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ABSTRACT

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-
tuned on a downstream task for a specific application. The most successful and
most commonly used fine-tuning method is to update the pre-trained weights
via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that
are usually initialized at random with a uniform rank distribution across model
weights. Recent works focus on weight-driven initialization or learning of adaptive
ranks during training. Both approaches have only been investigated in isolation,
resulting in slow convergence or a uniform rank distribution, in turn leading to sub-
optimal performance. We propose to enhance LoRA by initializing the new weights
in a data-driven manner by computing singular value decomposition (SVD) on
minibatches of activation vectors. Then, we initialize the LoRA matrices with the
obtained right-singular vectors and re-distribute ranks among all weight matrices
to explain the maximal amount of variance across layers. This results in our new
method Explained Variance Adaptation (EVA). We apply EVA to a variety of
fine-tuning tasks ranging from language generation and understanding to image
classification and reinforcement learning. EVA exhibits faster convergence than
competitors and attains the highest average score across a multitude of tasks per
domain while reducing the number of trainable parameters.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021, FMs) are usually trained on large-scale data and then
fine-tuned towards a particular downstream task. This training paradigm has led to significant
advancements in the realm of language modeling (OpenAI, 2023; Touvron et al., 2023a; Reid et al.,
2024), computer vision (Dehghani et al., 2023; Oquab et al., 2023), and reinforcement learning
(Brohan et al., 2023; Zitkovich et al., 2023). With an increasing number of model parameters,
the process of fine-tuning becomes prohibitively expensive. This results in the need for efficient
alternatives to fine-tuning all parameters of the pre-trained model.

Parameter-efficient fine-tuning (PEFT) approaches are commonly used as an effective alternative to
full fine-tuning (FFT). PEFT methods modify the pre-trained model by introducing a small number
of new trainable parameters, while the pre-trained weights remain frozen. This leads to a substantial
reduction in computational cost, both in terms of time and space. A particularly successful approach,
LoRA (Hu et al., 2022), introduces new weights in the form of a low-rank decomposition for each
weight matrix in the pre-trained model. After training, the new weights can be readily merged
into the pre-trained weights without any additional inference latency. Recent research has explored
various extensions to LoRA, such as different initialization schemes and adaptive rank allocation
(see Table 1). Weight-driven initialization schemes are constrained to the information stored in the
pre-trained weights. Further, adaptive rank allocation techniques usually optimize the ranks during
the fine-tuning process which results in additional complexity for computing importance scores of
ranks. Both approaches have merely been investigated in isolation thus far.

We propose a new method that extends LoRA with adaptive rank allocation and data-driven initializa-
tion by leveraging information from the downstream task. During the fine-tuning process, information
of the downstream task is stored in the newly introduced weights of LoRA. Our aim is to make
fine-tuning more efficient by initializing the LoRA weights in a manner such that they already contain
the maximum possible amount of information from the downstream task. This way, the fine-tuning
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Sort

Figure 1: Left: We perform incremental SVD on activation vectors for the first T minibatches to ob-
tain the right singular vectors. Middle: We sort all right-singular vectors according to their explained
variance given by their respective singular values and only keep the top-k. Right: We allocate the
top-k vectors as initialization for A and continue the standard LoRA fine-tuning procedure.

process is more efficient as it only needs to be learned what information to maintain or discard which
results in faster convergence and improved downstream performance. We can obtain an initialization
that is optimal in propagating the most amount of information into the linear subspace spanned
by LoRA via SVD on activation vectors after passing minibatches of downstream data through
the model. The right-singular vectors obtained by SVD represent the projection onto the principal
components, and their corresponding singular values quantify each component’s contribution to the
total variance. We initialize the downprojection of LoRA with those vectors to obtain an initialization
that propagates the most information of the downstream data. Given a fixed rank budget, we maximize
the information propagated through the model by sorting the vectors in descending order according
to their singular values and allocate the top-k vectors to their respective weight matrices. This results
in an adaptive rank allocation that can be computed at the beginning of training which allocates more
complexity to weights where components explain less variance. We call the resulting method EVA,
which is short for Explained Variance Adaptation. Importantly, this procedure can be performed
within the first few minibatches of LoRA fine-tuning without significant computational overhead.

We demonstrate the benefits of EVA on an array of downstream tasks, namely language generation
and understanding, image classification, and reinforcement learning (RL). EVA consistently improves
average performance across a multitude of tasks on each domain compared to LoRA and other
recently proposed initialization or rank redistribution methods. For language generation, we fine-tune
7B-9B parameter language models on math and reasoning tasks, where EVA attains the highest
average performance. Further, on a set of language understanding tasks, EVA improves the average
performance compared to competitors. On image classification we fine-tune a pre-trained vision
transformer (Dosovitskiy et al., 2021) on a set of 19 diverse tasks. We find that EVA attains the
highest average score and improves over LoRA and established extensions thereof, with most gains
on in-domain data. For our RL experiments we conduct fine-tuning on continuous control tasks
and find that EVA significantly exceeds performance of LoRA and even exceeds performance of
full fine-tuning (FFT) when combined with DoRA (Liu et al., 2024a). Finally, we demonstrate that
EVA is pareto-dominant as our rank re-distribution reduces the amount of trainable parameters while
improving performance. Our contributions are as follows:

• We propose a novel data-driven initialization scheme for LoRA by leveraging incremental
SVD on minibatches of activation vectors.

• We propose a data-driven heuristic for adaptive rank allocation based on explained variance.
• We demonstrate the effectiveness of EVA across a variety of different domains.

2 RELATED WORK

LoRA (Hu et al., 2022) has sparked widespread interest in leveraging low-rank decompositions for
fine-tuning due to its simplicity. Building on the success of LoRA, a number of other variants have
been proposed (Kopiczko et al., 2024; Zi et al., 2023; Babakniya et al., 2023; Dettmers et al., 2023;
Li et al., 2023; Nikdan et al., 2024; Liu et al., 2024a; Zhang et al., 2023a; Hayou et al., 2024; Chavan
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Table 1: Comparison of EVA to existing initialization schemes for LoRA. Existing works either focus
on weight initialization or adaptive rank allocation. EVA combines data-driven initialization with
adaptive rank allocation to enhance convergence and downstream performance.

Method Initialization Adaptive ranks

LoRA (Hu et al., 2022) Random ✗
AdaLoRA (Zhang et al., 2023a) Random ✓
PiSSA (Meng et al., 2024) Weight-driven ✗
OLoRA (Büyükakyüz, 2024) Weight-driven ✗
LoRA-GA (Wang et al., 2024) Data-driven ✗
EVA (Ours) Data-driven ✓

et al., 2023). The most similar variants to EVA are AdaLoRA (Zhang et al., 2023a) and LoRA-GA
(Wang et al., 2024). AdaLoRA adaptively alters the number of ranks for LoRA matrices during
fine-tuning. Other more recent approaches learn gates to switch ranks on or off during fine-tuning (Liu
et al., 2024b; Meo et al., 2024). In contrast, the data-driven initialization allows EVA to redistribute
ranks for each LoRA matrix prior to fine-tuning. LoRA-GA is concurrent work that approximates the
gradient of the original weight matrix via SVD, requiring computation of the gradients with respect
to the original weights. Contrary, EVA initializes A via the right-singular vectors of minibatches of
activation vectors, and is therefore less computationally expensive.

Initialization of LoRA matrices Common initialization schemes for neural networks (He et al.,
2015; Glorot & Bengio, 2010) were designed to stabilize training of deep neural networks based on
activation functions and depth. In the context of PEFT, Hu et al. (2022) and Liu et al. (2022) explored
data-driven initialization by either pre-training on a different task first, or by unsupervised pre-training
on the task at hand. Contrary, EVA does not require any gradient update steps, therefore it is much
more efficient. Similarly, Nikdan et al. (2024) utilize a warm-up stage in LoRA fine-tuning, where
gradients with respect to LoRA weights are used to initialize a sparse matrix for sparse adaptation
(Sung et al., 2021) in combination with LoRA. Alternatively, Babakniya et al. (2023) initialize LoRA
matrices using SVD on weight matrices obtained after a few steps of full fine-tuning for federated
learning with heterogeneous data. Meng et al. (2024) use the main directions of the pre-trained
weights to initialize the LoRA matrices. In contrast, EVA takes a data-driven approach to initialize
the LoRA matrices. Similar initialization schemes were proposed for training deep networks from
scratch (Mishkin & Matas, 2016; Krähenbühl et al., 2016).

Increasing efficiency of LoRA Several works have investigated how to increase efficiency of LoRA
fine-tuning. Kopiczko et al. (2024) decrease the memory complexity by keeping both A and B frozen
while merely training newly-introduced scaling vectors. This way, only random seeds for initializing
A and B need to be stored. Another prominent approach is quantization (Dettmers et al., 2022),
which has been successfully combined with LoRA (Dettmers et al., 2023). Other LoRA variants are
compatible with quantization (Nikdan et al., 2024; Valipour et al., 2023; Meng et al., 2024). It has
also been shown that initialization can improve fine-tuning quantized models (Li et al., 2023).

3 METHOD

We aim at initializing LoRA weights in a data-driven manner by leveraging data from the downstream
task. Since EVA builds on LoRA (Hu et al., 2022), we first briefly explain LoRA in Section 3.1.
Then, we explain the two essential steps conducted in EVA, namely (i), computing a data-driven
initialization for the low-rank decomposition of LoRA matrices via SVD on activation vectors
(Section 3.2), and (ii), adaptive assignment of ranks across all layers to maximize the explained
variance throughout the pre-trained model (Section 3.3).

3.1 LOW-RANK ADAPTATION (LORA)

LoRA adds new trainable weights which are computed via an outer product of low-rank matrices (Hu
et al., 2022). This is motivated by the low intrinsic dimensionality of language models (Aghajanyan
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Figure 2: Left: Training loss for fine-tuning Llama-3.1-8B on the MetaMathQA dataset. We compare
EVA to other initialization methods OLoRA, PiSSA, and random initialization (LoRA). We show
mean and standard deviation across three random seeds. Right: Mean and standard deviation of
gradient norm at the beginning of training for EVA, PiSSA, OLoRA and Random initialization of
LoRA matrices. EVA exhibits significantly larger gradient norm.

et al., 2021) and relies on the assumption that the gradients during fine-tuning are also of low rank
(Gur-Ari et al., 2018; Zhang et al., 2023b; Gauch et al., 2022). Let x ∈ Rd×1 be the input to a
pre-trained weight matrix W ∈ Rk×d. Then, LoRA introduces new weight matrices A and B as
a low-rank decomposition h = Wx +BAx, where B ∈ Rk×r and A ∈ Rr×d. The rank r is a
hyperparameter with r ≪ k. During fine-tuning, W remains frozen while A and B are updated.
Usually, B is initialized with zeros and A at random, such that fine-tuning starts from the pre-trained
model. Additionally, a hyperparamter α is used to scale BAx by α

r .

3.2 DATA-DRIVEN INITIALIZATION OF LOW-RANK ADAPTATION

Our aim is to obtain an effective initialization for A to find a linear subspace that preserves the most
information of the downstream task, i.e. that explains the most variance. To this end, we perform
SVD on batches of activation vectors X ∈ Rb×d to obtain the right-singular vectors, which constitute
the directions that capture most of the variance (see Figure 1, left). More formally, we collect batches
of activations Xi for N pre-trained weight matrices W i ∈ {W 1, ...,WN} that are selected for
fine-tuning. Subsequently, we compute the SVD on each Xi to obtain the right-singular vectors vi

j,:

and their respective singular values σi
j as

Xi = U iΣiV i⊤ ≈
k∑

j=1

ui
:,jσ

i
jv

i
j,:. (1)

Here, U and V are the left- and right-singular vectors, respectively, and Σ is a diagonal matrix
containing the singular values. Note that in practice we compute only the top-k components and not
the full SVD using truncated SVD (Halko et al., 2011) which is the optimal approximation of Xi as
verified by the Eckart-Young theorem (Eckart & Young, 1936). Generally, the stacked right-singular
vectors V i

:r,: are equivalent to a projection onto the principal components of the covariance matrix of
Xi (see proof in Appendix H). Therefore, V i

:r,: propagates the maximum amount of information of
Xi. By setting Ai = V i

:r,: the downprojection XiAi must contain the most information about Xi

according to the data processing inequality (Beaudry & Renner, 2012), as the maximum amount of
information B can contribute is Bi = V i⊤

:r,: . The gradient w.r.t. Ai and Bi is

∂L
∂Bi

=
∂L
∂W

Ai⊤ and
∂L
∂Ai

= Bi⊤ ∂L
∂W

, (2)

respectively. The fine-tuning process is concerned with storing information about the data in the
weights BiAi. By choosing Ai = V i

:r we guarantee that the maximum amount of information is
available at the beginning of training, such that it only needs to be learned what information to keep,
i.e. what parts of XiAi are relevant for the downstream task.
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Naively, we could simply collect batches of activations and stack them into a single matrix and perform
SVD. However, this results in excessive memory overhead as we usually deal with large datasets and
models. To reduce the memory requirements, we incrementally update V i

:r,: as proposed in Ross et al.
(2008) which is based on the sequential Karhunen-Loeve algorithm (Levy & Lindenbaum, 2000).
This process is independent of the dataset size, therefore the computation of the singular values
and their respective vectors is constant in time and memory complexity. For further details on the
incremental update step of the SVD we refer to Appendix F.

After each update step in the incremental SVD we check whether V i has converged via cosine
similarity, i.e. cossim(vi,t−1

j,: ,vi,t
j,: ) ≥ τ ∀ 1 ≤ j ≤ r. Then, we initialize Ai = V i

:r,: and
stop computing incremental SVD for inputs to W i. We continue this procedure until all V i

:r,: have
converged. We illustrate the full incremental SVD procedure on a sequence of data batches in
Algorithm 2 and discuss complexity of this procedure in Appendix F.

3.3 ADAPTIVE RANK ALLOCATION
Algorithm 1 Fine-tuning via EVA
Input: FM ψ(·), ρ, rank r, dataset D

1: while not all_converged(ψ) do
2: X ← ψ(next(D)) ▷ get activations
3: Vnew, ξ ← Incremental-SVD(X, ρr)
4: if isclose(Vold,vnew) then
5: wrap_and_initialize(Wj ,Vnew)
6: end if
7: Vold ← Vnew

8: end while
9: redistribute_ranks(ψ, ξ,Vnew)

10: lora_finetune(ψ,X)

The singular values provide an estimate of the
amount of variance each component in V i

:r,:
explains. Leveraging this, we can redistribute
ranks across weight matrices of the pre-trained
model such that the maximum amount of vari-
ance is explained. This can be done by allocat-
ing more ranks to layers that propagate more
information, i.e., explain more variance. The
variance explained by each component in V i

:r,:
is given by their explained variance ratio

ξij =
σi2

j

(M − 1)||σi||1
, (3)

where || · ||1 denotes the ℓ1 norm, σi is a vector containing all r singular values, and M is the total
number of samples used for the incremental SVD. We sort the components vi

j,: for each weight
matrix in descending order according to their explained variance ratio ξij (see Figure 1, middle).
Then, we assign the top-k components to their respective pre-trained weights, which results in
adaptive rank allocation (see Figure 1, right). Additionally, we introduce a hyperparameter ρ ∈ [1,∞)
which controls the uniformity of the rank distribution. ρ determines the number of ranks that we
compute during SVD and increasing ρ allows for an increasingly heterogeneous rank distribution.
Further, ρ controls the maximum number of ranks a weight matrix can receive. For each W i we
compute rρ components, i.e., we assign k = rρ in Equation (1), resulting in Nrρ components in
total. For the redistribution we only use the top-l, with l = Nr, components according to their
explained variance ratio ξij . Thus, setting ρ = 1, results in a uniform rank distribution as in LoRA, but
initialized according to EVA. Therefore, ρ provides us with the means to change the rank distribution
in a controlled manner prior to fine-tuning at the initialization stage. In practice we found that the
redistribution converges for values of ρ > 2 (see Appendix G). Finally, we initialize B with zeros
and perform standard LoRA fine-tuning. In Algorithm 1 we provide pseudocode for EVA.

4 EXPERIMENTS

First, we elaborate on implementation details of EVA in Section 4.1. Then, we show results for
fine-tuning large language models (LLMs) on math and reasoning tasks in Section 4.2 and language
understanding tasks in Section 4.3. Further we show results for image classification in Section 4.4 and
decision making tasks in Section 4.5. Finally, in Section 4.6 we demonstrate that the computational
overhead induced by EVA over LoRA is negligible and that incremental SVD converges and is
invariant to batch order and batch size.

4.1 IMPLEMENTATION DETAILS

We follow the standard LoRA training procedure from Hu et al. (2022). Similar to Kalajdzievski
(2023), we found LoRA training to be very sensitive to the scaling parameter α. Therefore, we set
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Figure 3: Performance of EVA, OLoRA, PiSSA, LoRA-GA, and LoRA for fine-tuning Llama-2-7B,
Llama-3.1-8B, and Gemma-2-9B on eight common sense reasoning tasks (left), and MetaMathQA,
subsequently evaluated on GSM8K (right).

α = 1 for all our experiments as we found this to be the most stable setting and only tuned the
learning rate. We apply EVA to pre-trained weights only, i.e., we do not initialize newly introduced
classifier heads. Following Zhang et al. (2023a), we apply LoRA adapters to all pre-trained weight
matrices except for the embedding layer. For EVA we always search over ρ ∈ {1, 2} to cover both
uniform uniform and adaptive rank allocation and report the best score. For ρ = 2 we also set
α = α rnew

rold
to preserve the same scaling factor as set initially. All models we used for fine-tuning are

publicly available on the huggingface hub (Wolf et al., 2020). For the implementation of baselines we
leverage the widely used PEFT library (Mangrulkar et al., 2022). Across experiments we highlight
the highest scores in boldface and underline the second-highest.

4.2 LANGUAGE GENERATION

We fine-tune three different LLMs, namely Llama-2-7B (Touvron et al., 2023b), Llama-3.1-8B
(Dubey et al., 2024), and Gemma-2-9B (Rivière et al., 2024) on common sense and math reasoning
benchmarks. For common sense reasoning we follow Liu et al. (2024a) and amalgamate a training
set consisting of BoolQ (Christopher et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), ARC-e and ARC-c (Clark
et al., 2018) and OpenBookQA (Mihaylov et al., 2018). We apply all methods listed in Table 1 to all
three models and additionally add a comparison to DoRA (Liu et al., 2024a) and EVA+DoRA, which
combines EVA with DoRA. We train all methods with rank r = 16 and a learning rate of 5e− 4 for
three random seeds. Further details on the fine-tuning settings can be found in Appendix B.

We present average performance over all eight common sense reasoning tasks in Figure 3, left. Across
models we found that ρ = 2 yields the highest performance while it also notably decreases the number
of trainable parameters compared to all other LoRA-based methods (see Table 11 in Appendix B),
resultin in an improved pareto-front. For a comparison to EVA with uniform rank distribution see
Table 10 in Appendix B. We report the per-task results in Table 7 in Appendix B. Even though there
is a fluctuation on a per-task basis, EVA attains the highest average score across all tasks. Moreover,
we conduct experiments where we add rank-stabilization (Kalajdzievski, 2023), different learning
rates for A and B, or different values for α in Table 9 in Appendix B. Additionally, we provide
results for leveraging the components that explain the least amount of variance in Table 12, which
results in worse performance compared to EVA. Finally, EVA as well as EVA+DoRA are consistently
among the best performing methods on all individual tasks. This highlights the effectiveness of EVA’s
data-driven initialization and rank allocation.
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Figure 4: Performance of EVA, OLoRA, PiSSA,
LoRA-GA, and LoRA for fine-tuning Llama-2-7B,
Llama-3.1-8B, and Gemma-2-9B on MATH after
fine-tuning on the MetaMathQA dataset.

For the math fine-tuning experiments, we fine-
tune all models on the MetaMathQA dataset
(Yu et al., 2024) for one epoch with the same
hyperparameters as for the common sense rea-
soning tasks and evaluate them on GSM8K
(Cobbe et al., 2021) (see Figure 3, left) and
MATH (Hendrycks et al., 2021) (see Figure 4)
datasets. We also report the performances for
each method on each model and task in Ta-
ble 8 in Appendix B. Generally, we again ob-
serve that EVA is pareto-dominant compared
to all competitors on both datasets as it trains
fewer parameters while mostly resulting in im-
proved performance. Specifically, EVA attains
the highest performance on the GSM8K dataset
for Gemma-2-9B using ρ = 2. For Llama-2-7B
and Llama-3.1-8B the best performing method
is EVA+DoRA using ρ = 1 closely followed by
EVA. On MATH, EVA+DoRA performs best for
Llama-2-7B with ρ = 1, while EVA attains the
highest score for Llama-3.1-8B with ρ = 1 and
Gemma-2-9B with ρ = 2. For a comprehensive
overview on the effect of rank re-distribution
on different model types for both downstream
tasks see Table 10. Our results indicate that
the performance of adaptive rank allocation depends on a combination of the selected model and
the downstream task. We further analyze the resulting rank distributions for different values of ρ
for Llama-2-7B and their effect on downstream performance in Appendix G. Finally, we provide
additional results for Llama-2-7B on code fine-tuning tasks in Appendix B.

4.3 LANGUAGE UNDERSTANDING

We train RoBERTaLarge (Liu et al., 2019) and DeBERTav3Base (He et al., 2023) on the GLUE bench-
mark (Wang et al., 2019). The GLUE benchmark comprises eight downstream tasks, such as natural
language inference, or sentiment analysis. Additionally to learning rate, we also search over different
ranks within a maximal rank budget (r ≤ 16). For further details about datasets, implementation, or
hyperparameters, we refer to Appendix C. We also add FFT as a baseline, but neglect EVA+DoRA
due to time constraints and report Matthew’s correlation for CoLA, Pearson correlation for STS-B,
and accuracy for the remaining tasks in Table 2. EVA (ρ = 2) attains the highest average score across
all tasks for both RoBERTaLarge and DeBERTav3Base. Interestingly, DoRA usually only slightly
improves over LoRA on low resource tasks (RTE, MRPC), while performing worse in high resource
tasks (MNLI, QNLI, QQP, SST2). We also compare LoRA to EVA in Table 17 in Appendix C for
different rank budgets, where EVA consistently improves over LoRA. We visualize resulting rank
distribution patterns for different GLUE tasks in Appendix C. More ranks are assigned to higher
layers of the query, key, and value projections in the self-attention, while the remaining weights often
receive less ranks. This is a consistent pattern for both, DeBERTav3Base and RoBERTaLarge and in
line with the reduced number of trainable parameters for larger models.

4.4 IMAGE CLASSIFICATION

We investigate the efficacy of EVA on the VTAB-1K (Zhai et al., 2019) benchmark, which has been
widely used to evaluate PEFT methods. VTAB-1K comprises 19 image classification tasks that are
divided into natural images, specialized images (medical images and remote sensing), and structured
images (e.g. orientation prediction, depth estimation or object counting). We fine-tune a DINOv2-g/14
model (Oquab et al., 2023) that consists of around 1.1B parameters. For implementation details and
hyperparameters see Appendix D. Our results are shown in Table 3 and we additionally report error
bars in Table 20. EVA and EVA+DoRA with (ρ = 2) attain the best and second-best average accuracy
across all tasks, respectively. Interestingly, EVA mainly improves over competitors on the natural
tasks, i.e. in-domain datasets. LoRA performs best on the specialized tasks and full fine-tuning (FFT)
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Table 2: Comparison of all methods for RoBERTaLarge (top) and DeBERTav3Base (bottom) on GLUE
tasks. We report mean and standard deviation of Matthew’s correlation for CoLA, Pearson correlation
for STS-B, matched accuracy for MNLI, and accuracy for remaining tasks. For CoLA, RTE, MRPC,
and STS-B we average over five seeds and for the remaining tasks over three seeds.

Method MNLI QNLI QQP SST2 CoLA MRPC RTE STS-B Avg

FFT 90.2 94.7 92.2 96.4 68.0 90.9 86.6 92.4 88.93
LoRA 90.7±.1 94.8±.1 92.0±.0 96.2±.3 69.1±.5 91.1±.6 88.1±1.1 92.3±.1 89.29
AdaLoRA 90.5±.1 94.8±.2 90.6±.1 96.1±.2 68.2±.7 90.7±.6 84.4±.9 91.8±.1 88.39
PiSSA 90.1±.1 94.7±.0 91.0±.0 96.1±.2 68.7±1.3 90.4±.6 87.6±.5 92.5±.3 88.89
OLoRA 90.9±.1 95.0±.1 92.0±.2 96.3±.3 69.0±1.5 91.0±1.0 87.9±1.2 92.4±.1 89.32
EVA 90.8±.1 95.0±.2 92.1±.1 96.2±.1 69.5±1.4 91.4±.8 88.8±1.2 92.6±.1 89.55
DoRA 89.5±.1 94.6±.1 89.9±.1 96.1±.1 69.3±.8 91.0±.6 88.4±1.2 92.4±.1 88.90

FFT 90.1 94.0 92.4 95.6 69.2 89.5 83.8 91.6 88.28
LoRA 90.5±.1 94.3±.1 92.4±.1 95.2±.3 72.0±1.3 91.4±.7 88.9±.5 91.7±.1 89.64
AdaLoRA 90.8 94.6 92.2 96.1 71.5 90.7 88.1 91.8 89.46
PiSSA 90.1±.3 94.1±.1 91.8±.1 95.8±.1 72.7±1.7 90.9±.6 86.5±1.2 91.6±.2 89.19
OLoRA 90.5±.1 94.4±.1 92.6±.1 96.2±.2 72.0±1.0 91.6±.7 89.1±.9 92.0±.2 89.80
EVA 90.6±.1 94.4±.1 92.4±.04 96.2±.2 72.5±1.3 91.8±.6 89.4±.7 92.0±.2 89.91
DoRA 89.0±.2 94.1±.1 88.0±.1 94.6±.4 70.3±.5 91.9±.6 87.8±.7 91.8±.1 88.44

Table 3: Fine-tuning DINOv2-g/14 on the VTAB-1K benchmark. Best average performance is
highlighted in boldface. We report average accuracy across five seeds.
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LoRA 85.9 92.2 82.2 99.7 94.5 64.1 63.6 88.8 97.0 92.6 76.6 97.7 65.3 62.1 83.6 90.6 63.0 37.1 52.3 78.4
AdaLoRA 85.4 92.5 81.4 99.7 95.2 90.5 62.2 87.1 96.4 91.2 76.6 94.4 64.4 60.3 83.7 85.4 61.0 32.9 46.0 78.2
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EVA+DoRA 86.2 92.1 81.9 99.7 94.9 93.8 62.4 88.3 96.6 92.6 76.7 97.2 65.5 54.1 83.7 93.3 62.3 37.5 54.5 79.6

performs best on the structured task. However, both LoRA and FFT perform worse on the remaining
tasks, leading to a worse average score compared to EVA and EVA+DoRA.

4.5 DECISION MAKING

We follow the single task fine-tuning experiments in Schmied et al. (2024) and fine-tune a Decision
Transformer (Chen et al., 2021a, DT) on the Meta-World benchmark suite (Yu et al., 2020). Meta-
World consists of a diverse set of 50 tasks for robotic manipulation, such as object manipulation,
grasping, or pushing buttons. We split Meta-World according to Wolczyk et al. (2021) into 40
pre-training tasks (MT40) and 10 fine-tuning tasks (CW10). We pre-train a 12 M parameter DT on
MT40 and fine-tune it on the CW10 holdout tasks. We report success rates and standard errors for
each task of CW10 in Table 4. We observe that EVA significantly reduces that gap between LoRA and
FFT. Furthermore, DoRA performs particularly well in this experiment and exceeds FFT performance.
Finally, our EVA+DoRA even improves upon DoRA and attains the best average performance across
all tasks. We report results for different rank budgets in Table 22, as well as implementation details
and hyperparameters in Appendix E.
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Table 4: Results for single task fine-tuning experiments on the Meta-World benchmark. We report
mean success rates and standard error across three seeds for every task.
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EVA 1.0±.0 0.97±.03 1.0±.0 0.63±.03 0.77±.05 1.0±.0 1.0±.0 1.0±.0 0.63±.07 1.0±.0 0.90

DoRA 1.0±.0 1.0±.0 1.0±.0 0.6±1.2 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.67±1.5 1.0±.0 0.93

EVA+DoRA 1.0±.0 1.0±.0 1.0±.0 0.8±.08 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.63±.03 1.0±.0 0.94
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Figure 5: Left: Time in seconds until convergence of incremental SVD components for different
batch sizes for Llama-2-7B on the MetaMathQA dataset. The dashed line indicates the total number
of components. Right: Average cosine similarity between SVD components across 10 random
seeds for permuting the batch order. The first 10 components remain mostly consistent across all
permutations. While the remaining components vary, they strongly correlate with each other.

4.6 SVD CONVERGENCE ANALYSIS

The data-driven initialization of EVA relies on incremental SVD on minibatches of activations in
the initial training stage. In Figure 5, left, we show that this process converges for Llama-2-7B on
MetaMathQA for different minibatch sizes. Using a minibatch size of 4 the computation for EVA’s
initialization lasts for approximately 80 seconds, which corresponds to around 90 minibatches. For a
batch size of 32 the computation of the SVD components takes around 500 seconds. In Figure 5, right,
we additionally show, that the main components obtained via SVD mostly remain consistent across
different batch orders for a batch size of 4, again for Llama-2-7B on MetaMathQA. To this end, we
plot cosine similarity between components obtained via incremental SVD after rank redistribution.
These results indicate that these models exhibit certain activation patterns that remain consistent
across different batch orders which lead to a robust initialization for EVA. We also show that the
components for different batch sizes converge to mostly the same final initialization in Appendix F.

5 DISCUSSION AND LIMITATIONS

Alternative data-driven initialization schemes. We also investigated alternative data driven ini-
tialization schemes. Such alternatives include, but are not limited to, Kernel-PCA (Schölkopf et al.,
1997) or Linear Discriminant Analysis (Fisher, 1936, LDA). While Kernel-PCA can account for
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non-linearities in the data, it scales with the number of datapoints, which is impractical in our setting.
Further, we observed convergence instabilities for incrementally updating LDA.

Additional latency of SVD. EVA leads to performance improvements over LoRA, but introduces
additional latency in the beginning of training for computing the data-driven initialization. In Table 23
we demonstrate that this process constitutes merely 0.2% of the actual training time for Llama-2-7B
on MetaMathQA. Further, in Appendix F we also show that this process is mostly invariant to the
batch size, meaning that smaller batch sizes may be used for the SVD computation, resulting in
additional speedup. Since, the SVD computation does not require backpropagation and storing of
optimizer states there is no overhead with respect to memory.

Effect of rank redistribution. Our experiments on language understanding tasks indicate that the
effect of rank redistribution strongly depends on the downstream task, i.e. all models benefit from
the redistribution on the common sense reasoning tasks, whereas for the math tasks a uniform rank
distribution appears to perform best. In our experiments on language understanding and image
classification, adaptive ranks performed best, while on decision making uniform ranks performed
best. Generally the performance gap between the two is not big and since rank redistribution also
leads to fewer trainable parameters we recommend to use it by default.

What method performs well on which tasks? We conducted fine-tuning experiments across 51
tasks and four domains and found that EVA or EVA+DoRA performs best on expectation. This is
evidenced by the higher average score across multiple tasks per domain. Despite this finding, there is
usually variation in the ranking of methods considering single tasks, i.e. LoRA performed better on
specialized, and FFT performed best on structured images. Therefore there is no one algorithm that
performs best on every single task, verifying that there is no free lunch (Wolpert & Macready, 1997).

Reproducibility. We provide the source code along with the submission (see Appendix A) to ensure
reproducibility. Further, to make EVA more accessible to the community, we will integrate it into the
widely used PEFT library (Mangrulkar et al., 2022).

6 CONCLUSION AND BROADER IMPACT

We propose a novel method named Explained Variance Adaptation (EVA), extending the widely
used LoRA with data-driven initialization and rank re-distribution. We initialize LoRA matrices
in a data-driven manner by performing SVD on minibatches of activation vectors. Further, we
re-distribute ranks across weight matrices according to the amount of variance they explain. In this
regard, we also introduce a hyperparameter that allows for a controlled investigation of different
rank distributions. Thereby, in EVA we bind the benefits of adaptive rank allocation and data-driven
initialization, resulting in one initialization to rule them all. We demonstrate performance gains of
EVA over LoRA and initialization schemes thereof on a variety of domains, ranging from language
to vision and RL. Our results demonstrate that EVA variants consistently reach the highest average
performance on a wide range of tasks across all domains.

We believe that EVA sheds a novel view on LoRA fine-tuning, where initialization of the newly
introduced weights is guided by the downstream data. As we have shown, this can boost performance
on a wide variety of domains. We believe that EVA can have a significant impact on future research
on fine-tuning of foundation models, because it inherits all benefits of LoRA while improving
performance at no significant additional cost. In the future, we aim at investigating the effect of
rank redistribution on other initialization schemes and quantization, as well as alternative data-driven
initialization schemes in more detail.
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A REPRODUCIBILITY STATEMENT

We provide the source code to reproduce all our experiments in the supplementary material as a
zip archive. The archive contains two sub-directories named NLU and NLG, which can be used
to reproduce the results on language understanding and generation. For image classification and
decision making experiments we used custom implementations which we will open-source as well.
Both code directories contain instructions how to install the environment and how to execute all
the parameter searches and obtain our results. Additionally, we provide a package that contains
implementations for EVA along with different LoRA variants, such as DoRA, and ELoRA in the
NLU code directory. We will release a unified codebase upon publication and also integrate EVA into
the widely used PEFT library (Mangrulkar et al., 2022).

B NATURAL LANGUAGE GENERATION

We follow the experiments conducted in Hu et al. (2023) and fine-tune Llama-2-7B, Llama-3.1-8B
and Gemma-2-9B on 8 common sense reasoning tasks with qa style prompts. We keep the original
prompt templates unchanged aside from two minor modifications: For BoolQ we prepend the the
passage field before the question and for WinoGrande we add a line "Answer format: ..." analogous
to the other prompts. As done by Hu et al. (2023) as well as Liu et al. (2024a) we perform joint
finetuning on all 8 tasks. We furthermore evaluate the pre-trained models mentioned above on the
mathematical reasoning tasks GSM8K (Cobbe et al., 2021) and Math (Yu et al., 2024) after finetuning
on MetaMathQA (Yu et al., 2024) as done in Meng et al. (2024). We keep the original prompt
template for finetuning and evaluation. For all datasets we run finetuning for one epoch.

B.1 IMPLEMENTATION DETAILS

Table 6: hyperparameters for finetuning on com-
mon sense reasoning and math reasoning

Training

Optimizer AdamW
Weight Decay 0.0
Lora Dropout 0.0
Batch Size 32
#Epoch 1
LR Schedule Linear
Warmup ratio 0.03
Label Smooth 0.0
Learning Rate 5e-4
LoRA Dim 16
LoRA α 1
Batch Size SVD (EVA) 16
τ 0.99

Inference

Beam Size 1.0
Length Penalty 1.0
repetition penalty 1.0

For finetuning our code base leverages peft
implementations of adapter methods LoRA,
AdaLoRA, PiSSA, OLoRA and DoRA. The ini-
tialization step for EVA is a custom implementa-
tion but for finetuning we can reformulate EVA
as a LoRA adapter leveraging the rank_pattern
argument of peft.LoraConfig. For evaluation
we leverage scripts provided by the MetaMath
github repository (Yu et al., 2024) for math rea-
soning tasks. For common sense reasoning we
make use of the lm evaluation harness project
(Gao et al., 2024) and define custom tasks us-
ing the finetuning prompts. For the SVD com-
putation for joint finetuning on the common
sense reasoning tasks we experiment with ran-
dom and stratified sampling of examples from
the 8 tasks and do not notice a difference in
performance. All training and evaluation runs
for Llama-2-7B were done on 4 A100 GPUs.
Runs for Llama-3.1-8B and Gemma-2-9B uti-
lized two different nodes, one with 4 A100
GPUs and one with 4 H200 GPUs.

B.2 HYPERPARAMETER SEARCH

The reported results on language generation
tasks in Table 7 and Table 8 are the best setting based on a grid search over different learning
rates. We apply adapters to all linear layers including the language modelling head. Furthermore
we set α = 1 for all our experiments. We use AdamW with weight decay and a linear learning
rate schedule with warm-up. We train for 1 epoch and use the final checkpoint for evaluation. All
hyperparameters are summarized in Table 6
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Table 5: Prompt templates with examples (red) used for finetuning on common sense and math
reasoning tasks.

Dataset Fine-tuning Data Template
BoolQ Passage: Drinking in public – Drinking in public is most commonly accepted.

After reading this passage, please answer the following question with true or
false, question: can you drink on the street in china
Answer format: true/false
the correct answer is true

PIQA Please choose the correct solution to the question: When boiling butter, when
it’s ready, you can
Solution1: Pour it onto a plate
Solution2: Pour it into a jar
Answer format: solution 1/solution2
the correct answer is solution2

SIQA Please choose the correct answer to the question: Carson relocated somewhere
new. How would you describe Carson?
Answer1: mobile
Answer2: anxious
Answer3: lonely
Answer format: answer1/answer2/answer3
the correct answer is answer1

HellaSwag Please choose the correct ending to complete the given sentence: Playing
drums: People are standing behind large drums. A man
Ending1: is playing a bag pipe.
Ending2: starts to play around the drums.
Ending3: begins playing a drum set.
Ending4: begins playing the drums.
Answer format: ending1/ending2/ending3/ending4
the correct answer is ending4

WinoGrande Please choose the correct answer to fill in the blank to complete the given
sentence: Ian volunteered to eat Dennis’s menudo after already having a bowl
because _ despised eating intestine.
Option1: Ian
Option2: Dennis
Answer format: option1/option2
the correct answer is option2

ARC-e &
ARC-c

Please choose the correct answer to the question: Which factor will most
likely cause a person to develop a fever?
Answer1: a leg muscle relaxing after exercise
Answer2: a bacterial population in the bloodstream
Answer3: several viral particles on the skin
Answer4: carbohydrates being digested in the stomach
Answer format: answer1/answer2/answer3/answer4
the correct answer is answer2

OBQA Please choose the correct answer to the question: The sun is responsible for
Answer1: puppies learning new tricks
Answer2: children growing up and getting old
Answer3: flowers wilting in a vase
Answer4: plants sprouting, blooming and wilting
Answer format: answer1/answer2/answer3/answer4
the correct answer is answer4

MetaMathQA Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
What is the value of the cosine of 90 degrees?

### Response:
s $\\boxed{0}$.The answer is: 0
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Table 7: Comparison of LoRA and DoRA to different initialization and rank re-distribution methods
on NLG tasks. We report average performance across three seeds and respective standard deviation in
Table 14. EVA+DoRA and EVA consistently attain the highest average performance across all tasks.

Model Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

Llama-2-7B

LoRA 67.2 83.9 82.0 94.7 84.0 87.8 74.1 84.0 82.2
AdaLoRA 74.8 82.2 80.5 93.3 79.4 86.1 71.1 80.6 81.0
PiSSA 62.6 84.8 81.2 94.5 84.8 87.8 74.8 85.4 82.0
OLoRA 68.7 84.8 82.2 95.0 85.0 88.1 74.9 85.2 82.9
LoRA-GA 69.0 85.6 82.3 95.0 85.0 88.7 75.9 85.8 83.4

EVA 68.3 85.3 82.9 95.2 85.2 88.6 75.8 86.3 83.4
DoRA 68.3 85.1 82.2 94.9 84.3 88.7 74.8 86.3 83.1
EVA+DoRA 73.5 85.3 82.4 95.2 84.8 88.9 76.0 87.3 84.2

Llama-3.1-8B

LoRA 85.7 90.3 83.0 96.9 88.4 94.2 84.8 90.1 89.2
AdaLoRA 83.9 89.5 81.7 96.2 86.3 93.7 82.7 86.8 87.6
PiSSA 72.9 87.3 81.6 95.3 87.8 91.7 81.2 87.6 85.7
OLoRA 86.0 90.4 83.9 97.0 88.6 94.5 84.7 90.3 89.4
LoRA-GA 83.7 89.7 83.1 96.7 88.8 94.2 85.3 90.4 89.0

EVA 85.3 90.4 83.4 97.0 89.0 94.4 86.0 90.3 89.5
DoRA 86.2 90.8 83.4 96.9 88.6 94.3 84.9 89.4 89.3
EVA+DoRA 85.8 90.8 83.9 97.1 89.2 94.4 85.9 90.5 89.7

Gemma-2-9B

LoRA 88.3 92.9 85.2 97.8 92.3 97.2 89.9 94.4 92.2
AdaLoRA 87.3 91.8 84.6 97.3 91.3 97.0 90.0 92.6 91.5
PiSSA 81.4 90.0 82.5 95.5 89.0 93.6 83.5 90.8 88.3
OLoRA 87.7 92.5 85.2 97.5 92.5 96.6 88.7 93.7 91.8
LoRA-GA 87.3 92.1 84.5 97.4 93.2 96.4 89.2 94.3 91.8

EVA 88.6 93.0 85.3 97.9 92.8 97.5 90.5 94.5 92.5
DoRA 88.3 92.6 84.9 97.7 92.2 97.1 89.9 94.5 92.1
EVA+DoRA 88.6 93.1 85.1 97.9 92.5 97.3 89.6 94.8 92.4

B.3 ADDITIONAL RESULTS

First, we present the per-task performance for the eight common sense reasoning tasks in Table 7. The
respective standard deviations are shown in Table 14. Further, we show the results for all methods on
the two math reasoning datasets in Table 8.

We present additional loss curves for Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B on the common
sense and math reasoning tasks in Figure 6. We find that EVA converges the fastest for all the different
models on the different tasks.

Another experiment we conduct is to apply recently proposed changes to the scaling factor and
learning rate. In Table 9 we show results for changing the scaling factor to α = 2r√

r
which results in

rank stabilization (Kalajdzievski, 2023). Further, we present results for the regular setting α = 2r as
proposed in Hu et al. (2022). Finally, we also show different learning rates for the two matrices A
and B as proposed by Hayou et al. (2024). We make the following observations:

1. The standard setting α = 2r from Hu et al. (2022) leads to the worst performance

2. Rank stabilization via α = 2r√
r

significantly improves the performance of both LoRA and
EVA

3. Different learning rates for A and B did not improve the results

To provide a comprehensive comparison about the effect of rank re-distribution, we compare uniform
ranks (ρ = 1) to adaptive ranks (ρ = 2) on the common sense and math reasoning tasks in Table 10.
We find that adaptive ranks consistently improves performance for Gemma-2-9B. For Llama-2-7B
and Llama-3.1-8B we observe improvements on the common sense reasoning tasks only, while
uniform ranks perform better on the math fine-tuning tasks.
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Figure 6: Loss curves for Llama-2-7B on common sense reasoning (top left), Llama-3.1-8B on
common sense reasoning (top right), Gemma-2-9B on common sense reasoning (bottom right), and
Gemma-2-9B on MetaMathQA. EVA consistently converges the fastest among all competitors.
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Table 8: Comparison of EVA to other initialization and adaptive rank methods on GSM8K and MATH
datasets. We report mean and standard deviation across three random seeds.

Model Method GSM8K MATH

Llama-2-7B

LoRA 59.7±.8 10.9±.2

AdaLoRA 56.9±.4 9.6±.2

PiSSA 61.1±.3 12.6±.4

OLoRA 60.7±.5 11.8±.3

LoRA-GA 60.2±.6 11.7±.4

EVA 61.9±.5 13.1±.3

DoRA 59.8±.5 11.5±.2

EVA+DoRA 62.5±.8 13.4±.01

Llama-3.1-8B

LoRA 78.3±.6 30.1±.5

AdaLoRA 76.9±.2 28.9±.7

PiSSA 78.8±.2 29.5±.5

OLoRA 78.0±.1 31.0±.7

LoRA-GA 78.8±.1 30.0±.1

EVA 78.8±.3 31.2±.3

DoRA 77.9±.1 30.2±.5

EVA+DoRA 79.1±.5 30.8±.4

Gemma-2-9B

LoRA 83.4±.9 40.7±.2

AdaLoRA 83.5±.5 41.1±.4

PiSSA 79.8±.5 34.9±.2

OLoRA 82.2±.2 39.4±.6

LoRA-GA 82.8±.9 40.4±.4

EVA 83.6±.8 41.5±.3

DoRA 82.5±.6 39.7±.4

EVA+DoRA 82.9±.3 40.0±.6

In Table 11 we show the number of trainable parameters for EVA (ρ = 2) compared to LoRA on
the common sense and math reasoning tasks. We find that after rank redistribution, EVA leads to
improved performance while reducing the parameter count by approximately 1M. The reason for this
is that parameters are usually re-distributed from higher dimensional projections to lower dimensional
ones, i.e. from non-attention weights to attention weights. This results in improved performance
while reducing the parameter count.

Finally, to verify our intuition that the LoRA matrix A should be initialized with the projection onto
the components that explain the most variance, we compare its performance to initializing EVA
with the components that explain the least amount of variance. We call this method EVA-minor and
present results for it in Table 12. To implement EVA-minor, we sample 20 minibatches of data and
perform truncated SVD on those and select the resulting minor components. This incurs substantial
additional cost, as we must compute all components, whereas for EVA we only approximate the
components that explain the most variance. Hence, incremental SVD is not beneficial in this case
anymore and it is also not practical as obtaining the initialization takes hours instead of seconds for
EVA. Moreover, our data-driven heuristic for adaptive rank allocation is not applicable to this case
anymore, therefore we consider uniform ranks. Finally, we find that EVA consistently improves over
EVA-minor, highlighting the importance of initializing EVA with the major components, i.e. the ones
the explain the most variance.

In addition we also fine-tune Llama-2-7B on the Code-Feedback dataset Zheng et al. (2024) consisting
of multi-turn conversations between user and AI Assistant. Due to limited computational resources
and the long sequence lengths of the examples in this dataset we do not fine-tune Llama-3.1-8B
and Gemma-2-9B or any DoRA variants. We evaluate the fine-tuned checkpoints on four coding
benchmarks: MBPP Austin et al. (2021), HumanEval Chen et al. (2021b), MBPP+ and HumanEval+
Liu et al. (2023). The results are presented in Table 13. EVA shows the best performance on MBPP
and MBPP+ while also exhibiting good performance on HumanEval and HumanEval+. On the latter
two datasets, PiSSA is the best performing method. For finetuning we use a maximum sequence
length of 2028 with right-side truncation. For decoding we set the temperature to 0.2 and top_p to 0.7
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Table 9: Comparison of EVA to LoRA using recently proposed advancements, such as rank stabilized
scaling (Kalajdzievski, 2023) or different learning rates for B and A (Hayou et al., 2024), as well as
the originally proposed scaling from Hu et al. (2022).

Adaptation Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.

LoRA+ LoRA 64.5 84.7 81.6 94.4 83.8 87.3 73.9 85.5 82.0
EVA 68.6 85.0 81.2 94.2 84.7 87.4 73.5 84.1 82.3

rsLoRA LoRA 71.5 85.3 82.5 95.2 84.5 89.0 75.8 86.8 83.8
EVA 75.5 86.1 82.7 95.4 86.1 89.3 76.3 86.3 84.7

α = 32
LoRA 77.9 82.1 80.1 93.2 79.8 86.3 71.5 79.3 81.3
EVA 68.6 84.9 82.2 94.6 84.1 87.8 74.7 84.4 82.7

Table 10: Comparison of EVA with rank redistribution (ρ = 2) and without rank redistribution (ρ = 1)
for Llama-2-7B, Llama-3.1-8B, and Gemma-2-9B on common sense reasoning and math fine-tuning.
Rank re-distribution works well for Gemma-2-9B and for Llama-2-7B and Llama-3.1-8B on the
common sense reasoning tasks.

Model ρ Common sense GSM8K MATH

Llama-2-7B 1 83.4 61.9 13.1
2 83.4 61.0 12.5

Llama-3.1-8B 1 89.4 78.8 31.2
2 89.5 78.3 30.8

Gemma-2-9B 1 92.4 83.6 41.3
2 92.5 83.6 41.5

In Table 14 we report the standard deviation across three seeds from the results in Table 7. For
Llama-3.1-8B and Gemma-2-9B EVA has the smallest average standard deviation across tasks. For
Llama-2-7B the standard the variance of EVA is only slightly above average in comparison to other
methods, mainly due to the high standard deviation on the BoolQ dataset.

C NATURAL LANGUAGE UNDERSTANDING

C.1 DATASET STATISTICS

The dataset statistics for each task in the GLUE benchmark (Wang et al., 2019) are shown in Table 15.
Generally, GLUE contains four low-resource datasets (RTE, MRPC, STS-B, and CoLA) and four
high resource datasets (SST-2, QNLI, QQP, MNLI). While CoLA and SST-2 rely on single sentence
classification, STS-B evaluates for similarity and the remaining tasks are based on pairwise text
classification.

C.2 IMPLEMENTATION DETAILS

We base our implementation on the codebase of LoRA1. For these experiments, we initially pre-
compute our initialization prior to the fine-tuning stage and store it as a checkpoint. However, we also
provide the possibility to directly compute the initialization during the fine-tuning stage, as done for
our experiments on VTAB-1k and Meta-World. By default, we always offload the computation of the
initial checkpoint to CPU to save VRAM. We ran all our experiments on nodes with four A100 GPUs
and used PyTorch’s data-distributed parallel functionality (Paszke et al., 2019). Runtimes ranges
from as little as 10 minutes per run for smaller datasets (RTE, STS-B) to around 15 hours for the
largest datasets (QQP, MNLI).

1https://github.com/microsoft/LoRA
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Table 11: Comparison of number of trainable parameters between LoRA-based methods and EVA on
the math and common sense reasoning tasks. Common sense reasoning is an average over eight tasks.
#Trainable represents the number of trainable parameters. EVA consistently improves performance
while decreasing the number of trainable parameters.

Model Method #Trainable Common sense GSM8K MATH

Llama-2-7B LoRA 18.3M 82.2 59.7 10.9
EVA 17.3M 83.4 61.9 13.1
EVA−−

Llama-3.1-8B LoRA 20M 89.2 78.3 30.1
EVA 18.9M 89.5 78.8 31.2
EVA−−

Gemma-2-9B LoRA 24.5M 92.2 83.4 40.7
EVA 23.1M 92.5 83.6 41.5
EVA−−

Table 12: Comparison of EVA to EVA-minor, which leverages components that explain the least
amount of variance for initialization of A, on the common sense reasoning tasks.

Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA Avg.
EVA 68.6 85.0 81.2 94.2 84.7 87.4 73.5 84.1 82.3
EVA-minor 64.0 83.4 81.5 94.3 82.0 87.3 73.0 81.6 80.9

C.3 HYPERPARAMETER SEARCH

For LoRA and EVA, we search over the number of ranks r ∈ {2, 4, 6, 8} and different learning rates
η ∈ {1e−3, 4e−4, 1e−4} for RoBERTaLarge and η ∈ {4e−3, 1e−3, 4e−4} for DeBERTav3Base.
We report the best hyperparameter settings for both, RoBERTaLarge and DeBERTav3Base for LoRA
and EVA in Table 16. For AdaLoRA, we search over the same ranks and always start initial ranks
with r+4 that are then redistributed during training. For BOFT we sweep over different combinations
of block sizes b ∈ {2, 4, 8, 16} which determine the number of multiplicative matrices. Additionally,
for both, AdaLoRA and BOFT, we search over the same learning rates as for the other LoRA variants.
Further, we introduce hyperparameters that result in additional speed-up of our initialization, namely
a threshold τ that considers components as converged, and a threshold δ that stops computation of the
initialization when a certain percentage of components have converged. By default, we set τ = 0.99
and δ = 1, i.e. we only stop when all components are converged, and they are almost exactly the
same. These parameters provide additional leeway to speed up the initialization stage of EVA.

We have explored the sensitivity of LoRA to different initialization schemes and found that, similar
to other prominent initialization schemes (He et al., 2015; Glorot & Bengio, 2010), scale plays an
important role along with directions. Originally, (Hu et al., 2022) propose to set α = 2r, however,
we found that this parameter is quite sensitive as also shown in (Kalajdzievski, 2023). Similarly,
different ranks lead to very different results on different downstream tasks. Therefore, we suggest to
always search over more ranks and choose the best performing one if the required compute budget is
available. We also experimented with different learning rates for the A and B matrices as proposed
in (Hayou et al., 2024), however, this did not result in consistent improvements. Instead, we found
that learning rates for LoRA-style training can be surprisingly high (4e − 3 for DeBERTav3Base),
while for larger models the learning rate needs to be approximately a magnitude smaller. A simple
recipe that worked consistently well, was setting α = 1, which results in a similar scaling factor as in
Kalajdzievski (2023), and searching over a set of small learning rates for larger models and higher
learning rates for smaller ones. For EVA, the only tunable hyperparameter is the rank budget, which
we recommend to tune along with the fine-tuning learning rate.
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Table 13: Comparison of EVA to other initialization and rank re-distribution schemes on code fine-
tuning datasets. We report mean and standard deviation across three random seeds.

Method MBPP HumanEval MBPP+ HumanEval+
LoRA 22.2±1.1 18.9±0.6 30.7±1.1 18.9±0.6
AdaLoRA 21.5±0.2 17.1±0.0 29.4±0.7 17.1±0.0

PiSSA 22.8±1.2 19.9±0.9 30.8±0.7 19.9±0.9

OLoRA 22.3±0.6 18.9±0.0 32.4±0.4 18.9±0.0
EVA 22.9±0.7 18.9±1.2 32.6±0.6 18.9±1.2

Table 14: Standard deviation across three seeds on common sense reasoning tasks.

Model Method BoolQ PIQA SIQA HellaSwag Winogrande ARC-e ARC-c OBQA

Llama-2-7B

LoRA 1.498 0.252 0.233 0.102 0.658 0.072 0.489 0.822
AdaLoRA 1.315 0.251 0.182 0.098 0.392 0.362 0.106 0.899
PiSSA 0.358 0.294 0.138 0.096 0.298 0.386 0.494 1.117
OLoRA 4.938 0.190 0.524 0.062 0.652 0.339 0.672 0.660
LoRA-GA 10.573 0.416 1.049 0.115 0.344 0.170 0.560 0.721
EVA 7.974 0.137 1.054 0.101 0.810 0.526 0.421 0.577
DoRA 2.599 0.290 0.483 0.113 0.244 0.215 0.489 0.525
EVA+DoRA 5.281 0.273 0.293 0.034 0.853 0.110 0.494 0.249

Llama-3.1-8B

LoRA 0.472 0.194 0.419 0.070 0.197 0.052 0.563 0.189
AdaLoRA 0.510 0.044 0.261 0.040 0.392 0.201 0.804 0.748
PiSSA 6.516 0.373 0.603 0.195 0.707 0.325 0.245 0.589
OLoRA 0.298 0.245 0.397 0.057 0.451 0.173 0.329 0.189
LoRA-GA 0.539 0.237 0.695 0.115 0.592 0.135 0.729 0.800
EVA 0.353 0.031 0.194 0.046 0.209 0.292 0.178 0.808
DoRA 0.225 0.112 0.315 0.014 0.260 0.119 0.698 0.000
EVA+DoRA 0.225 0.168 0.121 0.117 0.392 0.105 0.175 0.249

Gemma-2-9B

LoRA 0.095 0.277 0.386 0.062 0.324 0.072 0.070 0.589
AdaLoRA 0.088 0.353 0.217 0.033 0.098 0.209 0.106 0.432
PiSSA 2.761 0.286 0.214 0.109 0.621 0.447 0.121 0.163
OLoRA 0.066 0.451 0.501 0.099 0.501 0.267 0.448 0.573
LoRA-GA 0.662 0.463 0.252 0.072 0.526 0.129 0.617 1.026
EVA 0.275 0.136 0.111 0.094 0.260 0.119 0.040 0.249
DoRA 0.189 0.420 0.301 0.074 0.419 0.091 0.000 0.499
EVA+DoRA 0.132 0.296 0.490 0.070 0.037 0.150 0.715 0.340

C.4 ADDITIONAL RESULTS

We report additional results for EVA compared to LoRA for different rank budgets in Table 17.
We find that EVA consistently outperforms LoRA for different rank budgets. This demonstrates
the effectiveness of EVA among different compute budgets. Further, we show additional rank
redistributions for the CoLA, MRPC, RTE, and STSB tasks for different for r = 2 (Figure 7), r = 4
(Figure 8), r = 8 (Figure 9), and r = 16 (Figure 10) for both, RoBERTaLarge and DeBERTav3Base.
The distributions for the different models show different patterns. For DeBERTav3Base the higher
attention layers usually receive more ranks than lower ones. For CoLA, there is also a high number
of ranks in the very first layer. For RoBERTaLarge it seems to be the opposite, as the very first
layers consistently receive more ranks compared to later layers. There is also a notable difference
across tasks for both models, which demonstrates the flexibility of EVA to allocate ranks dependent
on the downstream task. Interestingly, for a higher initial rank (r = 16), the redistribution for
DeBERTav3Base puts more emphasis on fine-tuning the self-attention specific weight matrices. This
is not true for RoBERTaLarge, as Wf1 also receives plenty of ranks across all tasks. Overall, the rank
redistribution incurs different fine-tuning paradigms depending on the task and the initial rank.
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Table 15: GLUE benchmark suite statistics and evaluation metric for each corpus sorted by the
number of examples in the training set.

Corpus #Train #Dev #Test Metric

RTE 2.5 k 276 3 k Accuracy
MRPC 3.7 k 408 1.7 k Accuracy
STS-B 7 k 1.5 k 1.4 k Pearson correlation
CoLA 8.5 k 1 k 1 k Matthew’s correlation
SST-2 67 k 872 1.8 k Accuracy
QNLI 108 k 5.7 k 5.7 k Accuracy
QQP 364 k 40 k 391 k Accuracy
MNLI 393 k 20 k 20 k Accuracy

Table 16: The best hyperparameters RoBERTaLargeand DeBERTav3Basethat were found via gridsearch
for each task of the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTaLarge
LoRA

Batch Size 8 16 8 8 8 8 16 8
# Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 8 8 4 8 4 2 2
Learning rate 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3 1e-3 4e-4
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

RoBERTaLarge
EVA

Batch Size 8 16 8 8 8 8 16 8
# Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 2 4 2 16 8 4 4
Learning rate 4e-4 1e-3 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
LoRA

Batch Size 32 32 16 32 64 32 32 16
# Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 4 4 8 16 4 4 8
Learning rate 4e-4 1e-3 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
EVA

Batch Size 32 32 16 32 64 32 32 16
# Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 2 4 8 16 4 2 2
Learning rate 4e-4 4e-4 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

Additionally, we show results for different rank redistributions that we obtain by using alternative
measures for explained variance. Specifically, we compare EVA to using, (i), the raw eigenvalues
(EVA-Raw), and (ii), normalizing by the maximum eigenvalue (EVA-Max). We report results for
RoBERTaLarge on four of the GLUE tasks, namely CoLA, RTE, MRPC, and STS-B in Table 18. Our
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Table 17: Comparison of LoRA to EVA using RoBERTaLarge on all tasks from GLUE for equal rank
budgets. Mean and standard deviation of Matthew’s correlation for CoLA, pearson correlation for
STS-B, and accuracy for remaining datasets on the development set across 5 seeds are shown.

Method CoLA MRPC RTE STS-B MNLI QNLI QQP SST-2 Avg

LoRAr=2 68.0±1.4 90.9±.8 88.1±1.1 92.3±.1 91.9±.1 94.8±.3 90.6±.1 96.1±.1 89.09
EVAr=2 69.1±1.4 90.8±.5 88.2±.7 92.5±.1 90.8±.1 94.9±.1 91.9±.1 96.2±.1 89.30

LoRAr=4 69.1±.5 90.7±.7 86.9±.2 92.3±.1 90.6±.1 94.7±.2 92.0±.0 96.0±.1 89.04
EVAr=4 69.5±1.4 91.4±.8 88.8±1.3 92.6±.1 90.7±.0 94.9±.1 91.8±.0 96.1±.1 89.48

LoRAr=8 68.8±1.0 91.1±.6 87.10.7 92.2±.2 90.6±.2 94.8±.1 91.8±.0 96.2±.3 89.08
EVAr=8 69.0±1.4 91.1±.4 88.4±.6 92.6±.3 90.6±.1 94.9±.1 92.1±.1 96.1±.2 89.35

LoRAr=16 68.4±1.0 90.5±.5 88.0±.5 92.3±.1 90.6±.1 94.8±.1 91.9±.1 96.1±.1 89.08
EVAr=16 69.1±.8 91.2±.8 88.0±.5 92.6±.2 90.7±.0 95.0±.2 91.8±.0 96.2±.1 89.33

Table 18: Comparison of LoRA to EVA, EVA-Raw, and EVA-Max for RoBERTaLargeon the GLUE
tasks CoLA, MRPC, RTE, and STS-B. We report mean and standard deviation of Matthew’s cor-
relation for CoLA, pearson correlation for STS-B, matched accuracy for MNLI, and accuracy for
remaining tasks across 5 seeds.

Method CoLA MRPC RTE STS-B Avg

LoRA 69.1±.5 91.1±0.6 88.1±1.1 92.3±0.1 85.2
EVA 69.5±1.4 91.4±0.8 88.8±1.2 92.6±0.1 85.6
EVA-Raw 69.4±1.1 91.0±0.9 88.2±0.3 92.5±0.2 85.3
EVA-Max 69.1±0.5 91.2±0.5 88.4±1.2 92.5±0.2 85.3

results show that while EVA-Raw and EVA-Max slighthly improve upon LoRA, they perform worse
on average than EVA.

D IMAGE CLASSIFICATION

D.1 DATASET STATISTICS

The VTAB-1K benchmark consists of 19 datasets, each containing a subset of 1000 examples of
their respective samples. We summarize the dataset statistics for each dataset in Table 19. While the
original train sizes of the datasets vary drastically, the 1K subset provides equal datasets across tasks.
The number of classes also varies from as little as two to almost 400.

D.2 IMPLEMENTATION DETAILS

We implemented a custom pipeline to fine-tune DINOv2-L/14 on VTAB-1K that supports LoRA,
DoRA and EVA. To train AdaLora, PiSSA and OLoRA, we integrate their implementation from
the peft library (Mangrulkar et al., 2022) into our pipeline. This pipeline is designed to be highly
parallelizable and to be executed on individual GPUs. A single evaluation run of a L/14 model (all
19 datasets with hyperparameter tuning and evaluation) takes roughly 160 A100 GPU-hours but
can be easily parallelized. A g/14 run takes roughly 140 H100 GPU-hours. A single evaluation run
consists of 1140 hyperparameter tuning runs (19 datasets * 5 learning rates * 4 ranks * 3 seeds) and
95 evaluation runs (19 datasets * 5 seeds). Details to hyperparameter tuning are described below.

We use the original DINOv2 models (Oquab et al., 2023) and train a classification head on top of
the [CLS] token, where we initialize the classification head weights with a normal distribution with
σ = 2e-5 and bias with zeros. We train the classification head, LoRA matrices and biases. Images are
resized to 224×224 resolution with bi-cubic interpolation and normalized with the per-channel mean
and variance of ImageNet. We train all models in bfloat16 precision using the AdamW optimizer with
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Figure 7: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 2.
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Figure 8: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 4.
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Figure 9: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 8.
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Figure 10: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base (left) and RoBERTaLarge (right) with initial rank
r = 16.
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Table 19: Category, train size and classes of the VTAB-1K dataset.

Category Dataset Train size Classes
Natural Caltech101 (Fei-Fei et al., 2006) 3060 102
Natural CIFAR-100 (Krizhevsky, 2009) 50000 100
Natural DTD (Cimpoi et al., 2014) 3760 47
Natural Flowers102 (Nilsback & Zisserman, 2008) 2040 102
Natural Pets (Parkhi et al., 2012) 3680 37
Natural Sun397 (Xiao et al., 2010) 87003 397
Natural SVHN (Netzer et al., 2011) 73257 10
Specialized EuroSAT (Helber et al., 2019) 21600 10
Specialized Resisc45 (Cheng et al., 2017) 25200 45
Specialized Patch Camelyon (Veeling et al., 2018) 294912 2
Specialized Retinopathy (Kaggle & EyePacs, 2015) 46032 5
Structured Clevr/count (Johnson et al., 2017) 70000 8
Structured Clevr/distance (Johnson et al., 2017) 70000 6
Structured dSprites/location (Matthey et al., 2017) 663552 16
Structured dSprites/orientation (Matthey et al., 2017) 663552 16
Structured SmallNORB/azimuth (LeCun et al., 2004) 36450 18
Structured SmallNORB/elevation (LeCun et al., 2004) 36450 9
Structured DMLab (Beattie et al., 2016) 88178 6
Structured KITTI/distance (Geiger et al., 2013) 5711 4

a weight decay of 0.05 for 30 epochs. We use a cosine learning rate schedule with a linear warm-up
for the first 3 epochs. Batch size is set to 64 where we use gradient accumulation if the batchsize
does not fit into GPU memory. Full fine-tuning uses a layer-wise lr decay (Clark et al., 2020) of 0.75.

D.3 HYPERPARAMETER SEARCH

We first fine-tune on the 800 train samples of VTAB-1K datasets to find the best learning rate for
the task. We sweep over learning_rate ∈ {2.5e-3, 1e-3, 7.5e-4, 5e-4, 2.5e-4} and rank ∈
{2, 4, 8, 16} and average the accuracy on the 200 validation samples over 3 different seeds to choose
the best learning rate and rank for each dataset. For evaluation, we train on the union of train and
validation set using 5 different seeds and report the average accuracy on the test set.

D.4 ADDITIONAL RESULTS

To complement our main results in Table 3, we report the respective standard deviations in Table 20.

E DECISION MAKING

E.1 DATASET STATISTICS

Meta-World (Yu et al., 2020) is an established benchmark in RL for multi-task continuous control.
The benchmark consists of 50 challenging robotics tasks simulated using a Sawyer robotic arm
in the MuJoCo physics engine (Todorov et al., 2012). All 50 tasks in Meta-World share the same
underlying robotic arm. Therefore, all tasks share a common state (39-dimensional continuous vector)
and action-space (6-dimensional). The reward functions in Meta-World are dense and based on the
distance of the robotic arm to the goal location or objects. All episodes last for 200 environment
interactions.

For our experiments on Meta-World, we leverage the datasets released by Schmied et al. (2024). We
follow Wołczyk et al. (2021) and Schmied et al. (2024), and split the 50 tasks into 40 pre-training
tasks (MT40) and 10 fine-tuning tasks (CW10). The CW10 tasks are:
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Table 20: Standard deviations for the VTAB-1K results (Table 3) over 5 seeds.
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FFT 1.5 1.1 1.6 0.0 0.4 1.2 0.9 14.9 0.4 0.6 2.7 1.7 0.9 1.2 23.6 0.5 0.4 1.6 1.9 3.0
LoRA 0.2 0.4 0.2 0.0 0.3 36.4 0.1 0.5 0.3 0.1 0.4 0.2 0.3 0.5 1.2 0.4 0.4 0.7 0.4 2.3
AdaLoRA 0.0 0.2 0.4 0.0 0.1 0.4 0.1 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.8 0.8 0.3 0.3 0.4 0.3
PiSSA 0.2 0.4 0.3 0.0 0.2 0.5 0.2 0.7 0.2 0.1 0.4 0.3 0.4 0.2 0.7 0.3 0.5 0.4 0.5 0.3
OLoRA 0.3 0.3 0.4 0.0 0.3 29.4 0.1 0.3 0.1 0.2 0.2 0.5 0.1 0.3 24.6 0.3 0.4 0.3 0.8 3.1
EVA 0.2 0.5 0.2 0.0 0.1 0.3 0.1 0.3 0.2 0.3 0.4 0.5 0.3 0.6 0.6 0.5 0.5 0.2 0.5 0.3
DoRA 0.1 0.2 0.5 0.0 0.2 29.7 0.4 0.7 0.1 0.2 0.4 0.4 0.3 0.3 0.6 36.2 0.5 0.3 0.3 3.8
EVA+DoRA 0.2 1.3 0.6 0.0 0.3 0.5 0.3 0.4 0.2 0.3 0.3 0.4 0.4 12.8 1.3 2.5 0.3 0.6 0.6 1.2

hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2,
stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-v2,
window-close-v2, and peg-unplug-side-v2.

The datasets contain 2M transitions for every of the 50 tasks, amounting to 80M transitions (320M
tokens) across all training tasks. The average success rate and rewards across all MT40 tasks are 84%
and 1414.62, respectively. We list the statistics per task in Table 21.

E.2 IMPLEMENTATION DETAILS

We implemented our pipeline that supports training for Meta-World on top of the code-base provided
by Schmied et al. (2024). Our custom implementation supports training LoRA, DoRA and EVA.
Furthermore, we leverage the peft library (Mangrulkar et al., 2022) to train the remaining methods.

For our experiments on Meta-World, we use a GPT2-like network architecture (Radford et al., 2019)
with 4 Transformer layers, 8 heads, and hidden dimension of 512 resulting in 16M parameters. We
use a context of 50 time steps, which amounts to a sequence length of 200, as each timestep contains
states, actions, rewards and RTGs. We embed states, actions, rewards and return-to-gos (RTGs) using
separate linear embedding layers per modality, as proposed by Chen et al. (2021a). We train with a
batch size of 128 using a constant learning rate of 1e−4, 4000 linear warm-up steps followed by a
cosine decay to 1e−6, using the AdamW optimizer (Loshchilov & Hutter, 2017). We employ gradient
clipping of 0.25, weight decay of 0.01, and a dropout rate of 0.2. Our DT implementation employs
global position embedding. For every task, we set the target return to the maximum return achieved
in the respective training datasets, as proposed by (Schmied et al., 2024). Furthermore, we employ
mixed-precision (Micikevicius et al., 2017) and flash-attention (Dao, 2023) to speed-up training.

We first pre-train a DT on all MT40 tasks (80M transitions) for 1M updates via next-action prediction
by minimizing the mean-squared error. The resulting pre-trained model attains an average success
rate of 80% across all MT40 tasks. Then we fine-tune the DT on each of the CW10 down-stream
tasks for 100K updates with the same set of hyperparameters as used for pre-training. We run all our
experiments on a public research cluster with 4xA100-40GB GPU nodes. A single fine-tuning run
with EVA for one task takes roughly 1 hour on one A100.

E.3 HYPERPARAMETER SEARCH

In line with previous experiments, we tune the rank for LoRA, DoRA, AdaLora and EVA, rank ∈
{2, 4, 8, 16}. Further, we sweep over the same learning rates as for the GLUE tasks.
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Table 21: Dataset statistics for all MT40 tasks from Schmied et al. (2024).
Task |S| |A| Success Rate Reward
assembly-v2 39 4 0.0 1206.9
basketball-v2 39 4 0.9 1375.95
bin-picking-v2 39 4 0.0 474.81
box-close-v2 39 4 0.0 759.15
button-press-topdown-v2 39 4 1.0 1299.24
button-press-topdown-wall-v2 39 4 1.0 1296.16
button-press-v2 39 4 1.0 1430.44
button-press-wall-v2 39 4 1.0 1508.16
coffee-button-v2 39 4 1.0 1499.17
coffee-pull-v2 39 4 1.0 1313.88
coffee-push-v2 39 4 0.6 508.14
dial-turn-v2 39 4 0.8 1674.29
disassemble-v2 39 4 1.0 1396.55
door-close-v2 39 4 1.0 1535.4
door-lock-v2 39 4 1.0 1712.65
door-open-v2 39 4 1.0 1544.32
door-unlock-v2 39 4 1.0 1733.64
drawer-close-v2 39 4 1.0 1845.92
drawer-open-v2 39 4 1.0 1710.65
faucet-open-v2 39 4 0.9 1727.98
hand-insert-v2 39 4 1.0 1607.17
handle-press-v2 39 4 1.0 1854.79
handle-pull-side-v2 39 4 1.0 1613.72
handle-pull-v2 39 4 1.0 1581.75
lever-pull-v2 39 4 1.0 1449.05
peg-insert-side-v2 39 4 1.0 1545.19
pick-out-of-hole-v2 39 4 1.0 1435.64
pick-place-v2 39 4 0.0 6.59
pick-place-wall-v2 39 4 0.1 702.59
plate-slide-back-side-v2 39 4 1.0 1766.24
plate-slide-back-v2 39 4 1.0 1773.56
plate-slide-side-v2 39 4 1.0 1663.35
plate-slide-v2 39 4 1.0 1667.35
reach-v2 39 4 1.0 1858.99
reach-wall-v2 39 4 1.0 1831.14
soccer-v2 39 4 0.4 445.84
stick-push-v2 39 4 1.0 1470.71
sweep-into-v2 39 4 1.0 1761.69
sweep-v2 39 4 1.0 1458.35
window-open-v2 39 4 1.0 1537.59

Average - - 0.84 ± 0.34 1414.62 ± 439.39
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E.4 ADDITIONAL RESULTS

In Table 22, we show the full comparison for all methods on CW10. EVA+DoRA consistently
outperforms all competitors for the different rank budgets.

Table 22: Rank-wise comparison for all methods on CW10. We fine-tune a 12M DT on 10 tasks
individually and report the mean success rates/rewards (± standard error) for every task.
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Method Rank

FFT - 0.97±0.03 0.93±0.03 1.0±0.0 0.6±0.05 0.7±0.12 1.0±0.0 0.93±0.03 1.0±0.0 0.57±0.07 1.0±0.0 0.87±0.03

LoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.05 0.57±0.07 0.97±0.03 0.93±0.03 1.0±0.0 0.37±0.1 1.±0.0 0.84±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.47±0.12 0.63±0.1 0.97±0.03 1.0±0.0 1.0±0.0 0.23±0.12 1.0±0.0 0.83±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.4±0.09 0.97±0.03 0.93±0.03 1.0±0.0 0.23±0.12 1.0±0.0 0.79±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.03 0.47±0.03 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 1.0±0.0 0.82±0.05

DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.05 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.33±0.11 1.0±0.0 0.89±0.04

4 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.9±0.04

8 1.0±0.0 1.0±0.0 1.0±0.0 0.47±0.12 0.93±0.05 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.15 1.0±0.0 0.9±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.15 1.0±0.0 0.92±0.03

AdaLoRA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.05 0.37±0.05 0.93±0.05 0.97±0.03 1.0±0.0 0.13±0.07 1.0±0.0 0.77±0.06

4 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.07 0.57±0.1 0.97±0.03 0.9±0.08 1.0±0.0 0.13±0.07 1.0±0.0 0.79±0.06

8 1.0±0.0 0.97±0.03 1.0±0.0 0.3±0.05 0.57±0.14 0.93±0.03 0.87±0.07 1.0±0.0 0.0±0.0 1.0±0.0 0.76±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 0.57±0.12 0.97±0.03 0.93±0.05 1.0±0.0 0.0±0.0 1.0±0.0 0.78±0.06

OLoRA 2 1.0±0.0 0.9±0.05 1.0±0.0 0.47±0.03 0.33±0.03 0.97±0.03 0.970.03 1.0±0.0 0.27±0.11 1.0±0.0 0.79±0.05

4 1.0±0.0 0.9±0.05 1.0±0.0 0.43±0.03 0.63±0.12 1.0±0.0 1.00.0 1.0±0.0 0.6±0.12 1.0±0.0 0.86±0.04

8 1.0±0.0 0.97±0.03 1.0±0.0 0.57±0.1 0.5±0.08 1.0±0.0 1.00.0 1.0±0.0 0.53±0.14 1.0±0.0 0.86±0.04

16 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.05 0.63±0.03 1.0±0.0 1.00.0 1.0±0.0 0.43±0.05 1.0±0.0 0.84±0.04

PiSSA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.11 0.53±0.07 0.97±0.03 0.90.08 1.0±0.0 0.33±0.17 1.0±0.0 0.81±0.05

4 1.0±0.0 1.0±0.0 1.0±0.0 0.37±0.07 0.7±0.05 0.97±0.03 1.00.0 1.0±0.0 0.07±0.05 1.0±0.0 0.81±0.06

8 1.0±0.0 0.97±0.03 1.0±0.0 0.3±0.0 0.57±0.03 0.97±0.03 1.00.0 1.0±0.0 0.53±0.1 1.0±0.0 0.83±0.05

16 1.0±0.0 0.93±0.03 1.0±0.0 0.33±0.12 0.47±0.03 1.0±0.0 0.970.03 1.0±0.0 0.47±0.11 1.0±0.0 0.82±0.05

EVA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.07 0.77±0.05 0.97±0.03 1.0±0.0 1.0±0.0 0.63±0.07 1.0±0.0 0.88±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.47±0.12 1.0±0.0 0.97±0.03 1.0±0.0 0.23±0.05 1.0±0.0 0.81±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.63±0.03 0.7±0.08 1.0±0.0 1.0±0.0 1.0±0.0 0.23±0.03 1.0±0.0 0.85±0.05

16 1.0±0.0 0.97±0.03 1.0±0.0 0.53±0.03 0.77±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0 1.0±0.0 0.83±0.06

EVA + DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.08 0.97±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.92±0.03

4 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.05 0.93±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.03 1.0±0.0 0.94±0.02

8 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.19 0.87±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.03 1.0±0.0 0.91±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.2 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.5±0.16 1.0±0.0 0.92±0.04

F INCREMENTAL SVD CONVERGENCE ANALYSIS

For simplicity, let us assume that A = Xi⊤
0 and B = Xi⊤

1 are two batches of activations for weight
matrix W i obtained by passing two subsequent batches of the downstream data through the model.
The aim is now to compute the SVD of the concatenated activation matrix

[
AB

]
= U ′Σ′V ′⊤ in

constant memory. Further, We obtain A = UtΣtV
⊤
t via SVD. Now let B̃ be the component of B

that is orthogonal to U , which can be obtained via QR-decompositon or via B̃ = orth(B−UU⊤B),
where orth(·) performs orthogonalization. Then the SVD of the concatenated activation matrix can
be expressed in partitioned form as[

AB
]
=

[
UB̃

] [ Σ U⊤B

0 B̃⊤B

] [
V ⊤ 0
0 I

]
. (4)

By setting R =

[
Σ U⊤B

0 B̃B

]
, we can obtain SVD of the concatenated activation matrix by

performing SVD on R,R = ŨΣ̃Ṽ ⊤, which is constant in time and memory as we only need to
compute U ′ and Σ′, which do not scale with the number of data samples. Hence, we perform[

A;B
]
=

([
U ; B̃

]
Ũ
)
Σ̃

(
Ṽ ⊤

[
V ⊤ 0
0 I

])
, (5)

and subsequently obtain U ′ =
[
UB̃

]
Ũ and Σ′ = Σ̃.
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As this algorithm incrementally updates the U and Σ components, we need to keep track of changing
mean and variance estimates. For the mean this is trivial, but the computation of running variances
can introduce numerical instabilities. To counteract this, usually the young and cramer update is
employed (Chan et al., 1983). The supporting proof that the covariance matrix of the original data
matrix is equal to the covariance matrix of the concatenated matrix up to a constant factor is given
in Ross et al. (2008). In our example, the left-singular values U do not scale with the number of
samples. However, in our case we have A = Xi

t and B = Xi
t+1, i.e. transposed data matrices,

therefore it is the right-singular values V that do not depend on the number of samples and can be
incrementally updated in constant time and memory. We show pseudocode for the incremental SVD
algorithm in Algorithm 2.

Algorithm 2 Incremental SVD algorithm from Ross et al. (2008)
Input: Sequence of data batches {A0, . . . ,AT }, truncated SVD SVD(·), orthogonalization function

orth(·), running variance update function young_cramer_update(·, ·)
1: m̄0 ← 1

b

∑b
i=0 A:,i, σ

0 ←
∑b

i=0(A:,i−m̄0)2

b−1 ▷ initialize incremental mean/variance
2: U0Σ0V

⊤ ← SVD(A0 − ā0) ▷ Perform initial SVD on A to get initial components
3: for i in 1, . . . , T do
4: āi ← 1

b

∑
b A

i
:,i, m̄

i ← m̄i + ai−m̄i−1

b(i+1) ▷ compute mean vectors
5: σi ← young_cramer_update(σi−1,Ai) ▷ Update running variance

6: Âi ←
[
Ai − āi;

√
b(i+1)

2b

(
m̄i − āi

)]
▷ concatenate mean correction factor

7: Ãi ← orth(Âi −Ui−1U
⊤
i−1Â

i) ▷ Obtain orthogonal component to U

8: R =

[
Σi−1 Ui−1⊤Âi

0 ÃiÂi

]
▷ Define matrix R

9: ŨΣ̃Ṽ ⊤ ← SVD(R) ▷ Perform SVD on R

10: Ui ←
[
Ui−1; Ã

i
]
Ũ , Σi ← Σ̃ ▷ Update SVD components

11: end for

In the following sections we analyze the behavior of this algorithm under different conditions, i.e.
different batch sizes, etc.

F.1 COMPLEXITY

The computation of SVD introduces computational overhead in the initial training stage. Since we
do not require gradient computation or storing of optimizer states, there is no overhead in terms
of memory. SVD has a time complexity of O(min(b2d, bd2)) which can be reduced to O(k2b) for
k << d by randomly choosing k columns from X as introduced in Halko et al. (2011). Let T
be the number of minibatches until all components are converged for N weight matrices, then the
time complexity is O(NTk2b). In other words, the complexity scales linearly with the number of
weight matrices and the number of minibatches. To speed up the computation of SVD, we provide an
implementation that runs entirely on GPU.

F.2 BATCH SIZE INVARIANCE

We conduct an analysis on the convergence of the components obtained via SVD. Specifically, we
investigate the difference in components according to cosine similarity across different batch sizes.
Previously we have seen that the components obtained across different batch orderings are heavily
correlated. In Figure 11 we visualize the cosine similarities between the SVD components for
different batch sizes, namely 4, 8, 16, and 32 for Llama-2-7B on the MetaMathQA dataset. We
observe that the components correlate strongly and remain mostly invariant to the batch size. This
indicates that smaller batch sizes may be used for obtaining the initialization which results in less
computational overhead. In the case of Llama-2-7B on MetaMathQA, this means that we can use a
batch size of 4 since it induces a computational overhead of around 100 seconds. Afterwards we can
continue the fine-tuning process with a larger batch size.
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Figure 11: Average cosine similarity between components obtained via SVD on minibatches of
activation vectors across different batch sizes. The components strongly correlate indicating that the
SVD computation is mostly invariant to the batch size and returns mostly the same components.

F.3 EXCLUDING IGNORED TOKENS FOR SVD

For some datasets we notice that masking out tokens for the SVD computation which are ignored for
the loss calculation during finetuning can be advantageous. This can however result in a significant
reduction of the effective batch size for SVD if the number of completion tokens is small. An example
where this is the case in our experiments are the common sense reasoning tasks which have long
prompts but completion tokens are only one word per sample. This setting can lead to cases were
SVD does not converge for lower batch sizes. We therefore do not mask out the prompt tokens in
our experiments. Another setting where masking ignored tokens can be advantageous are multi-turn
conversation where the model is only trained on the assistant tokens. To achieve the results in Table 13
we mask out user tokens together with the prompt for the SVD computation.

F.4 EFFICIENCY OF EVA INITIALIZATION

We investigate the efficacy of the incremental SVD for obtaining a data-driven initialization to
LoRA-GA (Wang et al., 2024), another concurrent work on data-driven initialization. LoRA-GA
performs SVD on the full gradient matrix to obtain a lower dimensional subspace approximation and
initializes A and B accordingly. In Table 23 we show the wall clock time required for LoRA-GA and
EVA as a fraction of the total training time. We observe that EVA takes up only 0.7% of the training
time for initialization, while LoRA-GA takes approximately 4.8%. This demonstrates the EVA is
approximately seven times faster than LoRA-GA while achieving better performance. Furthermore,
EVA is even faster than PiSSA even though PiSSA is weight-driven. Finally, even though EVA is
slightly slower than OLoRA, it attains a better performance vs complexity trade-off as it outperforms
OLoRA on average on all our experiments.

G RANK RE-DISTRIBUTION ANALYSIS

To illuminate the rank re-distribution process, we visualize the resulting ranks for each weight matrix
after SVD for Llama-2-7B on the MetaMathQA dataset for different values of ρ. Setting ρ = 1
results in a uniform rank distribution as in standard LoRA. However, setting ρ > 1 alters the number
of ranks per weight matrix. In Figure 12 we visualize the number of ranks assigned to each weight
matrix for different values of ρ > 1 and in Figure 13 we visualize the corresponding deltas. Both
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Table 23: Time in minutes required for computing initialization of LoRA-GA, PiSSA and EVA as
% of total training time for Llama-2-7B on a single A100 GPU fine-tuned on the common sense
reasoning tasks presented in Table 7. Training time is averaged across two runs for one epoch. For
LoRA-GA we use the default number of steps (64). For EVA we report efficiency across different
batch sizes.

Initialization Method Initialization Training % of Training

Weight-driven PiSSA 7.43 482.67 1.5
OLoRA 0.3 482.67 0.1

Data-driven

LoRA-GA 11.7 482.67 2.4
EVAbs=16 3.3 482.67 0.7
EVAbs=8 1.38 482.67 0.3
EVAbs=4 1.17 482.67 0.2

Figure 12: The resulting rank allocation per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of ρ. The first row represents a uniform distribution
where each weight matrix receives the same rank r = 16. The most change occurs for ρ < 1.5. The
re-distribution converges for larger values of ρ.

visualizations clearly illustrate that the most change occurs for values of ρ < 1.5. Setting ρ to higher
values results in less and less change. Interestingly, some ranks still change when going from ρ = 2.5
to ρ = 3. Finally, we conduct hyperparameter search in which we search over different values of
ρ ∈ {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3}. We report the results in Figure 14. We find
that for Llama-2-7B on MetaMathQA a uniform distribution performs favorably. The second-best
performance is shared by ρ = 1.5 and ρ = 2. Therefore, we always search for ρ = 1 and ρ = 2 for
all our remaining experiments when we apply EVA and select the best performing one.

H RELATION BETWEEN SVD AND PCA

PCA (F.R.S., 1901) is a commonly used tool to decompose a matrix of datasamples A ∈ Rm×n into
its principal components, i.e. the directions that explain the most variance in the data. The principal
components allow projection onto a lower dimensional manifold by preserving the maximal amount

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 13: Deltas between rank distributions per weight matrix in each layer for Llama-2-7B on the
MetaMathQA dataset with different values of ρ. The first row represents a uniform distribution where
each weight matrix receives the same rank r = 16. The most change occurs in the range ρ ∈ [1, 1.5].
Larger values of ρ do not induce additional significant changes to the rank distribution.
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Llama-2-7B on MetaMath

Figure 14: Accuracy for different values of ρ when fine-tuning Llama-2-7B on the MetaMathQA
dataset.
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of variance. To this end, PCA first computes the sample covariance matrix

S =
1

n− 1
A⊤A, (6)

where we assume that A is centered. To obtain the principal directions of S, we perform eigenvalue
decomposition as

S = V ΛV ⊤, (7)
where Λ = diag(λ1, . . . , λn) and eigenvalues are sorted in descending order, i.e. λ1 ≥ λ2 ≥ λn.
The matrix V ∈ Rn×n is a matrix of eigenvectors where each column is being referred to as a
principal direction of S. To project A onto a lower dimensional manifold that explains the most
variance we can take the top-k principal directions V:,:k and perform AV .

PCA is in practice often implemented in the form of SVD as there are efficient approximations thereof
(Halko et al., 2011). As mentioned in Equation (1), SVD decomposes the matrix A into

A = UΣV ⊤, (8)

where U ∈ Rm×n is a unitary matrix, Σ ∈ Rn×n is a diagonal matrix of singular values Σ =
diag(σ1, . . . , σn), and the columns of V ∈ Rn×n are called the right singular vectors.

Now we can establish the equivalence between the principal directions obtained by PCA and the
right-singular vectors of SVD by substituting A with the right hand side of Equation (8) as

S =
1

n− 1
A⊤A =

1

n− 1
V ΣU⊤UΣV ⊤ = V Σ̂V ⊤. (9)

Here, we absorb the factor 1
n−1 into Σ̂. Therefore, the right-singular vectors V are the principal

directions and ΣU⊤UΣ = Σ as U⊤U = I because U is real.

I ABLATION STUDIES

Finally, we conduct ablation studies on EVA to investigate important factors that contribute to
its performance. Specifically, we investigate the impact of scale and directions. To this end, we
use the VTAB-1K dataset because it comprises a diverse set of tasks and allows for a systematic
investigation on in-domain data (natural), and out-of-distribution data (specialized and structured).
We report results for our ablation studies in Table 24 and explain the different settings in the following
paragraphs.

Effect of scale. To investigate the effect of scale on the initialization, we add a setting which uses
whitening (EVA-whiten). Whitening scales the initialization by the reciprocal of their eigenvalues,
which alters scale, but preserves directions. We found that whitening can significantly improve
performance on structured (out-of-distribution) tasks even leading to a slightly higher average score
than EVA. This indicates that scale is especially important for structured data. However, EVA-whiten
experiences a slight performance drop on natural and specialized tasks.

Table 24: Group-wise averages for DINOv2-G/14
ablation studies on the VTAB-1K benchmark.

Method Nat. Spec. Struct. All
LoRA 83.2 88.8 69.0 78.4
LoRA-redist 87.3 88.0 68.2 79.4
EVA-whiten 87.5 87.5 69.1 79.8
EVA-rot 87.7 88.0 68.2 79.6
EVA-perm 87.4 87.8 68.3 79.5
EVA 87.7 87.9 68.6 79.7

Effect of directions. To address the importance
of the directions of the components, we ran-
domly permute its rows (EVA-perm). This pre-
serves scale while corrupting directions and ℓ2
norm of A. Additionally, we add a setting where
we randomly rotate A (EVA-rot), which pre-
serves ℓ2 norm, but alters directions. We find
that altering directions leads to a performance
drop on the structured tasks, while changing ℓ2
norm leads to a drop on the natural tasks. Both,
EVA-perm and EVA-rot lead to worse average
performance across all tasks compared to EVA.

Effect of rank redistribution. We conduct an
experiment in which we randomly initialize A
after performing rank redistribution (LoRA-redist). This setting gives insights on the effect of the
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redistribution and whether its benefits are bound to EVA. The redistribution has a positive effect
on LoRA on the natural tasks, but a negative effect on both structured and specialized tasks. This
illustrates that rank redistribution is most beneficial in combination with EVA’s initialization of A.

Generally, we can say that EVA performs particularly well on natural images and whitening can
enhance its performance on out-of-distribution images. The decisive factor with respect to this
improvement seems to be a controlled change in the scale of the initialization induced by the singular
values. Therefore, by changing the scale in a controlled manner we can make EVA more compatible
for different kinds of data. The results for EVA-perm confirm that the scale is the decisive factor for
initialization.
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