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Sampling from Your Language Model
One Byte at a Time

Anonymous Authors1

Abstract

Tokenization is used almost universally by mod-
ern language models, enabling efficient text rep-
resentation using multi-byte or multi-character
tokens. These models are typically invoked to
autoregressively complete a text prompt by to-
kenizing the prompt, sampling more tokens to
continue the tokenized prompt, and detokeniz-
ing the result. However, prior work has shown
that this process can introduce distortion into the
model’s sampling distribution, leading to unex-
pected or undesirable generations. For example,
users are often advised not to end their prompts
with a space because it prevents the model from in-
cluding the space as part of the next token. While
this heuristic is effective in English, the underly-
ing problem continues to affect languages such
as Chinese as well as code generation, settings
where word and syntactic boundaries may not line
up with token boundaries. We present an optimal
method to solve this “Prompt Boundary Problem,”
which is based on an efficient online algorithm
for Byte-Pair Encoding (BPE). This allows one to
compute the next byte distribution conditioned on
an arbitrary byte prefix, given only logit access
to the original tokenizer-based model. This pro-
cedure can be applied iteratively to convert any
autoregressive LM with a BPE tokenizer into a
character-level or byte-level LM, without chang-
ing the generative distribution at the text level.
We show that this significantly improves next-
character prediction accuracy when computed on
arbitrary prefixes. Moreover, our method is able
to unify the vocabularies of language models with
different tokenizers, allowing one to ensemble
LMs with different tokenizers at inference time as
well as transfer the post-training from one model

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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to another using proxy-tuning. We demonstrate in
experiments that the ensemble and proxy-tuned
models outperform their constituents on down-
stream evals.

1. Introduction
Tokenization is a crucial component of nearly all modern
language models: it allows them to consume and produce
arbitrary streams of text using only finite vocabularies. The
vast majority of tokenizers in use today, such as those based
on Byte-Pair Encoding (BPE) (Sennrich et al., 2016) or Un-
igram (Kudo & Richardson, 2018), feature tokens spanning
multiple bytes or characters, allowing them to represent text
more efficiently than purely byte-level or character-level to-
kenization (Clark et al., 2022; Xue et al., 2022; Wang et al.,
2024).

Longer tokens, however, can distort the sampling distribu-
tion if the boundary between the prompt and its completion
is not carefully handled. Users of LMs are generally un-
aware of the tokenization and expect LMs to operate on
strings, consuming a prompt as a string and producing a use-
ful string completion thereof. Tokenized LMs approximate
this by (i) encoding the text as a sequence of tokens, (ii)
feeding the resulting sequence to the language model, and
(iii) decoding the generated token sequence back into text.
More precisely, let prompt ∈ Σ∗ be a string of arbitrary
length over some alphabet Σ, and let encode: Σ∗ → V ∗

and decode: V ∗ → Σ∗ represent the translation between
strings and token sequences over a vocabulary V . To com-
plete the prompt, a typical scheme is to sample from the
distribution,

P(t1, . . . , tn | [t1, . . . , tk] = encode(prompt)) , (1)

where encode(prompt) is the tokenization of the prompt
with length k. Note that sampling from this distribution can
be done very conveniently following the above three steps,
when the model has an autoregressive structure, i.e.,

P(t1, . . . , tn) =

n∏
i=1

P(ti | t1, . . . , ti−1) ,
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> olmo.generate(tok.encode("This a tes"))
"erstor"
> ByteSampler(olmo, "This is a tes")
"t"

> qwen.generate(tok.encode("
Japan’s

日本的
capital

首都
is

是
Tokyo

东京，
China’s

中国的
capital

首都"))

"
also

也
is

是
Beijing

北京"
> ByteSampler(qwen, "日本的首都是东京，中国的首都")

"
is

是
Beijing

北京"

> olmo.generate(tok.encode("document.getElement"))
"('div')"
> ByteSampler(olmo, "document.getElement")
"ById('button')"

Figure 1: ByteSampler resolves the prompt boundary
problem (exhibited in the output of generate()). In this
example, test,都是, and .getElementById are all
single tokens in the respective tokenizers.

which is used to sample the completion from
P(tk+1, . . . , tn | t1, . . . , tk) given the tokenized prompt
[t1, . . . , tk]. We then return decode(t1, . . . , tn) to the user.
For the most part, this process happens transparently to
the user, but under certain circumstances it can introduce
distortion to the language model’s completions, as we are
about to explain.

The Prompt Boundary Problem (PBP). To be precise,
Equation (1) introduces distortion whenever the prompt ends
on a prefix of what could otherwise be a single token. More
concretely, consider LLAMA-3.2-1B and suppose the user’s
prompt ends with the text “becau” (["bec" = 17106
= , "au" = 2933] as tokens): The user most likely
expects the continuation to begin with “se” (325) since
“because” is a common word. However during training, the
model has only ever seen the word “because” represented as
a single token (11458) and never as the sequence [17106,
2933, 325]. Accordingly, the actual next token LLAMA-
3.2-1B predicts is “z” (89) which, while plausible in some
scenarios, is an arguably unlikely continuation representing
an artifact of tokenization. While this example may seem
contrived at first glance, there are many situations where this
problem may arise (Figure 1 shows a few more examples):

1. In languages that do not separate words with whites-
pace, such as Chinese and Japanese, tokens can span
multiple words, so this issue can arise even when the
prompt ends with a complete word.

2. Any tokenizer that features multi-word tokens, which
can bring gains in encoding efficiency (Gee et al., 2023;
Kumar & Thawani, 2022; Liu et al., 2025), suffer from
the same problem as Chinese and Japanese.

3. When completing code, it is common to request com-

pletions while in the middle of an identifier (Jackson,
2025).

4. This issue also occurs when performing constrained
generation from language models (Ribeiro, 2023).

In general, the user, unaware of the tokenization, expects
samples from the properly conditioned distribution,

P(t1, . . . , tn | prompt ⊑ decode(t1, . . . , tn)) , (2)

where ⊑ denotes the prefix relation. However, the token-
prefix conditioned distribution of Equation (1) and the byte-
prefix conditioned distribution of Equation (2) can differ
substantially (e.g., Figure 1). Equation (2) transcends the ar-
bitrary token boundary set where the user provided prompt
stops, decoupling the prompt boundary from token bound-
aries, to complete the prompt with the exact distribution
from the language model. This leads to a fundamental al-
gorithmic question of interest: how do we sample from the
byte-prefix conditioned distribution of Equation (2) exactly
and efficiently?

Contributions. We introduce an efficient procedure to con-
dition a BPE tokenizer-based model on an arbitrary byte-
prefix given only access to the tokenizer and log-probability
queries to the model (Section 3). We demonstrate in experi-
ments that this represents an exact solution to the Prompt
Boundary Problem presented above (Section 4.2). We show
that our method can be used to convert the model into a byte-
level language model and that this ability can be used to
unify the vocabularies of different models. This enables ex-
act byte-level ensembles of language models with different
tokenizers (Section 4.3) and allows one to transfer the post-
training of one model onto another model at inference time
using proxy-tuning (Liu et al., 2024a) (Section 4.4). We
demonstrate in proof-of-concept experiments that language
model ensembles and proxy-tuned models constructed with
our method are able to outperform their constituent models
in downstream evaluations.

2. Background
In this section we give essential background regarding tok-
enization as well a prior work addressing the Prompt Bound-
ary Problem. We discuss additional related works in Ap-
pendix A.

Byte Pair Encoding BPE was originally presented as a
form of data compression in Gage (1994) and was proposed
for use in NLP in Sennrich et al. (2016). To tokenize a
piece of text with a typical BPE-based tokenizer, the text
is first split into chunks, a process called pretokenization.
These chunks, or pretokens, are then tokenized separately
using BPE (thus no token may cross the boundary between
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Exact Preprocessing Token evaluations TE w/ Prefix Caching

Backtracking (various) No O(1) O(1) N/A
Prefix Covering (Vieira et al., 2024) Yes 2O(n) 2O(n) 2O(n)

Back Tokenization (Turaga, 2025) Yes 2O(n) O(n) O(1) (optimal)
Byte-Pair Correction (Phan et al., 2024) Yes O(n) O(n) O(1)
ByteSampler (ours) Yes O(1) N/A O(1) (optimal)

Table 1: Incremental complexity of various mitigations for the prompt boundary problem: we list the complexity (in both
preprocessing time and LM evaluations) when sampling each new character while generating an n character string. Our
method has the same complexity as backtracking methods (Ribeiro, 2023; Dagan et al., 2024; Athiwaratkun et al., 2024)
while remaining exact. We report both the original LM inference complexity as originally presented, as well as upper bounds
using analysis from Section 3.1 when using prefix caching.

pretokens). The BPE tokenizer processes each pretoken
by first converting the text into a sequence of elements of
the tokenizer’s base vocabulary (common choices for base
vocabulary are individual characters or bytes under UTF-8
encoding). Next, an ordered list of merges is applied to
the sequence to form larger tokens. Each merge specifies
a contiguous pair of tokens (which may include products
of previous merges), and a new token that represents their
concatenation. The merges are applied left-to-right and once
all valid merges are applied, the tokenization is complete.

Prompt Boundary Problem Issues surrounding tokeniza-
tion have been extensively documented in prior work. The
prompt boundary problem was presented for maximum pre-
fix encoding in Phan et al. (2024) and for BPE tokenizers
in Vieira et al. (2024) and Ribeiro (2023). Many methods
have been proposed to address the prompt boundary issue.
One line of heuristic techniques, including token healing
(Ribeiro, 2023) and its generalizations (Dagan et al., 2024;
Athiwaratkun et al., 2024) perform “backtracking” by (i) re-
moving one or more of the most recent tokens, followed by
(ii) sampling a continuation of the partial prompt using the
language model, constraining the newly generated tokens to
match the remaining text.

Exact methods, which preserve the sampling distribution
of the original language model, have also been proposed.
Vieira et al. (2024) gave an exact method which requires
exponential time as well as an approximate solution lever-
aging beam search. Turaga (2025) proposed a method that
combines backtracking with the exponential time method of
Vieira et al. (2024), adding a “back tokenization” step that
significantly reduces the number of necessary calls to the
language model, but still requires exponential preprocessing.
Additionally, Phan et al. (2024) proposed an exact method
which requires only linear time.

Although all of the above methods, except for Backtracking,
are “exact,” they may produce different sampling distribu-
tions. This is because the methods differ in their handling

of invalid token sequences. An invalid token sequence is
one that can never be output by the tokenizer. We make this
notion precise in Section 3.1. This is closely related to the
concept of marginalization (Cao & Rimell, 2021): the idea
that calculating the probability of generating a string with a
language model requires summing over all segmentations of
the string, including invalid ones. Vieira et al. (2024) con-
sider all segmentations, valid or not, which corresponds to
Equation (2). The method of Turaga (2025) and our method,
condition on valid token sequences, which corresponds to

P

(
t1, . . . , tn

∣∣∣∣ prompt ⊑ decode(t1, . . . , tn),
[t1, . . . , tn] is valid

)
, (3)

and Phan et al. (2024) consider a superset of the valid token
sequences, giving a distribution “between” Equation (2) and
Equation (3). Of note, Chirkova et al. (2023) found that
P([t1, . . . , tn] is not valid) makes up a negligible fraction
of the language model’s distribution, so these differences
should not be significant in practice.

3. Method
In this section, we present some simple building blocks
and use them to construct a procedure for sampling from
a tokenizer-based language model one byte at a time. The
fundamental structure of the algorithm is based on what we
call the Valid Covering Tree, which is the tree of all possible
valid token sequences that share a specific byte prefix and
do not extend past the end of the prefix by more than one
full token. We show the construction of the Valid Covering
Tree in Figure 2.

The tree depicted in Figure 2b corresponds to the cover
described in Vieira et al. (2024), who remark that it will
generally have exponential size in the length of the prefix.
In contrast, the Valid Covering Tree, which is a subtree of
the one in Figure 2b, has several properties which will prove
useful:

1. Correctness: It represents exactly the set of condi-
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(a) Initial (infinite) tree

<bos>
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...

...

(b) Prune by prefix

<bos>

h ypo
ten use ...

thesis ...

hyp

er space ...

oten use ...

oth esis ...

ban
an agrams ...

anas ...

...

...

(c) Prune invalid pairs

Figure 2: Construction of the Valid Covering Tree for string prefix “hypot”: (a) starting with the infinite tree of all possible
token sequences (many edges not shown), we prune branches that (b) do not match the given prefix or begin after the prefix
ends or (c) contain invalid contiguous pairs of tokens.

tions for Equation (3) which makes it the minimum
tree sufficient to calculate the distribution described in
Equation (3). (See Section 3.1)

2. Compactness: The tree is composed of a “trunk” of
tokens that are fully determined (starting at the root,
every node has only one child) plus a finite number of
“branching” nodes at the end of the trunk. (The number
is bounded by a constant which depends only on the
tokenizer, see Section 3.2)

3. Convenience: The tree can be updated to reflect the
addition of a new byte using only constant time and
space. (See Algorithm 1)

3.1. Pairwise Validation

Recall that a token sequence is valid if it is the encoding
of some string under the BPE encoder.1 The correctness of
the pairwise pruning depends on the following proposition
regarding validity under BPE tokenization.

Proposition 3.1. Let (encode,decode) denote a BPE en-
coder and decoder pair corresponding to some merge list
M and vocabulary V . We call a token sequence T =
[t1, t2, . . . , tn] ∈ V n valid if encode(decode(T )) = T .
Then T is valid if and only if [ti, ti+1] is valid for all
i ∈ {0, . . . , n− 1}.

To see that the proposition is true, consider two valid token
sequences T1 = encode(S1) and T2 = encode(S2). If,
while tokenizing the concatenation S1 ++ S2, there is no
merge applied that crosses the boundary between S1 and
S2 then the two strings will “evolve” independently, and
we will have encode(S1 ++ S2) = T1 ++ T2 which means
T1 ++ T2 is valid.

1The notion of valid pairs of tokens was used in van Antwerpen
& Neubeck (2025) as the basis for a streaming algorithm and a
fast backtracking-based algorithm for BPE tokenization (without
addressing the PBP).

Conversely, if a merge is applied that does cross the bound-
ary, then the final encoding must feature a token crossing
the boundary (since no merge can be undone), which means
T1 ++ T2 cannot be valid since it has no such token. We
depict an example of both cases using OpenAI’s cl100k
tokenizer (OpenAI, 2023) in Figure 3.

This implies a fast method to check whether a pair of tokens
is valid: we consider the merge trajectory of each token
along the boundary and see if any conflicting merges would
be applied. The worst case merge tree depth is fixed by the
tokenizer, so this check can be done in constant time.2

3.2. Streaming Tokenization

Given a stream of input bytes, we will use the following
approach to update “branches” of the Valid Covering Tree,
while writing the fully determined “trunk” of tokens to an
output stream.

We next show that this can be done efficiently. To bound the
asymptotic behavior, we use the observation of Berglund &
van der Merwe (2023) that each output token can be fully
determined using only a constant amount of lookahead (in
bytes), where the constant depends only on the tokenizer.
This implies that the branching tree T will have bounded
depth, since any token that is fully determined will be re-
moved from the tree and written to the output stream. The
branching factor of the tree is also bounded by a constant
depending on the tokenizer. Thus, the number of edges
of T is bounded by a constant, which means the pruning
described in Figure 2 can be carried out in constant time.
For more concrete performance numbers see Section 4.1,
where we show that the tree has only 0.72 extra non-leaf
nodes on average.

2We generally expect the depth of the merge trees to scale with
the logarithm of the vocabulary size V , although we ignore scaling
with respect to the tokenizer’s parameters for brevity.
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m20252

m460

p

m5

e r m

m832

m76

u t e

(a) Valid pair: no merge crossing boundary

m460

p

m5

e r

m53058

m

m832

m76

u t e

m20252

(b) Invalid pair: merge m20252 crosses boundary

Figure 3: Example of valid and invalid token pairs. We
show the initial string’s bytes and the merges mt ∈M that
are applied to the string (in order of t) to tokenize the string.
In the invalid case, merge m53058 cannot occur because
a conflicting merge m20252 was applied earlier. The key
observation is that we only need to consider the trajectory
at the boundary (in blue) to decide if the pair is valid.

3.3. Language modeling using the Valid Covering Tree

Now that we can easily obtain the Valid Covering Tree, we
can use it to perform language modeling.

To compute the probability of a prefix under the LM,
we sum the cumulative probabilities the LM assigns to the
sequences represented by all leaves of the tree.

To sample a continuation of a prefix, we compute the
probability (as above) of every leaf and sample one of them
accordingly. We are then free to continue sampling a con-
tinuation from that leaf using normal token-level sampling.

To compute the next byte distribution given a prefix, we
group the leaves by the next byte they would entail and sum
the probabilities (as above) of the leaves in each group. This
can be combined with a sampling rule to generate text one
byte at a time.

We use ByteSampler to refer to this collection of capabilities
for convenience.

Algorithm 1: Streaming BPE tokenization maintaining
a tree matching Figure 2c
Input: Branching tree T , new byte b
Output: stream of fully determined tokens
for every node N that ends one byte before b do

add all valid next tokens as children of N ; // See
Figure 2c

end
Prune branches that do not match b; // See
Figure 2b

while the root of T has only one child do
Add the root token to the output stream and make

its only child the new root;
end

3.4. Handling Pretokenization

So far, we have focused on correctly handling byte pair en-
coding, ignoring the pretokenization conventionally applied
beforehand. To illustrate why this is step is important, re-
call that pretokenization is often used to ensure that tokens
cannot span multiple words and that whitespace separat-
ing words is merged with the following word and not the
preceding one. In order to correctly handle all aspects of
modern tokenizers, we must also perform pretokenization
in an online fashion, which is challenging in its own right.
We discuss our handling of pretokenization in Appendix C.

4. Experiments
In our experiments, we apply ByteSampler at inference time
to off-the-shelf language models. In Section 4.1 we show
that our method has less computational overhead compared
to other exact methods. Next, in Section 4.2, we show that
exact methods perform better than heuristics in character-
level language modeling. Finally, we present several appli-
cations of our method to enable higher-level functions such
as ensembling (Section 4.3) and proxy-tuning (Section 4.4)
models with mismatched tokenizers.

4.1. Efficiency

As discussed in Section 2, there are several existing methods
which are also “exact.” Although each technically corre-
sponds to a different sampling distribution, we do not expect
there to be any significant differences between them in prac-
tice. Therefore, the main distinguishing factor to consider
is the method’s computational cost. To estimate the cost in
a realistic setting, we sample a random 100 character sub-
string from the OLMO2 pretraining corpus (OLMo et al.,
2024) and estimate how many inference tokens each method
requires to calculate the probability of the substring as a text
prefix. Note that the substring is sampled uniformly, so it is
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Method Inference Tokens Overhead vs. BPE

No mitigation (plain BPE) 23.51 0

Prefix Covering (Vieira et al., 2024) 2.12× 1030 +2.12× 1030

Byte-Pair Correction (Phan et al., 2024) 72.99 +49.47
Byte-Pair Correction with prefix caching 25.61 +2.09
ByteSampler (ours)3 24.24 +0.72

Table 2: Inference cost of various exact solutions to the prompt boundary problem. Our method has 65% less overhead
than the next best method. Overhead vs. BPE measures the average additional tokens of inference required by the method,
compared to plain BPE. Importantly, the overhead is paid for each byte when sampling at the byte level, making low
overhead crucial for efficient sampling.

Prediction unit Method Loss per unit Bits per character4

Token Plain BPE 2.67 0.80

Character No mitigation (plain BPE) 4.81 6.53
Character ByteSampler (ours) 0.60 0.81

Table 3: Language modeling loss of OLMO2-1B on English text using various methods. We compare three settings: (i)
the original token-level cross-entropy loss when predicting the next token; (ii) the character-level loss when predicting the
next character by directly tokenizing the prompt and calculating the next character distribution; and (iii) the character-level
loss obtained using ByteSampler to predict the next character. The higher loss per unit for token-level prediction is to be
expected, as tokens are harder to predict than bytes. Once the loss is normalized to bits per character, our method and the
original model achieve similar results, which demonstrates that our method does not degrade language modeling quality.

about 80% likely to end in the middle of a word. We report
the average inference cost in tokens, averaged over 10,000
samples, for several methods in Table 2.

4.2. Character-Level Language modeling

In this section, we will focus on converting off-the-shelf
language models into character-level language models.5 We
then evaluate the character-level prediction performance us-
ing the standard cross-entropy loss as well as next-character
prediction accuracy in two languages: English in Sec-
tion 4.2.1 and Chinese in Section 4.2.2.

4.2.1. OLMO2 FOR ENGLISH TEXT

In this setting, we sample a document randomly from the
OLMO2 pretraining corpus (OLMo et al., 2024) and choose
a random prefix of the document of length at most 1000
characters. We then compute the next-character distribu-
tion according to OLMO2-1B (Team, 2025a) using various
methods. To allow comparison with the original token-

4For token level prediction, calculated using a conversion rate
of 4.518 characters per token.

5We choose character-level modeling for this section, even
though our method supports byte-level predictions, because some
related methods can only operate on character strings.

based model, we also truncate the prefix to the nearest token
boundary and perform next-token prediction with the origi-
nal model. The character-level and token-level losses can
be compared after normalization that accounts for the fact
that tokens are more difficult to predict, due to their greater
information content, giving a standardized measurement of
bits per character (Mielke, 2019). We report the average loss
of the predictions over 100,000 such documents in Table 3.

From the results in Table 3, we can clearly see the effect of
the prompt boundary problem: naively predicting the next
character by directly applying the tokenizer to an arbitrary
string prefix as in Equation (1) leads to poor performance
(“no mitigation” in Table 3). In contrast, ByteSampler nearly
matches the performance of the original token-based model
(“plain BPE”) in bits per character, as expected for exact
methods.

For backtracking methods, it is not easy to compute the
probability of any particular next character. This prevents us
from calculating the cross-entropy loss as in Table 3. For our
experiments, we compare to the Token Alignment method
of Athiwaratkun et al. (2024), which is the most advanced of
the proposed backtracking methods and also includes token
healing as a special case. We use it to directly predict the
next character by sampling greedily and report the average
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Method Next character accuracy Overhead vs. BPE

No mitigation (plain BPE) 29.490 0

Backtracking 1 (Token Healing) 71.634 +0.43
Backtracking 2 (Token Alignment) 76.281 +0.53
Backtracking 4 (Token Alignment) 75.407 +1.08
ByteSampler (ours) 81.560 +1.72

Table 4: Next character prediction accuracy of OLMO2-1B on English text using various methods. We compare three
settings (i) directly tokenizing the prompt and greedily sampling until the first character of the completion is determined; (ii)
using backtracking with Token Alignment (of which Token Healing is a special case) to predict the next character; and (iii)
using ByteSampler to predict the next character. Overhead vs. BPE measures the average additional tokens of inference
required by the method, compared (i).

Prediction unit Method Loss per unit Bits per Character6

Token Plain BPE 3.43 3.29

Character No mitigation (plain BPE) 3.79 5.16
Character ByteSampler (ours) 2.38 3.23

Table 5: Language modeling loss of QWEN3-1.7B-BASE on Chinese text using various methods. We use the same
settings and metrics as Table 3. Similarly to our English results, ByteSampler achieves a similar normalized language
modeling loss (in bits per character) to the original model which can only perform next token prediction.

accuracy over 100,000 samples in Table 4.

Interestingly, we find that too much backtracking hurts the
performance of the Token Alignment method. We believe
this is because the sampling step often segments the remain-
der of the prompt in a non-standard way, which may harm
the performance of the model.

4.2.2. QWEN3 FOR CHINESE TEXT

Similar to Section 4.2.1, we sample a random prefix of
length at most 500 characters of a random document
from the Chinese subset of the MADLAD-400 dataset
(Kudugunta et al., 2023). We then compute the distribu-
tion of next characters according to QWEN3-1.7B-BASE
(Team, 2025b) using various methods and report the average
cross-entropy loss over 100,000 documents in Table 5.

Once again, the naive method fails while our method
achieves similar normalized loss to the original token-level
model. We also report next character prediction accuracy
to allow comparison with backtracking methods. Note that
Chinese has much more entropy at the character level so the
average accuracies will be proportionally lower.

6For token level prediction, calculated using a conversion rate
of 1.415 characters per token.

4.3. Byte-Level Ensemble

Another application enabled by byte-level sampling is the
ensembling of language models with different tokenizers. In
general, when vocabularies between LMs are the same, their
next-token probability or logit distribution can be combined
via arithmetic into a single distribution, but this cannot be
done directly when the vocabularies differ. Several works
have proposed methods to combine LM predictions despite
mismatching vocabularies (Kasai et al., 2022; Lv et al.,
2024; Liu et al., 2024b; Xu et al., 2024a), but these may
introduce bias into the sampling distribution. Our method
makes the direct ensemble possible by converting models
with BPE tokenizers into a byte-wise models, thus unifying
their vocabularies.

In our experiment, we consider an ensemble of three small
language models: Qwen3 1.7B Base (Team, 2025b), OLMo
2 1B (OLMo et al., 2024; Team, 2025a), and Llama 3.2 1B
(Team, 2024b). We combine the predictions by computing
the average pensemble = 1

n

∑n
i=1 pi where p1, . . . ,pn are

the next-byte probability distributions for each model. We
evaluate the models on a suite of seven tasks and report the
results in Table 7.

7Chinese typically uses three bytes for each character when
encoded using UTF-8.
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Method Next character accuracy Overhead vs. BPE

No mitigation (plain BPE) 32.8 0

Backtracking 1 (Token Healing) 49.2 +1.82
Backtracking 2 (Token Alignment) 49.6 +2.98
Backtracking 4 (Token Alignment) 49.0 +5.30
ByteSampler (ours) 52.7 +1.60

Table 6: Next character prediction accuracy of QWEN3-1.7B-BASE on Chinese text using various methods. We use
the same settings and metrics as Table 4. Similar to our English language results, ByteSampler achieves the best prediction
accuracy, but unlike in English, ByteSampler also requires the least overhead of all methods. This highlights that languages
with multi-byte characters7 can behave differently than ones which typically use a single byte for each character.

Task QWEN3 OLMO 2 LLAMA 3.2 ← Average Ensemble

Arithmetic (Brown et al., 2020) 0.974 0.838 0.831 0.881 0.978
DROP (Dua et al., 2019) 0.470 0.409 0.299 0.393 0.479
Jeopardy (Tunguz, 1019) 0.274 0.327 0.264 0.288 0.347
LAMBADA (Paperno et al., 2016) 0.727 0.628 0.510 0.622 0.755
SQuAD (Rajpurkar et al., 2016) 0.845 0.802 0.694 0.780 0.836
TriviaQA (Joshi et al., 2017) 0.389 0.535 0.443 0.456 0.526
WikidataQA (BIG-bench, 2023) 0.689 0.643 0.658 0.663 0.719

Table 7: Byte-level ensemble results. We report the performance (accuracy) of a byte-level ensemble of three models on
downstream evals, along with the individual performance of each model. We see that the ensemble is competitive with the
best individual model on each task and consistently outperforms the average performance across the three models. We give
more details regarding the evaluation in Appendix B.2.

4.4. Byte-Level Proxy-Tuning

In addition to additive ensembles over probabilities, the
logit-level predictions of multiple LMs can be combined
via arithmetic, with individual LMs acting as “experts” (if
their predictions are combined additively) or “anti-experts”
(if subtractively) (Liu et al., 2021; Li et al., 2023; Shi et al.,
2024b; Gera et al., 2023; Chuang et al., 2024; Shi et al.,
2024a). In particular, this form of ensembling can be used
to achieve the effect of tuning a large pretrained LM without
accessing model weights. To see how this can be done, note
that clearly for logit vectors

ℓtuned = ℓbase + (ℓtuned − ℓbase).

The idea of proxy-tuning (Liu et al., 2024a) is to approx-
imate the term ℓtuned − ℓbase using the difference be-
tween a pair of tuned and base proxy models ℓexpert −
ℓanti-expert. In our experiments, we proxy-tune a strong base
model, LLAMA-3.1-8B, using OLMO2-1B-INSTRUCT
and OLMO2-1B as the expert and anti-expert, respec-
tively, which together represent a strong post-training recipe
(OLMo et al., 2024; Lambert et al., 2025).

Shown in Table 8, we find that the proxy-tuned LLAMA

3.1 (Team, 2024a) model consistently outperforms the base
model alone as well as the small tuned expert. This high-
lights a practical application of ByteSampler to “apply” post-
training to base models without actually training them, thus
disentangling the quality of the base model from that of the
post-training recipe.

5. Conclusion
In this work, we introduced ByteSampler, an algorithm
that eliminates the Prompt Boundary Problem by convert-
ing any BPE tokenizer-based language model into a byte-
level model while preserving its generative distribution at
the text-level. Interesting extensions of this method in-
clude automatic support for arbitrary pretokenizers (dis-
cussed in Appendix C), generalization to other tokenization
schemes (such as Unigram (Kudo & Richardson, 2018),
Wordpiece (Schuster & Nakajima, 2012), and other variants
of BPE (Provilkov et al., 2020; Chizhov et al., 2024)), and
speculative-decoding at the byte-level.

Beyond correcting sampling artifacts at the prompt-
boundary—which is useful in its own right in many
situations—the ability to unify vocabularies at inference
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Task Metric LLAMA 3.1 OLMO2 INST. LLAMA 3.1 (Proxy Tuned)

AlpacaEval 2 LC winrate 0.88 33.5 33.5
GSM8K 5 ICE, CoT, EM 55.3 51.9 76.6
MMLU 0 ICE, CoT, MC 27.8 35.2 59.5

Table 8: Proxy tuning results. We report performance on downstream evaluations when proxy-tuning LLAMA-3.1-8B
using OLMO2-1B-INSTRUCT as the expert and OLMO2-1B as the anti-expert. We see that the proxy tuned model gains
the instruction-following capability (AlpacaEval 2) and chain-of-thought capabilities (GSM8K, MMLU) of OLMO2-1B-
INSTRUCT while also benefiting from its larger size, allowing it to surpass the expert’s individual performance. For details
regarding the evaluation, see Appendix B.3.

time enables many forms of model composition, including
ensembles of (and post-training transfer between) models
with different tokenizers. Other applications of this technol-
ogy include (i) byte-level knowledge distillation to transfer
skills more effectively between models with different to-
kenizers, (ii) rapid post-training research leveraging the
fact that a post-training recipe (represented by a pair of
proxy-tuning experts) can be applied to any number of mod-
els without additional training, (iii) routing dynamically
between models (Zheng et al., 2025) during generation with-
out requiring matching tokenizers, and potentially (iv) more
convenient LM-powered compression of byte streams.

In general, whenever (mismatching) tokenizers represent an
obstacle or inconvenience, our method has the potential to
completely bypass it at the cost of (minimally) increased
inference compute. We hope that this will prove useful to
LM researchers and users alike.
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A. Related work
Byte-level language models Although our method is able to convert a model using a traditional BPE tokenizer into a
byte-level model, allowing it to be used in situations where byte-level models are required, it may not enjoy the benefits of
being trained natively at the byte level. Training byte-level models are an active area of research (Clark et al., 2022; Xue
et al., 2022; Wang et al., 2024). However, byte-level language models may still implicitly aggregate multiple bytes into a
single “patch” to help reduce the required sequence length. These patches can be segmented either statically (Tay et al.,
2022; Yu et al., 2023) or dynamically (Nawrot et al., 2023; Pagnoni et al., 2024; Ahia et al., 2024) which may lead to issues
analogous the Prompt Boundary Problem at the patch level, depending on the architecture.

Tokenizer transfer Methods to adapt a model to use tokenizers other than the one they are trained with have been
proposed. These methods may rely on interventions during training (Chen et al., 2023) continued training on a subset of
the model with the new tokenizer (Marchisio et al., 2023), careful initialization of a new embedding matrix, followed by
fine-tuning (Minixhofer et al., 2022; Gee et al., 2022; Tran, 2020; Liu et al., 2024c; Dobler & De Melo, 2023), or may not
require additional training at all (Minixhofer et al., 2024). While these methods can, in principle, be used to convert any
model into a byte-level model, they will inevitably introduce some distortion into the model’s sampling distribution.

Ensembles of language models Many methods to address the mismatching vocabularies one counters when ensembling
models have been proposed. These include bridging the vocabularies using a mapping based on model features (Huang
et al., 2024) or edit distance (Mavromatis et al., 2024) as well as sampling from the union (Yu et al., 2024) or intersection
(Xu et al., 2024b) of multiple vocabularies. There are also several methods that sample multiple tokens of continuation from
each model and then select the best one using a scoring metric (Liu et al., 2024b; Xu et al., 2025; Lv et al., 2024). For a
survey of such methods, including ones that require training or additional data, see Chen et al. (2025). However, unlike our
exact method, all of these methods may introduce distortion into the model’s outputs.

Word level probabilities The popular decision to include whitespace with the following word in most modern tokenizers
presents a challenge when computing the next word probability (Oh & Schuler, 2024; Pimentel & Meister, 2024), which is
closely related to the Prompt Boundary Problem.

Nondeterministic tokenizers Our analysis crucially relies on the determinism of BPE, however nondeterministic tokeniz-
ers such as Unigram (Kudo, 2018) and BPE dropout (Provilkov et al., 2020) are of interest to the community. Lundberg
(2023) remarks that nondeterministic tokenizers may reduce the severity of the prompt boundary problem, but it cannot do
so perfectly. It is possible that more advanced techniques may be able to fully correct the PBP for these tokenizers as well.

B. Experimental details
In this appendix, we report additional experimental details.

B.1. Calculation of the naive method

The naive method is simple to state. We merely report the average probability that the next character sampled after the
prompt will be the correct one. However, some complexity arises when considering multibyte characters, which occur
occasionally in English text and essentially constantly in Chinese. A multibyte character may correspond to multiple tokens
under a byte-level BPE tokenizer, which means that multiple sampling steps may be necessary to form the next character.
To handle this properly, we compute the tree of all token sequences which start with the desired character (depicted in
Figure 2b) and score the log-probability of all of its leaves to determine the exact probability that the desired next character
will be generated. Note that we do not perform the pairwise pruning in this step, as we describe in Figure 2c and Section 3.1.
It is not strictly necessary, since a single character can be at most four bytes under UTF-8, so the size of the tree will always
be small, and omitting the pruning step presents the baseline in the best light.

B.2. Details for ensemble evaluations

For the ensemble evaluations we use few-shot prompting with five in-context examples for each query. We choose the
few-shot examples randomly to avoid any bias and ensure that the question being tested is not among the examples. We
sample the continuation greedily and test whether the resulting text contains the correct answer.
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1. Arithmetic contains simple arithmetic problems (Brown et al., 2020).8 We use the 2da, 2dm, and 2ds splits for
addition, multiplication, and division of (up to) 2-digit numbers.

2. DROP contains questions about passages, potentially requiring reasoning over multiple pieces of information in the
passage (Dua et al., 2019).

3. Jeopardy contains open-ended questions from the “Jeopardy!” quiz show (Tunguz, 2019).

4. LAMBADA contains narratives without the last word, which is inferrable given the context (Paperno et al., 2016).
This task requires models to attend to the full narrative instead of only the local context.

5. SQuAD contains passages paired with questions about the passage (Rajpurkar et al., 2016). The answer is always a
span from the passage.

6. TriviaQA contains open-ended questions about world knowledge (Joshi et al., 2017).

7. BIG-bench WikidataQA require models to complete factual statements with the correct continuation (BIG-bench,
2023).

To save compute, we randomly subsample large datasets down to 5,000 examples.

B.3. Details for proxy-tuning evaluations

Following Liu et al. (2024a), we use the proper instruct template for Olmo 2 Instruct and use a basic Question/Answer
format for the base models. Unlike in the previous section, we use a more varied evaluation setup.

1. For AlpacaEval 2, we prompt using the instruction as the question and take the response as the answer. This is done
with no chain of thought prompting or in-context examples. We use the default AlpacaEval 2 judge and report the
length-controlled win-rate in our results.

2. For GSM8k, we use five in-context examples, which naturally cause the model to produce chains of thought. We
extract the final number produced by the model and test if it exactly matches the answer (removing any commas).

3. For MMLU, we use no in-context examples and use the chain-of-thought prompt from Lambert et al. (2025) to elicit
chains of thought resulting in a multiple-choice answer. Unlike with the other datasets, we do not truncate MMLU to
5,000 examples since its examples are distributed across various domains. We report the multiple-choice accuracy in
our results.

These evaluations were intended to benefit from instruction-following capabilities and general knowledge model perfor-
mance.

B.4. Compute resources

Our experiments were conducted with a variety of computing resources, including Nvidia A40, L40S, and A100 GPUs.
Our method only requires one GPU at a time and features minimal memory overhead compared to regular sampling. We
estimate that the total compute required to reproduce all of our results is less than 200 L40S hours.

B.5. Optimizations

To ensure that our method is practical we employ a number of optimizations. In order to quickly compute the Valid Cover
Tree, we maintain a cache of token masks which are valid following a given token and a separate cache for masks specifying
tokens that begin with certain common byte prefixes. Then given a node of the tree, we can quickly expand it, as described
in Algorithm 1 by fetching the relevant masks from both caches and intersecting them on the GPU to find the valid children
to add.

When evaluating the probabilities of the leaves of the Valid Cover Tree, we use 4D attention masks (S., 2024) to perform
inference for the entire tree in a single query. Additionally, while sampling we use KV-caching to avoid redundant

8https://huggingface.co/datasets/EleutherAI/arithmetic
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computation. Combining these two techniques can lead to excessive memory usage because tokens corresponding to
branches that are ultimately not selected by sampling take up space in the KV cache. To address this, we implement a
copying garbage collector for the KV cache which discards such tokens from the cache. Since the GC can be run one layer
at a time, its total memory overhead is negligible. When using the GC, the KV cache will store exactly one set of keys and
values for each token in the current Valid Cover Tree, reducing the memory overhead compared to naive sampling to a
constant.

We also implement batching, allowing one to sample multiple sequences of bytes in parallel, which permits better utilization
of GPU resources.

B.6. Byte-level vs Character-level BPE

Throughout this work, we assume that BPE is carried out at the byte level. However, the alternative, performing BPE at the
character level, is also a popular choice. Our method can be extended to character-level BPE merges in a natural manner. In
particular, one can perform our method at the character level instead. All the analysis we provide, including the guarantees
for the Valid Cover Tree in Section 3.1 continue to hold regardless of the choice of base vocabulary. The only additional
logic that needs to be implemented revolves around the handling of byte fallback, which is a feature that allows the tokenizer
to represent characters that were not included in the base vocabulary explicitly using their Unicode encoding. To handle this
properly, we will need to “reset” the tree whenever we encounter a character encoded using byte fallback, since BPE merges
do not interact with byte fallback (essentially the byte encoded character acts as a pretokenization boundary). In order to
condition on an arbitrary byte sequence, we must consider the possibility that a partial character will be completed to form
one not in the base vocabulary, necessitating the addition of a “byte fallback” branch to the Valid Cover Tree. In all other
regards, the approach is the same as the one we outline in Section 3.

C. Handling pretokenization
Pretokenization is typically implemented using a regular expression: beginning at the start of the text, the longest prefix
matching the regular expression is found greedily. This prefix is then extracted into a pretoken and the process is repeated
on the suffix. This continues until the entire string has been processed. In order to properly handle pretokenization, we must
also perform this splitting online. Due to the expressivity of regular expressions, this requires maintaining a tree of possible
splits, which are resolved once enough text is observed, to conclude whether the regex will match or not.

C.1. General solution

In principle, the implementation of this idea is straightforward. We can convert any splitting regular expression into a
finite automaton, which allows us to detect matches incrementally. By performing connectivity analysis on the automata’s
state graph, we can infer (i) whether there exists a suffix that could produce a regex match (which would mean that the
pretokenization might not end up splitting at this point) and also (ii) whether there exists a suffix which would cause the
regex to stop matching at this point (which would mean that the pretokenization might end up splitting at this point). This
analysis can be precomputed for each state in the automaton, allowing these checks to be performed in constant time for
each new byte.

If the verdict is ambiguous (both splitting and not splitting are possible), then we add an additional subtree to the Valid cover
Tree which assumes that the split has indeed happened. The portion to the left of the split can only be tokenized one way
(since its endpoint is fixed), while the portion to the right of the split will be isomorphic to a new Valid Cover Tree for just
the portion of the prefix following the hypothetical split. As we continue to add new bytes, we maintain both branches of the
tree, just as we would normally. Once enough bytes are added, we can determine conclusively which option was taken,
allowing us to discard the subtree corresponding to the opposite possibility.

Of course, it is possible that a new position may occur where the splitting cannot be determined conclusively before the first
one is resolved. This will necessitate further splitting of the tree (potentially in both subtrees). In general, this may lead to
trees of exponential size, but for typical pretokenizers in use today, we can still guarantee that the tree will have finite size.
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<bos> This is a
t

tes

Figure 4: Example Valid Cover Tree for prefix “this is a tes” with the OLMo 2 tokenizer.

<bos> def
e

ul

ule
eu

Figure 5: Example Valid Cover Tree for prefix “def eule” with the OLMo 2 tokenizer.

C.2. Practical solution

Unfortunately, the general solution we outlined in the previous section is difficult to implement in practice. First, most
regular expression engines in use today support matching features that are not strictly regular, which makes the conversion
of its regexes into automata impossible in the general case. While these features are not used by any pretokenizer we are
aware of, the possibility thereof has made it difficult to find routines that are able to perform this conversion for existing
regex engines.

To provide a correct implementation while avoiding the complexity of writing our own regex engine, we provide bespoke
handlers which are able to handle the pretokenization rules in common use. In general most pretokenization regular
expressions have the desirable property that any prefix of a match is also a match. We call this property closed under prefix.
This makes the detection of possible splitting points very easy, since once the regex stops matching new characters, we
know there is no suffix that can extend it. There are only a handful of rules which do not have this property:

• Most tokenizers have a lookahead rule which stops matching whitespace one before the last whitespace. Thus given
three spaces in a row, followed by a letter, the first two spaces would be one pretoken and the last space and letter
would form a second pretoken.

• Many tokenizers have a “contraction merging” rule which forces contraction suffixes such as 〈’ve〉 to be individual
pretokens. This is tricky because 〈’ve〉 is considered a match but 〈’v〉 is not.

We provide handlers for expressions that are closed under prefix, as well as the two special cases we listed above. This is
enough to correctly support all pretokenizers we are aware of.

D. Advanced decoding methods
In Section 3, we focused on showing that our method is “exact.” To be precise, this means that sampling bytewise using
our method and sampling normally give exactly the same distributions of output text (modulo invalid token sequences,
as we discussed in Section 2). However, this applies only when doing standard sampling from the model, and not when
transforming the distribution using popular decoding techniques such as greedy decoding, top-k, top-p (Holtzman et al.,
2020), or even temperatures other than 1. This is because these transformations have different effects when applied with
different granularities (clearly, greedily selecting the most likely next byte is not the same as greedily selecting the most
likely next token). It is not immediately clear what advantages or disadvantages are gained by transforming the LM’s textual
distribution in this way, and we think this presents an interesting direction for future work.

E. Example Valid Cover Trees
Here we show complete Valid Cover Trees for several example prefixes. Unlike the tree in Figure 2c, we show the actual
tree as calculated by our algorithm. However to allow them to fit on a page, we choose to display only the internal nodes of
the tree (not the leaves). To denote where the hidden leaves would be, we display nodes that have leaves in bold font.

We hide the leaves because it is typical for nodes that do have leaves to have dozens or even hundreds of them. To see how
this can occur, imagine a prompt that ends on a space, and an internal node that ends right before that space. The node’s
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935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
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962
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965
966
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968
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971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

<bos> B PE Token iz

at

ati

atio

Figure 6: Example Valid Cover Tree for prefix “BPE Tokenizatio” with the OLMo 2 tokenizer.

<bos> ind uctive

hyp

hypo the

hypothe

Figure 7: Example Valid Cover Tree for prefix “inductive hypothe” with the OLMo 2 tokenizer.

<bos> 日本 的 首 都是 东京 ， 中国的
首l

首都l

Figure 8: Example Valid Cover Tree for prefix “日本的首都是东京，中国的首都” with the Qwen3 tokenizer. We use l
to denote nodes with leaves omitted.

children will be all valid tokens that begin with a space. Most tokenizers have tens of thousands of tokens which begin with
a space and nearly all of them will be valid continuations.

While this may sound problematic, we only need to query the next token distribution for the parent once in order to score all
of its children, so this can be done efficiently in combination with the masking cache we describe in Appendix B.5.
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