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Abstract
Any method’s development and practical applica-
tion is limited by our ability to measure its reliabil-
ity. The popularity of generative modeling empha-
sizes the importance of good synthetic data met-
rics. Unfortunately, previous works have found
many failure cases in current metrics, for example
lack of outlier robustness and unclear lower and
upper bounds. We propose a list of desiderata
for synthetic data metrics, and a suite of sanity
checks: carefully chosen simple experiments that
aim to detect specific and known generative mod-
eling failure modes. Based on these desiderata
and the results of our checks, we arrive at our po-
sition: all current generative fidelity and diversity
metrics are flawed. This significantly hinders prac-
tical use of synthetic data. Our aim is to convince
the research community to spend more effort in
developing metrics, instead of models. Addition-
ally, through analyzing how current metrics fail,
we provide practitioners with guidelines on how
these metrics should (not) be used.

1. Introduction
Recent years have seen great advances in generative mod-
eling, from generating realistic facial images (Karras et al.,
2019) to generating tabular datasets with large language
models (Borisov et al., 2022). These advances are moti-
vated by a promise that the synthetic data generated by these
models could augment real data (Das et al., 2022), maintain
privacy of sensitive data (Liew et al., 1985; Rubin, 1993),
improve model evaluation (van Breugel et al., 2023), or
improve fairness in downstream tasks (van Breugel et al.,
2021), among some possible goals.

The quality of a generative model is typically evaluated
using metrics that compare the real data with synthetic
data produced by the model. Popular metrics include
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FID (Heusel et al., 2017), information divergences like total
variation distance and KL divergence, and the performance
of downstream machine learning tasks.

However, while these metrics can distinguish good and
bad generators, they do not provide information on why a
particular generator received a poor evaluation, or what can
still be improved in a good generator. Sajjadi et al. (2018)
proposed a precision/recall metric that distinguishes two
failure modes: a generator that generates unrealistic samples
and a generator that does not cover all of the real distribution.
These metrics were first improved by Kynkäänniemi et al.
(2019) and later others, leading to several metrics, including
density/coverage (Naeem et al., 2020) and α-precision/β-
recall (Alaa et al., 2022). The latter two pairs are the most
popular of these types of metrics today.

These metrics come in pairs. The first metrics of the pairs
measure how realistic synthetic samples are, so we call them
fidelity metrics. The second metrics of each pair measure
how much of the real distribution the synthetic distribution
covers, so we call them diversity metrics.

While evaluating and improving generative models has re-
ceived much attention, evaluating and improving the met-
rics themselves has received much less. Some recent works
have found failure cases with the established fidelity and
diversity metrics (Cheema & Urner, 2023; Khayatkhoei &
Abdalmageed, 2023; Park & Kim, 2023), and proposed new
metrics that fix the discovered problems. However, each of
these works only looks at a small number of problems and
focuses on fixing those. It remains an open question whether
the fixed metrics suffer from the failure cases reported by the
other works, or if the fixes cause new problems to emerge.

We aim to answer this question with a thorough evaluation
of fidelity and diversity metrics, consisting of three main
contributions:

1. We propose a list of six desiderata that any synthetic
data metric should fulfill in Section 2.

2. We distill each failure case that has been reported in the
literature into a simple sanity check, with precisely de-
fined and automatically checked passing criteria, that
are linked to the desiderata, in Section 4. Our imple-
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mentation code is available.1

3. We evaluate whether each metric passes each check,
and discuss the results in Section 5.

We also add some novel sanity checks that focus on tabular
data, which is an important domain where these metrics are
used (Kotelnikov et al., 2023; Zhang et al., 2023), but has
been neglected by existing work on metrics.

The results of our evaluation in Tables 3 and 4 lead to our
position. All of the fidelity and diversity metrics fail a large
number of sanity checks, in many cases failing to measure
even the basic property that they are supposed to measure,
which we argue means that all current generative fidelity
and diversity metrics are flawed.

We argue that our position has two main takeaways:

1. Practitioners using fidelity and diversity metrics to eval-
uate synthetic data must be wary of what the metrics
they use can measure, and what they fail to measure.

2. New metrics are needed to fix the failure cases in the
current ones. These new metrics must be evaluated in
a wide range of scenarios to uncover potential failure
cases, including a benchmark of sanity checks like the
one we present.

The first takeaway is a consequence of the clear unreliability
of all metrics in our sanity checks. A metric suffering from
a failure case that is present in a given setting does not
give useful information on synthetic data quality. This is
complicated by the complexities of real data: while our
sanity checks each look at one potential failure case at a
time, a real dataset will likely have multiple potential failure
cases at the same time. If a metric fails at one of these cases,
it can also fail at the others, even if it does not fail on those
in isolation.

The second takeaway follows from the first and the useful-
ness of the information fidelity and diversity metrics aim to
measure. This information is useful for generative model
evaluation, as evidenced by their wide-scale adoption in
the community (Pearce et al., 2022; Anciukevičius et al.,
2023; Kotelnikov et al., 2023; Qian et al., 2023; Zhang et al.,
2023). Since the current metrics we have are not completely
reliable, as the generative model research community, we
must strive to develop reliable alternatives that can be used
without worrying about a minefield of failure cases.

1.1. Related Work

Borji (2019; 2022); Xu et al. (2018) survey evaluation met-
rics with a focus on GANs in the image domain. Borji

1https://github.com/vanderschaarlab/
position-fidelity-diversity-metrics-flawed

(2019); Xu et al. (2018) give lists of desiderata, which par-
tially overlap with our list in Section 2, and ask which met-
rics fulfill each of the desiderata. However, their desiderata
focus on GANs, and demand that a single metric distin-
guishes several generator qualities like fidelity, diversity,
and overfitting at the same time. We consider it sufficient
for a metric to focus on a single quality at a time. Theis et al.
(2016) looks at several classical metrics and finds that they
can result in conflicting and undesirable evaluations. Theis
(2024) considers what properties a fidelity, or “realism” in
their terminology, metric should have, and gives some theo-
retical insight on how a metric with those properties could
be implemented.

2. Desiderata for Synthetic Data Evaluation
Metrics

Before we can evaluate how good different metrics are, we
must establish what we want out of a metric. We use the
lists given by Borji (2019); Xu et al. (2018) as a starting
point, but we do not require a single metric to evaluate
multiple aspects of synthetic data quality. While we focus
on fidelity and diversity metrics in our evaluation, we take a
wider perspective in our desiderata list, and include goals
that other types of metrics may aim to meet.

Our desiderata for synthetic data metrics are:

D1 (purpose) One of the following:

(a) measure a quantity that is of direct practical inter-
est,

(b) give interpretable information on the difference
between real and generated data,

(c) be a proxy-metric that is correlated with an im-
practical metric of interest.

D2 (hyperparameters) Have a minimal number of hyperpa-
rameters. The effect of hyperparameters should be as
clear as possible.

D3 (data) Require less data than what is available in the
problem of interest.

D4 (bounds) Have clear lower and upper bounds.

D5 (invariance) Be invariant to transformations of both
real and synthetic data that do not affect data quality in
the domain of interest.

D6 (computation) Be computationally efficient.

These are not in any sort of priority order.

Examples of D1a (purpose) are the accuracy of predictive
models or statistical inference on synthetic data. Fidelity
and diversity metrics that are the focus of this paper are
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examples of D1b. Many works evaluate metrics by looking
at D1c, for example by comparing the metric values with
human evaluations (Salimans et al., 2016; Jayasumana et al.,
2024). We include the condition that the target metric is
impractical in some way, or at least less practical than the
proxy metric, since otherwise there is no need for the proxy
metric. If the target metric can be practically computed, a
practitioner could simple compute the target metric instead
of a proxy metric that is merely correlated with it.

D2 (hyperparameters) aims to maximise the objectivity of
synthetic data evaluation. A metric with many hyperpa-
rameters with unclear effects may have many seemingly
equivalent choices for the hyperparameters, which neverthe-
less lead to different estimations of synthetic data quality.
Hyperparameters with a standard value, or method of choos-
ing the value, should not be counted here, since a default
choice forbids the tweaking of the hyperparameter to obtain
a desired result from a comparison.

For D3 (data), an ideal metric would be completely invari-
ant to the size of the real data, but this is an unreasonable
requirement for very small dataset sizes. Instead, we want
the metric to be approximately invariant after some size,
which we call the required size. The required size should of
course be smaller than the amount of data that is available in
a given problem of interest. For this paper, we set a thresh-
old of 1000 datapoints, which is small enough to cover the
majority of datasets2, but large enough for many statistical
asymptotics to kick in. Note that the size of the synthetic
dataset is separate from the real data, though the two are
often set to be identical. Since the only constraint for the
size of the synthetic data is computational, we consider it a
hyperparameter of the metric, and place it under desiderata
D2 (hyperparameters).

D4 (bounds) allows gauging how good or bad the synthetic
data is in absolute terms, not only in comparison to other
synthetic datasets. This is important, since it is possible
that in a hard setting, even the best synthetic data is of poor
quality.

The transformations that do not affect data quality in D5
(invariance) are domain specific. For images, examples
are small translation and rotations (Borji, 2019). For tabu-
lar data, we can identify three types of transformation that
clearly do not affect data quality: scaling numerical vari-
ables, permuting the categories of nominal discrete vari-
ables, and permuting the order of variables. The latter
two are clearly irrelevant transformations, since they are
changes to orderings that are arbitrarily chosen in the first
place. Scaling a numerical attribute is equivalent to chang-
ing units. Changes of units in both real and synthetic data

2As of 29th of January, 2025, 55% of datasets on https:
//openml.org/ have > 1000 datapoints.

do not change the quality of synthetic data, so they should
not change the values of evaluation metrics either.

A minimum threshold of computational efficiency for D6
(computation) is tractability: the metric should be possible
to compute in reasonable time. Of course, computational
efficiency is always useful for a metric, but for tractable
metrics, the other desiderata should be prioritised over pure
computational savings.

3. Evaluated Metrics
Inclusion Criteria We include metrics in our evaluation
that:

1. measure fidelity or diversity,

2. produce a single number and

3. run in reasonable time.

Requirement (2) excludes the curve-valued metric of Sajjadi
et al. (2018) and improvements to it (Simon et al., 2019;
Djolonga et al., 2020; Siry et al., 2023; Sykes et al., 2024).
We only include single number metrics since they are eas-
ier to interpret and display than curve-values ones, and are
much more common in practice (Pearce et al., 2022; An-
ciukevičius et al., 2023; Kotelnikov et al., 2023; Qian et al.,
2023; Zhang et al., 2023). We also looked at the pair of
metrics from Kim et al. (2023) that are based on topolog-
ical properties, but they took too much time to compute
a single evaluation.3 We list the metrics that we include
in Table 1. We describe each metric in detail and list the
implementations we used in Appendix A.

Embeddings All of the metrics we consider take a set
of real data Xr ∼ Pr and a set of synthetic data Xg ∼
Pg. They first embed Xr and Xg into a space with more
suitable geometry than the original data space. We denote
the embedding of a single real or synthetic datapoint as ϕr

or ϕg , respectively, and denote the embeddings of the whole
real or synthetic datasets as Φr and Φg , respectively.

For image datasets, the embedding is typically a pretrained
neural network (Kynkäänniemi et al., 2019; Naeem et al.,
2020), or a randomly initialised CNN (Naeem et al., 2020).
For tabular data, Alaa et al. (2022) use a neural network
embedding that is trained on the real data. With the other
metrics, we will use a simpler embedding that is appropriate
for tabular data: we one-hot encode categorical variables,

3Specifically, computing the metrics of Kim et al. (2023) for
1000 real and synthetic samples of 2-dimensional Gaussian dis-
tributions with the original implementation did not finish in 30
minutes on an M1 MacBook Air. Computing all of I-Prec, I-Rec,
density and coverage in the same setting took less than 0.1s.
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Table 1. Metrics in this work.

Paper Fidelity Metric Diversity Metric

(Kynkäänniemi et al., 2019) Improved Precision (I-Prec) Improved Recall (I-Rec)
(Naeem et al., 2020) Density Coverage
(Alaa et al., 2022) Integrated α-precision (IAP) Integrated β-recall (IBR)
(Cheema & Urner, 2023) Precision Cover (C-Prec) Recall Cover (C-Rec)
(Khayatkhoei & Abdalmageed, 2023) Symmetric Precision (symPrec) Symmetric Recall (symRec)
(Park & Kim, 2023) Probabilistic Precision (P-Prec) Probabilistic Recall (P-Rec)

and normalise numerical variables to mean zero and unit
standard deviation on the real data.4

This simple embedding is motivated by our desiderata D5
(invariance) and D2 (hyperparameters). Normalising numer-
ical variables ensures that the resulting metric in invariant
to scaling. One-hot encoding categorical variables ensures
that the metric is invariant to permuting the order of cate-
gories, as long as the metric is invariant to permuting the
components of the embedding vector ϕ, which is the case
for all of the metrics we look at. This also ensures that the
metric is invariant to permuting the order of variables in
the real data, so this embedding ensures invariance to all of
the tabular data transformations that clearly do not affect
data quality we discussed in Section 2. This embedding also
does not have hyperparameters. In contrast, all architecture
and training choices of a neural network embedding become
hyperparameters of the resulting metric, unless there is a
standard choice of them that is widely used.

4. Sanity Checks
To evaluate the failure cases each metric may or may not
have, we use simple sanity checks, with artificial real and
synthetic distributions. This allows us to focus on one po-
tential problem in each check, and also allows evaluating
extreme scenarios where we know that a metric meeting
D4 (bounds) should have a value of 0 or 1. Most of our
checks are from existing work, but we do not always use
identical setups in these cases. A handful of checks are new
to this work. Table 2 lists the sanity checks we look at and
previous works using them. Appendix B provides detailed
descriptions of each check and the setup we use. Next, we
very briefly summarise each check.

4.1. Sanity Check Summaries

Gaussian Checks To evaluate how metrics distinguish
simple differences between distributions, we have five sanity
checks looking at two otherwise identical Gaussian distri-
butions that differ in one way. In the first three checks, the

4We also apply this embedding before the neural network of
Alaa et al. (2022) for α-precision and β-recall.

difference is either their mean, their standard deviation, or
their mean and the presence of an outlier. In the fourth and
fifth check, the difference is their mean in one dimension. In
the fourth check, there is one additional identical dimension,
which is scaled, testing whether the metrics are invariant
to the scaling. In the fifth check, there are many additional
identical dimensions, testing whether metrics can find the
difference in only one of the dimensions.

Gaussian Mixture Checks These checks evaluate how
the metrics see mode collapse, invention and dropping. One
check drops 9 out of 10 modes either one mode at a time,
or by reducing the weight of all 9 dropped modes simul-
taneously. A second check evaluates both mode dropping
and invention by increasing the number of modes in the syn-
thetic distribution, first including modes in the real data, and
later inventing new modes. A third check evaluates mode
collapse using a real distribution with two modes, and a
synthetic distribution with one wide component that covers
both real modes.

Varying Dataset Sizes on Uniform Hypercubes These
checks evaluate the effect of both the real and synthetic
dataset size on two uniform distributions on partially over-
lapping hypercubes. One experiment varies both |Φr| =
|Φg|, while one fixes |Φr| and varies |Φg|. Cheema & Urner
(2023) argue that the theoretically correct values for fidelity
and diversity metrics in this case are the volume of the over-
lapping space, which we have set to 0.2. For D1b (purpose),
we check that the metrics are close to this value, and for D2
(hyperparameters) or D3 (data), we check that the metrics
simply converge after 1000 datapoints.

Uniform Hypersphere Surface Check This check looks
at the problem that inspired the symPrecision and symRecall
metrics (Khayatkhoei & Abdalmageed, 2023). Both real and
synthetic distributions are uniform on the surface of a hyper-
sphere, with different radii. The distributions are disjoint, so
all metrics should return low values, but Khayatkhoei & Ab-
dalmageed (2023) observed that in high dimensions, many
metrics only behave correctly when the synthetic radius is
either smaller or larger than the real radius, but not in the
opposite case.
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Table 2. Sanity Checks considered in this work. The Tab. column marks checks intended for only tabular data, and the Fig. column
contains the figure number of the full results in the Appendix. The results are summarised in Tables 3 and 4. The checks are grouped as in
Section 4.1.

SETTING DESIDERATA TAB. FIG. PAPERS

GAUSSIAN MEAN DIFFERENCE D1B, D4 6 (NAEEM ET AL., 2020; ALAA ET AL., 2022; CHEEMA & URNER, 2023)
GAUSSIAN MEAN DIFFERENCE + OUTLIER D1B, D4 7, 8 (NAEEM ET AL., 2020; ALAA ET AL., 2022; PARK & KIM, 2023)
GAUSSIAN STD. DEVIATION DIFFERENCE D1B, D4 9 (PARK & KIM, 2023)
ONE DISJOINT DIM. + MANY IDENTICAL DIM. D1B, D4 20 THIS WORK
SCALING ONE DIMENSION D4, D5 18 THIS WORK

MODE COLLAPSE D1B, D4 17 (ALAA ET AL., 2022)
MODE DROPPING + INVENTION D1B, D4 12 (KYNKÄÄNNIEMI ET AL., 2019)
SEQUENTIAL / SIMULTANEOUS MODE DROPPING D1B, D4 10, 11 (NAEEM ET AL., 2020)

HYPERCUBE, VARYING SAMPLE SIZE D3, D1B 14 (CHEEMA & URNER, 2023)
HYPERCUBE, VARYING SYN. SIZE D2, D1B 15 (CHEEMA & URNER, 2023)

HYPERSPHERE SURFACE D1B, D4 13 (KHAYATKHOEI & ABDALMAGEED, 2023)

SPHERE VS. TORUS D1B, D4 16 (CHEEMA & URNER, 2023)

DISCRETE NUM. VS. CONTINUOUS NUM. D1B, D4 ✓ 21 THIS WORK
GAUSSIAN MEAN DIFFERENCE + PARETO D1B, D4 ✓ 19 THIS WORK

Torus vs. Sphere Check This check from Cheema &
Urner (2023) evaluates metrics on distributions with non-
trivial geometry. One of the distributions is a uniform dis-
tribution on a sphere, and the other is on a torus that sur-
rounds the sphere, but is disjoint from it. See Figure 4
in the Appendix for an illustration. We vary which of the
two distributions is considered real and which is considered
synthetic.

Tabular Data Focused Checks We include two sanity
checks that focus on issues found in tabular data. The first
check repeats the Gaussian mean difference check, but with
an additional Pareto-distributed random variable with an
identical distribution in real and synthetic data. This tests
how the metrics function in the presence of a heavy-tailed
power law distribution, which are common in tabular data.
The second check has data from a Gaussian distribution, and
data from the same Gaussian that has been rounded to an in-
teger, varying the scale of both distributions. This evaluates
whether the metrics can distinguish a discrete numerical
distribution from a continuous one, which is important since
integer-valued variables are common in tabular data.

4.2. Success Criteria

We evaluate the success or failure of each metric on the
sanity checks with precisely defined criteria that we check
programmatically. We detail the criteria of each check in
Appendix B.

In general, we connect the criteria to one of desiderata D1b
(purpose), D2 (hyperparameters), D3 (data), D4 (bounds) or
D5 (invariance), depending on the check. D1b is evaluated
in almost every check, with criteria that require the metric
to generally behave correctly, but does not require specific
values in most cases. D4 is also evaluated in almost every
check, with criteria checking that the metrics have values

close to 0 or 1 in extreme cases. We include these more
difficult criteria because making absolute evaluations of gen-
erative models, like “this model is good” requires a metric
with clear bounds that the metric actually follows in practice.
D3 is evaluated in the two checks looking at dataset sizes,
and requires that the metrics behave consistently after 1000
datapoints. D5 is evaluated in the scale invariance check,
and checks whether the metrics are scale invariant. We do
not include specific checks for D6 (computation), since all of
the metrics we include are computationally tractable, so they
pass the only sanity check that would make sense for D6.

High and Low Diversity Metrics In some cases for diver-
sity metrics, it can be argued that both high and low values
are acceptable results, depending on how “covering” the
real distribution is interpreted. These are cases where the
synthetic distribution covers the real distribution, but is so
wide that the probability (density) of getting a value from
the synthetic distribution with high probability (density) un-
der the real distribution is very low. An example of a sanity
check like this is the two Gaussians with different standard
deviations, with the synthetic standard deviation being much
larger. On one hand, the synthetic distribution completely
covers the real distribution, which suggests that diversity
metrics should be high. On the other hand, the probability
of sampling a synthetic datapoint in the high-density region
of the real distribution is low, which suggests that diversity
metrics should have low values. We designate diversity
metrics that adhere to the former argument as “high”, and
designate metrics following the latter argument as “low”.
We require each metric to be consistent with “low” or “high”
across different variations of a sanity check. We make these
explicit in the results, so if only one of these viewpoints is
valid in a given application, it is clear which metrics are
suited to that application.
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Table 3. Passes (T) and fails (F) of each fidelity metric on each sanity check. The Tab. column marks checks intended for only tabular
data.

Tab. I-Prec Density IAP C-Prec symPrec P-Prec
Desiderata Sanity Check

D1b (purpose)

Discrete Num. vs. Continuous Num. ✓ F F F F F F
Gaussian Mean Difference T T T T T T
Gaussian Mean Difference + Outlier F T T T F T
Gaussian Mean Difference + Pareto ✓ T T T T T T
Gaussian Std. Deviation Difference T T F F F T
Hypercube, Varying Sample Size F F F F F F
Hypercube, Varying Syn. Size F F F F F F
Hypersphere Surface F F T F T F
Mode Collapse T T T T T T
Mode Dropping + Invention T T F F F T
One Disjoint Dim. + Many Identical Dim. F F F F F F
Sequential Mode Dropping T T F F F T
Simultaneous Mode Dropping T F F F F T
Sphere vs. Torus T T T F T T

D2 (hyperparameters) Hypercube, Varying Syn. Size T T T F F T
D3 (data) Hypercube, Varying Sample Size F F F F F F

D4 (bounds)

Discrete Num. vs. Continuous Num. ✓ F F F F F F
Gaussian Mean Difference F T F T F F
Gaussian Mean Difference + Outlier F F F T F F
Gaussian Mean Difference + Pareto ✓ F T T T T F
Gaussian Std. Deviation Difference F F F F F F
Hypersphere Surface F F F F T F
Mode Collapse F T F T F F
Mode Dropping + Invention T T F F F F
One Disjoint Dim. + Many Identical Dim. F F T F F F
Scaling One Dimension F T T T T T
Sequential Mode Dropping F T F F F F
Simultaneous Mode Dropping F T F F F F
Sphere vs. Torus T T F F T T

D5 (invariance) Scaling One Dimension F T T T T T

4.3. Results

The passes and fails of each metric on each check are shown
in Table 3 for fidelity metrics and Table 4 for diversity
metrics. Plots showing the full results are included in Ap-
pendix C. We discuss the implications of these results in the
next section.

5. Discussion
In this section, we discuss the main takeaways of our results.
We start by looking at practical considerations in Section 5.1,
and consider future research directions in Section 5.4.

5.1. Implications for Practitioners

Next, we go through the most important practical takeaways
from our results. We present a checklist summarising these,
along with more specific takeaways, in Section 5.2.

No Metric is Suitable for Absolute Evaluations By ab-
solute evaluation of a generative model, we mean answering
the question “Is this model good / bad?”. Research papers of-

ten focus on relative evaluation, that is the question “Which
model is the best?”, however, practical deployments require
a model that is good in absolute terms, not just relative to
other models.

Absolute evaluation requires a metric with clearly defined
lower and upper bounds, which can be chosen to be 0 and
1 without loss of generality. While most of the metrics we
examine have these bounds in theory, our results in checks
of D4 (bounds) show that they often do not have them in
practice. For example, in Figures 6 to 9 with d = 64, an
integrated α-precision of around 0.5 is the best one can get,
but with d < 64, 0.5 indicates bad synthetic data.

Another example is density, which behaves strangely in
some cases. In most settings, the best density is close to 1,
but in Figures 9 and 13 in high dimensions, density goes
up to around 200. However, in these cases with identical
distributions, density is around 1, so the high values do not
correspond to better synthetic data.

Investigate Effect of Real Dataset Size on Evaluation
The results of our D3 (data) check in Figure 14 show that
all metrics are affected by the dataset size, many even at
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Table 4. Passes (T, H or L) and fails (F) of each diversity metric on each sanity check. H and L refer to high and low metric types described
in Section 4.2. The Tab. column marks checks intended for only tabular data.

Tab. I-Rec Coverage IBR C-Rec symRec P-Rec
Desiderata Sanity Check

D1b (purpose)

Discrete Num. vs. Continuous Num. ✓ F F F F F F
Gaussian Mean Difference T T T T T T
Gaussian Mean Difference + Outlier F T T T T T
Gaussian Mean Difference + Pareto ✓ T T T T T T
Gaussian Std. Deviation Difference H F L F F H
Hypercube, Varying Sample Size F F F F F F
Hypercube, Varying Syn. Size F F F F F F
Hypersphere Surface F F F F T F
Mode Collapse F F F F F F
Mode Dropping + Invention T F F F F T
One Disjoint Dim. + Many Identical Dim. F F F F F F
Sequential Mode Dropping T T F F T T
Simultaneous Mode Dropping F T F T F T
Sphere vs. Torus F F T F F F

D2 (hyperparameters) Hypercube, Varying Syn. Size F F F F F F
D3 (data) Hypercube, Varying Sample Size F F F F F F

D4 (bounds)

Discrete Num. vs. Continuous Num. ✓ F F F F F F
Gaussian Mean Difference F T F T F F
Gaussian Mean Difference + Outlier F T F T F F
Gaussian Mean Difference + Pareto ✓ T T F T T F
Gaussian Std. Deviation Difference F F F F F F
Hypersphere Surface F F F F T F
Mode Collapse F T F T F F
Mode Dropping + Invention T F F F F F
One Disjoint Dim. + Many Identical Dim. F F T F F F
Scaling One Dimension T T T T T T
Sequential Mode Dropping F T F T F F
Simultaneous Mode Dropping F T F T F F
Sphere vs. Torus T F T T F T

D5 (invariance) Scaling One Dimension F T T T T T

sizes around 10000. In many benchmarks, there are choices
that affect the dataset size, such as the handling of missing
values, or the choice of a subset from a larger dataset. Since
these choices also affect the metrics through the dataset size,
one should investigate how large this effect is in any given
evaluation, and whether it could affect the conclusions of
the evaluation.

Using Metrics with Real Data Requires Care A real
dataset is much more complex than any of our checks, and
will likely have many of the potential failure cases that the
checks look at simultaneously. If one uses a metric that fails
in the presence of any one of these cases, the metric could
fail as a whole and not provide any meaningful evaluation.
As a result, it if one wants to use a metric in a particular
setting, one should be able to justify that none of the cases
the metric fails on are present in the setting, or otherwise
justify that the failures of the metric are not a concern in the
setting.

Takeaway for Practitioners

Practitioners using fidelity and diversity metrics
must be wary that:

• No metric is suitable for absolute evaluations.

• The effect of dataset size on metrics should be
investigated in each evaluation.

• Using metrics with real data requires care, see
checklist in Section 5.2.

5.2. Practical Advice Checklist

This checklist summarises the main takeaways from our
results for practical applications of fidelity and diversity
metrics. The list is intended for practitioners designing an
experiment evaluating generative models. For each exper-
iment, the designer should answer the questions, and, if
advice is given for their answer, take that into account in
their design. If there are multiple preferred metrics after an-
swering all questions, we encourage computing all of them
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to see whether they all lead to the same conclusion, or to
different conclusions.

1. Is your evaluation absolute (is the model good) or rela-
tive (which model is best)?

• Absolute: all current metrics are bad

2. Does the size of your evaluation dataset depend on
choices you have made during data preparation, such
as how missing data is handled?

• Yes: Investigate how the metrics you are using
behave with different dataset sizes, and take this
into account when interpreting your results.

3. Is detecting mode collapse / dropping / invention im-
portant?

• Yes: prefer I-Prec, P-Prec and P-Rec

4. Is robustness to outliers important?

• Yes: avoid I-Prec, symPrec and I-Rec

5. Is it important to find differences in one dimension
among many?

• Yes: all current metrics are bad

6. Is it important to find a difference between continuous
and discrete numerical values?

• Yes: all current metrics are bad

7. Is the distinguishing between distributions on close sur-
faces important (uniform hypersphere surface check)?

• Yes: prefer symPrec, IAP and symRec

8. Is it important to distinguish distributions on complex
shapes, with possibly surrounding the other (sphere vs.
torus check)?

• Yes: avoid C-Prec among fidelity metrics, prefer
IBR among diversity metrics

Reasons for Checklist Advice The first two questions on
the checklist are discussed in Section 5.1. The advice in the
checklist for these questions summarise the recommenda-
tions from the corresponding discussion. For the rest of the
questions, we look at relevant checks in Tables 3 and 4, and
recommend metrics that pass all or most relevant checks,
and recommend avoiding metrics that fail many relevant
checks. In general, we avoid giving any hard recommenda-
tions of a particular metric due to the fact that there is no
clearly best metric in any case.

5.3. Hardest Sanity Checks

In this section, we examine the hardest sanity checks that
most or all metrics failed, and discuss possible reasons for
the failures.

One Disjoint Dimension This check is about finding a
large difference in one dimension among many identical
dimensions. All metrics failed, and only α-precision and
β-recall are even close to passing in Figure 20. We conjec-
ture that their partial success is due to the neural network
embedding they use, which proved capable of learning an
embedding where the difference in one dimension is appar-
ent even with a large number of identical dimensions. The
other metrics are based on Euclidean distance, where the
large difference in one dimension gets drowned out by the
other dimensions.

Uniform Hypercube These checks test how the metrics
behave as the sizes of the real and synthetic datasets changes.
The real and synthetic distributions are uniform distributions
on two overlapping d-dimensional hypercubes. All metrics
fail to even converge, as required for D3 (data), when the
sizes of both datasets change. When only the synthetic
dataset size changes, many metrics are almost invariant, or
at least converge reasonably, but none are close to the theo-
retical fidelity and diversity values from Cheema & Urner
(2023). We conjecture that this is due to a non-intuitive
feature of high-dimensional geometry. If the length of the
overlapping sides between the two hypercubes were fixed,
the overlap volume would decrease exponentially with di-
mension, so to keep the volume fixed, the overlapping length
must quickly approach 1.5 The distance between points that
are a fixed length apart in all dimensions only increases
polynomially with increased dimension, so the distances
between the points in the real and synthetic hypercubes
decrease with increased dimension in this setting.

Hypersphere Surface This check evaluates a problem
discovered by Khayatkhoei & Abdalmageed (2023) that
motivated their symPrecand symRec metrics. However,
this still remains an open problem, since those are the only
metrics that pass this check, but they fail many basic D1b
(purpose) checks. Future work should consider if the in-
sights from Khayatkhoei & Abdalmageed (2023) on this
problem can be applied to a fix with other metrics.

Discrete vs. Continuous Numerical Variables This
check evaluates whether the metrics can distinguish a con-
tinuous numerical distribution from a similar rounded dis-
tribution with discrete values. This was especially hard for
current metrics, since they all failed. However, most of the
failures happen only at a very fine discretisation, as seen in

5Both hypercubes have side length 1.
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Figure 21.

5.4. Future Directions for Metrics

Since all metrics failed so many sanity checks that using
any of them requires great care, it is clear that new fidelity
and diversity metrics are needed that avoid as many of these
failure cases as possible.

Going Beyond Euclidean Geometry Many of the hard
checks we have highlighted in Section 5.3 have a common
theme: the check requires distinguishing things that are not
easily distinguished in Euclidean geometry. As all of the
metrics we evaluated are based on Euclidean distances in
some way,6 it is not surprising that they fail these checks.
We conjecture that future work must go beyond Euclidean
distances in some way, such as by using topological fea-
tures (Barannikov et al., 2021; Southern et al., 2023; Kim
et al., 2023), to solve these issues.

Takeaway for Researchers

More research on fidelity and diversity metrics is
needed. This research should be evaluated on a wide
range of sanity checks that aim to reveal as many
failure cases as possible.

6. Alternative Views
Sanity checks are unrealistic since they do not use real
data All of our sanity checks use very simple distributions,
so they are toy settings that lack the complexities of real
data. As a result, one may argue that these checks are not
representative of real settings, and are thus not useful to
evaluate how metrics perform in practice.

We use simple artificial distributions in our sanity checks to
isolate a single property that is tested in each check. This
also allows us to set up extreme scenarios where we know
what value a metric should have to meet D4 (bounds), which
would be much harder with real data.

In addition, our position is that all current metrics are flawed.
We argue that even simple artificial sanity checks are enough
to show this, since a metric that does not work even in many
simple settings in unlikely to work in more complex settings.

Sanity check x/y/z is not relevant or is flawed Not all of
our checks are relevant in all settings, and it is possible that
there are flaws in their design or implementation, despite our
efforts to make sure all the tests are correctly implemented
and their criteria make sense. However, all metrics fail

6α-precision and β-recall have learned non-Euclidean embed-
ding, but still use Euclidean distances after applying the embed-
ding.

much more than just one check. Arguing that some metric
would pass all, or almost all, checks if irrelevant and flawed
ones were removed would require there to be many of these
removed checks, which we find very unlikely.

A metric does not need to be perfect to be useful It is
true that an imperfect metric can be very useful, and perfect
metrics may not even exist at all. As a result, one may worry
that our sanity checks raise a too high of a bar: reviewers
may be inclined to reject papers proposing new metrics if
those metrics fail any checks, even though the new papers
might have genuinely useful insights. Setting the bar too
high in this way could stall the development of metrics.

It is not our intention to claim that a metric must pass all
of our checks to be useful. However, users of metrics must
still know if if their metrics are imperfect, and how the
flaws could affect their use case. In addition, as we argue
in Section 5.1, a metric that fails on any potential failure
case that is present in a setting could cause it to not provide
any useful information, so the many failures of all current
metrics means that their use needs to be considered very
carefully.

7. Conclusion
In this work, we evaluated generative fidelity and diversity
metrics using simple sanity checks that we collected from
the literature, or proposed ourselves. Unlike the previous
literature, we defined precise passing criteria for each check,
allowing checking the criteria programmatically.

We found that all of the metrics fail many of the sanity
checks, which lead to our position: all current fidelity and
diversity metrics are flawed in one way or the other. We
presented two takeaways from this position. First, practi-
tioners using these metrics must be wary of their flaws, and
second, more research into metrics is needed to correct the
flaws of the current ones. We presented several alternative
views to our position, and gave our arguments against each
alternative.

We hope to encourage better informed use of fidelity and
diversity metrics in future works, and to highlight the need
for new metrics with less potential issues. We think that
these will lead to more accurate evaluations of generative
models, and help continue the great advances in generative
modeling of recent years into the future.
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Impact Statement
The goal of this paper is to encourage informed use of
fidelity and diversity metrics when evaluating generative
models, and the development of better metrics. We think
the societal consequences of this work are likely to be posi-
tive, since naive use of poor metrics may lead to incorrect
conclusions about the models the metrics are measuring.
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A. Metrics in This Paper
Notation Recall that all metrics we consider are computed on embeddings of datapoints. We denote the embedded value
of a datapoint by ϕ, and denote an embedded dataset by Φ. We differentiate real and generated data with subscripts: Φr is
real data, Φg is generated data. We use |Φ| to denote the size of the dataset Φ.

Source Code Repositories We used to following source code repositories for the metrics in this work:

• I-Prec, I-Rec, Density, Coverage: https://github.com/clovaai/generative-evaluation-prdc,
MIT License

• IAP, IBR: https://github.com/ahmedmalaa/evaluating-generative-models, MIT license or
BSD 3-clause license (repository has MIT, files say BSD 3-clause)

• C-Prec, C-Rec: https://github.com/FasilCheema/GenerativeMetrics, GPL-3.0 license

• symPrec, symRec: https://github.com/mahyarkoy/emergent_asymmetry_pr, MIT license

• P-Prec, P-Rec: https://github.com/kdst-team/Probablistic_precision_recall, no license

Improved Precision / Recall Kynkäänniemi et al. (2019) motivate the improved precision / recall metrics as improvements
to the curve-valued metric of Sajjadi et al. (2018). In particular, improved precision and recall are single numbers, making
comparisons with them easier, and they come with a practical algorithm to compute the metrics.

The basis for both improved precision and recall is approximating the support of the real or synthetic data distribution with a
set of hyperspheres around each point, with radius set to the kth nearest neighbour of each point.

S(Φ) =
⋃
ϕ∈Φ

B(ϕ,NNDk(ϕ,Φ)) (1)

where B(ϕ, r) is a hypersphere of radius r centered at ϕ, and NNDk(ϕ,Φ) is the distance to the kth nearest neighbour7 of ϕ
in Φ. Improved precision then simply counts the fraction of synthetic points that are in the support of the real data, while
improved recall counts real points that are in the support of the synthetic data.

I-Prec(Φr,Φg) =
1

|Φg|
∑

ϕg∈Φg

Iϕg∈S(Φr), (2)

I-Rec(Φr,Φg) =
1

|Φr|
∑

ϕr∈Φr

Iϕr∈S(Φg). (3)

The hyperparameters of the metric are k, and the size of the synthetic dataset |Φg|. Kynkäänniemi et al. (2019) choose
k = 3 and use |Φr| = |Φg| = 50000 for image data. We follow their choice of k.

Density / Coverage Naeem et al. (2020) point out that improved precision and recall are vulnerable to outliers, since
the hypersphere around an outlier is likely to be large, and the metrics simply count how many points are in at least one
hypersphere. To fix these, Naeem et al. (2020) propose density and coverage.

Density counts, for each synthetic datapoint, how many hyperspheres that the synthetic datapoint belongs to, and normalises
the sum over all synthetic datapoints.

Density =
1

k|Φg|
∑

ϕg∈Φg

∑
ϕr∈Φr

Iϕg∈B(ϕr,NNDk(Φr)). (4)

Coverage counts the fraction of real datapoints that have at least one synthetic point in their hypersphere.

Coverage =
1

|Φr|
∑
ϕ∈Φr

I∃ϕg∈Φg : ϕg∈B(ϕr,NNDk(ϕr,Φr)). (5)

7Excluding ϕ itself.
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The hyperparameters for density and coverage are k and |Φg|. Naeem et al. (2020) choose them according to an analytical
expression for E[coverage] for identical real and synthetic distributions. They first set |Φr| = |Φg| = 10000, and then set
k = 5 to obtain E[coverage] > 0.95. Since we do not always use |Φr| = |Φg| = 10000, we solve k from the expression of
E[coverage] given by (Naeem et al., 2020, Lemma 2), which supports |Φr| ≠ |Φg|. We set a maximum k of 20.

α-precision / β-recall Instead of placing hyperspheres around each datapoint like the previous metrics, α-precision and
β-recall estimate the supports with a single hypersphere that contains an α (or β) fraction of the datapoints (Alaa et al., 2022).
Using a single hypersphere to approximate the support clearly requires the embedding space to have suitable geometry,
which is why Alaa et al. (2022) use a DeepSVDD neural network (Ruff et al., 2018), which explicitly attempts to embed the
datapoints inside a hypersphere, as their embedding. They train this network on the real data in tabular settings.

Let Sα(Φr) be the minimum-volume hypersphere that contains an α fraction of the real embeddings. Then

Pα =
1

|Φg|
∑

ϕg∈Φg

Iϕg∈Sα(Φr). (6)

Let Sβ(Φg) be the minimum-volume hypersphere that contains a β-fraction of the synthetic embeddings. Let

ϕ∗
g,β = NN1(ϕr,Φg ∩ Sβ(Φg)) (7)

where NN1(ϕ,Φ) is the nearest neighbour8 of ϕ in Φ. Then

Rβ =
1

|Φr|
∑

ϕr∈Φr

Iϕ∗
g,β∈B(ϕr,NNDk(ϕr,Φr)). (8)

Pα and Rβ have a separate value for each α, β ∈ [0, 1]. To aggregate these values, Alaa et al. (2022) define integrated
α-precision and β-recall as

IAP = 1− 2

∫ 1

0

|Pα − α|dα, (9)

IBR = 1− 2

∫ 1

0

|Rβ − β|dβ. (10)

These integrated metrics are what we evaluate in our experiments.

α-precision and β-recall have the architecture choices and training details of the embedding network as hyperparameters.
β-recall additionally has k. We use the code of Alaa et al. (2022) to compute both metrics, so we use their choices for the
embedding network and k. We use the same normalisation we use with other metrics before applying the neural network
embedding.

Precision / Recall Cover Precision cover and recall cover (Cheema & Urner, 2023) are based on the intuition that metrics
should not care whether a part of the support is covered if that part has a very small probability. For example, parts of the
real data distribution that have very low probability need not be covered by the synthetic data generator.

C-Prec =
1

|Φg|
∑

ϕg∈Φg

I|{ϕr∈Φr|ϕr∈B(ϕg,NNDk′ (ϕg,Φg))}|≤k, (11)

C-Rec =
1

|Φr|
∑

ϕr∈Φr

I|{ϕg∈Φg|ϕg∈B(ϕr,NNDk′ (ϕr,Φr))}|≤k. (12)

Precision cover and recall cover have the hyperparemeters k and k′. Cheema & Urner (2023) set k′ = ⌈ln |Φr|+ 6⌉ and
k = ⌈k′/3⌉, which we follow in our experiments.

8Including ϕ itself, so if ϕ ∈ Φ,NN1(ϕ,Φ) = ϕ.
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Symmetric Precision / Recall Khayatkhoei & Abdalmageed (2023) point out that previous metrics behave asymmetrically
when the real distribution is on the surface of a hypersphere, and the synthetic distribution is on the surface of another
hypersphere with the same center, but either a larger or smaller radius. The asymmetric behavior is a problem, since the
surfaces of the hyperspheres are disjoint, so both fidelity and diversity measures should be close to zero when the difference
in radii is large enough.

To fix the asymmetry, Khayatkhoei & Abdalmageed (2023) first define complement versions of improved precision and
recall

cPrecision =
1

Φg

∑
ϕg∈Φg

I|B(ϕg,NNDk(ϕg,Φg))∩Φr|≥1, (13)

cRecall =
1

Φr

∑
ϕr∈Φr

I|B(ϕr,NNDk(ϕr,Φr))∩Φg|≥1. (14)

(15)

cPrecision counts the fraction of synthetic data points whose k-nearest neighbourhoods contain at least one real datapoint,
and cRecall reverses the roles of real and synthetic data. Note that cRecall is the same quantity as coverage.

cPrecision and cRecall have the problematic asymmetric behaviour, but in opposite direction from improved precision and
recall, so Khayatkhoei & Abdalmageed (2023) define symmetric metrics that fix the asymmetry.

symPrec = min(cPrecision, I-precision), (16)
symRec = min(cRecall, I-Recall). (17)

The hyperparameters for symPrecision and symRecall are k, and |Φg|. Khayatkhoei & Abdalmageed (2023) use |Φg| =
|Φr| = 10000, and set k = 5. We follow their choice of k.

Probabilistic Precision / Recall Park & Kim (2023) aim to solve the outlier robustness problem of improved precision
and recall by approximating the supports of the real and synthetic data probabilistically. Instead of computing a binary value
of whether a datapoint is in the approximate support or not, they compute compute an estimate for the probability that the
point is in the support, and average these probability estimates to obtain the aggregate metrics called probabilistic precision
and recall.

Park & Kim (2023) call the function estimating the probability of ϕ to be in the support of Φ the probabilistic scoring rule
(PSR), and define it as

PSRΦ(ϕ
′) = 1−

∏
ϕ∈Φ

(1− f(ϕ, ϕ′, RΦ)). (18)

The function f(ϕ, ϕ′, RΦ) is a simple estimate of the probability that ϕ′ is in the support around ϕ:

f(ϕ, ϕ′, R) =

{
1− ||ϕ−ϕ′||2

R if ||ϕ− ϕ′||2 ≤ R

0 otherwise
(19)

where
RΦ =

a

|Φ|
∑
ϕ∈Φ

NNDk(ϕ,Φ) (20)

and a > 0 is a hyperparameter.

Probabilistic precision and recall are then averages of the estimated probabilities:

P-Prec =
1

|Φg|
∑
ϕ∈Φg

PSRΦr
(ϕg) (21)

P-Rec =
1

|Φr|
∑
ϕ∈Φr

PSRΦg (ϕr). (22)

The hyperparameters of P-precision and P-recall are a, k, which control the choice of R, and |Φg|. Park & Kim (2023) set
a = 1.2, k = 4 and |Φg| = |Φr| = 10000. We follow their choice of a and k.
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B. Sanity Check Details
B.1. General Success Criteria

We check the whether each metric passed or failed each check programmatically, checking whether the values of the metric
meet given criteria. We detail these criteria when introducing each sanity check later in this section. Each criteria looks at
specific points on the curves we plot in Section C, see for example Figure 6. The curves represent the mean metric values
over 10 repeats. Some criteria only look at the value at a few significant points, often the left and right extremes and the
middle. With these criteria, we check that the metric value at the given point is within 0.05 of a given value, unless otherwise
specified. More complex criteria look at the overall shape of the curve by comparing values at several points. When there
are multiple plots for different variations of the setting, such as multiple values of d in Figure 6, a metric must pass the
criteria for all variations. Next, we give the our detailed definitions of the overall shape criteria.

Bell shape Informally, a bell-shaped curve has low values on the left, increases until a peak at a given midpoint, and then
decreases again towards the right. Our specific criteria for a bell-shaped curve are:

• The difference between the values at both left and right extremes and at the midpoint is at least 0.2.

• The difference between the midpoint value and the maximum value is at most 0.1.

• The difference between the left extreme value or the right extreme value and the minimum value is at most 0.1.

Low-to-high shape Informally, a low-to-high shape is any curve that has the lowest values at the left extreme and highest
values at the right extreme, with a clear difference between the left and right extremes. Our specific criteria are:

• The difference between the right extreme value and the left extreme value is at least 0.2.

• The difference between the left extreme value and the minimum value is at most 0.1.

• The difference between the maximum value and the right extreme value is at most 0.1.

High-to-low shape Informally, high-to-low shape is similar to the low-to-high shape, but the values go from high on the
left to low on the right. Our specific criteria are:

• The difference between the left extreme value and the right extreme value is at least 0.2.

• The difference between the right extreme value and the minimum value is at most 0.1.

• The difference between the maximum value and the left extreme value is at most 0.1.

High-to-low shape with middle drop Informally, this shape requires a curve to clearly decrease between the left and
right extremes like the high-to-low shape, but also clearly decrease at a given point in the middle. Our specific criteria are:

• All of the criteria for a high-to-low shape.

• The difference between the left extreme value and a value at a given quantile of the x-axis is at least 0.1.

Horizontal line shape This shape represents an approximately constant curve. Our specific criterion is that the difference
between the maximum value and the minimum value is at most 0.05.

Converging line shape This shape represents a curve that converges towards some value, and is then approximately
constant. The convergence must happen before a given quantile of the x-axis. The specific criterion is that the difference
between the maximum and minimum values that are to the right of the given quantile x-axis quantile is at most 0.05.
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Figure 1. Total variation distance between a standard Gaussian and a Gaussian with mean µ1d. The lower and upper bounds are based on
Hellinger distance.

B.2. Gaussian Mean Difference (+ outlier)

In this check, the real distribution is a d-dimensional Gaussian standard Gaussian distribution, and the synthetic distribution
is a similar Gaussian with mean µ1d, where µ ∈ R and 1d is a d-dimensional vector of all ones. We vary d ∈ {1, 8, 64} and

µ ∈


[−6, 6], d = 1

[−3, 3], d = 8

[−1, 1], d = 64.

(23)

These ranges were selected to ensure that the total variation distance between the real and synthetic distributions at the
extreme ends of the µ interval is at least 0.99, see Figure 1. We set the real and synthetic dataset sizes to 1000.

In the “with outlier” case, we add one outlier point to either the real or synthetic data at the largest µ value.

Success Criteria As µ increases, the real and synthetic distribution are initially almost disjoint, then become more similar
until they are identical at µ = 0, and then become less similar until they are again almost disjoint at the right extreme. As
such, to pass D1b (purpose), we require all metrics to have a bell-shaped curve centered at µ = 0. For D4 (bounds), we
require all metrics to be close to 0 at the left and right extremes, and close to 1 at µ = 0.

The criteria for the “with outlier” case are the same, since a single outlier should not significantly change synthetic data
evaluations.

B.3. Gaussian Standard Deviation Difference

In this check, the real distribution is a d-dimensional Gaussian standard Gaussian distribution, and the synthetic distribution
is a similar Gaussian with covariance σ2Id, where σ > 0 and Id is the d× d identity matrix. We vary d ∈ {1, 8, 64} and
logarithmically vary σ in the interval

σ ∈


[10−3, 103], d = 1

[10−1, 101], d = 8

[10−0.5, 100.5], d = 64.

(24)

As in the Gaussian mean difference check, we selected the σ intervals to ensure that the total variation distance between the
real and synthetic distributions at the extreme ends is at least 0.99, see Figure 2. We set the real and synthetic dataset sizes to
1000.

Success Criteria In this check, the synthetic distribution is very narrow with the smallest σ values, but contained in the
real distribution, so fidelity metrics should have high values and diversity metrics should have low values. As σ increases,
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Figure 2. Total variation distance between a standard Gaussian and a Gaussian with covariance σ2Id. The lower and upper bounds are
based on Hellinger distance.

the metrics become more similar, and become identical at σ = 1, at which point all metrics should have high values. As σ
increases further, the synthetic distribution becomes wider, so fidelity metrics should drop. Diversity metrics can either fall
to low value or stay at high values, as described in Section 4.2.

Our specific criteria are the following:

• For D1b (purpose):

– Fidelity metrics should have a high-to-low shape.
– Low metrics should have a bell-shape with midpoint σ = 1, high metrics should have a low-to-high shape.

• For D4 (bounds):

– Fidelity metrics should have values close to 1, 1, 0 at the left extreme, σ = 1, and at the right extreme, respectively.
– Diversity metrics should have values close to 0, 1 at the at the left extreme and σ = 1, respectively. Low metrics

should have values close to 0 and high metrics should have values close to 1 at the right extreme.

B.4. Sequential / Simultaneous Mode Dropping

This checks evaluates how the metrics detect dropped modes. The real data is a 10-component Gaussian mixture in
d ∈ {1, 8, 64} dimensions, with the component means evenly spaced between 0 and 10 · 1d, and the component standard
deviations are

σ =


1
6 , d = 1
1
3 , d = 8

1, d = 64.

(25)

We set the real and synthetic dataset sizes to 1000.

We drop up to 9 of the modes in the synthetic distribution either simultaneously or sequentially, as done by Naeem et al.
(2020). In simultaneous dropping, the weights of the 9 modes are gradually decreased, until their weight is zero and the
synthetic distribution is just a single mode. In sequential dropping, we completely remove 0 to 9 of the modes from the
synthetic distribution.

Success Criteria With both simultaneous and sequential dropping, the real and synthetic distributions are initially identical.
Since the synthetic distribution is contained in the real distribution regardless of the dropped modes, fidelity metrics have
high values in all cases. Diversity metrics should be sensitive to mode dropping, and decrease as mode modes are dropped.
Our specific criteria are:
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Figure 3. Samples of each component in the mode dropping and invention sanity check.

• For D1b (purpose):

– Fidelity metrics should have horizontal lines.
– Diversity metrics should have a high-to-low with middle drop shape, with a drop of at least 0.1, at the 0.95 quantile

in the simultaneous case, and at the 0.5 quantile for the sequential case.

• For D4 (bounds):

– Fidelity metrics should be close to one at both left and right extremes.
– Diversity metrics should be close to one at the left extreme.

B.5. Mode Dropping + Invention

This check from Kynkäänniemi et al. (2019) evaluates how the metrics detect both mode dropping and invention. We start
be defining 10 two-dimensional Gaussian component distributions, which we show in Figure 3. The standard deviation of
each component is 0.25, and the means were randomly sampled from a Gaussian with mean 0 and standard deviation 10.
These same components are used for all repeats of the experiment. The real distribution is a mixture of components 0 to 4,
and the synthetic distribution has between 1 and 10 components, included in order. As a result, the 5-component synthetic
distribution is identical to the real distribution. With less than 5 modes, the synthetic distribution is dropping modes, and
with more than 5 modes, it is inventing modes. We set the real and synthetic dataset sizes to 1000.

Success Criteria

• For D1b (purpose):

– Fidelity metrics should have a high-to-low shape.
– Diversity metrics should have a low-to-high shape.

• For D4 (bounds):

– Both fidelity and diversity metrics should be close to 1 at 5 synthetic components.
– Fidelity metrics should be close to 1 with 1 synthetic component.
– Diversity metrics should be close to 1 with 10 synthetic components.

B.6. Hypersphere Surface

This check from Khayatkhoei & Abdalmageed (2023) highlights a problematic behavior in some metrics. The real
distribution is a uniform distribution on the surface of a d-dimensional hypersphere with radius 1, and the synthetic
distribution is a similar uniform distribution on the surface of a hypersphere of radius r ∈ [0.1, 1.9]. We set the real and
synthetic dataset sizes to 1000, and vary d ∈ {2, 8, 128}.

18



Position: All Current Generative Fidelity and Diversity Metrics are Flawed

1.0
0.5

0.0
0.5

1.0x 1.0
0.5

0.0
0.5

1.0

y

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

z

Figure 4. Samples from the sphere and torus distributions in the sphere vs. torus sanity check.

Success Criteria With r ̸= 1, the real and synthetic distributions are completely disjoint, so all metrics should have low
values. In practice, detecting very small differences in r is very hard for a general-purpose metric, so we only require that the
metrics detect a difference at the extreme values of r. Specifically, for D1b (purpose), all metrics should have a bell shape
with midpoint 1. For D4 (bounds), all metrics should have be close to zero at extreme values of r, and close to one at r = 1.

B.7. Hypercube, Varying Sample / Synthetic Size

This check from Cheema & Urner (2023) evaluates how the metrics have with different sizes of real and synthetic data. The
real distribution is uniform distribution on a d-dimensional hypercube with side length 1. The synthetic distribution is a
similar uniform distribution, but the hypercube has been translated equally on all axes so that the d-dimensional volume of
the overlapping area between the cubes is 0.2.

We vary either both the real and synthetic dataset size with both of them equal, or only the synthetic dataset size, in which
case the real dataset size |Φr| = 1000. The changing size is varied logarithmically in [102, 104]. We also vary d ∈ {1, 8, 64}.

Success Criteria According to Cheema & Urner (2023), both fidelity and diversity metrics should have a value of 0.2,
the volume of the overlap between the cubes, in this setup, since that is the value of a theoretical notion of precision and
recall that can be computed in this case. We expect the metrics to get close to this value with the largest dataset size for
D1b (purpose). We also expect the metric values to converge as the size increases (converging line shape), and require
convergence by size 1000. This is counted under D2 (hyperparameters) when only the synthetic data size changes, and
under D3 (data) when the sizes of both datasets change.

B.8. Sphere vs. Torus

This check from Cheema & Urner (2023) evaluates how the metrics distinguish two disjoint distributions with a non-trivial
geometry. One of the distributions is a uniform distribution on a sphere with radius 0.8. The other distribution is on a torus
with major radius 1, minor radius 0.1, which surrounds the sphere, but is disjoint from it. We look at both making the sphere
distribution the real distribution, and making the torus distribution real.

We sample the sphere distribution by sampling a cube containing the sphere, and rejecting samples outside the sphere. We
sample the torus by first uniformly sampling an angle θ ∈ [0, 2π], and sampling a point uniformly on the circle that is
formed by intersecting the torus with the y = 0 plane on the positive x side. The point is then rotated by θ around the z axis
to obtain the final sample. Figure 4 shows samples from both distributions.

We set the real dataset size |Φr| = 1000. We logarithmically vary the synthetic dataset size |Φg| ∈ [102, 104].
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Figure 5. Comparison of pdfs for the real and synthetic distributions in the one vs. two modes check.

Success Criteria The two distributions in this check are disjoint, so all metrics should have low values. We do not
place requirements at small synthetic dataset sizes, but we do require the metrics to pass regardless of which distribution
is considered the real one. Specifically, for D1b (purpose), we require the metrics to have a converging line shape, with
convergence at latest at 1000 synthetic datapoints. For D4 (bounds), we require the metrics to be close to 0 at the maximum
number of synthetic datapoints.

B.9. Mode Collapse

This check from Alaa et al. (2022) evaluates the mode resolution of the metrics: how well do they distinguish a real
distribution of two modes from a synthetic distribution that models both modes with a single wide mode. The real
distribution is an equal mixture of two d-dimensional (d ∈ {1, 8, 64}) Gaussians with means − 1

2µ1d and 1
2µ1d and unit

variance, where µ ∈ [0, 5] is varied. The synthetic distribution is a Gaussian with mean 0 and covariance (1 + µ2)Id. The
size of both the real and synthetic dataset is 1000. See Figure 5 for a visualisation of the distributions with d = 1.

Success Criteria When µ = 0, the distributions are identical. As µ increases, the modes of the real distribution become
further separated, while the synthetic distribution widens to cover both modes. As a result, metric values should be high
at low µ values, and decrease when µ is increased for fidelity metrics. Diversity metrics can either stay high or decrease
depending on whether they are high or low metrics.

Our specific criteria are:

• For D1b (purpose):

– Fidelity metrics should have a high-to-low shape.
– Diversity metrics should have a horizontal line shape for high metrics, and a high-to-low shape for low metrics.

• For D4 (bounds): values should be close to one when µ = 0 for all metrics.

B.10. Scaling One Dimension

This check evaluates how robust the metrics are to differing scales of the data variables. The real data distribution is
a two-dimensional standard Gaussian with the second dimension scaled by multiplying it with s. The synthetic data
distribution is a similarly scaled Gaussian, but with mean (6, 0). The scale is logarithmically varied in s ∈ [10−3, 103]. The
size of both datasets is 1000.

Success Criteria The two distributions are almost disjoint in the first dimension, so all metrics should have low values.
Specifically, we require a horizontal line shape for D5 (invariance), and a values close to zero on both left and right extremes
for desiderata D4 (bounds).

20



Position: All Current Generative Fidelity and Diversity Metrics are Flawed

B.11. Gaussian Mean Difference + Pareto

The aim of this check is to evaluate how well the metrics handle a heavy-tailed power-law distribution, which are common in
tabular data. The setup is the same as in the Gaussian mean difference check with d = 1, but both the real and synthetic data
contain an additional Pareto-distributed variable, which which has an identical distribution between the real and synthetic
data. The specific Pareto distribution is type 19 with shape α = 1.01 and scale 1.

Success Criteria Since the presence of the Pareto-distributed variable with an identical distribution in the real and synthetic
data should not affect data quality, the success criteria are the same as in the Gaussian mean difference check.

B.12. One disjoint Dimension + Many Identical Dimensions

This check evaluates how the metrics handle a difference in just one of a large number of dimensions. The real distribution
is a d+ 1-dimensional standard Gaussian, and the synthetic distribution is a similar Gaussian, except the mean of the first
dimension is 6. The number of identical dimensions d is varied logarithmically in d ∈ [1, 103]. The sizes of the real and
synthetic datasets are 1000.

Success Criteria Since the two distributions are almost disjoint due to the difference in the first dimension, all metrics
should have low values regardless of the number of extra dimensions. Specifically, for D1b (purpose), the values should be a
horizontal line, and for D4 (bounds), they should be close to 0 at both left and right extremes.

B.13. Discrete Numerical vs. Continuous Numerical

This check evaluates how the metrics detect a difference between a continuous distribution and a discrete numerical
distribution. This difference can occur in both directions in tabular data. Many numerical values, such as a count of
something, or age in years, are always integers in real data, but a synthetic data generator based on transforming a continuous
distribution, like a GAN or a diffusion model, will likely model them as a continuous value.10 In the other direction, some
synthetic data generators (McKenna et al., 2022) must discretise continuous variables, and can only output the discretised
values. Evaluation metrics should detect differences in both directions.

One distribution is a standard Gaussian multiplied by a scale s, and the other distribution is the same Gaussian and multiplier,
but its values have been rounded to integers. We look at both the case where the continuous distribution is real, and the
case where the discrete distribution is real. The scale s is varied logarithmically in s ∈ [1, 103]. The sizes of the real and
synthetic datasets are 1000.

Success Criteria The two distributions in this check are almost completely disjoint, since one of them is continuous and
one of them is discrete. However, when the discrete distribution is real, the continuous synthetic distribution covers all of its
values, so high-type diversity metrics can have high values in this case. Conversely, when the continuous distribution is real,
all values from the discrete synthetic distribution have reasonable density in the real distribution, so fidelity metrics should
have high values.

Our specific criteria are:

• For desiderata D1b (purpose), all metrics should be horizontal lines regardless of which distribution is considered real.

• For D4 (bounds):

– If the discrete distribution is real:

* Fidelity metrics should be close to 0 at small and large discretisation scales.

* High diversity metrics should be close to 1 and low diversity metrics should be close to 0 at small and large
discretisation scales.

– If the continuous distribution is real:

* Fidelity metrics should be close to 1 at small and large discretisation scales.

* Diversity metrics should be close to 0 at small and large discretisation scales.
9The pdf is p(x) = α

xα+1 on x ≥ 1.
10The continuous values can of course be rounded to integers, but evaluation metrics should detect a lack of rounding.
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Figure 6. Gaussian mean difference check: two d-dimensional Gaussian distributions with real mean 0, synthetic mean µ, covariance Id.
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Figure 7. Gaussian mean difference + outlier (in real data) check: two d-dimensional Gaussian distributions with real mean 0, synthetic
mean µ, covariance Id, with an outlier at the largest µ displayed on the x-axis in the real data.
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Figure 8. Gaussian mean difference + outlier (in synthetic data) check: two d-dimensional Gaussian distributions with real mean 0,
synthetic mean µ, covariance Id, with an outlier at the largest µ displayed on the x-axis in the synthetic data.
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Figure 9. Gaussian standard deviation difference check: two d-dimensional Gaussian with mean 0, real standard deviation 1, and differing
synthetic standard deviation. Density is plotted on a separate y-axis due to having a very different range from the other metrics.
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Figure 10. Sequential mode dropping check: two d-dimensional mixtures of Gaussians, where the real data has 10 modes, and the
synthetic data drops 0 to 9 of these modes. Fidelity metrics should not drop, since the synthetic is always from a part of the real data
distribution, but diversity metrics should drop due to the dropped modes.
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Figure 11. Simultaneous mode dropping check: two d-dimensional mixtures of Gaussians, where the real data has 10 modes, and the
synthetic data scales down the density of 9 modes by the number on the x-axis. Fidelity metrics should not drop, since the synthetic is
always from a part of the real data distribution, but diversity metrics should drop due to the dropped modes.
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Figure 12. Mode dropping + invention check: 2-dimensional mixtures of Gaussians, where the real data has 5 modes, and the synthetic
data has 1-10 modes. The first 5 are the same as the real data, and the last 5 are invented modes. Fidelity metrics should be close to 1 until
5 modes, and then drop, while diversity metrics should increase with 1 to 5 modes, and be close to 1 with 5 to 10 modes.
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Figure 13. Hypersphere surface check: two uniform distributions on the surfaces of two hyperspheres, with radius 1 for real data and the
radius on the x-axis for the synthetic data. When the synthetic radius is not 1, the distributions are completely disjoint, so all metrics
should have the value 0 away from synthetic radius 1.
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Figure 14. Hypercube, varying sample size check: two uniform distributions on overlapping hypercubes in d dimensions, varying both the
synthetic dataset size |Φg| and the real dataset size |Φr|.
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Figure 15. Hypercube, varying synthetic size check: two uniform distributions on overlapping hypercubes in d-dimensions, varying the
synthetic dataset size |Φg|, while the real dataset size if fixed at |Φr| = 1000.
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Figure 16. Sphere vs. torus check: distributions on a sphere and a disjoint torus surrounding the sphere, with varying synthetic dataset
size. The real dataset size is fixed at |Φr| = 1000.
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Figure 17. Mode collapse check: the real distribution being a two-component Gaussian mixture, and the synthetic distribution is a
Gaussian that covers the real distribution. µ is the separation between the two components of the real distribution.
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Figure 18. Scaling one dimension check: two 2-dimensional Gaussian distributions that are almost disjoint on the first dimension, identical
on the second dimension, and the second dimension is scaled by a varying multiplier. Negative values of IAP and IBR are due to numerical
integration errors.
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Figure 19. Gaussian mean difference + Pareto check: two-dimensional data, where the first dimension is Gaussian with mean different
means in the real and synthetic data, and the second dimension is a Pareto distribution that is identical between real and synthetic data.

100 101 102 103

# Extra Dim.

0.0

0.2

0.4

0.6

M
et

ric
 V

al
ue

I-Prec
I-Rec

Density
Coverage

(a)

100 101 102 103

# Extra Dim.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric
 V

al
ue

IAP
IBR

C-Prec
C-Rec

(b)

100 101 102 103

# Extra Dim.

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 V

al
ue

symPrec
symRec

P-Prec
P-Rec

(c)

Figure 20. One disjoint dimension + many identical dimensions check: two Gaussian distributions that are almost disjoint in the first
dimensions and identical in the rest of the dimensions, with varying number of the identical extra dimensions.
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Figure 21. Discrete numerical vs. continuous numerical check: two identical scaled Gaussian distributions, one of which is discretised by
rounding to integers.
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