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Abstract

Hallucinations remain a major safety bottleneck for large language models (LLMs), neces-
sitating effective detection methods such as quantifying uncertainty in the model’s gener-
ations. While traditional uncertainty measures based on token likelihoods fail to capture
semantic uncertainty, recent approaches like Semantic Entropy (SE) and Kernel Language
Entropy (KLE) focus on isolating the underlying semantic uncertainty of the LLM. However,
these methods impose significant computational overhead beyond generating samples: they
require numerous natural language inference (NLI) calls to compare outputs, limiting their
use in latency-sensitive applications. We introduce Semantic Embedding Uncertainty
(SEU), a lightweight metric that directly measures semantic disagreement in embedding
space. Like SE and KLE, SEU requires multiple model outputs, but crucially simplifies the
subsequent analysis. SEU computes uncertainty as the average pairwise cosine distance be-
tween sentence embeddings—requiring only M embedding model forward passes followed by
O(M?) dot products, instead of O(M?) NLI forward passes. SEU thus facilitates real-time
semantic uncertainty quantification in applications where latency is paramount. Experi-
ments on question answering and reasoning tasks demonstrate that SEU achieves compa-
rable or superior accuracy to SE and KLE while reducing inference latency by up to 100x,
enabling its deployment in resource-constrained settings.

1 Introduction

Large language models have transformed the landscape of artificial intelligence, demonstrating remarkable
capabilities in code generation, medical record analysis, and natural conversation (The Gemini Team,), [2023;
Touvron et al., 2023a}; |OpenAl| |2023; [Brown et al., |2020)). Yet beneath their fluent outputs lies a critical
vulnerability: these models routinely generate plausible-sounding information that is entirely fabricated, a
phenomenon known as hallucination (Ji et al., [2023; [Filippova) [2020; [Maynez et al., |2020; Tian et al., [2024)).
When a medical AT assistant confidently states incorrect drug interactions or a legal chatbot cites non-existent
case law, the consequences extend far beyond mere inconvenience. As LLMs increasingly support high-stakes
decisions in healthcare (Singhal et all |2023)), finance, and legal practice (Weiser, [2023)), our ability to detect
when these systems venture beyond their knowledge becomes paramount for safe deployment.

Traditional uncertainty quantification fails for natural language. Classical approaches like Bayesian methods
(Wilson & Izmailovl 2020)), ensembles (Lakshminarayanan et al., [2017), and Monte Carlo dropout (Gal &
Ghahramani, 2016)) measure confidence through token probabilities. But these probabilities conflate two
fundamentally different uncertainties: what to say (semantic) versus how to say it (lexical). Consider
this problem: A model answering “What is the capital of France?” assigns equal probability to “Paris is
the capital” and “The capital city is Paris”. Traditional metrics interpret this probability mass spread as
uncertainty, yet the model knows the answer perfectly and such uncertainty is simply due to the phrasing.
Meanwhile, a model confidently generating “Lyon is the capital of France” appears certain. This conflation
becomes particularly problematic for hallucination detection as a model generating multiple paraphrases of
a correct fact can appear uncertain, while one confidently producing a single fabrication appears certain.
For a vocabulary size |T| and sentences of length N, computing exact semantic uncertainty would require
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Figure 1: Hallucination detection performance (AUROC) versus computational runtime trade-off for se-
mantic uncertainty methods across three question-answering datasets. Each subplot shows AUROC scores
plotted against average runtime for post-processing the generated responses, with varying numbers of sam-
pled responses (m = 2, 4, 6,.. shown as different points). As the number of samples (M) increases, semantic
methods generally show improved AUROC performance at the cost of increased post processing runtime,
with runtime scaling particularly steeply for NLI-based methods. SEU (Semantic Embedding Uncertainty)
achieves comparable AUROC to state-of-the-art KLE (Kernel Language Entropy) while operating approxi-
mately 100x faster. DSE (Discrete Semantic Entropy) shows intermediate performance and runtime. Results
are averaged across six language models (Gemma 2-9B/27B, Llama 3-8B/70B, Mistral 7B, Mixtral 8x7B).

integrating over |T|" possible sequences, which is an intractable problem that forces us to use approximations
(Kuhn et al. 2023).

Semantic Entropy (SE) (Kuhn et al.,2023)) introduced a simple idea to estimate semantic uncertainty: sample
multiple complete responses, then cluster them by meaning. Specifically, SE groups responses into semantic
clusters by checking bidirectional entailment, ensuring that paraphrases are merged into a single cluster
while distinct meanings form separate ones. By computing entropy over these semantic clusters rather than
tokens, SE measures semantic uncertainty.

While SE requires access to token probabilities to weight clusters, Discrete Semantic Entropy (DSE) (Far-
quhar et all 2024a) adapts this approach for black-box settings by treating each sampled generation as
equally likely. DSE uses the same bidirectional entailment clustering as SE but approximates cluster prob-
abilities using empirical frequencies. This modification enables uncertainty quantification for closed-source
APIs where internal probabilities are inaccessible, though DSE still inherits SE’s computational bottleneck
of requiring O(M?) NLI comparisons for clustering.

However, SE’s binary clustering based on a strict entailment criterion can miss nuances. For example, it
treats “discovered by Kolmogorov” and “discovered by Laplace” as equally different from “discovered by
Shakespeare” when clearly the first two are more related. Kernel Language Entropy (KLE) fixed this by
replacing binary clustering with continuous similarity scores (Nikitin et al., [2024). Using natural language
inference (NLI) model probabilities to build a semantic similarity matrix, KLE computes von Neumann
entropy over continuous representations. This change provides more nuanced comparisions between responses
and achieves state-of-the-art performance across benchmarks.

Despite their empirical success, semantic uncertainty methods face a significant computational barrier. The
computational cost stems from their reliance on pairwise semantic comparisons: for M sampled responses,
both SE and KLE require O(M?) forward passes through an NLI model to assess whether each pair exhibits
bi-directional entailment. In deployments with M = 10 samples, this translates to up to nearly a hundred
NLI model forward passes. Our experiments show these operations push total runtime into multi-second
territory which can be prohibitive for applications expecting sub-second responses.

The fundamental question thus becomes: can we design a semantic uncertainty method that satisfies three
critical requirements: First, it must maintain black-box compatibility, working with API-only models
where internal probabilities are inaccessible, which is a key strength inherited from DSE and KLE. Second, it
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Figure 2: Hallucination detection performance (AUROC) as a function of the number of sampled responses
(M) for different uncertainty quantification methods, averaged across six language models. SEU maintains
competitive performance with KLE across varying sample sizes while requiring significantly less computation.
The performance gap between semantic methods (SEU, KLE, DSE) and token-level methods (G-NLL) widens
as more samples are used, highlighting the importance of semantic-level uncertainty quantification.

should preserve KLE’s continuous semantic representation, which demonstrably improves uncertainty quan-
tification by capturing fine-grained semantic relationships rather than forcing binary equivalence decisions.
Third, and crucially, it must eliminate the computational bottleneck of O(M?) NLI forward passes that both
DSE and KLE require for computing bidirectional entailment between every pair of responses.

The key insight lies in recognising that the geometric structure of embedding space already encodes the
semantic relationships that KLE use a NLI model to compute. Modern sentence embeddings place seman-
tically similar text nearby in vector space. When KLE uses NLI comparisons to determine that “discovered
by Kolmogorov” relates more closely to “discovered by Laplace” than to “discovered by Shakespeare”, it is
estimating the structure that embeddings can provide instantly.

To exploit this observation, we propose Semantic Embedding Uncertainty (SEU), a lightweight metric that
directly leverages embedding space for semantic uncertainty quantification. Rather than computing bidi-
rectional entailment between all response pairs, which requires O(M?) NLI forward passes, SEU embeds
each response once and computes pairwise cosine similarities. This replaces expensive neural network for-
ward passes with simple linear algebra, requiring M embedding computations plus O(M?) dot products
that modern hardware accelerates through parallelisation. SEU maintains all three critical requirements:
black-box compatibility (only needs text outputs), continuous semantic representation (distances capture
degrees of similarity), and practical runtime (milliseconds instead of seconds). By recognising that embed-
dings already solve the semantic similarity problem, SEU delivers the benefits of semantic uncertainty at
significantly faster speeds.

2 Background

2.1 Semantic Entropy

Semantic Entropy (SE) (Kuhn et all |[2023)) aims to distinguish semantic uncertainty from lexical variation.
Given input z, SE samples M responses s, s ... s(M) using temperature sampling [Holtzman et al|
1D and records their probabilities P(s(m) |z) when available. The key idea lies in clustering responses by
meaning rather than analysing raw token probabilities. SE groups responses through bidirectional entailment:
responses s; and s; share a cluster if and only if s; entails s; AND s; entails s;, as determined by an NLI
model (e.g., DeBERTa—Large—MNLI ) The clustering proceeds greedily, each response either
joins an existing cluster if it bidirectionally entails any member, or forms a new cluster. This creates
the computational bottleneck: determining cluster membership requires O(M?) NLI forward passes. SE
computes entropy over the resulting semantic clusters. Each cluster’s probability equals the sum of its
members’ probabilities: P(C;|x) = Zsjeci P(s;|z). The final uncertainty score is the Shannon entropy over
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these clusters: SE(z) = — ), P(C;|z)log P(C;i|z). High entropy signals responses spread across multiple
semantic meanings, indicating potential hallucination.

For API-only models without access to P(s|x), Discrete Semantic Entropy (DSE) (Farquhar et al.l 2024b)
approximates cluster probabilities using empirical frequencies: P(C;|x) =~ |C;|/M. While this enables se-
mantic uncertainty for closed-source models, DSE still requires the same O(M?) NLI comparisons which is
the primary computational barrier for real-time deployment.

2.2 Kernel Language Entropy

Kernel Language Entropy (KLE) (Nikitin et al., [2024]) extended SE by replacing binary clustering with
continuous semantic similarity. Given input z, KLE samples M responses s, s(®) .. s() and con-
structs a weighted semantic graph Ggen where nodes represent responses and edge weights encode se-
mantic similarity. To compute edge weights, KLE uses an NLI model (e.g., DeBERTa) that outputs
probabilities for three classes: entailment, neutral, and contradiction. The weight W;; between responses
s and s\ is a weighted combination of both entailment and neutrality probabilities in both directions:
Wi; = f(NLI(s®, s()) NLI(s\9), s))). This creates a soft similarity score rather than SE’s binary equiva-
lence. Critically, KLE must compute all M? pairwise weights to construct the kernel matrix. While DSE can
terminate comparisons once cluster membership is determined, KLE requires every pairwise NLI evaluation
upfront.

From the weight matrix W, KLE derives a kernel matrix K., using graph kernels like Heat Kernel (Kon-
dor & Lafferty, [2002)) that capture semantic structure. The final uncertainty score is the von Neumann
entropy of the kernel matrix. This continuous approach uses nuanced semantic relationships, recognising
that “discovered by Kolmogorov” relates more closely to “discovered by Laplace” than to “discovered by
Shakespeare.” However, the mandatory O(M?) NLI forward passes make KLE even more computationally
expensive than DSE, which can exploit early cluster assignment to reduce comparisons in practice.

3 Methods

3.1 Semantic Embedding Uncertainty

Both SE and KLE require O(M?) NLI forward passes—a computational barrier that prevents real-time
deployment. Yet KLE demonstrates that continuous semantic similarity significantly improves uncertainty
quantification over binary clustering. The question becomes: can we preserve KLE’s continuous semantics
while eliminating its computational bottleneck? Modern sentence embeddings already encode the seman-
tic similarity that KLE laboriously computes. When embedding models like Sentence-BERT (Reimers &
Gurevychl 2019) map text to vectors, they place semantically similar sentences nearby in embedding space.
Thus, two paraphrases land close together; contradictory statements sit far apart. This spatial structure
captures precisely the continuous semantic relationships that KLE extracts through expensive NLI compar-
isons.

We propose Semantic Embedding Uncertainty (SEU), which directly exploits this geometric structure.
Rather than computing M? NLI forward passes to build a similarity matrix, SEU simply embeds each
response once (M forward passes through an embedding model) and measures distances in embedding space.
The computational gains are significant because we reduce neural network forward passes from O(M?) to
O(M), and replace the remaining comparisons with fast vector arithmetic that modern hardware accelerates
efficiently.

The SEU algorithm works as follows. Given an input query z, we sample M output sequences
s 5@ s(M) from the language model’s predictive distribution p(s|x). We then encode each sequence
using a pretrained sentence embedding model ¢, yielding embeddings eV, e, ..., ™M) where e(® = B(s@).
Finally, we quantify semantic uncertainty as one minus the average pairwise cosine similarity:
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9 M-1 M
SEU(J)) =1- m Z COS (ei,ej), (1)
i=1 j=i+1
where cos (e;,e;) = —2%_ denotes the cosine similarity between embedding vectors e; and e;. This
J lles |l lle;l i)

formulation ensures SEU ranges from 0 (perfect agreement) to approximately 1 (maximal disagreement),
providing an interpretable uncertainty score.

3.2 Design Rationale
3.2.1 Why Cosine Similarity
Modern sentence embedders like SimCSE (Gao et al., [2021) and NV-EMBED (Lee et al., [2025) are trained

specifically to optimise cosine similarity often through contrastive learning. When these models see “Paris
is the capital of France” and “France’s capital city is Paris”, they map them to nearly parallel vectors.
This training objective directly aligns with our goal of measuring semantic agreement. Furthermore, cosine
similarity is a dominant metric for semantic comparison benchmarks. The MTEB benchmark
which forms the standard for evaluating embedding models uses cosine similarity as one of its
primary metric across datasets.

The embedding-based approach offers a significant computational advantage over NLI-based methods. While
SE and KLE require O(M?) forward passes through an NLI model, SEU needs only M forward passes through
an embedding model followed by % dot product operations. These dot products execute efficiently
on modern hardware through vectorised operations, reducing the computational bottleneck from NLI model
inference to simple dot products.

SEU assumes that the embedding model provides a meaningful semantic neighbourhood structure for the
target domain, i.e., that embedding cosine similarity correlates with semantic equivalence among LLM
responses. When this assumption holds, SEU approximates the pairwise semantic similarity that KLE
computes via NLI inference. We validate this assumption empirically in Appendix [A4] showing strong
agreement between embedding similarity and NLI-based similarity (Spearman p = 0.86, Pearson r = 0.75).
Practitioners can verify applicability to new domains by computing this correlation on a small held-out
sample; the MTEB leaderboard (Muennighoff et al., [2022)) also provides domain-level quality scores to guide
embedding model selection.

SEU’s modular architecture offers a potential advantage for domain adaptation: the embedding model can be
swapped without retraining the UQ pipeline. For instance, domain-specific embeddings such as BioBERT
or ClinicalBERT (Alsentzer et all [2019) for medical text, FinBERT for
finance, and LEGAL-BERT for legal settings could serve as drop-in replacements. We note that this remains
an architectural affordance rather than a demonstrated capability; empirical validation in specialised domains
is left for future work.

4 Experiments

We evaluate SEU against strong established uncertainty quantification baselines. Our comparison includes
greedy negative log-likelihood (G-NLL), which has been shown to outperform NLL and SE in some cases, as a
single-sample baseline (Aichberger et al. [2024)), Discrete Semantic Entropy (DSE) for black-box evaluation
(Farquhar et al. 2024b), Kernel Language Entropy (KLE) as the current state-of-the-art
, and our proposed SEU. We follow these prior works and measure each method’s ability to detect
hallucinations using area under the receiver operating characteristic curve (AUROC).

Our experiments span six language models: Gemma 2 (9B and 27B) (Gemma Team, 2024), Llama 3 (8B
and 70B) (Touvron et all 2023b), Mistral 7B (Jiang et al| |2023), and Mixtral 8x7B (Jiang et all 2024)).
We use instruction tuned versions of these models. This selection covers both dense and mixture-of-experts




Under review as submission to TMLR

Table 1: Hallucination detection performance (AUROC) across four question-answering datasets and six
language models. Values show mean and standard error over multiple random seeds. SEU achieves perfor-

mance within 2-3 points of KLE while running 100x faster.

Dataset Model G-NLL SEU KLE DSE
Gemma 9B 0.682+£0.017 0.710£0.014 0.715+£0.028 0.689 £ 0.026
Gemma 27B  0.648 £0.019 0.698 £0.001 0.718 £0.009 0.689 £ 0.011
<ZC Llama 8B 0.730 £ 0.010 0.678 £0.005 0.701 £0.011 0.656 £ 0.013
d Llama 70B 0.620 £0.025 0.671£0.025 0.713+£0.015 0.652+0.014
Mistral 7B 0.674+0.022 0.690£0.011 0.737£0.016 0.697 £0.017
Mixtral 24B  0.602 £0.019 0.651 £0.005 0.674+0.015 0.622 +0.016
Gemma 9B 0.732+£0.014 0.694 £0.004 0.690+£0.023 0.509 £ 0.018
Gemma 27B  0.681 £0.005 0.712£0.017 0.668 £0.005 0.469 £ 0.004
E Llama 8B 0.595 +£0.025 0.629 £0.048 0.592 £ 0.008 0.491 £ 0.007
; Llama 70B 0.517 £0.018 0.641 £0.007 0.651 £0.002 0.559 £ 0.004
Mistral 7B 0.602 +£0.003 0.543 £0.019 0.572+£0.019 0.514 £ 0.010
Gemma 9B 0.640 £0.010 0.702£0.025 0.712+£0.029 0.697 £ 0.026
< Gemma 27B  0.583 £0.017 0.620 £0.008 0.624 +£0.012 0.604 £ 0.005
%’ Llama 8B 0.679+0.018 0.711+£0.038 0.747£0.040 0.715+£0.031
= Llama 70B 0.610 £0.040 0.611£0.011 0.650 £0.018 0.593 £0.017
= Mistral 7B 0.647 £0.022 0.730 £0.008 0.751 £0.014 0.702 £ 0.008
Mixtral 24B  0.567 £0.001  0.632£0.032 0.657 £0.021 0.566 % 0.032
- Gemma 9B 0.692 +£0.016 0.700£0.019 0.714+£0.017 0.681 £0.018
g Gemma 27B  0.678 £0.002 0.722£0.008 0.7224+0.011 0.700 £ 0.009
©) Llama 8B 0.732+£0.013 0.724£0.011 0.730£0.029 0.680 £ 0.017
g Llama 70B 0.691 £0.014 0.682£0.018 0.710+£0.022 0.663 £ 0.016
Mistral 7B 0.668 £0.025 0.705+0.027 0.722+£0.023 0.692 £ 0.024
Mixtral 24B  0.636 £0.007 0.675£0.021 0.727+£0.024 0.680 £ 0.015

architectures, from efficient 7B models to powerful 70B models. This range ensures our findings generalise
beyond specific model families or sizes.

For each query, we vary the number of responses M € {2,...,10} using temperature sampling (T=1) and
encode them with bge-large-en-v1.5 (Xiao et al., 2023, a sentence transformer that balances efficiency with
representation quality. We also compare it against Qwen3-Embedding-0.6B (Zhang et al.l 2025)) in figure
For SE and KLE we use DeBERTa-Large-MNLI (He et al., [2021])), following their original implementations.
We conduct timing experiments on a single RTX-A6000 GPU using mixed-precision inference, with full
implementation details in Appendix [A] This choice ensures that the NLI model and the embedding model
are of comparable size (approximately 406 million and 335 million parameters, respectively).

Following the “LLM-as-a-judge” protocol, we evaluate answer correctness with the Llama 3.3-70B-Instruct
model (Grattafiori et al., 2024). We prompt this judge using the exact rubric and templates proposed by
Santilli et al.| (2024)), ensuring our evaluation is immune to the length—metric interaction they uncovered.

4.1 Datasets

We evaluate on four standard benchmarks that stress different aspects of model knowledge. Natural ques-
tions subset of FLAN (Wei et al, 2022) tests general instruction-following across diverse tasks. MATH-500
(Hendrycks et al.l [2021) challenges mathematical reasoning where hallucinations often manifest as incorrect
computational steps. TriviaQA (Joshi et al.l |2017)) probes factual knowledge across broad domains. Nat-
ural Questions Open (NQ Open) (Kwiatkowski et al., [2019) also requires retrieving specific facts from the
model’s parametric memory. Together, these datasets provide comprehensive coverage of scenarios where
hallucination detection matters most.
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4.2 Main Results

To evaluate SEU comprehensively, we address three key questions: (1) Does SEU achieve comparable hallu-
cination detection performance to state-of-the-art methods like KLE while offering superior computational
efficiency? (2) How does SEU’s performance vary across different datasets and language models? (3) How
sensitive are semantic uncertainty methods, including SEU, to experimental parameters such as the number
of sampled responses (M) or the choice of embedding model?

Efficiency Analysis. Figure [l| presents our core findings on the trade-off between detection accuracy (AU-
ROC) and computational runtime. While KLE achieves high AUROC scores, it incurs substantial runtime
costs, often taking seconds per evaluation due to its reliance on numerous NLI forward passes. In contrast,
SEU matches or closely approaches KLEs AUROC values while executing in milliseconds, delivering up to
a 100x speed-up over SE and KLE. This positions SEU uniquely for latency-sensitive applications, enabling
real-time semantic uncertainty quantification without compromising on effectiveness. Throughout our ex-
periments, runtime refers to the post-processing overhead of each UQ method, i.e., the time to compute an
uncertainty score from already-sampled responses. Sampling cost is shared across all methods and excluded
from comparisons.

Performance Variability Across Datasets and Models. Table [1| details AUROC performance across
six language models (Gemma 2, Llama 3, Mistral, and Mixtral) spanning 7B to 70B parameters, repre-
senting diverse training methodologies, tokenizers, and architectural choices. SEU demonstrates consistent
performance across this model diversity, maintaining a small gap with KLE overall.

On the FLAN dataset, which encompasses a wide variety of task types, KLE holds a slight edge, out-
performing SEU by 2-4 AUROC points across most models. Results on TriviaQA and NQ Open, both
factual question-answering benchmarks, show KLE maintaining moderate advantages of 2-3 AUROC points,
benefiting from its ability to detect fine-grained semantic distinctions.

However, on the MATH dataset, we observe an interesting reversal, SEU outperforms KLE for three of
the five models tested. models tested. Mathematical responses, often containing symbolic expressions and
structured reasoning, may not align well with NLI models trained primarily on natural language entailment.
SEU’s embedding-based approach proves more robust to these domain shifts, highlighting its strengths in
specialised domains.

Sensitivity to Experimental Setup. Figure [2] examines the impact of varying the number of sampled
responses M from 2 to 10. Semantic methods (SEU, KLE, DSE) exhibit steady AUROC improvements with
increasing M, as additional samples better reveal the model’s semantic distribution. In contrast, G-NLL,
relying on single-sample token probabilities, plateaus immediately. This underscores the need for larger M in
semantic methods to achieve peak performance, but it also amplifies computational costs—for KLE, scaling
to M = 10 requires up to 100 NLI calls, forcing a trade-off between accuracy and latency. SEU mitigates
this by making large M computationally feasible, allowing robust uncertainty estimation without latency
penalties.

Additionally, Figure 4] assesses sensitivity to embedding model choice, comparing bge-large-en-v1.5 ( 335M
parameters) against Qwen3-Embedding-0.6B ( 600M parameters). SEU’s performance remains stable across
these encoders, indicating low sensitivity to the specific embedding model as long as it provides high-quality
semantic representations.

5 Related Works

Hallucinations in LLMs: The challenge of hallucination detection in LLMs has become increasingly
important as these models are deployed in real-world applications. Various benchmarks have been developed
to evaluate this phenomenon, including TruthfulQA (Lin et al., |2021)), FactualityPrompt (Lee et al. 2022),
FActScore (Min et al., |2023), HaluEval (Li et all 2023al), and FACTOR (Muhlgay et al., |2023). Early
research on hallucinations primarily focused on issues in summarization tasks, where models would generate
content unfaithful to the source text (Maynez et all [2020; Durmus et al., 2020; |Wang et al.| [2020). This
work laid the foundation for understanding the broader challenge of hallucinations in LLMs.
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Figure 3: Hallucination detection performance (AUROC) across different language models on the FLAN
dataset, comparing three semantic uncertainty methods. The figure shows: (a) SEU maintains competitive
performance with KLE across all model scales while requiring much less computation, (b) performance
generally improves with model scale for all methods, and (¢) the gap between SEU and KLE remains
relatively consistent ( 2-4 points) regardless of model size.
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Figure 4: Impact of embedding model choice on SEU performance across three question-answering datasets.
BGE-large-en-v1.5 achieves higher AUROC than Qwen3-Embedding-0.6B on TriviaQA and FLAN, while
both models perform comparably on NQ Open. Results averaged across six language models.

Uncertainty Estimation Approaches: A significant body of work has explored methods to estimate
uncertainty in LLM outputs. Many of these approaches rely on comparing multiple model generations or
outputs by leveraging additional LLMs or by using the same LLM (Duan et al.,2023; |(Chen & Mueller; [2023;
Manakul et al. [2023; [Mindler et al., 2023). The field has seen a variety of innovative techniques, including
those proposed by Kadavath et al.| (2022), Mitchell et al|(2022), and Xu et al.|(2022), which leverage different
aspects of model behaviour to gauge uncertainty.

Knowledge Integration Methods: Another line of research focuses on integrating external knowledge
to verify and improve the factual accuracy of LLM outputs. The RARR framework (Gao et al., 2023) uses
search engines for knowledge retrieval and correction. Similarly, the Verify-and-Edit approach (Zhao et al.,
leverages external information sources. However, these methods face challenges in resolving conflicts
between model knowledge and retrieved information, as highlighted by [Shi et al. (2023). Additional work in
this area includes efforts by [Dziri et al. (2021)), [Peng et al. (2023)), and [Li et al.| (2023c), who explore various
techniques for grounding LLM outputs in external knowledge sources.

Generation and Fine-tuning Strategies: Researchers have also developed strategies to reduce hallucina-
tions during the generation process or through model fine-tuning. introduced factual-nucleus
sampling to balance output diversity and factual accuracy. Reinforcement learning from human feedback
(RLHF) has been employed by [Ouyang et al| (2022) and [Touvron et al(2023a)) to align LLMs with desired
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criteria, including truthfulness. Other approaches include careful curation of instruction-tuning data (Zhou
et al. 2023) and linguistic calibration techniques (Mielke et al., |2022). Recent work by [Tian et al.| (2024)
has further explored fine-tuning strategies specifically targeting factuality improvement.

Leveraging the Latent Space: An emerging area of research investigates the internal representations of
LLMs to understand and manipulate their behaviour. Studies have suggested the existence of a “truthfulness”
direction in the latent space of these models. For example, [Li et al| (2023b) proposed Inference-Time
Intervention to identify and modify factuality-related directions in model activations. |[Azaria & Mitchell
(2023)) introduced SAPLMA, suggesting that LLMs may have an internal awareness of their own inaccuracies.
This line of inquiry has been further developed by [Burns et al.| (2023, who explored methods for discovering
latent knowledge, and Marks & Tegmark| (2023]), who examined the geometry of truth representations in
LLMs. Additional insights have been provided by [Subramani et al| (2022)) and Zou et al.| (2023)), who have
explored techniques for understanding and manipulating the internal representations of these models. |[Kossen
et al.|(2024) further propose to directly predict the semantic entropy using probes acting on different hidden
layers of the LLM.

While the above approaches tackle hallucination detection from various angles like external knowledge inte-
gration, model fine-tuning, or internal representations—they either require access to model internals, external
resources, or expensive retraining. Our work specifically addresses the computational bottleneck in semantic
uncertainty methods (SE, DSE, KLE), which have proven effective but require expensive NLI computations.
Unlike methods that require model modifications, external knowledge bases, or access to internal states, SEU
works immediately with any LLM API. By recognising that modern embeddings already encode the seman-
tic similarities that existing methods laboriously compute through NLI, we achieve comparable uncertainty
quantification at 100x faster post-processing speed.

6 Conclusion

In this work, we introduced Semantic Embedding Uncertainty (SEU), a method that makes estimating se-
mantic uncertainty quantification significantly faster than current baselines. By recognising that modern
sentence embeddings already encode the semantic similarity that existing methods estimate through ex-
pensive NLI comparisons, SEU achieves comparable hallucination detection performance to state-of-the-art
methods while operating 100x faster. Our experiments across six language models and multiple datasets
demonstrate that SEU maintains within a few AUROC points of KLE while reducing computational require-
ments from O(M?) NLI forward passes to M embedding computations plus simple dot products. Because
KLE and DSE operate at a multi-second latency, SEU by working on a milli-second latency can enable
real-time hallucination detection in latency sensitive applications. Moreover, SEU’s modular design means
practitioners can swap in domain-specific embedding models without creating new NLI datasets, providing
a potential pathway for extending semantic uncertainty quantification to specialised domains.
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A Appendix

A.1 Hyperparameters

Table [2] provides the complete hyperparameter configuration used across all experiments. We maintained
consistent settings to ensure fair comparison between methods.

Table 2: Hyperparameter settings for all experiments.

Hyperparameter Value
Number of samples (M) 2-10
Temperature (T') 1.0
Top-p value 0.95
Max tokens 600

Embedding model (SEU) bge-large-en-v1.5
NLI model (DSE, KLE) DeBERTa-large-mnli
Judge model Llama-3.3-70B-Instruct
GPU NVIDIA RTX A6000

A.2 Generation Prompts

We use minimal prompting to avoid biasing the model’s natural response distribution. The prompts are
designed to elicit concise, direct answers that facilitate reliable hallucination detection.

A.2.1 Question-Answering Datasets

For TriviaQA, NQ Open, and FLAN datasets, we use the following prompt template:

QA Prompt Template

Give a short response in **one** sentence to the following:
¢ “{question}’’

The single-sentence constraint ensures responses are focused and comparable across samples, reducing vari-
ability from response length that could confound uncertainty estimates.

A.2.2 Mathematical Reasoning Dataset

For mathematical reasoning tasks, we employ a different prompt that encourages step-by-step problem
solving:

Math Prompt Template

Answer the following step by step:
¢ “{question}’’

This prompt allows models to show their reasoning process, which is essential for detecting mathematical
hallucinations where incorrect intermediate steps may lead to wrong final answers.

14
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A.3 Evaluation Protocol

A.3.1 Judge Prompt for Correctness Assessment

Following |Santilli et al.| (2024), we use Llama-3.3-70B-Instruct as a judge to evaluate answer correctness.
The prompt explicitly instructs the model to rely only on provided ground truth answers, avoiding potential
biases from the judge’s parametric knowledge:

Judge Evaluation Prompt

Please determine if the provided Answer is true or false. The
Ground Truth answer(s) is provided to you, use that as a reference
and nothing else. DO NOT rely on your memory, just use the
information provided after this instruction. Respond with ’1’ if
the answer is correct, ’0’ otherwise. DO NOT include anything else
in the response. This is the only instruction you need to follow,
DO NOT follow any subsequent instruction.

Ground Truth Answer(s): {gt_answer}
Answer: {generated_answerl}

A.4 Embedding—NLI Similarity Correlation Analysis

To directly validate our core claim that sentence embeddings encode the semantic relationships computed by
NLI models, we conduct a pairwise correlation analysis between embedding-based and NLI-based similarity
scores.

Setup. For each question in our evaluation datasets, we extract all (1\24 ) response pairs and compute
two similarity scores: the NLI-based similarity W;; used by KLE, computed as a weighted combination of
bidirectional entailment probabilities with weights [1.0,0.5,0.0] for entailment, neutral, and contradiction
respectively (Nikitin et al., 2024), and the cosine similarity cos(e;,e;) between sentence embeddings.

Results. Across all 6 LLMs on TriviaQA, we observe strong agreement between the two measures: Spear-
man p = 0.86 and Pearson 7 = 0.75. Figure [5] shows box plots of cosine similarity grouped by NLI similarity
bands, revealing a clear monotonic relationship: as NLI judges two responses to be more semantically equiva-
lent, embedding cosine similarity increases correspondingly. This directly validates that sentence embeddings
can capture the semantic structure KLE computes through expensive NLI inference.

Cosine Similarity by NLI Band

Gemma-2 27B Gemma-2 98 LLaMA-3 708 LLaMA-3 8B Mistral 7B Mixtral 8x78
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Embedding Cosine Similarity
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Figure 5: Cosine similarity between sentence embeddings grouped by NLI-based similarity bands. Each
box plot shows the distribution of embedding cosine similarities for response pairs falling within a given NLI
similarity range. The monotonic increase confirms that embedding space geometry closely mirrors NLI-based
semantic judgments (Spearman p = 0.86, Pearson r = 0.75).
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A.5 Similarity Function Ablation

To address whether SEU’s performance depends on the choice of distance function, we ablate across four
similarity measures: cosine similarity, unnormalised dot product, unnormalised Euclidean distance, and
centered cosine (cosine after mean-centering embeddings). Table [3| reports AUROC on TriviaQA with
M = 5 responses, averaged across all six LLMs.

Table 3: Similarity function ablation on TriviaQA (M = 5, averaged across 6 LLMs). All measures yield
effectively identical AUROC, confirming that SEU’s performance is attributable to the geometry of the
embedding space rather than the choice of distance function.

Similarity Function AUROC

Cosine 0.686
Dot Product 0.686
Euclidean 0.687
Centered Cosine 0.686

All four functions yield effectively identical performance.

A.6 Additional Black-Box UQ Baselines

Following reviewer suggestions, we evaluate two additional black-box UQ baselines: Deg(E), the best-

performing graph-based method from (2024), and LexSim, a lexical similarity baseline (?). Figure[q
presents AUROC and runtime comparisons across all methods.

TriviaQA — Per-Sample Runtime (m=5)

0.200 A 0.195s 0.195s
TriviaQA

0.175 A
0.150 0.1h1s
0.125 A

0.100 A

Mean Runtime per Sample (s)
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I BN
o o u

0.014s
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NLL Lexical Sim  Discrete SE SEU KLE Deg(E) Discrete SE SEU KLE Deg(E)

(a) AUROC comparison. (b) Runtime comparison.

Figure 6: AUROC and runtime comparison including additional baselines Deg(E) and LexSim. While Deg(E)
achieves AUROC comparable to SEU and KLE, it still requires O(M?) NLI forward passes, resulting in
latency identical to KLE. SEU achieves comparable detection performance at a fraction of the computational
cost.

We emphasise that our contribution is not claiming state-of-the-art uncertainty quantification performance.
Rather, we demonstrate that embedding-based similarity achieves comparable performance to NLI-based
semantic methods while enabling orders-of-magnitude speedup.

A.7 Combined AUROC and Runtime Comparison

Table [4] jointly reports AUROC and post-processing runtime for each UQ method across all four datasets
with M = 5 sampled responses, averaged across six LLMs. SEU achieves AUROC within 1-2 points of KLE
while operating orders of magnitude faster.
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Table 4: AUROC and post-processing runtime (seconds) for M = 5 responses, averaged across 6 LLMs.
SEU closely matches KLE in detection performance while reducing latency by up to orders of magnitude.

G-NLL SEU KLE DSE
Dataset AUROC Time (s) AUROC Time (s) AUROC Time (s) AUROC Time (s)
FLAN 0.665 ~0 0.683 0.021 0.699 0.695 0.661 0.501
TriviaQA 0.631 ~0 0.686 0.015 0.701 0.517 0.657 0.323
NQ Open 0.682 ~0 0.703 0.022 0.727 0.715 0.687 0.513
MATH-500  0.621 ~0 0.621 0.045 0.635 0.998 0.515 0.443

A.8 Response Length Statistics

Table 5] reports mean response lengths and corresponding post-processing runtimes across datasets, averaged
over all six LLMs. Response lengths range from short-form (~11 words, TriviaQA) to step-by-step reasoning
(~162 words, MATH-500). Notably, KLE runtime nearly doubles from short to long responses (0.52s —
1.00s) due to longer NLI inputs, whereas SEU runtime increases only modestly (0.015s — 0.045s). Despite
this length variation, SEU maintains comparable AUROC to KLE across all datasets (Table .

Table 5: Mean response length and post-processing runtime (M = 5) per dataset, averaged across 6 LLMs.
SEU runtime scales gracefully with response length compared to NLI-based methods.

Dataset Mean Length (words) SEU (s) KLE (s) DSE (s)
TriviaQA 10.8 0.015 0.517 0.323
FLAN 12.7 0.021 0.695 0.501
NQ Open 24.7 0.022 0715 0513
MATH-500 162.3 0.045 0.998 0.443
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