct is to apply recently proposed changes to the scaling factor and
learning rate. In Table 9 we show results for changing the scaling factor to α = 2r√

r
which results in

rank stabilization (Kalajdzievski, 2023). Further, we present results for the regular setting α = 2r as
proposed in Hu et al. (2022). Finally, we also show different learning rates for the two matrices A
and B as proposed by Hayou et al. (2024). We make the following observations:

1. The standard setting α = 2r from Hu et al. (2022) leads to the worst performance

2. Rank stabilization via α = 2r√
r

significantly improves the performance of both LoRA and
EVA

3. Different learning rates for A and B did not improve the results

To provide a comprehensive comparison about the effect of rank re-distribution, we compare uniform
ranks (ρ = 1) to adaptive ranks (ρ = 2) on the common sense and math reasoning tasks in Table 10.
We find that adaptive ranks consistently improves performance for Gemma-2-9B. For Llama-2-7B
and Llama-3.1-8B we observe improvements on the common sense reasoning tasks only, while
uniform ranks perform better on the math fine-tuning tasks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 6: Loss curves for Llama-2-7B on common sense reasoning (top left), Llama-3.1-8B on
common sense reasoning (top right), Gemma-2-9B on common sense reasoning (bottom right), and
Gemma-2-9B on MetaMathQA. EVA consistently converges the fastest among all competitors.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Comparison of EVA to other initialization and adaptive rank methods on GSM8K and MATH
datasets. We report mean and standard deviation across three random seeds.

Model Method GSM8K MATH

Llama-2-7B

LoRA 59.7±.8 10.9±.2

AdaLoRA 56.9±.4 9.6±.2

PiSSA 61.1±.3 12.6±.4

OLoRA 60.7±.5 11.8±.3

LoRA-GA 60.2±.6 11.7±.4

EVA 61.9±.5 13.1±.3

DoRA 59.8±.5 11.5±.2

EVA+DoRA 62.5±.8 13.4±.01

Llama-3.1-8B

LoRA 78.3±.6 30.1±.5

AdaLoRA 76.9±.2 28.9±.7

PiSSA 78.8±.2 29.5±.5

OLoRA 78.0±.1 31.0±.7

LoRA-GA 78.8±.1 30.0±.1

EVA 78.8±.3 31.2±.3

DoRA 77.9±.1 30.2±.5

EVA+DoRA 79.1±.5 30.8±.4

Gemma-2-9B

LoRA 83.4±.9 40.7±.2

AdaLoRA 83.5±.5 41.1±.4

PiSSA 79.8±.5 34.9±.2

OLoRA 82.2±.2 39.4±.6

LoRA-GA 82.8±.9 40.4±.4

EVA 83.6±.8 41.5±.3

DoRA 82.5±.6 39.7±.4

EVA+DoRA 82.9±.3 40.0±.6

In Table 11 we show the number of trainable parameters for EVA (ρ = 2) compared to LoRA on
the common sense and math reasoning tasks. We find that after rank redistribution, EVA leads to
improved performance while reducing the parameter count by approximately 1M. The reason for this
is that parameters are usually re-distributed from higher dimensional projections to lower dimensional
ones, i.e. from non-attention weights to attention weights. This results in improved performance
while reducing the parameter count.

Finally, to verify our intuition that the LoRA matrix A should be initialized with the projection onto
the components that explain the most variance, we compare its performance to initializing EVA
with the components that explain the least amount of variance. We call this method EVA-minor and
present results for it in Table 12. To implement EVA-minor, we sample 20 minibatches of data and
perform truncated SVD on those and select the resulting minor components. This incurs substantial
additional cost, as we must compute all components, whereas for EVA we only approximate the
components that explain the most variance. Hence, incremental SVD is not beneficial in this case
anymore and it is also not practical as obtaining the initialization takes hours instead of seconds for
EVA. Moreover, our data-driven heuristic for adaptive rank allocation is not applicable to this case
anymore, therefore we consider uniform ranks. Finally, we find that EVA consistently improves over
EVA-minor, highlighting the importance of initializing EVA with the major components, i.e. the ones
the explain the most variance.

In addition we also fine-tune Llama-2-7B on the Code-Feedback dataset Zheng et al. (2024) consisting
of multi-turn conversations between user and AI Assistant. Due to limited computational resources
and the long sequence lengths of the examples in this dataset we do not fine-tune Llama-3.1-8B
and Gemma-2-9B or any DoRA variants. We evaluate the fine-tuned checkpoints on four coding
benchmarks: MBPP Austin et al. (2021), HumanEval Chen et al. (2021b), MBPP+ and HumanEval+
Liu et al. (2023). The results are presented in Table 13. EVA shows the best performance on MBPP
and MBPP+ while also exhibiting good performance on HumanEval and HumanEval+. On the latter
two datasets, PiSSA is the best performing method. For finetuning we use a maximum sequence
length of 2028 with right-side truncation. For decoding we set the temperature to 0.2 and top_p to 0.7

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 9: Comparison of EVA to LoRA using recently proposed advancements, such as rank stabilized
scaling (Kalajdzievski, 2023) or different learning rates for B and A (Hayou et al., 2024), as well as
the originally proposed scaling from Hu et al. (2022).

Adaptation Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

LoRA+ LoRA 64.5 84.7 81.6 94.4 83.8 87.3 73.9 85.5 82.0
EVA 68.6 85.0 81.2 94.2 84.7 87.4 73.5 84.1 82.3

rsLoRA LoRA 71.5 85.3 82.5 95.2 84.5 89.0 75.8 86.8 83.8
EVA 75.5 86.1 82.7 95.4 86.1 89.3 76.3 86.3 84.7

α = 32
LoRA 77.9 82.1 80.1 93.2 79.8 86.3 71.5 79.3 81.3
EVA 68.6 84.9 82.2 94.6 84.1 87.8 74.7 84.4 82.7

Table 10: Comparison of EVA with rank redistribution (ρ = 2) and without rank redistribution (ρ = 1)
for Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B on common sense reasoning and math fine-tuning.
Rank re-distribution works well for Gemma-2-9B and for Llama-2-7B and Llama-3.1-8B on the
common sense reasoning tasks.

Model ρ Common sense GSM8K MATH

Llama-2-7B 1 83.4 61.9 13.1
2 83.4 61.0 12.5

Llama-3.1-8B 1 89.4 78.8 31.2
2 89.5 78.3 30.8

Gemma-2-9B 1 92.4 83.6 41.3
2 92.5 83.6 41.5

In Table 14 we report the standard deviation across three seeds from the results in Table 7. For
Llama-3.1-8B and Gemma-2-9B EVA has the smallest average standard deviation across tasks. For
Llama-2-7B the standard the variance of EVA is only slightly above average in comparison to other
methods, mainly due to the high standard deviation on the BoolQ dataset.

C NATURAL LANGUAGE UNDERSTANDING

C.1 DATASET STATISTICS

The dataset statistics for each task in the GLUE benchmark (Wang et al., 2019) are shown in Table 15.
Generally, GLUE contains four low-resource datasets (RTE, MRPC, STS-B, and CoLA) and four
high resource datasets (SST-2, QNLI, QQP, MNLI). While CoLA and SST-2 rely on single sentence
classification, STS-B evaluates for similarity and the remaining tasks are based on pairwise text
classification.

C.2 IMPLEMENTATION DETAILS

We base our implementation on the codebase of LoRA1. For these experiments, we initially pre-
compute our initialization prior to the fine-tuning stage and store it as a checkpoint. However, we also
provide the possibility to directly compute the initialization during the fine-tuning stage, as done for
our experiments on VTAB-1k and Meta-World. By default, we always offload the computation of the
initial checkpoint to CPU to save VRAM. We ran all our experiments on nodes with four A100 GPUs
and used PyTorch’s data-distributed parallel functionality (Paszke et al., 2019). Runtimes ranges
from as little as 10 minutes per run for smaller datasets (RTE, STS-B) to around 15 hours for the
largest datasets (QQP, MNLI).

1https://github.com/microsoft/LoRA

26

https://github.com/microsoft/LoRA

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: Comparison of number of trainable parameters between LoRA-based methods and EVA on
the math and common sense reasoning tasks. Common sense reasoning is an average over eight tasks.
#Trainable represents the number of trainable parameters. EVA consistently improves performance
while decreasing the number of trainable parameters.

Model Method #Trainable Common sense GSM8K MATH

Llama-2-7B LoRA 18.3M 82.2 59.7 10.9
EVA 17.3M 83.4 61.9 13.1
EVA−−

Llama-3.1-8B LoRA 20M 89.2 78.3 30.1
EVA 18.9M 89.5 78.8 31.2
EVA−−

Gemma-2-9B LoRA 24.5M 92.2 83.4 40.7
EVA 23.1M 92.5 83.6 41.5
EVA−−

Table 12: Comparison of EVA to EVA-minor, which leverages components that explain the least
amount of variance for initialization of A, on the common sense reasoning tasks.

Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.
EVA 68.6 85.0 81.2 94.2 84.7 87.4 73.5 84.1 82.3
EVA-minor 64.0 83.4 81.5 94.3 82.0 87.3 73.0 81.6 80.9

C.3 HYPERPARAMETER SEARCH

For LoRA and EVA, we search over the number of ranks r ∈ {2, 4, 6, 8} and different learning rates
η ∈ {1e−3, 4e−4, 1e−4} for RoBERTaLarge and η ∈ {4e−3, 1e−3, 4e−4} for DeBERTav3Base.
We report the best hyperparameter settings for both, RoBERTaLarge and DeBERTav3Base for LoRA
and EVA in Table 16. For AdaLoRA, we search over the same ranks and always start initial ranks
with r+4 that are then redistributed during training. For BOFT we sweep over different combinations
of block sizes b ∈ {2, 4, 8, 16} which determine the number of multiplicative matrices. Additionally,
for both, AdaLoRA and BOFT, we search over the same learning rates as for the other LoRA variants.
Further, we introduce hyperparameters that result in additional speed-up of our initialization, namely
a threshold τ that considers components as converged, and a threshold δ that stops computation of the
initialization when a certain percentage of components have converged. By default, we set τ = 0.99
and δ = 1, i.e. we only stop when all components are converged, and they are almost exactly the
same. These parameters provide additional leeway to speed up the initialization stage of EVA.

We have explored the sensitivity of LoRA to different initialization schemes and found that, similar
to other prominent initialization schemes (He et al., 2015; Glorot & Bengio, 2010), scale plays an
important role along with directions. Originally, (Hu et al., 2022) propose to set α = 2r, however,
we found that this parameter is quite sensitive as also shown in (Kalajdzievski, 2023). Similarly,
different ranks lead to very different results on different downstream tasks. Therefore, we suggest to
always search over more ranks and choose the best performing one if the required compute budget is
available. We also experimented with different learning rates for the A and B matrices as proposed
in (Hayou et al., 2024), however, this did not result in consistent improvements. Instead, we found
that learning rates for LoRA-style training can be surprisingly high (4e − 3 for DeBERTav3Base),
while for larger models the learning rate needs to be approximately a magnitude smaller. A simple
recipe that worked consistently well, was setting α = 1, which results in a similar scaling factor as in
Kalajdzievski (2023), and searching over a set of small learning rates for larger models and higher
learning rates for smaller ones. For EVA, the only tunable hyperparameter is the rank budget, which
we recommend to tune along with the fine-tuning learning rate.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 13: Comparison of EVA to other initialization and rank re-distribution schemes on code fine-
tuning datasets. We report mean and standard deviation across three random seeds.

Method MBPP HumanEval MBPP+ HumanEval+
LoRA 22.2±1.1 18.9±0.6 30.7±1.1 18.9±0.6
AdaLoRA 21.5±0.2 17.1±0.0 29.4±0.7 17.1±0.0

PiSSA 22.8±1.2 19.9±0.9 30.8±0.7 19.9±0.9

OLoRA 22.3±0.6 18.9±0.0 32.4±0.4 18.9±0.0
EVA 22.9±0.7 18.9±1.2 32.6±0.6 18.9±1.2

Table 14: Standard deviation across three seeds on common sense reasoning tasks.

Model Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA

Llama-2-7B

LoRA 1.498 0.252 0.233 0.102 0.658 0.072 0.489 0.822
AdaLoRA 1.315 0.251 0.182 0.098 0.392 0.362 0.106 0.899
PiSSA 0.358 0.294 0.138 0.096 0.298 0.386 0.494 1.117
OLoRA 4.938 0.190 0.524 0.062 0.652 0.339 0.672 0.660
LoRA-GA 10.573 0.416 1.049 0.115 0.344 0.170 0.560 0.721
EVA 7.974 0.137 1.054 0.101 0.810 0.526 0.421 0.577
DoRA 2.599 0.290 0.483 0.113 0.244 0.215 0.489 0.525
EVA+DoRA 5.281 0.273 0.293 0.034 0.853 0.110 0.494 0.249

Llama-3.1-8B

LoRA 0.472 0.194 0.419 0.070 0.197 0.052 0.563 0.189
AdaLoRA 0.510 0.044 0.261 0.040 0.392 0.201 0.804 0.748
PiSSA 6.516 0.373 0.603 0.195 0.707 0.325 0.245 0.589
OLoRA 0.298 0.245 0.397 0.057 0.451 0.173 0.329 0.189
LoRA-GA 0.539 0.237 0.695 0.115 0.592 0.135 0.729 0.800
EVA 0.353 0.031 0.194 0.046 0.209 0.292 0.178 0.808
DoRA 0.225 0.112 0.315 0.014 0.260 0.119 0.698 0.000
EVA+DoRA 0.225 0.168 0.121 0.117 0.392 0.105 0.175 0.249

Gemma-2-9B

LoRA 0.095 0.277 0.386 0.062 0.324 0.072 0.070 0.589
AdaLoRA 0.088 0.353 0.217 0.033 0.098 0.209 0.106 0.432
PiSSA 2.761 0.286 0.214 0.109 0.621 0.447 0.121 0.163
OLoRA 0.066 0.451 0.501 0.099 0.501 0.267 0.448 0.573
LoRA-GA 0.662 0.463 0.252 0.072 0.526 0.129 0.617 1.026
EVA 0.275 0.136 0.111 0.094 0.260 0.119 0.040 0.249
DoRA 0.189 0.420 0.301 0.074 0.419 0.091 0.000 0.499
EVA+DoRA 0.132 0.296 0.490 0.070 0.037 0.150 0.715 0.340

C.4 ADDITIONAL RESULTS

We report additional results for EVA compared to LoRA for different rank budgets in Table 17.
We find that EVA consistently outperforms LoRA for different rank budgets. This demonstrates
the effectiveness of EVA among different compute budgets. Further, we show additional rank
redistributions for the CoLA, MRPC, RTE, and STSB tasks for different for r = 2 (Figure 7), r = 4
(Figure 8), r = 8 (Figure 9), and r = 16 (Figure 10) for both, RoBERTaLarge and DeBERTav3Base.
The distributions for the different models show different patterns. For DeBERTav3Base the higher
attention layers usually receive more ranks than lower ones. For CoLA, there is also a high number
of ranks in the very first layer. For RoBERTaLarge it seems to be the opposite, as the very first
layers consistently receive more ranks compared to later layers. There is also a notable difference
across tasks for both models, which demonstrates the flexibility of EVA to allocate ranks dependent
on the downstream task. Interestingly, for a higher initial rank (r = 16), the redistribution for
DeBERTav3Base puts more emphasis on fine-tuning the self-attention specific weight matrices. This
is not true for RoBERTaLarge, as Wf1 also receives plenty of ranks across all tasks. Overall, the rank
redistribution incurs different fine-tuning paradigms depending on the task and the initial rank.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 15: GLUE benchmark suite statistics and evaluation metric for each corpus sorted by the
number of examples in the training set.

Corpus #Train #Dev #Test Metric

RTE 2.5 k 276 3 k Accuracy
MRPC 3.7 k 408 1.7 k Accuracy
STS-B 7 k 1.5 k 1.4 k Pearson correlation
CoLA 8.5 k 1 k 1 k Matthew’s correlation
SST-2 67 k 872 1.8 k Accuracy
QNLI 108 k 5.7 k 5.7 k Accuracy
QQP 364 k 40 k 391 k Accuracy
MNLI 393 k 20 k 20 k Accuracy

Table 16: The best hyperparameters RoBERTaLargeand DeBERTav3Basethat were found via gridsearch
for each task of the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTaLarge
LoRA

Batch Size 8 16 8 8 8 8 16 8
Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 8 8 4 8 4 2 2
Learning rate 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3 1e-3 4e-4
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

RoBERTaLarge
EVA

Batch Size 8 16 8 8 8 8 16 8
Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 2 4 2 16 8 4 4
Learning rate 4e-4 1e-3 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
LoRA

Batch Size 32 32 16 32 64 32 32 16
Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 4 4 8 16 4 4 8
Learning rate 4e-4 1e-3 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
EVA

Batch Size 32 32 16 32 64 32 32 16
Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 2 4 8 16 4 2 2
Learning rate 4e-4 4e-4 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

Additionally, we show results for different rank redistributions that we obtain by using alternative
measures for explained variance. Specifically, we compare EVA to using, (i), the raw eigenvalues
(EVA-Raw), and (ii), normalizing by the maximum eigenvalue (EVA-Max). We report results for
RoBERTaLarge on four of the GLUE tasks, namely CoLA, RTE, MRPC, and STS-B in Table 18. Our

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 17: Comparison of LoRA to EVA using RoBERTaLarge on all tasks from GLUE for equal rank
budgets. Mean and standard deviation of Matthew’s correlation for CoLA, pearson correlation for
STS-B, and accuracy for remaining datasets on the development set across 5 seeds are shown.

Method CoLA MRPC RTE STS-B MNLI QNLI QQP SST-2 Avg

LoRAr=2 68.0±1.4 90.9±.8 88.1±1.1 92.3±.1 91.9±.1 94.8±.3 90.6±.1 96.1±.1 89.09
EVAr=2 69.1±1.4 90.8±.5 88.2±.7 92.5±.1 90.8±.1 94.9±.1 91.9±.1 96.2±.1 89.30

LoRAr=4 69.1±.5 90.7±.7 86.9±.2 92.3±.1 90.6±.1 94.7±.2 92.0±.0 96.0±.1 89.04
EVAr=4 69.5±1.4 91.4±.8 88.8±1.3 92.6±.1 90.7±.0 94.9±.1 91.8±.0 96.1±.1 89.48

LoRAr=8 68.8±1.0 91.1±.6 87.10.7 92.2±.2 90.6±.2 94.8±.1 91.8±.0 96.2±.3 89.08
EVAr=8 69.0±1.4 91.1±.4 88.4±.6 92.6±.3 90.6±.1 94.9±.1 92.1±.1 96.1±.2 89.35

LoRAr=16 68.4±1.0 90.5±.5 88.0±.5 92.3±.1 90.6±.1 94.8±.1 91.9±.1 96.1±.1 89.08
EVAr=16 69.1±.8 91.2±.8 88.0±.5 92.6±.2 90.7±.0 95.0±.2 91.8±.0 96.2±.1 89.33

Table 18: Comparison of LoRA to EVA, EVA-Raw, and EVA-Max for RoBERTaLargeon the GLUE
tasks CoLA, MRPC, RTE, and STS-B. We report mean and standard deviation of Matthew’s cor-
relation for CoLA, pearson correlation for STS-B, matched accuracy for MNLI, and accuracy for
remaining tasks across 5 seeds.

Method CoLA MRPC RTE STS-B Avg

LoRA 69.1±.5 91.1±0.6 88.1±1.1 92.3±0.1 85.2
EVA 69.5±1.4 91.4±0.8 88.8±1.2 92.6±0.1 85.6
EVA-Raw 69.4±1.1 91.0±0.9 88.2±0.3 92.5±0.2 85.3
EVA-Max 69.1±0.5 91.2±0.5 88.4±1.2 92.5±0.2 85.3

results show that while EVA-Raw and EVA-Max slighthly improve upon LoRA, they perform worse
on average than EVA.

D IMAGE CLASSIFICATION

D.1 DATASET STATISTICS

The VTAB-1K benchmark consists of 19 datasets, each containing a subset of 1000 examples of
their respective samples. We summarize the dataset statistics for each dataset in Table 19. While the
original train sizes of the datasets vary drastically, the 1K subset provides equal datasets across tasks.
The number of classes also varies from as little as two to almost 400.

D.2 IMPLEMENTATION DETAILS

We implemented a custom pipeline to fine-tune DINOv2-L/14 on VTAB-1K that supports LoRA,
DoRA and EVA. To train AdaLora, PiSSA and OLoRA, we integrate their implementation from
the peft library (Mangrulkar et al., 2022) into our pipeline. This pipeline is designed to be highly
parallelizable and to be executed on individual GPUs. A single evaluation run of a L/14 model (all
19 datasets with hyperparameter tuning and evaluation) takes roughly 160 A100 GPU-hours but
can be easily parallelized. A g/14 run takes roughly 140 H100 GPU-hours. A single evaluation run
consists of 1140 hyperparameter tuning runs (19 datasets * 5 learning rates * 4 ranks * 3 seeds) and
95 evaluation runs (19 datasets * 5 seeds). Details to hyperparameter tuning are described below.

We use the original DINOv2 models (Oquab et al., 2023) and train a classification head on top of
the [CLS] token, where we initialize the classification head weights with a normal distribution with
σ = 2e-5 and bias with zeros. We train the classification head, LoRA matrices and biases. Images are
resized to 224×224 resolution with bi-cubic interpolation and normalized with the per-channel mean
and variance of ImageNet. We train all models in bfloat16 precision using the AdamW optimizer with

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

CoLA

MRPC

RTE

STSB

CoLA

MRPC

RTE

STSB

Figure 7: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 2.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

CoLA

MRPC

RTE

STSB

CoLA

MRPC

RTE

STSB

Figure 8: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 4.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

CoLA

MRPC

RTE

STSB

CoLA

MRPC

RTE

STSB

Figure 9: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 8.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

CoLA

MRPC

RTE

STSB

CoLA

MRPC

RTE

STSB

Figure 10: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 16.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 19: Category, train size and classes of the VTAB-1K dataset.

Category Dataset Train size Classes
Natural Caltech101 (Fei-Fei et al., 2006) 3060 102
Natural CIFAR-100 (Krizhevsky, 2009) 50000 100
Natural DTD (Cimpoi et al., 2014) 3760 47
Natural Flowers102 (Nilsback & Zisserman, 2008) 2040 102
Natural Pets (Parkhi et al., 2012) 3680 37
Natural Sun397 (Xiao et al., 2010) 87003 397
Natural SVHN (Netzer et al., 2011) 73257 10
Specialized EuroSAT (Helber et al., 2019) 21600 10
Specialized Resisc45 (Cheng et al., 2017) 25200 45
Specialized Patch Camelyon (Veeling et al., 2018) 294912 2
Specialized Retinopathy (Kaggle & EyePacs, 2015) 46032 5
Structured Clevr/count (Johnson et al., 2017) 70000 8
Structured Clevr/distance (Johnson et al., 2017) 70000 6
Structured dSprites/location (Matthey et al., 2017) 663552 16
Structured dSprites/orientation (Matthey et al., 2017) 663552 16
Structured SmallNORB/azimuth (LeCun et al., 2004) 36450 18
Structured SmallNORB/elevation (LeCun et al., 2004) 36450 9
Structured DMLab (Beattie et al., 2016) 88178 6
Structured KITTI/distance (Geiger et al., 2013) 5711 4

a weight decay of 0.05 for 30 epochs. We use a cosine learning rate schedule with a linear warm-up
for the first 3 epochs. Batch size is set to 64 where we use gradient accumulation if the batchsize
does not fit into GPU memory. Full fine-tuning uses a layer-wise lr decay (Clark et al., 2020) of 0.75.

D.3 HYPERPARAMETER SEARCH

We first fine-tune on the 800 train samples of VTAB-1K datasets to find the best learning rate for
the task. We sweep over learning_rate ∈ {2.5e-3, 1e-3, 7.5e-4, 5e-4, 2.5e-4} and rank ∈
{2, 4, 8, 16} and average the accuracy on the 200 validation samples over 3 different seeds to choose
the best learning rate and rank for each dataset. For evaluation, we train on the union of train and
validation set using 5 different seeds and report the average accuracy on the test set.

D.4 ADDITIONAL RESULTS

To complement our main results in Table 3, we report the respective standard deviations in Table 20.

E DECISION MAKING

E.1 DATASET STATISTICS

Meta-World (Yu et al., 2020) is an established benchmark in RL for multi-task continuous control.
The benchmark consists of 50 challenging robotics tasks simulated using a Sawyer robotic arm
in the MuJoCo physics engine (Todorov et al., 2012). All 50 tasks in Meta-World share the same
underlying robotic arm. Therefore, all tasks share a common state (39-dimensional continuous vector)
and action-space (6-dimensional). The reward functions in Meta-World are dense and based on the
distance of the robotic arm to the goal location or objects. All episodes last for 200 environment
interactions.

For our experiments on Meta-World, we leverage the datasets released by Schmied et al. (2024). We
follow Wołczyk et al. (2021) and Schmied et al. (2024), and split the 50 tasks into 40 pre-training
tasks (MT40) and 10 fine-tuning tasks (CW10). The CW10 tasks are:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 20: Standard deviations for the VTAB-1K results (Table 3) over 5 seeds.

Natural Specialized Structured

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
ve

ra
ge

FFT 1.5 1.1 1.6 0.0 0.4 1.2 0.9 14.9 0.4 0.6 2.7 1.7 0.9 1.2 23.6 0.5 0.4 1.6 1.9 3.0
LoRA 0.2 0.4 0.2 0.0 0.3 36.4 0.1 0.5 0.3 0.1 0.4 0.2 0.3 0.5 1.2 0.4 0.4 0.7 0.4 2.3
AdaLoRA 0.0 0.2 0.4 0.0 0.1 0.4 0.1 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.8 0.8 0.3 0.3 0.4 0.3
PiSSA 0.2 0.4 0.3 0.0 0.2 0.5 0.2 0.7 0.2 0.1 0.4 0.3 0.4 0.2 0.7 0.3 0.5 0.4 0.5 0.3
OLoRA 0.3 0.3 0.4 0.0 0.3 29.4 0.1 0.3 0.1 0.2 0.2 0.5 0.1 0.3 24.6 0.3 0.4 0.3 0.8 3.1
EVA 0.2 0.5 0.2 0.0 0.1 0.3 0.1 0.3 0.2 0.3 0.4 0.5 0.3 0.6 0.6 0.5 0.5 0.2 0.5 0.3
DoRA 0.1 0.2 0.5 0.0 0.2 29.7 0.4 0.7 0.1 0.2 0.4 0.4 0.3 0.3 0.6 36.2 0.5 0.3 0.3 3.8
EVA+DoRA 0.2 1.3 0.6 0.0 0.3 0.5 0.3 0.4 0.2 0.3 0.3 0.4 0.4 12.8 1.3 2.5 0.3 0.6 0.6 1.2

hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2,
stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-v2,
window-close-v2, and peg-unplug-side-v2.

The datasets contain 2M transitions for every of the 50 tasks, amounting to 80M transitions (320M
tokens) across all training tasks. The average success rate and rewards across all MT40 tasks are 84%
and 1414.62, respectively. We list the statistics per task in Table 21.

E.2 IMPLEMENTATION DETAILS

We implemented our pipeline that supports training for Meta-World on top of the code-base provided
by Schmied et al. (2024). Our custom implementation supports training LoRA, DoRA and EVA.
Furthermore, we leverage the peft library (Mangrulkar et al., 2022) to train the remaining methods.

For our experiments on Meta-World, we use a GPT2-like network architecture (Radford et al., 2019)
with 4 Transformer layers, 8 heads, and hidden dimension of 512 resulting in 16M parameters. We
use a context of 50 time steps, which amounts to a sequence length of 200, as each timestep contains
states, actions, rewards and RTGs. We embed states, actions, rewards and return-to-gos (RTGs) using
separate linear embedding layers per modality, as proposed by Chen et al. (2021a). We train with a
batch size of 128 using a constant learning rate of 1e−4, 4000 linear warm-up steps followed by a
cosine decay to 1e−6, using the AdamW optimizer (Loshchilov & Hutter, 2017). We employ gradient
clipping of 0.25, weight decay of 0.01, and a dropout rate of 0.2. Our DT implementation employs
global position embedding. For every task, we set the target return to the maximum return achieved
in the respective training datasets, as proposed by (Schmied et al., 2024). Furthermore, we employ
mixed-precision (Micikevicius et al., 2017) and flash-attention (Dao, 2023) to speed-up training.

We first pre-train a DT on all MT40 tasks (80M transitions) for 1M updates via next-action prediction
by minimizing the mean-squared error. The resulting pre-trained model attains an average success
rate of 80% across all MT40 tasks. Then we fine-tune the DT on each of the CW10 down-stream
tasks for 100K updates with the same set of hyperparameters as used for pre-training. We run all our
experiments on a public research cluster with 4xA100-40GB GPU nodes. A single fine-tuning run
with EVA for one task takes roughly 1 hour on one A100.

E.3 HYPERPARAMETER SEARCH

In line with previous experiments, we tune the rank for LoRA, DoRA, AdaLora and EVA, rank ∈
{2, 4, 8, 16}. Further, we sweep over the same learning rates as for the GLUE tasks.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 21: Dataset statistics for all MT40 tasks from Schmied et al. (2024).
Task |S| |A| Success Rate Reward
assembly-v2 39 4 0.0 1206.9
basketball-v2 39 4 0.9 1375.95
bin-picking-v2 39 4 0.0 474.81
box-close-v2 39 4 0.0 759.15
button-press-topdown-v2 39 4 1.0 1299.24
button-press-topdown-wall-v2 39 4 1.0 1296.16
button-press-v2 39 4 1.0 1430.44
button-press-wall-v2 39 4 1.0 1508.16
coffee-button-v2 39 4 1.0 1499.17
coffee-pull-v2 39 4 1.0 1313.88
coffee-push-v2 39 4 0.6 508.14
dial-turn-v2 39 4 0.8 1674.29
disassemble-v2 39 4 1.0 1396.55
door-close-v2 39 4 1.0 1535.4
door-lock-v2 39 4 1.0 1712.65
door-open-v2 39 4 1.0 1544.32
door-unlock-v2 39 4 1.0 1733.64
drawer-close-v2 39 4 1.0 1845.92
drawer-open-v2 39 4 1.0 1710.65
faucet-open-v2 39 4 0.9 1727.98
hand-insert-v2 39 4 1.0 1607.17
handle-press-v2 39 4 1.0 1854.79
handle-pull-side-v2 39 4 1.0 1613.72
handle-pull-v2 39 4 1.0 1581.75
lever-pull-v2 39 4 1.0 1449.05
peg-insert-side-v2 39 4 1.0 1545.19
pick-out-of-hole-v2 39 4 1.0 1435.64
pick-place-v2 39 4 0.0 6.59
pick-place-wall-v2 39 4 0.1 702.59
plate-slide-back-side-v2 39 4 1.0 1766.24
plate-slide-back-v2 39 4 1.0 1773.56
plate-slide-side-v2 39 4 1.0 1663.35
plate-slide-v2 39 4 1.0 1667.35
reach-v2 39 4 1.0 1858.99
reach-wall-v2 39 4 1.0 1831.14
soccer-v2 39 4 0.4 445.84
stick-push-v2 39 4 1.0 1470.71
sweep-into-v2 39 4 1.0 1761.69
sweep-v2 39 4 1.0 1458.35
window-open-v2 39 4 1.0 1537.59

Average - - 0.84 ± 0.34 1414.62 ± 439.39

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.4 ADDITIONAL RESULTS

In Table 22, we show the full comparison for all methods on CW10. EVA+DoRA consistently
outperforms all competitors for the different rank budgets.

Table 22: Rank-wise comparison for all methods on CW10. We fine-tune a 12M DT on 10 tasks
individually and report the mean success rates/rewards (± standard error) for every task.

fa
uc

et
-c

lo
se

ha
m

m
er

ha
nd

le
-p

re
ss

-s
id

e

pe
g-

un
pl

ug
-s

id
e

pu
sh

-b
ac

k

pu
sh

pu
sh

-w
al

l

sh
el

f-
pl

ac
e

st
ic

k-
pu

ll

w
in

do
w

-c
lo

se

A
ve

ra
ge

Method Rank

FFT - 0.97±0.03 0.93±0.03 1.0±0.0 0.6±0.05 0.7±0.12 1.0±0.0 0.93±0.03 1.0±0.0 0.57±0.07 1.0±0.0 0.87±0.03

LoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.05 0.57±0.07 0.97±0.03 0.93±0.03 1.0±0.0 0.37±0.1 1.±0.0 0.84±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.47±0.12 0.63±0.1 0.97±0.03 1.0±0.0 1.0±0.0 0.23±0.12 1.0±0.0 0.83±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.4±0.09 0.97±0.03 0.93±0.03 1.0±0.0 0.23±0.12 1.0±0.0 0.79±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.03 0.47±0.03 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 1.0±0.0 0.82±0.05

DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.05 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.33±0.11 1.0±0.0 0.89±0.04

4 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.9±0.04

8 1.0±0.0 1.0±0.0 1.0±0.0 0.47±0.12 0.93±0.05 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.15 1.0±0.0 0.9±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.15 1.0±0.0 0.92±0.03

AdaLoRA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.05 0.37±0.05 0.93±0.05 0.97±0.03 1.0±0.0 0.13±0.07 1.0±0.0 0.77±0.06

4 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.07 0.57±0.1 0.97±0.03 0.9±0.08 1.0±0.0 0.13±0.07 1.0±0.0 0.79±0.06

8 1.0±0.0 0.97±0.03 1.0±0.0 0.3±0.05 0.57±0.14 0.93±0.03 0.87±0.07 1.0±0.0 0.0±0.0 1.0±0.0 0.76±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 0.57±0.12 0.97±0.03 0.93±0.05 1.0±0.0 0.0±0.0 1.0±0.0 0.78±0.06

OLoRA 2 1.0±0.0 0.9±0.05 1.0±0.0 0.47±0.03 0.33±0.03 0.97±0.03 0.970.03 1.0±0.0 0.27±0.11 1.0±0.0 0.79±0.05

4 1.0±0.0 0.9±0.05 1.0±0.0 0.43±0.03 0.63±0.12 1.0±0.0 1.00.0 1.0±0.0 0.6±0.12 1.0±0.0 0.86±0.04

8 1.0±0.0 0.97±0.03 1.0±0.0 0.57±0.1 0.5±0.08 1.0±0.0 1.00.0 1.0±0.0 0.53±0.14 1.0±0.0 0.86±0.04

16 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.05 0.63±0.03 1.0±0.0 1.00.0 1.0±0.0 0.43±0.05 1.0±0.0 0.84±0.04

PiSSA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.11 0.53±0.07 0.97±0.03 0.90.08 1.0±0.0 0.33±0.17 1.0±0.0 0.81±0.05

4 1.0±0.0 1.0±0.0 1.0±0.0 0.37±0.07 0.7±0.05 0.97±0.03 1.00.0 1.0±0.0 0.07±0.05 1.0±0.0 0.81±0.06

8 1.0±0.0 0.97±0.03 1.0±0.0 0.3±0.0 0.57±0.03 0.97±0.03 1.00.0 1.0±0.0 0.53±0.1 1.0±0.0 0.83±0.05

16 1.0±0.0 0.93±0.03 1.0±0.0 0.33±0.12 0.47±0.03 1.0±0.0 0.970.03 1.0±0.0 0.47±0.11 1.0±0.0 0.82±0.05

EVA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.07 0.77±0.05 0.97±0.03 1.0±0.0 1.0±0.0 0.63±0.07 1.0±0.0 0.88±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.47±0.12 1.0±0.0 0.97±0.03 1.0±0.0 0.23±0.05 1.0±0.0 0.81±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.63±0.03 0.7±0.08 1.0±0.0 1.0±0.0 1.0±0.0 0.23±0.03 1.0±0.0 0.85±0.05

16 1.0±0.0 0.97±0.03 1.0±0.0 0.53±0.03 0.77±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0 1.0±0.0 0.83±0.06

EVA + DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.08 0.97±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.92±0.03

4 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.05 0.93±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.03 1.0±0.0 0.94±0.02

8 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.19 0.87±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.03 1.0±0.0 0.91±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.2 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.5±0.16 1.0±0.0 0.92±0.04

F INCREMENTAL SVD CONVERGENCE ANALYSIS

For simplicity, let us assume that A = Xi⊤
0 and B = Xi⊤

1 are two batches of activations for weight
matrix W i obtained by passing two subsequent batches of the downstream data through the model.
The aim is now to compute the SVD of the concatenated activation matrix

[
AB

]
= U ′Σ′V ′⊤ in

constant memory. Further, We obtain A = UtΣtV
⊤
t via SVD. Now let B̃ be the component of B

that is orthogonal to U , which can be obtained via QR-decompositon or via B̃ = orth(B−UU⊤B),
where orth(·) performs orthogonalization. Then the SVD of the concatenated activation matrix can
be expressed in partitioned form as[

AB
]
=

[
UB̃

] [Σ U⊤B

0 B̃⊤B

] [
V ⊤ 0
0 I

]
. (4)

By setting R =

[
Σ U⊤B

0 B̃B

]
, we can obtain SVD of the concatenated activation matrix by

performing SVD on R,R = ŨΣ̃Ṽ ⊤, which is constant in time and memory as we only need to
compute U ′ and Σ′, which do not scale with the number of data samples. Hence, we perform[

A;B
]
=

([
U ; B̃

]
Ũ
)
Σ̃

(
Ṽ ⊤

[
V ⊤ 0
0 I

])
, (5)

and subsequently obtain U ′ =
[
UB̃

]
Ũ and Σ′ = Σ̃.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

As this algorithm incrementally updates the U and Σ components, we need to keep track of changing
mean and variance estimates. For the mean this is trivial, but the computation of running variances
can introduce numerical instabilities. To counteract this, usually the young and cramer update is
employed (Chan et al., 1983). The supporting proof that the covariance matrix of the original data
matrix is equal to the covariance matrix of the concatenated matrix up to a constant factor is given
in Ross et al. (2008). In our example, the left-singular values U do not scale with the number of
samples. However, in our case we have A = Xi

t and B = Xi
t+1, i.e. transposed data matrices,

therefore it is the right-singular values V that do not depend on the number of samples and can be
incrementally updated in constant time and memory. We show pseudocode for the incremental SVD
algorithm in Algorithm 2.

Algorithm 2 Incremental SVD algorithm from Ross et al. (2008)
Input: Sequence of data batches {A0, . . . ,AT }, truncated SVD SVD(·), orthogonalization function

orth(·), running variance update function young_cramer_update(·, ·)
1: m̄0 ← 1

b

∑b
i=0 A:,i, σ

0 ←
∑b

i=0(A:,i−m̄0)2

b−1 ▷ initialize incremental mean/variance
2: U0Σ0V

⊤ ← SVD(A0 − ā0) ▷ Perform initial SVD on A to get initial components
3: for i in 1, . . . , T do
4: āi ← 1

b

∑
b A

i
:,i, m̄

i ← m̄i + ai−m̄i−1

b(i+1) ▷ compute mean vectors
5: σi ← young_cramer_update(σi−1,Ai) ▷ Update running variance

6: Âi ←
[
Ai − āi;

√
b(i+1)

2b

(
m̄i − āi

)]
▷ concatenate mean correction factor

7: Ãi ← orth(Âi −Ui−1U
⊤
i−1Â

i) ▷ Obtain orthogonal component to U

8: R =

[
Σi−1 Ui−1⊤Âi

0 ÃiÂi

]
▷ Define matrix R

9: ŨΣ̃Ṽ ⊤ ← SVD(R) ▷ Perform SVD on R

10: Ui ←
[
Ui−1; Ã

i
]
Ũ , Σi ← Σ̃ ▷ Update SVD components

11: end for

In the following sections we analyze the behavior of this algorithm under different conditions, i.e.
different batch sizes, etc.

F.1 COMPLEXITY

The computation of SVD introduces computational overhead in the initial training stage. Since we
do not require gradient computation or storing of optimizer states, there is no overhead in terms
of memory. SVD has a time complexity of O(min(b2d, bd2)) which can be reduced to O(k2b) for
k << d by randomly choosing k columns from X as introduced in Halko et al. (2011). Let T
be the number of minibatches until all components are converged for N weight matrices, then the
time complexity is O(NTk2b). In other words, the complexity scales linearly with the number of
weight matrices and the number of minibatches. To speed up the computation of SVD, we provide an
implementation that runs entirely on GPU.

F.2 BATCH SIZE INVARIANCE

We conduct an analysis on the convergence of the components obtained via SVD. Specifically, we
investigate the difference in components according to cosine similarity across different batch sizes.
Previously we have seen that the components obtained across different batch orderings are heavily
correlated. In Figure 11 we visualize the cosine similarities between the SVD components for
different batch sizes, namely 4, 8, 16, and 32 for Llama-2-7B on the MetaMathQA dataset. We
observe that the components correlate strongly and remain mostly invariant to the batch size. This
indicates that smaller batch sizes may be used for obtaining the initialization which results in less
computational overhead. In the case of Llama-2-7B on MetaMathQA, this means that we can use a
batch size of 4 since it induces a computational overhead of around 100 seconds. Afterwards we can
continue the fine-tuning process with a larger batch size.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 11: Average cosine similarity between components obtained via SVD on minibatches of
activation vectors across different batch sizes. The components strongly correlate indicating that the
SVD computation is mostly invariant to the batch size and returns mostly the same components.

F.3 EXCLUDING IGNORED TOKENS FOR SVD

For some datasets we notice that masking out tokens for the SVD computation which are ignored for
the loss calculation during finetuning can be advantageous. This can however result in a significant
reduction of the effective batch size for SVD if the number of completion tokens is small. An example
where this is the case in our experiments are the common sense reasoning tasks which have long
prompts but completion tokens are only one word per sample. This setting can lead to cases were
SVD does not converge for lower batch sizes. We therefore do not mask out the prompt tokens in
our experiments. Another setting where masking ignored tokens can be advantageous are multi-turn
conversation where the model is only trained on the assistant tokens. To achieve the results in Table 13
we mask out user tokens together with the prompt for the SVD computation.

F.4 EFFICIENCY OF EVA INITIALIZATION

We investigate the efficacy of the incremental SVD for obtaining a data-driven initialization to
LoRA-GA (Wang et al., 2024), another concurrent work on data-driven initialization. LoRA-GA
performs SVD on the full gradient matrix to obtain a lower dimensional subspace approximation and
initializes A and B accordingly. In Table 23 we show the wall clock time required for LoRA-GA and
EVA as a fraction of the total training time. We observe that EVA takes up only 0.7% of the training
time for initialization, while LoRA-GA takes approximately 4.8%. This demonstrates the EVA is
approximately seven times faster than LoRA-GA while achieving better performance. Furthermore,
EVA is even faster than PiSSA even though PiSSA is weight-driven. Finally, even though EVA is
slightly slower than OLoRA, it attains a better performance vs complexity trade-off as it outperforms
OLoRA on average on all our experiments.

G RANK RE-DISTRIBUTION ANALYSIS

To illuminate the rank re-distribution process, we visualize the resulting ranks for each weight matrix
after SVD for Llama-2-7B on the MetaMathQA dataset for different values of ρ. Setting ρ = 1
results in a uniform rank distribution as in standard LoRA. However, setting ρ > 1 alters the number
of ranks per weight matrix. In Figure 12 we visualize the number of ranks assigned to each weight
matrix for different values of ρ > 1 and in Figure 13 we visualize the corresponding deltas. Both

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 23: Time in minutes required for computing initialization of LoRA-GA, PiSSA and EVA as
% of total training time for Llama-2-7B on a single A100 GPU fine-tuned on the common sense
reasoning tasks presented in Table 7. Training time is averaged across two runs for one epoch. For
LoRA-GA we use the default number of steps (64). For EVA we report efficiency across different
batch sizes.

Initialization Method Initialization Training % of Training

Weight-driven PiSSA 7.43 482.67 1.5
OLoRA 0.3 482.67 0.1

Data-driven

LoRA-GA 11.7 482.67 2.4
EVAbs=16 3.3 482.67 0.7
EVAbs=8 1.38 482.67 0.3
EVAbs=4 1.17 482.67 0.2

Figure 12: The resulting rank allocation per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of ρ. The first row represents a uniform distribution
where each weight matrix receives the same rank r = 16. The most change occurs for ρ < 1.5. The
re-distribution converges for larger values of ρ.

visualizations clearly illustrate that the most change occurs for values of ρ < 1.5. Setting ρ to higher
values results in less and less change. Interestingly, some ranks still change when going from ρ = 2.5
to ρ = 3. Finally, we conduct hyperparameter search in which we search over different values of
ρ ∈ {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3}. We report the results in Figure 14. We find
that for Llama-2-7B on MetaMathQA a uniform distribution performs favorably. The second-best
performance is shared by ρ = 1.5 and ρ = 2. Therefore, we always search for ρ = 1 and ρ = 2 for
all our remaining experiments when we apply EVA and select the best performing one.

H RELATION BETWEEN SVD AND PCA

PCA (F.R.S., 1901) is a commonly used tool to decompose a matrix of datasamples A ∈ Rm×n into
its principal components, i.e. the directions that explain the most variance in the data. The principal
components allow projection onto a lower dimensional manifold by preserving the maximal amount

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 13: Deltas between rank distributions per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of ρ. The first row represents a uniform distribution where
each weight matrix receives the same rank r = 16. The most change occurs in the range ρ ∈ [1, 1.5].
Larger values of ρ do not induce additional significant changes to the rank distribution.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3
Rho

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0.62
0.597 0.604 0.608 0.594 0.61 0.597 0.599 0.6 0.607 0.61 0.607 0.603

Llama-2-7B on MetaMath

Figure 14: Accuracy for different values of ρ when fine-tuning Llama-2-7B on the MetaMathQA
dataset.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

of variance. To this end, PCA first computes the sample covariance matrix

S =
1

n− 1
A⊤A, (6)

where we assume that A is centered. To obtain the principal directions of S, we perform eigenvalue
decomposition as

S = V ΛV ⊤, (7)
where Λ = diag(λ1, . . . , λn) and eigenvalues are sorted in descending order, i.e. λ1 ≥ λ2 ≥ λn.
The matrix V ∈ Rn×n is a matrix of eigenvectors where each column is being referred to as a
principal direction of S. To project A onto a lower dimensional manifold that explains the most
variance we can take the top-k principal directions V:,:k and perform AV .

PCA is in practice often implemented in the form of SVD as there are efficient approximations thereof
(Halko et al., 2011). As mentioned in Equation (1), SVD decomposes the matrix A into

A = UΣV ⊤, (8)

where U ∈ Rm×n is a unitary matrix, Σ ∈ Rn×n is a diagonal matrix of singular values Σ =
diag(σ1, . . . , σn), and the columns of V ∈ Rn×n are called the right singular vectors.

Now we can establish the equivalence between the principal directions obtained by PCA and the
right-singular vectors of SVD by substituting A with the right hand side of Equation (8) as

S =
1

n− 1
A⊤A =

1

n− 1
V ΣU⊤UΣV ⊤ = V Σ̂V ⊤. (9)

Here, we absorb the factor 1
n−1 into Σ̂. Therefore, the right-singular vectors V are the principal

directions and ΣU⊤UΣ = Σ as U⊤U = I because U is real.

I ABLATION STUDIES

Finally, we conduct ablation studies on EVA to investigate important factors that contribute to
its performance. Specifically, we investigate the impact of scale and directions. To this end, we
use the VTAB-1K dataset because it comprises a diverse set of tasks and allows for a systematic
investigation on in-domain data (natural), and out-of-distribution data (specialized and structured).
We report results for our ablation studies in Table 24 and explain the different settings in the following
paragraphs.

Effect of scale. To investigate the effect of scale on the initialization, we add a setting which uses
whitening (EVA-whiten). Whitening scales the initialization by the reciprocal of their eigenvalues,
which alters scale, but preserves directions. We found that whitening can significantly improve
performance on structured (out-of-distribution) tasks even leading to a slightly higher average score
than EVA. This indicates that scale is especially important for structured data. However, EVA-whiten
experiences a slight performance drop on natural and specialized tasks.

Table 24: Group-wise averages for DINOv2-G/14
ablation studies on the VTAB-1K benchmark.

Method Nat. Spec. Struct. All
LoRA 83.2 88.8 69.0 78.4
LoRA-redist 87.3 88.0 68.2 79.4
EVA-whiten 87.5 87.5 69.1 79.8
EVA-rot 87.7 88.0 68.2 79.6
EVA-perm 87.4 87.8 68.3 79.5
EVA 87.7 87.9 68.6 79.7

Effect of directions. To address the importance
of the directions of the components, we ran-
domly permute its rows (EVA-perm). This pre-
serves scale while corrupting directions and ℓ2
norm of A. Additionally, we add a setting where
we randomly rotate A (EVA-rot), which pre-
serves ℓ2 norm, but alters directions. We find
that altering directions leads to a performance
drop on the structured tasks, while changing ℓ2
norm leads to a drop on the natural tasks. Both,
EVA-perm and EVA-rot lead to worse average
performance across all tasks compared to EVA.

Effect of rank redistribution. We conduct an
experiment in which we randomly initialize A
after performing rank redistribution (LoRA-redist). This setting gives insights on the effect of the

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

redistribution and whether its benefits are bound to EVA. The redistribution has a positive effect
on LoRA on the natural tasks, but a negative effect on both structured and specialized tasks. This
illustrates that rank redistribution is most beneficial in combination with EVA’s initialization of A.

Generally, we can say that EVA performs particularly well on natural images and whitening can
enhance its performance on out-of-distribution images. The decisive factor with respect to this
improvement seems to be a controlled change in the scale of the initialization induced by the singular
values. Therefore, by changing the scale in a controlled manner we can make EVA more compatible
for different kinds of data. The results for EVA-perm confirm that the scale is the decisive factor for
initialization.

44

	Introduction
	Related Work
	Method
	Low-Rank Adaptation (LoRA)
	Data-driven Initialization of Low-Rank Adaptation
	Adaptive Rank Allocation

	Experiments
	Implementation Details
	Language Generation
	Language Understanding
	Image Classification
	Decision Making
	SVD Convergence Analysis

	Discussion and Limitations
	Conclusion and Broader Impact
	Reproducibility Statement
	Natural language generation
	Implementation details
	Hyperparameter search
	Additional results

	Natural language understanding
	Dataset Statistics
	Implementation Details
	Hyperparameter search
	Additional results

	Image Classification
	Dataset statistics
	Implementation details
	Hyperparameter search
	Additional results

	Decision Making
	Dataset statistics
	Implementation details
	Hyperparameter search
	Additional results

	Incremental SVD convergence analysis
	Complexity
	Batch Size invariance
	Excluding ignored tokens for SVD
	Efficiency of EVA initialization

	Rank re-distribution analysis
	Relation between SVD and PCA
	Ablation Studies

