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Abstract

Compositionality is addressed by Hierarchical Reinforcement Learning (HRL)
by breaking down complex tasks into manageable subtasks, but faces challenges
with efficiency and generalization in continual learning environments. Potential
solutions to these limitations include a dimensional reduction of the high-level
state space through a symbolic representation and region of interest identification
through language input for imitation learning. In this work, we propose the inte-
gration of a dynamic symbolic representation and large language models (LLM)
in the framework of HRL, leveraging LLM’s natural language and reasoning ca-
pabilities to bridge the gap between human instructions and an emerging abstract
representation. By acting as an interface for translating human demonstrations into
actionable reinforcement learning signals, LLM can improve task abstraction and
planning within HRL. Our approach builds upon the Spatial-Temporal Abstrac-
tion via Reachability (STAR) algorithm, using LLM to optimize the hierarchical
planning process. We conduct experiments in ant robot environments, showing
how LLM can translate abstract spatial states into symbol representations and
assist with task planning. The results demonstrate the potential of LLM to enhance
HRL in continual multi-task learning environments requiring spatial reasoning and
hierarchical control.

1 Introduction

In continual learning, to solve long-horizon tasks such as compositional tasks, also referred to as
sequential tasks, based on the ability to combine simple behaviors to create more complex behaviors,
we examine a novel strategy for compositional learning based on the combination of imitation
learning using language instructions and Reinforcement Learning (RL). While language excels at
composing simpler tokens into complex ideas, it relies on pre-defined symbols. On the other hand,
RL for continual learning environments need to tackle continuous high dimensional environments.
We here propose a path to bridge the two worlds in the framework of Hierarchical Reinforcement
Learning (HRL). Indeed HRL approaches allow agents to solve complex, long-horizon problems
by decomposing them into easier, more manageable sub-problems. Unlike other HRL algorithms
that use only continuous space or continuous abstract representation, the STAR [Zadem et al., 2024]
algorithm automatically learns a discrete abstract goal space that preserves environment dynamics by
focusing on reachability relations between sets of states. This abstraction acts as a discretisation of the
state space, where every goal is a set of states that exhibit similar reachability properties in the task.
This goal representation is acquired online. Despite these advances, the learned goals are not directly
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interpretable since misaligned with human representations such as in natural language, making it
a difficult for a human user to actively interact with the system. An important aspect of building
systems that can serve as intelligent assistants to humans, is to ensure that we can communicate with
them in a way that is intuitive and efficient. A learning agent should allow users to provide feedback
on its behavior and to instruct it to perform specific tasks. Users should also be able to guide the
learning process just as we teach and coach other humans. Inversely, robots should also be capable
of asking questions to the user when they are uncertain about the task they are performing or to
proactively seek guidance when they are stuck.

On the other hand, language, as represented by Large Language Models (LLMs) show composition
and reasoning capabilities that can be beneficial to abstract representations. Following the principles
of a human-centered approach [Boy, 2017], the machine should ground its reasoning in a common
language with humans. The Human In The Loop (HITL) [Wu et al., 2021, Retzlaff et al., 2024]
Reinforcement Learning paradigm studies how to integrate humans in the different stages of an
agent’s life cycle. This includes how human demonstrations can be used to enhance the learning
process of primitive [Nguyen and Oudeyer, 2012] or sequential [Duminy et al., 2019] tasks, and how
humans can instruct RL agents via natural language [Colas et al., 2020]. In this vein, the integration
of LLMs in synergy with RL agents has recently gained attention. The advances achieved in building
LLMs (e.g OpenAI’s GPT, Meta’s LLAMA, Anthropic’s Claude), have accelerated the creation of
language based HITL approaches [Pternea et al., 2024]. First, RL can be used in service of training
and improving LLMs in natural language tasks such as conversation and question answering. In
the vein of approaches, Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al.,
2022] has demonstrated how human feedback can be captured by a RL agent and used to fine-tune
large language models. Inversely, a LLM can benefit RL agents in improving sample efficiency and
injecting a reasoning layer [Du et al., 2023] that would alleviate the need for extensive exploration,
especially in the initial training phases. A popular example of such approaches rely on the LLM as
a high-level planner, providing instructions to the RL agent [Wong et al., 2023, Ichter et al., 2022,
Wu et al., 2023], which can then be used to guide the learning process. Under such architectures,
the LLM has to communicate with the RL agent in a common language that allows to express
goals. Establishing this common language is a challenging task, and often researchers resort to using
predefined predicates reducing the generality of the approach.

We propose in this paper some perspectives on how the interpretability of the reachability-aware
goal abstraction in STAR can allow for a LLM to reason about abstract goals and boost the planning
capabilities of the approach. We argue that this approach on the one hand allows humans to instruct the
algorithm in natural language, and on the other hand, to allow the algorithm to clearly communicate
its behavior. Our main contributions in this work is to explore using LLMs as high-level instructor
for the STAR algorithm, and whether it can interpret agent behaviour to humans.

2 Spatial-Temporal Abstraction via Reachability (STAR) Algorithm

We base our work on the STAR algorithm, which efficiently partitions the state space. The partitioning
data from the STAR algorithm is collected and used to test the integration of language instructions in
the hierarchical reinforcement learning framework.

2.1 Overview of the STAR Algorithm

We consider a goal-conditioned Markov Decision Process (S,A, P, rext), where S ⊆ Rn is a
continuous state space,A is an action space, P (st+1 | st, at) is the transition function, and rext : S ×
S → R is the reward, defined as the negative distance to the goal g∗ ∈ S: rext (s, g

∗) = −‖g∗ − s‖2.
The objective in multi-task reinforcement learning is to learn a goal-conditioned policy π that
maximizes the expected reward by sampling actions a ∼ π (st | g∗) at each timestep.

The goal abstraction is modeled by a function N : S → 2S that maps states to sets of states (i.e.,
∀s ∈ S,N (s) ⊆ S). We refer to the abstract goal space as GN or simply G when clear. The elements
of G are denoted as G.

The function N varies depending on the abstraction method. For example, Mannor et al. [2004] use
stochastic partitioning with linear subpolicies, while the STAR algorithm [Zadem et al., 2024] uses
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k-step reachability: a state s can reach s′ using policy π(., Gj) in k steps. Thus, the abstract goal
space G consists of sets of reachable states.

The STAR architecture comprises three hierarchical agents:

• Navigator: The high-level agent selects an abstract goal G ∈ G to guide the agent towards
the task goal g∗: Gt+k ∼ πNav (st, g

∗).

• Manager: The mid-level agent picks subgoals in the state space, conditioned on the
Navigator’s goal: gt+l ∼ πMan (st, Gt+k).

• Controller: The low-level policy samples actions to reach the subgoal: a ∼ πCont (st, gt+l).

The Manager and Controller use TD3 [Fujimoto et al., 2018] for learning, while the Navigator
employs Q-learning. Each agent operates at different timescales: the Navigator selects a goal every k
steps, the Manager every l steps (with k a multiple of l), and the Controller at each step. Initially, the
abstraction G is coarse, making direct goal-reaching challenging. The Manager’s subgoals serve as
intermediate targets, facilitating easier learning for the Controller. This structure allows STAR to
guide the agent through large state abstractions while supporting low-level policy learning.

2.2 Integration of LLM

For tasks in real-world environments, humans intuitively understand and navigate them. For instance,
navigating a maze, moving from the living room to the kitchen, can be easily communicated using
language. To reason and compose symbols grounded in a continuous environment, we take advantage
of the discrete representation output by STAR as an intermediary capable of extracting the abstract
spatial states of the algorithm and human instructions, then converting them into a format the
algorithm can understand, ultimately accelerating the learning process. To achieve this, we propose
the conversion of abstract spatial states and goals into a textual representation using LLM.

As the top-level agent, the Navigator only selects the next abstract region Gt+k ∼ πNav (st, g
∗),

we propose a translation instruction experiment. In the first experiment, we test the ability of
LLMs to perform full route planning based on human-provided instructions, (Gt+k, . . . , Gt+nk) ∼
πLLM (X, st, g

∗). Simultaneously, from another perspective, to evaluate the interactivity and align-
ment of LLM with spatial reasoning, we propose a naming experiment. In the second experiment,
we translate abstract regions, G ∈ G, into natural language descriptions and test whether LLM can
support the mapping between continuous spatial regions and symbolic representations.

2.3 Representation of States and Goals

The Ant, adapted from Duan et al. [2016] and Nachum et al. [2018], is a simulated quadrupedal robot
with a 30-dimensional state space, including positions, orientations, velocities, and joint angles. The
action space is continuous and 8-dimensional, corresponding to forces applied on the joints.

We evaluate two tasks in a 2D environment of size 25 for each dimension: AntMaze, where the
Ant navigates a ⊃-shaped maze to the exit, and AntFall, which involves crossing a chasm using a
movable block as a bridge. These tasks are hierarchical, requiring both low-level movement and
high-level navigation. The environment uses Mujoco physics simulator [Todorov et al., 2012]. A
training episode lasts up to 500 timesteps. The reward is the negative Euclidean distance to the goal,
scaled by 0.1, with success if the distance is smaller than 5.

We use the partitioning from the STAR algorithm’s training to test integrating human demonstrations.
Human instructions guide the agent in the AntMaze or AntFall environments. To represent partitioning
data as prompts for the LLM, we use:

• Maze layout: Compressed textual form with marked obstacles and partition regions.

• Coordination information: Tracks the agent’s current location and the goal.

• Adjacency list: Details neighboring relations for each region.

3 Experimental Evaluation
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Figure 1: Four situations in the AntMaze environment at Timestep (a) 305000, (b) 605000, (c)
930000, and (d) 4980000. The red point is the agent’s current location, the yellow point is the goal.

Table 1: Unique Name given by LLM

Timestep - Region LLAMA3.1-8B-Instruct GPT4o

305000 - 2 Rightward Passage Eastern Pathway

605000 - 1 Western Entrance Southern Junction
605000 - 5 Leftward Passage Western Approach
605000 - 6 Rightward Passage Northern Link
605000 - 12 Southern Expansion Eastern Border

4980000 - 3 Northern Passage Northern Access
4980000 - 20 Southern Corridor Southern Corridor
4980000 - 21 Eastern Extension Northeastern Outlet

Naming Experiment for Spatial Regions To evaluate the LLMs’ ability to generate human-
readable descriptions of abstract goals, we utilized four scenarios with Timestep 930000 as a one-shot
prompt (see Fig.1 and annex A). Llama3-8b-instruct and GPT-4o were tested; the former runs on a
GPU with more than 16GB of RAM. Completing the STAR program for 5 million timesteps takes
about 15 hours, with LLM inference taking 0.6 seconds each. Table 1 shows the names given by
the LLMs, when tasked with naming neighboring regions. The results indicate that the LLMs can
generate clear and concise names for each region.

In Table 1, bold text denotes incorrect region descriptions. The LLMs struggled with directional
accuracy, particularly in densely packed situations (e.g., Timestep 605000, with 25% accuracy).
However, when focusing on regions adjacent to the agent’s location, directional accuracy exceeded
75%, suggesting that representing continuous regions as symbolic names using LLMs is feasible.

Table 2: IoU Comparison Between GPT-4o and
Claude 3.5 Sonnet

Environment GPT-4o Claude 3.5 Sonnet

AntMaze 82.1% 90.3%
AntFall 75.0% 100.0%

Total 81.25% 91.43%

Instruction Translation Experiment In Fig.
1.b, a LLM might compose instructions into a
complex planning : "Go east, then north past
the wall, and finally west to the goal." With re-
gion segmentation, this means moving through
regions (Gn = (1, 2, 3, 4). We tested the LLM’s
ability to infer this sequence from such instruc-
tions (see annex C for the promts). We report the
accuracy, defined as IoU = |GLLM∩Gn|

|GLLM∪Gn| , where
GLLM is the LLM-predicted sequence and Gn is
the true sequence. Table 2 reports the IoU for
his ChatGPT-4o and Claude 3.5 Sonnet, with detailed outputs reported in annex D. GPT-4o’s errors
stemmed from omitting intermediate regions, while Claude added extra ones. Both models achieved
over 80% IoU, with 100% accuracy in predicting the next region, indicating effective translation of
instructions into abstract regions.

4 Discussion

The experiments show that LLMs can enhance HRL tasks, particularly in sequential planning, despite
its dynamic abstract representation. This is owing to its emergent symbolic representation capable to
handle long-horizon tasks in continual learning. LLMs effectively bridge human instructions and
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HRL, aiding task abstraction owing to its reasoning capability. Challenges remain in densely packed
environments where directional errors occur. Our work opens the door to compositional reasoning for
representation learning in reinforcement learning. Future work should refine LLM spatial reasoning
and apply this approach to dynamic, real-world tasks. Overall, integrating LLMs into HRL can
improve complex task performance in hierarchical control and spatial reasoning contexts.
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A Prompt for Naming Experiment

The system prompt used in the experiment Naming Experiment for Spatial Regions:

In this task, You are a navigation assistant, helping agent to reach the goal. Based on the data,
name the adjacent regions with a unique name understandable by the user to help him follow your
instructions.

The following is the few-shot prompt used in the experiment:

Role: User
Content:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15
5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Thinking Process:
1.Determine which regions are directly adjacent to the agent’s current location.
2.Assign Names Based on Relative Position: Use directional names (north, south,
east, west) or (left, middle, right) based on the region’s position relative to the
agent or between the adjacent regions.
3.Special Features: If a region has unique features (like being entirely walled off or
a sole connection to another important area), this should be reflected in the name.

Role: Assistant
Content:
Based on the maze layout and the adjacency list provided, the agent is cur-
rently in Region 14. The regions adjacent to Region 14 are Regions 1, 2, 15, and 18.

1. Region 1

Location: West of Region 14.
Unique Name: Western Gateway
Rationale: It’s in the west direction relative to the agent’s current position and
acts as a connecting hub to other regions (5, 11, 18).
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Table 3: Region status at different timesteps

Region Timestep 305000 Timestep 605000 Timestep 930000 Timestep 4980000
Region 1 Top Left Top-Left Top Left Corner One
Region 2 Top Middle Top-Middle Not Available Two
Region 3 Top Right Top-Right Not Available Three
Region 4 Bottom Goal Goal Region Goal
Region 5 - Bottom-Left Top Middle Five
Region 6 - Bottom-Middle Top Right Six
Region 7 - Bottom-Right Not Available Seven
Region 8 - Not Found Not Available Eight
Region 9 - Not Found Not Available Nine
Region 10 - Not Found State Region Ten
Region 11 - Bottom-Right Corner Upper Middle Eleven
Region 12 - Not Found Not Available Twelve
Region 13 - - Down Left Thirteen
Region 14 - - Current Region Fourteen
Region 15 - - Down Middle Fifteen
Region 16 - - Not Available Sixteen
Region 17 - - Down Right Seventeen
Region 18 - - Bottom Right Current
Region 19 - - - Nineteen
Region 20 - - - Twenty
Region 21 - - - Twenty-One
Region 22 - - - Twenty-Two
Region 23 - - - Twenty-Three

2. Region 2:

Location: Directly above Region 14 in the maze.
Unique Name: Northern Corridor
Rationale: It is located to the north of the agent’s current position and appears to
be a narrow passage leading to Region 13.

3. Region 15:

Location: Right next to Region 14 on the east side.
Unique Name: Eastern Gateway
Rationale: This region connects to multiple other regions (Regions 2, 3, and 14)
and serves as a gateway towards the eastern part of the maze.

4. Region 18:

Location: Directly below Region 14 in the maze.
Unique Name: Southern Expansion

Rationale: It extends to the south and also connects to Region 1 and 17,
offering a larger area or expansion from the agent’s current position.

B Zero-shot Naming Experiment

The table 3 shows the result of the zero-shot naming experiment. In this experiment, no shots were
given to the LLM, and the LLM was asked to name all the regions, instead of concentrating on the
regions adjacent to the agent’s current location. The results show that the LLM give up when facing
too complex tasks, such as naming all the regions in the maze. Therefore, we asked the LLM to focus
on naming the regions adjacent to the agent’s current location in the few-shot naming experiment.
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Table 4: Region Information Across Timesteps

Timestep - Region Location Description Unique Name

LLAMA3.1-8B-Instruct
305000 - 2 Directly right of Region 1 in the maze Rightward Passage

605000 - 1 West of Region 7 Western Entrance
605000 - 5 Directly left of Region 7 Leftward Passage
605000 - 6 Directly right of Region 7 Rightward Passage
605000 - 12 Below Region 7 in the maze Southern Expansion

4980000 - 3 Directly above Region 19 in the maze Northern Passage
4980000 - 20 Directly below Region 19 in the maze Southern Corridor
4980000 - 21 Right next to Region 19 on the east side Eastern Extension

GPT4o
305000 - 2 Directly east of Region 1 in the maze Eastern Pathway

605000 - 1 South of Region 7 Southern Junction
605000 - 5 West of Region 7 Western Approach
605000 - 6 North of Region 7 Northern Link
605000 - 12 East of Region 7 Eastern Border

4980000 - 3 North of Region 19 in the maze Northern Access
4980000 - 20 Below Region 19 in the maze Southern Corridor
4980000 - 21 Northeast of Region 19 Northeastern Outlet

C Prompts for Instruction Translation Experiment

The system prompt used in this experiment: In this task, You are a navigation assistant, helping
agent to reach the goal. Based on the data and the instruction given, tell the route to the agent to
reach the goal.

The following is the few-shot prompt used in the experiment:

User:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15
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5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Instruction:
Go straight to east till the end, then go north till pass the wall. Finally go west and
reach the goal.

Thinking Process:
1. Identify the agent’s current region and the goal region.
2. Interpret the Instruction: Understand the directional commands provided in the
instruction and translate them into movements between regions.
3. Plan the Route: Based on the adjacency list and the maze layout, determine the
sequence of regions the agent should traverse to follow the given instructions and
reach the goal.

Assistant:

Current State: The agent is located in Region 14, at coordinates [10, 3].
Goal: The target is in Region 4, at coordinates [0, 15].

Interpretation of Instructions:
Go straight to the right till the end: Starting from Region 14, moving east would
involve transitioning through adjacent regions towards the eastern edge of the
maze.
Then go north till pass the wall: After reaching the furthest right point accessible,
the agent should then move northwards until they pass the wall.
Finally go west and reach the goal: The agent needs to move left from the
northernmost point they reached, continuing until they arrive at the goal in Region
4.

Route Plan Based on Regions and Their Adjacencies:
Starting at Region 14: Move eastward within the maze. Adjacent regions from 14
are [1, 2, 15, 18]. The furthest east the agent can go from here within the maze
layout while still adhering to the instruction to move to the right and then up
includes moving to Region 15.

Move to Region 15: After reaching Region 15, the next step is to go north.
From Region 15, the agent can continue to Region 3 via Region 13 (15 → 13 → 3).
Region 13 doesn’t pass the wall, so the agent should continue to Region 3.
Move to Region 3: On reaching Region 3, the agent would then move to the left, as
instructed.
Region 3 directly connects to Region 4, which is the goal region.

Final Route Summary:
Region 14 → Region 15 → Region 13 → Region 3 → Region 4 (Goal)

D Detailed Results of Instruction Translation Experiment

The table 5 shows the detailed instructions given and the routes planned by ChatGPT-4o and Claude
3.5 Sonnet. The results show that both models succeed in choosing the first region in the sequence by
interpreting the instruction correctly.
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Table 5: Route Planning Results Comparison between ChatGPT-4o and Claude 3.5

Case Instruction ChatGPT-4o Route Claude 3.5 Route

1 Go east until pass the wall, then go
north until passing the wall, turn
west and reach the goal.

7 → 1 → 2 → 3 → 4 (goal) 7 → 1 → 2 → 3 → 4 (goal)

2 Go north a little bit until pass the
wall, then go west till the end, and
the goal is on the left.

19 → 3 → 4 (goal) 19 → 21 → 3 → 4 (goal)

3 Go east until pass the wall, then go
north till the end, the goal is on the
left.

9 → 6 → 10 → 2 → 16 (goal) 9 → 8 → 11 → 2 → 3 → 15 →
14 → 16 (goal)

4 Go straight to the west, the goal is
at the north.

20 → 12 → 11 (goal) 20 → 12 → 5 → 1 → 11 (goal)

5 Go east til pass the wall, then go
south until the end, finally go west
and reach the goal.

4 → 3 → 19 → 15 → 14 → 1 →
5 (goal)

4 → 3 → 19 → 20 → 15 → 2 →
12 → 8 → 5 (goal)

6 Go straight to east till the end, then
go north to push the movable block.

10 → 2 → 15 (block) 10 → 5 → 2 → 15
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• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the LLMs in naming regions, particularly
in densely packed environments, and the challenges faced in scaling this approach to real-
world tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their
best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information on the experimental setting, including
the maze layout, agent’s current location, goal region, and adjacency list, to reproduce the
main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to
have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made available upon acceptance, and the paper provides
detailed instructions to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https: // nips. cc/
public/ guides/ CodeSubmissionPolicy ) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
// nips. cc/ public/ guides/ CodeSubmissionPolicy ) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The paper provides detailed information on the experimental setting, including
the maze layout, agent’s current location, goal region, and adjacency list, to understand the
results. The data used in the experiments will also be made available upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appro-
priate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper provides information about the statistical significance of the experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Llama3-8b-instruct requires a GPU with more than 16GB of VRAM for
deployment. The other experiments can be run online.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https: // neurips. cc/ public/ EthicsGuidelines ?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not address societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators of the code and data used in the
experiments and provides the license and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode. com/ datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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