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Abstract

With advances in generative Al, decision-making agents can now dynamically
create new actions during online learning, but action generation typically incurs
costs that must be balanced against potential benefits. We study an online learning
problem where an agent can generate new actions at any time step by paying
a one-time cost, with these actions becoming permanently available for future
use. The challenge lies in learning the optimal sequence of two-fold decisions:
which action to take and when to generate new ones, further complicated by the
triangular tradeoffs among exploitation, exploration and creation. To solve this
problem, we propose a doubly-optimistic algorithm that employs Lower Confidence
Bounds (LCB) for action selection and Upper Confidence Bounds (UCB) for
action generation. Empirical evaluation on healthcare question-answering datasets
demonstrates that our approach achieves favorable generation-quality tradeoffs
compared to baseline strategies. From theoretical perspectives, we prove that our

algorithm achieves the optimal regret of O(Tﬁl%2 a7t + d+/TlogT), providing
the first sublinear regret bound for online learning with expanding action spaces.

1 Introduction

Sequential decision-making problems involve agents repeatedly selecting actions from a candidate
set to maximize cumulative reward. Traditional approaches assume a fixed set of available actions,
focusing on the exploration-exploitation tradeoffs: balancing empirically high-reward actions (ex-
ploitation) against less-tested alternatives (exploration). However, advances in generative Al have
introduced a new paradigm where contemporary systems can dynamically expand their action spaces
by creating novel actions over time. This capability introduces an additional strategic dimension that
agents should also balance immediate performance with strategic investments in future capabilities
enabled by new actions. Consider the following motivating scenarios:

Example 1.1 (Healthcare Question-Answering Systems). Al-powered healthcare platforms must
decide between reusing existing vetted responses from their FAQ libraries or investing in creating new,
tailored responses for novel patient inquiries. Each custom response requires costly expert review
and validation (potentially hundreds of dollars when accounting for clinical expertise). However,
once created and vetted, these responses become reusable assets. When a patient in a given region
asks “What are healthy meals during pregnancy?”, the system faces a critical choice: provide a
generic response about pregnancy nutrition, or invest in creating a new response more specific to
typical foods in that region, benefiting hundreds of future expectant mothers in similar settings.
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Example 1.2 (Personalized Advertisement). An advertising platform may initially start with a finite
set of ad templates for different user contexts. Over time, the platform observes new user segments
and decides to design specialized ads (with initial design and production costs) perfectly customized
fo the new user subgroups. Once created, these specialized ads become available for future targeting
at no additional cost.

In both scenarios, the agent must decide at each time step whether to select an existing action or pay
a one-time cost to instantiate a new action perfectly suited to the observed context. This introduces a
novel create-to-reuse problem that goes beyond traditional exploration-exploitation tradeoffs.

Problem formulation. In this work, we study a contextual bandit problem with an actively expand-
ing action space. At each time ¢, the agent first observes a context ;. Then it can either

(a) Pull an existing arm at no cost but incur some loss, or

(b) Pay a fixed one-time cost to generate a new arm and incur zero(0) loss.

A detailed problem description is shown as follows:

Initialization: Context-to-action oracle A(+). A library S; = {f, A(f)} with context keys f and
vetted custom actions A(f).
Fort=1,2,...,T:
1. Observe z; € R¢ (patient question arrives).
2. The algorithm decides whether to create a customized response to x;. If YES, then
(i) Generation oracle produces and deploys a; = A(x;) (custom response to ;).

(i1) Receive a fixed loss ¢ (creation cost).

(iii) Update Sy4q := Sy U{z; : a;} (add new context-action pair to the library).
3. If NO, then

(i) Select an existing context key f; € S; and retrieve a; = Si(f3).
(i) Receive aloss l; := d(z¢, f;) + N; (noisy mismatch penalty).
(iii) Update Sy41 := Sy (library unchanged).

Here d(x,a) := (z — a) " W(x — a) is a quadratic distance function for =, a € R?, with an unknown
W e Si. N is an i.i.d. o-subGaussian noise. Please refer to Appendix B for a rigorous problem
setup and all technical assumptions.

We highlight two important features of this formulation. First, step (b) is notable in that the agent
accesses the action space only through an oracle that is prompted with the context z;. By contrast,
applications of previous bandit formulations would operate directly in a separate action space. In our
motivating settings though, this action space might be very complicated: the space of all possible
texts, all possible antibodies, and so on. In an increasing number of applications, practitioners deal
with such action spaces through calling a separate model that returns a tailored response to a given x;
(e.g. an LLM). The bandit algorithm thus operates as a decision-making layer on top of this oracle.
The second important feature of the problem formulation is that, once generated, the new arm can be
reused in future rounds without incurring additional expense. The key is to judiciously decide when
to pay the cost of adding such a specialized action and when to rely on existing arms.

This setting presents two fundamental challenges that prevent existing bandits and online learning
methods from solving this problem. First, we face a triangular trade-off among three competing
objectives: exploitation (using known good arms), exploration (learning about uncertain arms), and
creation (which lies between exploration and exploitation, as it satisfies the immediate need at current
time while also enriching the action set for the future). Second, we have no prior experience with
potential new actions nor unlimited freedom to generate arbitrary ones — each creation must be
specifically tailored to the current context.

Summary of Contributions Our main contributions are fourfold:

1. Problem Modeling: We establish a new problem formulation that allows for costly expansion
of the action space in online learning, formalizing the create-to-reuse framework.



Algorithm 1 Doubly-Optimistic Algorithm

1: Initialization Xy = \ - I;2,by = Oy2, 51 = {ITd}, hyper parameter .
2: fort=1,2,...,T do

3:  Observe z; € R?¢

4. forVf € S;do

5 Denote ¢(z, f) := Vec[(z — f)(z — f)T] € R* and

Mo f) 2= a\Jolee TE O 1), dula. ) = o )T 57 b

B - ()
dt(l’, f) L= dt(l’, f) + At(xa f)) dt(l‘, f) = dt(xv f) - At(x’ f)
6: end for 5
7 Select f; := argmin g, di(vs, f).
8 if Z, == 1 with Z, ~ Ber(min{1, 1. dy(z¢, f1)}) as an i.i.d. Bernoulli random variable
then
9: Take action a; = x; at a cost c.
10: Receive loss I; = 0.
11: Update action set Sy11 = Sy U {a;}
12: Keep X := X1 and b; := b;_; without updating.
13:  else
14: Take action a; = f; at no cost.
15: Receive loss I; = d(zy, fi) + Ny
16: Update action set S;11 = S;.
17: Update parameters
D=2 1+ ¢($t7@t)¢($t,at)—r7 by :=bi—1 + 1l - p(4, ap). 2
18:  end if
19: end for

2. Algorithmic Framework: We propose a doubly-optimistic algorithm that uses Lower Confi-
dence Bounds (LCB) when selecting among existing actions, and Upper Confidence Bounds
(UCB) when deciding whether to generate new actions. This design simultaneously exploits
near-optimal actions and enables creation without excessive hesitation.

3. Empirical Validation: We conduct experiments on real-world healthcare question-answering
datasets, demonstrating that our approach achieves favorable generation-quality tradeoffs
compared to baselines. Our results show the method gracefully interpolates between pure
reuse and always-create policies while maintaining superior performance.

4. Optimal Regret Guarantees: Under a semi-parametric loss model, our algorithm achieves
O(Tﬁ‘i2 d7ts + dv/TlogT) expected regret, where T is the time horizon and d is the di-

mension of covariates. We prove this rate is optimal by establishing a matching (7 7+2)
information-theoretic lower bound.

Technical Novelty. The crux of our approach is a double optimism principle, which resolves
the unique challenge of balancing creation with exploration/exploitation. Among existing actions,
we rely on their LCB comparisons to both exploit high-performing actions and continue exploring
uncertain ones. When evaluating creation decisions, we compare the UCB loss of the best existing
action against the fixed generative cost, triggering creation with appropriate probability. This double
optimism perspective naturally maximizes the long-term value of new actions while tightly controlling
worst-case regret.

Related Works. Our work is closely related to multi-armed bandits, bandits with constraints, and
facility location problems. We present a detailed discussion in Appendix A.

2 Algorithm



To solve the contextual bandits problem with expanding action space, we propose our “Doubly-
Optimistic” algorithm. In this section, we present the algorithm design and highlight its properties.
We will analyze and bound its cumulative regret in the next section.

The pseudocode of our algorithm is displayed as Algorithm 1. At each time ¢, it inherits the linear-
regression parameters X;_1, b;_1 an action set S; from (¢ — 1), and receives a context vector x; from
the nature. With X;_; and b;_1, it estimates the empirical loss of each existing action f € S; as
di (x4, f), along with an uncertainty bound A;(x¢, f). Then we take the following two steps to figure
out the action a; to take.

(i) Lower Confidence Bound (LCB) loss on existing actions. For each action f, we calculate
the LCB loss as di (x4, f) = di(2+, f) — A¢(zy, f). Then we select f; as the arg-minimum of
all dy(x¢, f) over all f. Note: we do not propose f; immediately.

(ii) Upper Confidence Bound (UCB) chance to create a new action. After retrieving f; as the
argmin of LCB losses, we turn to believe in its UCB loss d;(x+, fi) = di(x4, ft) + Ai(z4, ft)

while contrasting to the fixed arm-adding cost ¢c. With a probability of min{1, M}

we create and take the new action a; = x;, and update the action set S;11 = S U {x:+}
accordingly. Otherwise, we take the existing action a; = f;, receive a random loss [;, and
update the parameters Y; and b; accordingly.

As the argmin of LCB loss, f; represents the least possible loss to suffer as an optimist, which balances
exploration versus exploitation under uncertainties we possess from history. Similar methods are
applied in a broad group of contextual bandits literature such as Chu et al. (2011).

As the probability M induced by the UCB loss of f;, it increases the chance of creating a new

arm at z; to the most (within a risk A; we can tolerate). This design enables us to estimate the
“necessity” of creation, bounding the total expected loss over a group of x;’s before the first action
being created among them. We will explain this later in Lemma G.5.

Computational complexity Algorithm 1 incurs a time complexity at O(d*T - Kyay) < O(d*T?),
as it compute matrix-to-vector products of d?-dimension for every action f € S; at each round ¢,
and there are at most 7" arms. By noting that the expected number of newly created arms is on the

order of O(T e ), we can refine the expected complexity to O(T %) Moreover, the key step of
updating the inverse covariance X, ! can be carried out in O(d*) via Woodbury matrix identity which
states (A + zzT) ™t = A7 — ——— (A7 '2)(A"'2) . Although this non-linear complexity is
necessary for achieving our optimal regret guarantees, we note that several standard techniques could
potentially improve computational performance in practice, including low-rank approximation and

randomized sketching methods.

Regret Bounds. We sequentially present our theoretical guarantees on the regret upper and lower
bounds, as the following two theorems. (The regret analysis is deferred to Appendix C).

Theorem 2.1 (Regret upper bound). With assumptions made in Appendix C.1, the expected regret of
our Algorithm 1 is upper bounded by O(Td(fi2 da¥s + dv/TlogT).

Theorem 2.2 (Regret lower bound). For any online learning algorithm, there exists an instance of
problem setting presented in Appendix B, such that the regret is at least Q(Tﬁh) with respect to T.

Numerical Results. We conduct numerical experiments to validate our method’s performance.
We first run the original algorithm on low-dimensional synthetic data to demonstrate the regret
dependence on T'. Then we adapt our algorithm to real-world healthcare Q&A scenarios and show
better tradeoffs between generation cost and mismatching loss compared to baselines. A detailed
presentation of numerical results can be found in Appendix D.

Conclusion. In this paper, we introduced an online decision-making problem where new actions
can be generated on the fly, at a fixed cost, and then reused indefinitely. To address the balance
among exploitation, exploration, and creation, we proposed a doubly-optimistic algorithm that
achieves O(Td%2 a7t + d+\/T log T') optimal regret (validated in theory and simulations). We also
implemented our algorithm on a real-world healthcare Q& A dataset to make decisions on generating
new answers v.s. applying an FAQ. Our results open up new avenues for optimizing creation decisions
in online learning, with potential extensions to broader loss models and flexible creation costs.
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Appendix

A Related Works

Here we discuss related literature on the most relevant topics in online decision making, as well as on
broader fields including active learning, digital healthcare, recommendation system, and inventory
management.

Multi-Armed and Contextual Bandits. The multi-armed bandit (MAB) problem has been exten-
sively studied since Lai and Robbins (1985). The classic framework (Auer et al., 2002; Agarwal et al.,
2014), that a decision-maker repeatedly selects from a fixed set of arms, was extended to contextual
bandits (Li et al., 2010; Chu et al., 2011) where rewards depend on observable contexts. The crux is
to balance exploration and exploitation with the goal of regret minimization. Please refer to Slivkins
et al. (2019) for a comprehensive discussion.

Online Facility Location. Online facility location (OFL), studied by Meyerson (2001), Fotakis
(2008), and Guo et al. (2020), is closely related to our formulation. In OFL, algorithms decide
whether to open new facilities or assign requests to existing ones, minimizing facility costs plus
assignment distances. While structurally similar to our problem, there are crucial differences. First,
OFL assumes known distance metrics, while we must learn unknown parameters defining distances.
Second, OFL automatically assigns points to nearest facilities, while we must actively select actions
under uncertainty. Therefore, OFL involves a two-way trade-offs between immediate costs and future
benefits, whereas our problem requires a three-way balance between exploitation, exploration, and
creation, necessitating our novel algorithmic approach.

Online Learning with Resource Constraints. Another line of related research studies resource-
limited bandits, such as “bandits with knapsack (BwK)” (Badanidiyuru et al., 2013) and its versions
(Agrawal and Devanur, 2016; Immorlica et al., 2019; Liu et al., 2022). In these scenarios, each arm-
pulling consumes some portion of a finite resource (e.g., budget, time, or capacity), and the algorithm
aims to optimize the cumulative reward before resources run out. However, these approaches cannot
be directly applied to our problem because of a key difference in resource consumption patterns.
In BWK, resource consumption only affects the current period’s decision-making. In contrast, our
setting involves a one-time cost for creating new arms that provides benefits across all future periods
through expansion of the action space. Besides, BWK mostly assumes a hard constraint on budgets,
while we adopt a soft constraint as an additional cost in our problem setting.

Active Learning Active learning frameworks fundamentally embody the exploration-exploitation-
creation paradigm by allowing algorithms to strategically choose their training data, thereby naturally
connecting to sequential decision-making with expanding action spaces. Settles (2009) established
the theoretical foundations for query selection strategies, while membership query synthesis ap-
proaches (Angluin, 1988) demonstrated how active learners can create entirely new query types
rather than merely selecting from existing unlabeled data pools. Query-by-Committee methods
(Seung et al., 1992) and extended through frameworks like QUIRE by Huang et al. (2010) show how
multiple learning strategies can be combined to create adaptive query selection policies that balance
informativeness and representativeness. Closer work on meta-active learning and the “Growing
Action Spaces” framework by Farquhar et al. (2020) directly address expanding action spaces through
curriculum learning approaches that progressively grow query complexity. The create-to-reuse frame-
work maps directly onto active learning’s core mechanisms: systems invest computational effort in
synthesizing new query types, developing committee-based strategies, and learning meta-policies for
query selection, creating reusable query generation mechanisms and adaptive selection strategies that
can be applied across different datasets, domains, and learning tasks, while continuously expanding
their query capabilities as they encounter new data distributions and learning scenarios.

Exploratory Learning for Unknown Unknowns. Another notable progress is the exploratory
machine learning (ExML) framework (Zhao et al., 2024). The authors introduced a novel and
insightful approach to address unexpected unknown unknowns by exploring additional feature
information through environmental interactions within a budget constraint, where an optimal bandit
identification strategy is proposed to guide the feature exploration. There are several follow-up
developments (Kothawade et al., 2022; Rajendran et al., 2023). Compared to our create-to-use
framework, there are two main differences: On the one hand, their work addresses the strategic
choices of “create” while the current exploratory decisions would not be “in use” of future decisions.



On the other hand, their cost serves as a budget consumption instead of a tradeoffs with cumulative
utilities, analogous to the divergence between regret minimization and best-arm identification.

Digital Healthcare and Clinical Decision Support Digital healthcare and clinical decision support
systems (CDSS) represent a rapidly evolving field where Al-powered systems must continuously
balance the utilization of established medical knowledge with the creation of novel, patient-specific
treatment protocols. Foundational work by Rajpurkar et al. (2022) on diagnostic Al systems and the
comprehensive framework established by Moor et al. (2023) demonstrate how modern medical Al
systems expand beyond narrow, single-task applications to flexible models capable of diverse medical
reasoning tasks. Reinforcement learning approaches in critical care, particularly the systematic
review by Liu et al. (2017) covering 21 RL applications in intensive care units, illustrate how these
systems extend from discrete medication dosing decisions to continuous, multi-dimensional treatment
optimization spaces. The create-to-reuse paradigm is particularly evident in precision medicine
applications, where systems invest computational resources in developing personalized treatment
protocols that can subsequently be applied to patients with similar phenotypic characteristics, effec-
tively creating reusable clinical knowledge that scales across patient populations while maintaining
individualized care quality.

Recommendation Systems and Personalization Recommendation systems research has evolved
from static collaborative filtering approaches to sophisticated frameworks that dynamically balance
the exploitation of existing user preferences with the creation of new personalized recommendation
strategies. Neural Collaborative Filtering by He et al. (2017) and the Wide & Deep Learning frame-
work by Cheng et al. (2016) established the foundation for deep learning approaches that can capture
complex user-item interactions beyond traditional matrix factorization methods. Meta-learning
approaches, particularly by Lee et al. (2019) demonstrate how recommendation systems can treat
each user as a distinct learning task, creating personalized model parameters that generalize across
different applications and contexts. It is worth mentioning that the multi-armed bandit approaches in
recommendation systems (Li et al., 2010) naturally embody the exploration-exploitation-creation
tradeoffs by continuously balancing known user preferences with the discovery of new content types
and recommendation strategies. Our create-to-reuse framework directly parallels these systems’ core
functionality: recommendation systems routinely invest computational resources in creating personal-
ized embeddings, meta-learned initialization parameters, and graph neural network representations
that serve as reusable templates for rapid adaptation to new users, items, and interaction modalities,
while continuously expanding their action spaces through dynamic catalog growth and emerging user
behavior patterns.

Inventory Management Inventory management and supply chain systems represent a mature
operations research domain where organizations continuously face fundamental tradeoffs between
optimizing existing supply chain capabilities and investing in new suppliers, products, or distribution
channels. Bellman (1958) established the mathematical foundations of inventory theory, while
dynamic capacity expansion models (Mieghem and Rudi, 2002) demonstrate how firms balance
existing capacity utilization with flexible resource investments that create new operational capabilities.
The problem of inventory management often coexists with revenue management (Chen et al., 2019),
resource allocation (Xu et al., 2025a), and adversarial online learning (Xu et al., 2025b) that occurs
frequently in modern supply chains. The create-to-reuse framework aligns naturally with supply chain
decision-making: organizations invest upfront in new suppliers, products, or distribution capabilities
that become reusable assets for future deployment across different demand scenarios.

B Problem Setup

We now formalize the problem of creating-to-reuse as an online decision-making framework. In
order to demonstrate the problem setting, we start with the healthcare Q&A scenario described in
Example 1.1. As an abstraction, each arriving patient question is represented as a d-dimensional
context vector x; in a learned semantic embedding space. The system maintains a context library
S, of vetted FAQ entries, implemented as a hash table where each context that has been previously
added serves as a key to its corresponding custom respond (or generally the action) generated by an
oracle A(+). Crucially, the algorithm operates only in the context representation space by searching
through context keys in S;. When a new question z; arrives, the algorithm makes decisions based on
estimated losses and can either:



(a) Decide to create a new custom response by paying a fixed cost ¢ and adding context x; as a
new key to the library. The generation oracle .A(+) then automatically produces the tailored
action a; = A(x¢), and the pair (x4, a;) becomes permanently available for future reuse. Or

(b) Select an existing context key f € S; from the library. The system automatically retrieves the
corresponding action a; = S;(f) = A(f) and deploys it for context x, incurring a mismatch
loss d(x4, f) that reflects the difference between (1) the custom response to context x; versus
(2) the action tailored for another context f.

Technically, we consider the following problem setting.

Initialization: Context-to-action oracle A(-). A library S1 = {f, A(f)} with context keys f and
vetted custom actions A(f).

Fort=1,2,...,7T:

1. Observe 2; € RY (patient question arrives).

2. The algorithm decides whether to create a customized response to z,. If YES, then

(i) Generation oracle produces and deploys a; = A(x;) (custom response to ;).
(i) Receive a fixed loss ¢ (creation cost).
(iii) Update S¢+q := St U {z: : a;} (add new context-action pair to the library).
3. If NO, then

(i) Select an existing context key f; € S; and retrieve a; = Si(fy).
(ii) Receive alossl; := d(x, fi) + Ny (noisy mismatch penalty).
(iii) Update S;11 := Sy (library unchanged).

In this formulation, d(x, f;) captures the expected mismatch loss when deploying an action originally
designed for context f; to serve context x;. While this fundamentally reflects the difference between
A(x;) and A(f;) in the action space, the algorithm can only estimate this through context-space
relationships since it lacks direct access to .A(x;) (actions having not been generated yet).

For theoretical analysis, our main modeling assumption is that this mismatch can be captured by
a squared distance function in the context space. In experiments, we consider other forms for the
mismatch distance.

Assumption B.1 (Quadratic parametric loss). We assume the distance function satisfies
d@, f) = (z =) W(z—[) 3)
where W € Si is an unknown positive semi-definite d x d matrix. Accordingly, denote
w:=Vec(W) € RY
o, f) =Veel(w — e — )T € R,

and we have an equivalent definition as d(x, f) := ¢(z, f) Tw.

“

Why we assume a quadratic parametric loss? The motivation is that contexts are embedded in
a space where different dimensions capture semantically relevant information. The cost of reusing
an action designed for one context when serving another can be modeled as a distance on this
representation space, although the exact importance weighting of different semantic dimensions
(captured by matrix W) is unknown to the learner. Since d(z;, z;) = 0, our formulation measures
the excess cost due to not generating a custom action for each x;. This fits scenarios where the
algorithm interacts with complex action spaces through oracle A(z;) (human expert or generative
model); our aim is to achieve good performance relative to this oracle’s capabilities. Modeling d(-, -)
as a squared distance function captures more structure than linear parametric choices while remaining
more tractable than nonparametric formulations. Furthermore, the empirical results our algorithm
performs on real-world Healthcare Q&A datasets validate the robustness of this modeling.

Goal of Algorithm Design. Our goal is to minimize the expected fotal loss. We will rigorously
define the performance metric and technical assumptions at the beginning of Appendix C.



C Regret Analysis

In this section, we provide a regret analysis of our algorithm. We first state the performance metric
and necessary technical assumptions. Then we present the main theorem on the algorithmic regret
upper bound. Finally, we provide a corresponding lower bound that matches the leading term of the
upper bound with respect to 7.

C.1 Definitions and Assumptions

As we have stated by the end of Appendix B, our goal is to minimize the total loss. In order to measure
the performance, we adopt the expected regret as the loss metric, which is defined as follows:

Definition C.1 (Optimal and Regret). Denote the minimal expected loss' that is achievable in
hindsight as O PT},, which equals:

T

OPT), = ¢ |Sri| + Z:fms d(zy, f). Q)

min
S:={51,52,..,S7,S7+1|St+1\S: C{x¢} }
There also exists a non-achievable minimal loss denoted as O PT,, which is only accessible by an
omniscient oracle that knows {z;}~_; and selects an optimal option set ahead of time:

T
OPT, :=minc- S| +;1}ggd(xt,f). ©6)

From the definition, we know that O PT, < OPT},. Also, denote the expected loss obtained by our
algorithm as ALG, which equals:

T
ALG :=c-|Sry1| + mein d(xe, f). @)
t=1

€St

Define the regret REG as the expected loss difference? between OPT}, and ALG.
REG :=E[ALG — OPT}] 8)

We then make two distributional assumptions on the covariates and the noises, respectively.

Assumption C.2 (Covariate distribution and norm bound). Assume z; € R% t = 1,2,...,T are
drawn from independent and identical distributions (i.i.d.), with d > 2. Also, assume a norm bound
as ||x¢ll2 < 1.

Assumption C.2 is necessary for us to effectively learn the metric matrix W through online linear re-
gression. For the same reason, we assume a subGaussian noise on the observations as follows:

Assumption C.3 (Noise distribution). Assume that N; € R;¢ = 1,2,...,T are drawn from o-
subGaussian i.i.d., where o is a universal constant.

C.2 Regret Bounds

In this subsection, we sequentially present our theoretical guarantees on the regret upper and lower
bounds, as the following two theorems.

Theorem C.4 (Regret upper bound). With assumptions made in Appendix C.1, the expected regret of
our Algorithm 1 is upper bounded by O(Td%2 darz + dy/TlogT).

Proof Sketch. We prove Theorem C.4 in the following sequence:

d d

1. (Lemma G.1) We upper bound the non-achievable minimal loss as OPT, = O(T 7+ da+2).
This is proved by a fine-grid covering of the space.

2. (Lemma G.3) We upper bound the algorithmic loss ALG within a constant competitive ratio
of OPT, adding cumulative prediction errors: E[ALG] = O(E[OPT, + Zthl Ai(ze, fr)])-
To prove this, we divide {x;}’s into “good” and “bad” groups, and bound their excess loss
respectively.

"Expectation taken over observation noises only. Same for the definition of O PT,.
2Expectation taken over the {xt}thl series.
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Figure 1: Regret curves for 7 = 10000 and d = 2, 3, 4 in log-log scales, repeated by N = 10 epochs.
The slope of the linear asymptote under log-log diagram indicates the power dependence of regret on
T, which should be 7%

3. (Lemma G.8) We upper bound the excess risk E[Zthl Ag(xy, fr)] = O(d/TlogT) by
standard online linear regression (similar to Chu et al. (2011) by replacing d with d?).

4. Finally, we derive the regret upper bound as REG = E[ALG — OPT}] = O(Td%2 47 +
d+/Tlog T) according to the three steps above.

Please refer to Appendix G for all technical details of this proof, including rigorous statements of
lemmas and derivations of inequalities. ]

To show the optimality of the regret upper bound proposed above, we present the information-theoretic
lower regret bound.

Theorem C.5 (Regret lower bound). For any online learning algorithm, there exists an instance of

problem setting presented in Appendix B, such that the regret is at least Q(Td%?) with respect to T’
(despite the dependence on d).

We defer the proof to Appendix G.6. The main idea is to apply the 2(K ’%) lower bound for the
K-nearest-neighbors (K-NN) problem, along with an optimal choice of K that balance this term with
c- K. Theorem C.5 indicates that our algorithm achieves an optimal regret with respect to 7.

D Empirical Performance

In this section, we conduct numerical experiments to validate our method’s performance. We first run
the original algorithm on low-dimensional synthetic data to demonstrate the regret dependence on
T'. Then we adapt our algorithm to real-world healthcare Q&A scenarios and show better tradeoffs
between generation cost and mismatching loss compared to baselines.

D.1 Regret Validation on Synthetic Data

We evaluate our doubly-optimistic algorithm on synthetic data with dimensions d = 2, 3,4 over
time horizon T' = 10, 000, repeated for N = 10 epochs. Context vectors x; are drawn from Lo-
normalized uniform distributions, with noise N; ~ N(0,0.05). We calculate regret by comparing the
algorithmic loss against O PT,, (defined in Eq. (6)), approximated by randomized K-means++ with
Lloyd iterations over potentially optimal values of K. We do not apply O PT}, as its computational
cost is exponentially dependent on 7.

Figure 1 presents the regret curves in log-log scale to reveal the power dependence of regret on 7.
Our method exhibits empirical slopes of 0.447,0.576,0.676 for d = 2, 3, 4 respectively, aligning
closely with the theoretical rates which should be d_‘f_2 according to Theorem C.4. These results
validate our theoretical analysis in synthetic environments.

Note: We restrict experiments to low-dimensional settings due to the computational cost of O PT,
(a necessary component of regret) in high dimensions, where K-means++ becomes ineffective
and the underlying nearest neighbor problem is NP-hard. Despite these computational limitations,
the synthetic validation confirms that our approach achieves the predicted theoretical regret rates,
providing confidence in its performance for moderate-dimensional real-world applications.

11
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Figure 2: Tradeoffs between normalized generation costs (x-axis) and normalized mismatching loss
(y-axis) on two healthcare Q&A datasets. A lower/left curve indicates a better performance. Each
blue point represents the (generation cost, mismatching loss) pair caused by a choice of c. In both
cases, our algorithm outperforms the baseline that randomly generates custom responses with a
variety of fixed probabilities p (each gray point represents a choice of p).

D.2 Generation-Quality Tradeoffs Analysis on Healthcare Q&A Datasets

We evaluate our algorithm on two real-world healthcare Q&A datasets to demonstrate its practical
effectiveness:

1. Nivi’s Maternal Health Dataset: A dataset containing 839 user queries, with 12 pre-written
FAQs for pregnant women, provided by Nivi.Inc, a company that provides healthcare
chatbot services on WhatsApp.

2. Medical Q&A Dataset: A public collection of 47,457 medical question-answer pairs
curated from 12 NIH websites (https://www.kaggle.com/datasets/gvaldenebro/
cancer-qg-and-a-dataset).

Experimental Setup. Our experimental framework models the create-to-reuse decision process
operating entirely in the context representation space. All questions are mapped to embeddings using
OpenAlT’s pre-trained text-embedding-3-small model, creating a semantic representation space
where the algorithm makes decisions. For each arriving question context z;, the algorithm decides
whether to select an existing context key f from the FAQ library or add z; as a new context key and
then invoke the custom answer generation oracle A(-).

Custom answer generation differs across datasets to reflect their nature. For the maternal health
dataset, custom answers are generated by GPT-5 with carefully designed prompts including safety
guardrails and emergency detection protocols appropriate for healthcare contexts. For the Medical
Q&A dataset, custom answers are directly retrieved from the pre-existing responses associated with
each question entry.

Crucially, the mismatch loss feedback occurs in the action space rather than the context space. For
current question context x; and an existing context f in the FAQ library, the loss is calculated as
(1 — cosine similarity) between x,’s custom answer and f’s custom answer. This reflects our core
assumption that the algorithm operates in context space while true loss manifests in action space,
accessible only through the generation oracle A(-).

As we also mentioned in Section 2, to maintain computational tractability, we model the estimated
loss function as d(z, f) = (87 (z — f))? (on the maternal health dataset) or adopt a neural network
d(z, f;©) (on Medical Q&A Dataset).

We evaluate our doubly-optimistic algorithm against a fixed-probability baseline strategy. This
baseline makes i.i.d. Bernoulli decisions ~ Ber(p) at each time step: with probability p, generate a
custom response; otherwise, select the most similar existing context from the library based on cosine
similarity between question embeddings (note that it has no access to the custom answer before
generation). To comprehensively evaluate performance across different cost-accuracy preferences,
we vary the probability parameter p uniformly across [0, 1] for the baseline. Meanwhile, we also vary
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the creation cost parameter c from 0 to 100 for our algorithm, generating complete tradeoff curves
for both approaches.

The numerical results are depicted in Figure 2, where points and curves closer to the bottom-left
indicate superior performance. We plot cumulative generation costs against cumulative mismatch
losses, with both metrics normalized separately to [0, 1] scale for interpretability. Generation costs are
normalized by the total cost of the always-generate strategy, while mismatch losses are normalized
by the status quo strategy that never generates custom responses. Note that these represent the two
components of total loss in our formulation, depicted separately for clearer analysis. Each gray point
represents a different choice of p for the baseline, forming a curve that represents the best possible
performance achievable by any fixed-probability strategy. Each experiment runs N = 10 epochs with
95% confidence intervals computed using Wald’s test.

Results on Nivi’s Maternal Health Dataset. Figure 2a presents the generation-quality tradeoffs.
Starting with 12 pre-written FAQs, our algorithm demonstrates several key advantages:

1. Context Clustering: Compared with the always-generating strategy (green triangle), approx-
imately 30% of user questions exhibit sufficient similarity to existing FAQs, as evidenced
by the algorithm achieving near-zero mismatch loss when generating responses for 70% of
queries.

2. Efficiency Gains: Compared with status quo (red triangle), strategic addition of just a few
targeted FAQs reduces mismatch loss by approximately 25% (as evidenced by the algorithmic
curve approaching the point (0, 0.75)), highlighting the value of adaptive creation decisions
over static policies.

3. Pareto Optimality: Our algorithm consistently outperforms fixed-probability baselines
throughout the entire generation spectrum, with statistical significance demonstrated by 95%
confidence intervals. The doubly-optimistic approach effectively pushes the performance
frontier toward Pareto optimality.

Results on Medical Q&A Dataset. Figure 2b presents results on the public Medical Q&A dataset.
We establish the initial FAQ library by prompting GPT-5 to classify all questions into 32 categories
by topic, then randomly sampling 10 question-answer pairs from each category to create a generic
response (a total of 32 FAQs).

Compared with the always-generating and FAQ-only baselines respectively, our algorithm can reduce
about 60% generation cost and about 60% mismatch loss, leading to positive-sum tradeoffs (indicated
by the convex curve). Also, it achieves statistically significant improvements over fixed-probability
baselines across nearly the entire generation spectrum, as confirmed by 95% confidence intervals.
However, the performance gains are notably smaller than those observed on the private maternal
health dataset. We attribute this difference to the greater diversity in the Medical Q&A dataset,
spanning 37 question types across 32 medical topics. In contrast, Nivi’s dataset focuses specifically
on maternal health with more concentrated topics and frequently recurring keywords, producing
clearer semantic connections and stronger correlations between context and action similarities that
enable more effective learning.

The results validate our theoretical framework in practice, demonstrating that principled confidence
bound approaches for creation decisions significantly outperform heuristic alternatives in real-world
healthcare applications where both response quality and resource efficiency are critical.

E Discussions

Dynamic and Context-Dependent Creation Costs. Our current framework assumes a fixed
creation cost c across all time steps and contexts. A natural extension would allow time-varying costs
¢t or context-dependent costs ¢(x;) that reflect realistic scenarios where creation difficulty varies with
problem complexity or resource availability. This generalization would better capture applications like
drug discovery, where synthesis costs depend on molecular complexity, or content generation, where
review costs vary with topic sensitivity. However, this extension introduces significant algorithmic
challenges, as evidenced by the substantially worse competitive ratios in variant-cost online facility
location problems, where even achieving constant competitive ratios becomes impossible under
adversarial sequences.
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Non-Parametric and Neural Function Approximation. While our theoretical analysis focuses on
parametric quadratic loss functions d(x, ), our empirical experiments demonstrate promising results
when replacing the distance function with neural networks and using LLM-as-a-judge for feedback
evaluation. Extending the theoretical guarantees to broader function classes, particularly neural
networks or kernel methods, would significantly broaden the applicability of our framework. The key
challenge lies in controlling the complexity of the function class while maintaining meaningful regret
bounds, potentially requiring techniques from neural tangent kernels (NTK) or Bayesian optimization
(BO) to handle the high-dimensional hypothesis space.

F Conclusion

In this paper, we introduced an online decision-making problem where new actions can be generated
on the fly, at a fixed cost, and then reused indefinitely. To address the balance among exploitation,

exploration, and creation, we proposed a doubly-optimistic algorithm that achieves O(T T date
dv/TlogT) regret. This regret rate was proved optimal with a matching lower bound, and was
validated through simulations. We also implemented our algorithm on a real-world healthcare Q&A
dataset to make decisions on generating new answers v.s. applying an FAQ. Our results open up new
avenues for optimizing creation decisions in online learning, with potential extensions to broader loss
models and flexible creation costs.

G Proof Details

Here we extend the proof sketch of Theorem C.4 provided in Appendix C. According to the roadmap
depicted, to validate Theorem C.4, we only need to prove the following Lemmas G.1, G.3 and G.8.
We first propose the lemma that bounds O PT,.

Lemma G.1 (OPT, upper bound). We have OPT, = O(Tﬁ ddfi?).

Proof sketch. We propose a context set (library) S such that ¢ - \5 | + Zthl min ;g d(xe, f) =
O(T7%2d47). Specifically, we let S := {[Ny, N, ..., Ng|T|N; € [&],i = 1,2,...,d} as a A-
covering set over the context space of [0, 1]¢. On the one hand, the cumulative mismatch loss due to
discretization of the context space is O(T - A%d). On the other hand, the total cost of adding new

contexts to the set is O((%)?). Let A = T~ @2 d~ 72 and the total loss is O(T72d7%7). Please
kindly find a detailed proof in Appendix G.1. [ ]

Before getting into the main lemma that upper bounds ALG, we present another lemma showing the
concentration of dy(x¢, f) within A, (xy, f).

Lemma G.2 (4, as estimation error). The estimation error of |ds (¢, f) —d(xy, f)] is upper bounded
by Ay(xy, ) with high probability. As a consequence, we have d(x, ) — 2A4(x¢, ) < di(xy, ) <
d(xtv f) < dAt(xta f) < d(wtv f) + 2At($ta f)

The proof of Lemma G.2 is deferred to Appendix G.2. In the following, we state the lemma that
upper bounds the algorithmic loss by a constant competitive ratio over O PT,, adding estimation
errors. According to

Lemma G.3 (Constant competitive ratio). We have ALG < 600PT, + 54 Zthl Ai(xe, ft)-

Proof. Before starting the proof, we emphasize that all operations we make in this proof are made in
the context space. As we frequently mention in this paper, the actions are only accessible through the
oracle A(x) for some context z. Therefore, the context library S; is sometimes referred as a “set”
without causing misunderstandings.

First of all, we note that the following two {z;}Z_, series have identical joint distributions:

(a) Sample a sequence of x1, o, ..., xr independently from an identical distribution Dx . (iid)

(b) Sample a setof Z := {21, 23, ..., 27} independently from the identical distribution Dx, and
then sample {z;}_; as a uniformly random permutation of Z, i.e. {2}, ~ U(o(Z)).
Here o(Z) denotes the permutation set of Z. (iid + permutation)
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Given this property, we assume that 37 = {z1, 22,..., 27}, 2 i Dx, {2}, ~U(c(Z)). In the
following, we will keep using the notations of {z;}7_, and Z accordingly.

Consider the optimal offline solution S* such that

T
OPT, =c-|S"(z1,22,...,27)| + Z}Iensn d(xt, f)
t=1

T )

=c-|S"(z1,22,...,2 min d(x, f).

1% (21, 22 wu;ms* (1 f)
Here we denote S*(z1,xa,...,z7) and S*(z1, 22, ..., zr) differently to show that the offline
solution is not dependent on the permutation, with slight abuse of notation. Denote S* =:
{ci,c5,...,c%}. For each ¢f,i = 1,2,...,K, denote a subset of {z;} as C; such that

minyeg+ d(z¢, f) = d(zy, ¢} ), Vo, € Cf. In other words, C} consists of all ;s that are assigned to
c; in the optimal solution S*. Denote A} := ", - d(4, c}) as the total optimal cost associated

*
i

(e

with ¢}, and a} := as the average cost in C7'.

Now, we define C and C? as separated GOOD and BAD subsets of C;, respectively, such that

9 ccr, C? <109 = oty = 1
Ci CCz’ Oz - Cz’ |Cz| |Oz‘ D) (10)

d(z,,c}) <d(xp, c}),Vr, € CY xy, € C?.

In other words, C’f and Cf’ represent the nearest half and the farthest half of z,’s in the set C}, in
terms of distance to ¢}. Note that the sets CY and C? are determined by Z and not relevant to the
permutation. Therefore, once Z is realized, the random sequence {x;}7_; does not affect C¢ and C?.

Given these notations, we present and prove the following two lemmas: a Lemma G.4 bounding the
total loss of GOOD z;’s, and a Lemma G.6 bounding the individual loss of each BAD x;’s.

Lemma G.4. The total loss caused by all z:y € C7 is upper bounded as

T

> B}y <3c+4A7 +4 > d(we, ) +6 Y Ar(xy, fo). (11)

t:x,€CY z,€CY t=1

Proof of Lemma G.4. Denote the context set (library) sequence as {St}thl. Also, denote A; :=
Ay(z¢, fi) and df = d(xy, ¢}) for simplicity. In fact, any z; € CY falls in one of the following two
cases:

(I) When 3 e; € St such that d(e;, ¢f) < 2a}, we further categorize x; into three sub-cases:

)

L(a). At time ¢, we select context e; and deploy a; = A(e;) (i.e., 2+ is matched to context e;).

We have
(s, eq) < 2(d(wy, ) + d(ci, eq)) < 2(df + 2a7). (12)
The first inequality is due to
1
d(a,b) +d(b,c) > zd(a.c),Ya,b,c € RY. (13)
as a quadratic form. Hence
Elli[{z 121 < 2d(2e, ;) + 2A(24, i) < 4(d} + 2a]) + 24, (14)

L(b). Attime ¢, e; € S; but a; # A(e;), i.e. x; is matched to some other context f; even with
the existence of ¢;. Now we have

d(zg, fr) — 24¢ < di(we, f1) < dilwe,€) < d(we,€5). (15)
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The second inequality comes from the arg-minimum definition of f;, and the first and third
inequalities is from Lemma G.2. Therefore, we have

d(w, fr) < di(wg, €q) + 24 < 2(d(we, ¢f) + d(c;, e;)) + 24 < 2(df + 2a7) + 24
(16)
Hence we have

Ell|{z: }/21] < 2d(x, ;) + 24, < 4(df + 2a]) + 64;. (17)

L(c). e; ¢ Sy attime ¢, i.e. z; is matched to some f; before any close-enough context e; being
added. In this case, we propose the following lemma that provides an overall 1oss bound for
any group of {x;}’s, on which no new actions have been created.

Lemma G.5 (Constant loss bound before a new action being generated). Denote Q) =
{ay,, i = 1,2,...,n]1 < t; < ... < t, < T} as a subsequence of {x;}]_,. Also,
denote ty; as the first time in Q such that a new action is generated, i.e. ay, = A(zy,) and

ar, # A(xy,),i < k — 1. We have
k—1
ED b {m}ii] <c. (18)
i=1

We defer the proof of Lemma G.5 to Appendix G.3, where we will prove a generalized claim.
According to Lemma G.5, the total expected loss for all x; in this case can be bounded by c.

(Il) WhenV e € St satisfies d(e, ¢) > 2a}, we know that no new action are generated at time ¢,
Vt: x; € CY. Then we again apply Lemma G.5 and upper bound the expected total loss by c.

Combining Case I (a,b,c) and Case II, along with a separate cost c of adding e;, we have an upper
bound on the expected total loss for all ¢ : z; € CY as follows:

E[ Y Ll<4 > di+8 > aj+6 Y A+3c

t:x eCy t:z €CY t:x eCy t:x€CY (19)
=4 ) di+4AT+6 Y +3c
t:thCig t:thCf
Here the last line comes from |CY| = leil ‘ . This proves Lemma G.4. ]

The previous lemma bounds the tofal loss of GOOD x;’s, while the following lemma will bound the
individual loss of BAD z;’s”

Lemma G.6. For each individual x; € C’f’, the expected loss is upper bounded as

E[l,|Z] < 4d(z, c}) + 44 (x4, i) + |C* (c+8 > E[L|Z]+8 > d(zc})). (20)

s, eCY s, €CY

Proof sketch of Lemma G.6. Intuitively, later-arrived x;’s should be facing a better situation as there
are more action candidates. Therefore, for any z; € C?, if there exists a good point z,, that emerges
before the occurrence of x;, we can upper bound E[l,| with E[l,] adding d(z;, ¢}). This is because
we can at least match z; to the existing in-library context that z, was matched to. Denote f,
as the existing context whose custom action z, was assigned to. According to the “triangular
inequality” shown as Equation (13) (up to constant coefficient), we have: E[l;] < O(d(z4, fy)) <
O(d(r, ) +d(ct, f5)) < Od(wr, ) +d(c} xy) +d(xg, fy)) = Old(r, ) +d(wg, ) + E[L,)).
If there is no such a x4, (with very small probability), then we upper bound the expected loss by c.
For a detailed proof of Lemma G.6, please kindly refer to Appendix G.4. [ ]
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Combining Lemma G.4 and Lemma G.6 above, we have

E[ Z li]

t:x€CY
=EE[ Y &LlZ]]
t:x€CY
—EE[ Y LIZ]+E Y 11Z]
s:ISGCf T'w,\EC’f’
=E[E[ ) Ll +E[ Y LIZ]
t:z €CY rix,€C?
<E[3c+ 4A; +4 Z(d(ms,c;‘)—#G > Adws, 1) o
sz €Cy sz €Cy
+E[4 Z d(zy,c;) +4 Z A, fr)
T:Ir€Cf T:mTGCf
Lleid 2 (c+8 > E[lJ+8 > d(zs,c)))
2 ic S -
s:mSGCf s:zSGCf
<E[28c+40A7 +40 Y d(ze,c))+54 Y Ay(ae, fi)]
s:xseCf tix€C’
<E[28c+ 6047 +54 > Ay(xy, f1)].
t:x,€CY
Ysasecd T2 ect ;
Here the last inequality is because D .. o d(zs,¢}) < = €94 5 s ’f. On the other

hand, the sum of losses in OPT, that are associated to c; equals ¢ + A}. Therefore, we have
ALG < 600PT, + 54 Zthl Ay(zxy, f+). This ends the proof of Lemma G.3. [ ]

Remark G.7. The reason for us to divide {z;}’s into GOOD and BAD subsets is twofold.

(1) We can upper-bound the fotal loss of all GOOD points, mainly because we have Lemma G.5
such that the Case I(c) and Case I hold. Lemma G.5 states that for any group of {z;}’s, the
expected cost before a new action being created (i.e. before a new context is added to the
library) among them is no more than c. Therefore, if there does not exist an e; close enough to
cf, we know that no new actions have been created among GOOD {z;}’s (since any GOOD
x¢ satisfies d(x¢, ¢f) < 2a} and therefore is a qualified candidate e; once being added to the
existing context library). However, this does not hold for BAD points, as they may still trigger
new action generations although their contexts are faraway from c;.

(2) We can only upper-bound the individual loss of each BAD x; due to the reason in (1) above.
The individual upper bound for a BAD point is applicable for a GOOD point, but this would
introduce a linear dependence on 7" - ¢ in the overall loss instead of a constant ratio.

Now we propose the lemma where we upper bound the cumulative estimation error.

Lemma G.8 (Linear regression excess risk). The cumulative absolute error of online linear regression

with least-square estimator satisfies Zle Ay = O(y/d?*TlogT).

We defer the proof of Lemma G.8 to Appendix G.5 as a standard result from linear regression.
According to what we stated earlier, this completes the proof of Theorem C.4.

In the following subsections, we present the proof details of lemmas proposed above.

G.1 Proof of Lemma G.1

Proof. Let S = {[N1,Na,...,Ng|"|N; € [%],i = 1,2,...,d}. On the one hand, for any con-

text & = [z1,22,...,24] € R% ||zlls < 1, consider f, == [[&] - A, [%]-A,...,[&]- Al
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Due to the definition of S, we know that f, € S. Also we have d(z, f.) = |z — full3 <
14,4, ..., A%, < Amax(W) - A%d. On the other hand, we have |S| = (% )¢. Denote S* as the
solution to O PT, (as defined in Eq. (9)), we have

T
OPT, =c-| 5|+ 3 min d(x, f)
t=1

T
<c- |.§|+Zmil}d($t,f)
= res
) T (22)
<c- (Z)d + Zd(xta fmt)

t=1

1
§C(Z)d + T - Amax (W) - A%d

1
:O(F + TA%),

and we let A = T~ 72 d~ 77 to make the RHS = O(Tri2 A7tz ). This proves the lemma. [ |

G.2 Proof of Lemma G.2

Proof. Here we prove a more general result on ridge regression:

Lemma G.9. Let x,,o,...,x, € R? are d-dimension vectors, and y; := xj@* + N;, where
0* € R? is a fixed unknown vector such that ||0*||s < 1 ,and N; is a martingale difference
sequence subject to o-subGaussian distributions. Denote X = [r1,Z2,... ,a:n]T € R and
Y = [y1,92,...,yn] " € R". Let the ridge regression estimator

0:=(X"X+1)'X"Y
where 1 is the d X d identity matrix. Then with probability Pr > 1 — 6, we have

. 2
" (0" - 0)| <O ((1 + 1og(g))\/atT(XTX + Id)—1x> (23)
holds for any § > 0 and = € R%.

Proof of Lemma G.9. Denote N := [Ny, Na, ..., N,]T € R™ as the vector of noises in the labels.
Then we have .
0=(X"X+I) ' X"X0"+(X"X+I,)"'X"N. 24)

Therefore, the difference between 6* and 0 can be characterized as
0 —0=0"—(X"X+ 1) ' X" X0* — (X" X +1,)"'X"N
= (X' X4+ L) XX +1)0" — (X" X+ 1) ' X" X0 - (X" X+1,)"' XN
= (XX +I) 0 —(XTX+1;)"' X" N

=(X"X +1)710* — XTN).
(25)
As a result, we have

2T (0" —0)| = |« " (XTX + 1)~ (0" — X N)|

(26)
<" (XTX + )70 |+ 2" (XTX +1;) ' XTN|.

For the simplicity of notation, denote A := (XTX + I;)"1, then we have |z (0* — 0)| <
|z " A0*||2 + ||z T AX T N||. On the one hand, for the first term we have

2T AG*| < AT 2|2 [|6%|2
<VaTAATz -1 27
<VzTAz.
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The second line is because ||6*|| < 1, and the last inequality is because A = AT = (X T X +1;)"! <
I,.

On the other hand, for the second term, recall that we set A := (X TX + Id)_1 and 0* —
9 = A(0* — XTN). We consider the random variable 2" AX "N = > | oy Ny, where the

deterministic coefficients oy := (¢ AXT),, t=1,...,n.

Notice that {IV, } is a martingale difference sequence with subGaussian tails. According to Jin et al.

(2019, Proposition 7), which is a subGaussian version of Azuma—Hoeffding’s Inequality, let d = 1
and there exists a constant C'; such that

n n

2
) ozN‘SC’- Y a?log ;. (28)
‘t_l Ve J 2 t g5

with probability Pr > 1 — §. Here |laf? = Y1, a7 = 2TAXTX Az < 2T Az because
XTX <XTX +1,.

Therefore, with probability at least 1 — 4,

2
|xTAXTN‘ <Oy xT Az log (5) (29)

Returning to |27 (0* — 0)| < |zT A0*| + |« A X T N|, we already established (using ||6* ||, < 1)
that |z T A0*| < VT Ax. Combining this with Eq. (29) as the martingale tail bound, we get

o

:<1+CJ. log <§)> \/:L‘T(XTX—I—Id)_lx.

This ends the proof of Lemma G.9.

l2T (0" — 0)| <VaTAz+Cy -] 2T Az log (2)
(30)

Now let us go back to the proof of Lemma G.2. We apply this lemma for 67" times: in the proof of
Lemma G.4 as Case I(a), I(b), I(c) (or Lemma 5.6) and I, and in the proof of Lemma G.6 as Case I
and Case II, in each of which we adopt this concentration bound for each existing context f € S,

which is at most T. Therefore, we let § < gz andlet A =1, a = (1+C; - 4 /log 12(?2) ||W| e

According to Lemma G.9, we prove that d(x, f) — A¢(x, f) < d(xe, f) < d(xt, f) + Ae(e, f)
holds for any f € Sy and V& = 1,2, ..., T, with probability Pr > 1 — §. Therefore, we have proved
Lemma G.2. ]

G.3 Proof of Lemma G.5

Cztk (wtk ,ft,c)
c

Proof. Notice that at each time ¢j, with probability Pr = we terminate this stochastic

. d .
process, and with the rest Pr = 1 — M we add dy, (x4, , ft,) to our cumulative expected
loss. Since dy, (x4, , fi,) > di, (T4, fi,,), Yk € [n], we may instead prove a generalized version of
this lemma.

Lemma G.10. Consider an infinite sequence {p1,pa, ..., Pk, ...} where py, € [0,1]. The initial sum
S = 0. At each time k, with probability py, we stop this stochastic process, otherwise we add py, to
the sum S. We show that E[S] < 1.

Lemma G.10 is a generalization of Lemma G.5 since we add dy, (x4, , f1,) < dy, (1, , f1,) at each
time k in the latter setting.
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Denote a random variable I as follows: I = 1 if the stochastic process has not stopped by the end
of time k, and I, = 0 otherwise. In the case when [}, = 1, we add p;, to the sum S. Therefore, we

have
o0
= Zpkfk
k=1

. Also, we know that the probability that I, = 1is Pr[l = 1] = Hle (1 — p;). As aresult, we have

ZE[ipk'fk]
:Z H 1_pz

In the following, we show that Y ;- | p Hle (1 —p;) < 1. We first consider p;, € (0, 1). Denote

Qo:=1land Qy :=Pr[ly =1] = Hle(l —p;), and we know Qr = (1 — pg)Qr—1 < Qr—1. Also,
we have prQr—1 = (1 — (1 — pr))Qr—1 = Qr—1 — Q.

For the rigorousness of the proof, we first show that >~ ; pxQy is finite. Denote

&1y}

= Qs (32)

and we have

T, < Zkak—l

k=1
= Z Qr-1— Qk (33)
:QO - Qn
<Q@Qo=1

AsT, <land T),+1 > T,,Yn > 1, we have

lim 7, < 1 (34)

n—roo

according to the Monotone Convergence Theorem. Then we slightly generalize the results above

from py, € (0,1) to pi, € [0,1], i.e. incorporating 0 and 1. In fact, if p;, = 0, then we may skip

this prQ term Otherwise if pi, = 1, consider the first m s.t. p,, = 1, and then we still have
E[S] =30 Yorly =Ty < land I, = Iy = (0 forany M >m,M € Z*.

Therefore, we have

E[S] = prQs
k=1

<> Qi
M 35)
= Z Qr—1 — Qk
k=1
=Qo — lim Q
k—o0

<1.

This ends the proof of Lemma G.10 and therefore proves Lemma G.5. [ ]
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G.4 Proof of Lemma G.6

Proof. Consider the moment when a x; € Cf arrives, and denote s as the most recent moment (s < t)

such that z; € CY. According to the uniform permutation assumption from Z to {z;}7_,, this z

can be any z € CY with equal probability as Pr = ‘(}g‘ = ‘CQ*‘ . In the following, we analyze the

i

expected loss E[l;] by two cases:

() If z, € C7 does exist before x; occurs. Denote f; := argmin g, d(c], f) as the closest
context to c¢; existed by the time ¢. Then we have:

) Czt(l"nft)
c

sz,(xn ft)

Elle[{x:}{=1] =c -

+d(x, fi) - (1=

fr) +d(zy, fr)

Ty, fr) + 24; + di (e, fi) + 24, (36)
t(2e, ff) + 44

(e, fi') + 44,

(e, ¢7) +4d(c], f3) + 44

)

>

o+

<
—~

o

t
2

<

VA ANA AN

2d
4d
Also, denote fs (= argmingcg, d(xs, f) as the best existing context that can be matched to
z¢ by the time s. Then we know that

Ell o }y) = d(s, £,)
> %d(d‘, fe) = d(ws,c}) (37)
Sl £2) — (s, ).
Combining Eq. (36) with Eq. (37), we have
Elle[{z¢}i—1] < 4d(mi,c}) + 40 + 4 - 2Bl {z} /1] + d(zs, )
2 (S ElHa ]+ d. OY

*
‘Ci | s:wSEC'ig

v

< AdF +2A, + 8-

Again, the last line of Eq. (38) comes from the i.i.d. assumption of z;.

(ID) If z, € CY does not exist before z; occurs, i.e. x, € Cf’,Vr < t — 1. According to the

uniform permutation from Z to {x}{_,, this event happens with probability 7. In this case,
if cft (x4, ft) > ¢, then we suffer a cost ¢ at time ¢; otherwise th(a:t, ft) < ¢, and we either

generate a new action (with cost ¢) or suffer an expected loss at d(z¢, f;) < Jt(xt, fi) <c.In
a nutshell, the expected loss does not exceed c.

Combining with Case I and Case II above, we immediately get Eq. (20). [ ]

G.5 Proof of Lemma G.8

Proof. Denote A; := Ay(xy, fi) for simplicity. In the following, we first reduce the summation of
estimation error A; to the regret of a K (< T')-arm linear bandit problem, up to constant factors.

In fact, according to Lemma G.2, we know that d(z¢, f) < di(z¢, f) < d(zy, f). Since we select
fo = argmingcg, di(xy, f), we have
d(@e, f{) — 24 <d(ay, fr) — 24,
<di(zy, fr)
<d(zy, f})
<d(z¢, fi),

(39)

where f; := argmin g, d(y, f) as the best existing context for z in the current context library at
time ¢. Therefore, the performance gap between f; and f;* can be bounded as d(z¢, f;) — d(z¢, f;) <
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2A;. On the other hand, since d(x4, fi) =< w, ¢(a, ft) > is a linear loss function, we consider
é(xy, f) as the “context”™ of each arm f € S;, and then we form a linear contextual bandit problem

setting. Recall that A; = « - \/d)(xt, )T XY é(xt, fr). According to Chu et al. (2011) Lemma 3
(which originates from Auer (2002) Lemma 13), we have

T T
A=) a \/¢(9Ct, FOTE e, fo)
t=1 t=1

< a-5/(d?)|Wr g |log [Wr |
< 5av/d?*TlogT.

Here the second line is because the dimension of contexts are d? as ¢(z¢, f) = Vec((z¢ — f)(z¢ —
£)T) € R”, and the third line comes from the original definition of ¥, as a subset of [t — 1. [

(40)

G.6 Proof of Lower Bound (Theorem C.5)
Proof. In order to prove the lower bound, we show the following facts

1. OPT, = Q(Tﬁ) according to the K -nearest-neighbors(K-NN) lower bound.

2. Any online facility location algorithm suffers at least (2 —o(1))-competitive-ratio, i.e. ALG >
(2= 0(1))OPT},.

In the following, we present two lemmas corresponding to the facts above.

Lemma G.11 (OPT, lower bound). We have OPT;, > OPT, > Q(Tﬁd?).

Proof. Denote

T
OPT,(K) := SZTISIFZIKC. |S| + ;I}lelgd(xt, f)

. (1)

1
K+T- min - 2 min d(zt, f)-

This equals T' times K-nearest-neighbors (K-NN) loss plus K. According to Zador (1964) (i.e.
Zador’s Theorem in coding theory), the mean squared distance to the nearest codebook center in R?
space in L,-norm is lower bounded by £2(K ~). This is directly applicable to K-NN which effec-
tively partitions points by their nearest neighbors. Hence, the quantization lower bound established
by Zador’s Theorem translates into a lower bound on K-NN’s average squared loss. Therefore, we let
r = 2 to fit in our setting, and then have

OPT, = min OPT,(K)= Q(c-K+T K1) = Q(T7), (42)
Ke[T)

(YN

where the last line is an application of Holder’s Inequality that K + 1" - K i > K'“i (T -
1
K—a)+ = T2, and the equality holds at K = Ta%=, [ ]

Lemma G.12 (Theorem 5.1 in Kaplan et al. (2023)). Let A be an algorithm for online facility
location in the i.i.d. model, then, the competitive ratio of A is at least 2 — o(1).

Combining Lemma G.11 and Lemma G.12, we know that REG = ALG — OPTy, > (2 — o(1) —
1)OPTy, > 0.50PT, = Q(Tﬁ) This proves Theorem C.5 [ |

3Here we denote this covariate as the confext as it serves as an environmental description in the contextual
bandits. We denote f € S;, which was denoted as a context in the library, an arm of this contextual bandits.
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