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ABSTRACT

Reinforcement learning (RL) can elicit strong reasoning in large language models
(LLMs), yet most open efforts focus on math and code. We propose Reasoning
Curriculum, a simple two-stage curriculum that first elicits reasoning skills
in pretraining-aligned domains such as math, then adapts and refines these skills
across other domains via joint RL. Stage 1 performs a brief cold start and then
math-only RL with verifiable rewards to develop reasoning skills. Stage 2 runs
joint RL on mixed-domain data to transfer and consolidate these skills. The cur-
riculum is minimal and backbone-agnostic, requiring no specialized reward mod-
els beyond standard verifiability checks. Evaluated on Qwen3-4B and Llama-
3.1-8B over a multi-domain suite, Reasoning Curriculum yields consistent
gains. Ablations and a cognitive-skill analysis indicate that both stages are nec-
essary and that math-first elicitation increases cognitive behaviors important for
solving complex problems. Reasoning Curriculum provides a compact,
easy-to-adopt recipe for general reasoning.

1 INTRODUCTION

Recent work has advanced rapidly on eliciting reasoning in large language models (LLMs). Chain-
of-Thought (CoT) prompting (Wei et al., 2022) asks models to produce intermediate steps before
answering and substantially improves reasoning performance. Building on this idea, proprietary
systems train with reinforcement learning (RL) to refine long chains of thought, achieving strong
results in competition math and programming (OpenAI, 2024). Open-source efforts follow a similar
trajectory, reporting competitive performance and exposing training practices to broader scrutiny
(Team, 2024; Guo et al., 2025; Zeng et al., 2025; Luo et al., 2025b;a).

Despite this progress, most open-source works concentrates on math and code, domains with abun-
dant data and easily verifiable rewards. General reasoning across diverse domains remains com-
paratively underexplored. Recent work expands beyond math and code (Akter et al., 2025; Ma
et al., 2025; Cheng et al., 2025) and focuses on curating data across broad domains, yet effective,
cross-domain training strategies for strong reasoning models are still scarce.

We start from a premise suggested by the literature and our preliminary experiments: math is unusu-
ally amenable to RL-based skill elicitation. Significant gains can arise even under weak supervision,
including spurious or random rewards, and sometimes from very small training sets (Shao et al.,
2025b; Wang et al., 2025). We hypothesize that math serves as an effective driver for discovering
core reasoning skills that can later be adapted to other domains through on-policy training.

This paper proposes Reasoning Curriculum, a simple two-stage curriculum. Stage 1 elicits
reasoning via supervised cold start and math-only RL. Stage 2 transfers and refines the learned
skills by running joint RL on a mixed-domain corpus spanning math, STEM, code, simulation,
logic, and tabular tasks. The curriculum is intentionally minimal, requires no specialized reward
models beyond standard verifiability checks, and applies across backbones.

We evaluate Reasoning Curriculum on Qwen3-4B and Llama-3.1-8B. On Qwen, our 4B
model consistently outperforms similarly sized baselines and is competitive with, and sometimes
exceeds, 32B systems. On Llama, directly porting the Qwen recipe yields only small gains, so we
introduce a simple difficulty curriculum within the Math-RL stage (medium then hard). With this
change, the curriculum again improves performance across all domains.
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We also provide evidence for the mechanism behind Reasoning Curriculum through abla-
tions and a cognitive-skill analysis, showing that math-first elicitation increases transferable behav-
iors and that both stages are necessary for the full gains.

In summary, Reasoning Curriculum follows a simple strategy: first develop reasoning skills
in pretraining-aligned domains such as math using verifiable rewards, then adapt and refine them
across diverse domains with joint RL. This yields a compact, easy to adopt training recipe for general
reasoning that consistently improves performance across domains.

Figure 1: Reasoning curriculum overview. Stage 0 (pretraining, not conducted in this work): cog-
nitive skills exist but are weakly expressed on data-rich domains like math. Stage 1 (cold-start +
math-only RL): skills are elicited and strengthened in pretraining-primed domains. Stage 2 (joint
RL): skills are transferred and refined across general domains (code, logic, tabular, simulation). Blue
arrows indicate the training progression.

2 REASONING CURRICULUM

Suppose (x, y) is a question–answer pair and z is a chain of thought that produces y. The reasoning
process often manifests distinct cognitive skills. Four skills, commonly observed in both human
solvers and successful LLMs (Gandhi et al., 2025; Zeng et al., 2025), are:

• Subgoal setting: decomposing a complex problem into smaller, manageable steps.
• Enumeration: considering multiple cases or possibilities.
• Backtracking: identifying errors during generation and explicitly revising prior steps.
• Verification: checking intermediate results to ensure correctness.

While subgoal setting and enumeration frequently appear in most modern LLMs with CoTs, verifica-
tion and backtracking are often associated with LongCoT models such as Deepseek-R1 (DeepSeek-
AI et al., 2025) and are critical for solving harder problems. Our goal is to increase the use of these
skills in general domains and thereby strengthen LLM reasoning.

It is frequently observed that reinforcement learning with verifiable rewards (RLVR) on math data
increases the use of these skills and yields substantial gains (Zeng et al., 2025; Luo et al., 2025b;a; Hu
et al., 2025b), even under noisy rewards (Shao et al., 2025a). Given the readiness of skill elicitation
in the math domain, we hypothesize that pretraining already exposes models to these skills in data-
rich domains such as math, making them easier to elicit during post-training.
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We therefore propose a two-stage reasoning curriculum (Figure 1). First, we elicit skills on math via
a brief cold start followed by reinforcement learning with verifiable rewards. Second, we refine and
adapt these skills through joint RL on mixed-domain data to improve general reasoning.

2.1 MATH TRAINING

2.1.1 COLD START

Given a pretrained LLM, we first perform supervised fine-tuning on a small set of math examples to
expose the model to skill-rich thought traces:

JCold-Start(θ) = E(x,z,y)∼DCS [log πθ(y, z | x)] . (1)

Although recent work explores a zero-RL setup that applies RL without any supervised LongCoT
training (Hu et al., 2025a; Zeng et al., 2025), in practice strong reasoning systems almost always
begin with some cold-start supervision. Even within the DeepSeek-R1 line, which popularized
the zero-RL idea, widely used variants include supervised components (DeepSeek-AI et al., 2025).
We therefore adopt a brief cold start. It quickly exposes the model to diverse reasoning skills and
creates a realistic setting to study how SFT interacts with RL. Empirically, cold start helps the model
imitate multiple cognitive skills, while on-policy RL is still critical to consolidate these behaviors
into measurable gains in reasoning performance (see Section 4.3 for detailed discussions).

2.1.2 MATH RL

For RL, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has become popular due to
its efficiency and the success of DeepSeek-R1 (DeepSeek-AI et al., 2025). We use the DAPO variant
(Yu et al., 2025), which introduces several modifications that improve stability and performance:
JDAPO(θ) = E(x,y)∼D,{yi}G

i=1∼πθold (·|x)[
1∑G

i=1 |yi|

G∑
i=1

|yi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{yi | is equivalent(y, yi)}
∣∣∣ < G,

(2)

where

ri,t(θ) =
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)
, Âi,t =

Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (3)

The constraint filters groups so that at least one sample is correct and at least one is incorrect, which
makes relative advantages meaningful. Also, we omit the KL penalty to encourage exploration.

Following Zeng et al. (2025), we avoid format rewards that can hinder exploration and use only
correctness as the outcome reward:

R(ŷ, y) =

{
1, is equivalent(ŷ, y)

0, otherwise.
(4)

2.2 JOINT RL

After the Math-focused stage, we train a single policy with joint RL across our full suite of domains
(Math, Code, STEM, Logic, Simulation, Tabular; see Experiments for details). Training uses the
same DAPO objective as in Equation 2; only the reward computation differs by domain. Unless
noted otherwise, rewards are binary R ∈ {0, 1} (1 if the prediction matches the ground truth, 0
otherwise). Two Logic datasets permit partial credit, so we assign R ∈ (0, 1) when appropriate (see
Experiments 3.1). All rewards are derived automatically from verifiable signals and are therefore low
noise, which is the key to stable and effective RL. Following prior work on general reasoning (Ma
et al., 2025; Cheng et al., 2025), we combine three evaluation strategies to accommodate domain-
specific answer formats:

• Rule-based matching. Used in Math, Logic, Simulation, and Tabular. The model is prompted to
place the final answer in a prescribed format (e.g., \boxed{}). We extract and normalize the
answer, then compare it with the ground-truth for exact or numeric equivalence.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Model-based equivalence. Used in STEM where questions have free-form answers and deter-
ministic rules are brittle. An LLM is used to compare the model output with the reference answer
for semantic equivalence. This method robustly handles phrasing differences while maintaining
low reward noise.

• Execution-based verification. Used in Code. The generated function or script is executed against
a unit-test suite and receives a reward of 1 only if all tests pass, and 0 otherwise.

3 EXPERIMENTS

3.1 TRAINING DATA

Cold Start Data We randomly sample 20k problems from NuminaMath (Li et al., 2024) and
generate responses with DeepSeek-R1 (DeepSeek-AI et al., 2025). We retain 10k examples whose
R1 responses produce correct answers and use them for cold-start training.

Reinforcement Learning Data Our RL training builds on recent public datasets for LLM reason-
ing. Early efforts emphasize math (He et al., 2025; Yu et al., 2025; Luo et al., 2025b) and code (Luo
et al., 2025a; Li, 2024; Mattern et al., 2025; Jain et al., 2024), while newer releases broaden coverage
to STEM, logic, simulation, and tabular reasoning (Ma et al., 2025; Akter et al., 2025; Lin et al.,
2025; Li et al., 2025; Cheng et al., 2025; Stojanovski et al., 2025). Two resources are especially
useful: Cheng et al. (2025) consolidates multi-domain datasets from prior work, and Stojanovski
et al. (2025) provides a library with 100+ data generators and verifiers. We draw primarily from
these public releases and use the standard verifiable rewards they provide. Our training domains are
summarized below.

• Math. Challenging problems from exams, practice sets, and competitions with verifiable final
answers.

• STEM. Questions collected from QA sources and refined with LLMs. Subjects span physics,
chemistry, business, history and more; answers may be numeric, symbolic expressions, or
booleans.

• Code. Coding challenges from competitive programming and LeetCode-style datasets with unit
tests.

• Simulation. Tasks adapted from code-based environments that require procedural simulation
within the chain of thought, such as predicting program outputs (forward simulation) or inferring
inputs for a given output (backward simulation).

• Logic. Datasets emphasizing constraint satisfaction and formal deduction.
• Tabular. Problems that require parsing, querying, and reasoning over one or more tables to syn-

thesize the final answer.

3.2 TRAINING SETUP

We experiment with two models: Qwen3-4B (Yang et al., 2025) and Llama-3.1-8B (Grattafiori et al.,
2024) since they strike a practical balance of model performance and training cost.

Cold-Start SFT. We use Axolotl (Axolotl, 2025) with AdamW (Loshchilov & Hutter, 2017). The
peak learning rate is 5×10−5 with 10% linear warmup, then decays to 0.1× the peak. Training runs
for 4 epochs. The same hyperparameters are used for both backbones.

Reinforcement Learning. We use verl (Sheng et al., 2024) with AdamW. The learning rate is
1×10−6 with 10 warmup steps and then decays to 0. The prompt batch size is 256; for each prompt
we sample 16 responses with temperature 1.0. The maximum input length is 4096 tokens and the
maximum output length is 8192 tokens.

3.3 EVALUATION BENCHMARKS

We evaluate across six domains using widely adopted benchmarks: Math (AIME24; MATH500
(Hendrycks et al., 2021)), Code (HumanEval; MBPP; LiveCodeBench (Chen et al., 2021; Austin
et al., 2021; Jain et al., 2024)), STEM (GPQA; SuperGPQA (Rein et al., 2023; Team et al., 2025)),
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Logic (Zebra; Knights and Knaves; BoxNet (Lin et al., 2025; Stojanovski et al., 2025)), Simulation
(CodeI/O; CRUXEval (Li et al., 2025; Gu et al., 2024)), and Tabular (HiTab; MultiHiertt; FinQA
(Cheng et al., 2021; Zhao et al., 2022; Chen et al., 2022)).

3.4 BASELINES

We compare our models to several recent reasoning models that are trained with public data on
math or general domains: (1) General Reasoner (Ma et al., 2025), (2) SimpleRL-Zoo (Zeng et al.,
2025) (3) Guru (Cheng et al., 2025). In addition, we also compare reasoning curriculum to two
variants where some components are removed: 1) cold start + joint RL where math-RL is removed,
2) direct joint RL where both cold-start and math-RL are removed. These comparisons would help
us understand the contributions of each component in our curriculum.

4 RESULTS

4.1 RESULTS ON QWEN

The Qwen results are summarized in Table 1. Across all domains, the 4B model trained with reason-
ing curriculum (RC-Qwen) consistently outperforms similarly sized baselines: Guru-7B, General-
Reasoner-7B, and SimpleRL-7B. Despite its smaller size, RC-Qwen is competitive with, and in
several cases exceeds, 32B baselines. Relative to SimpleRL (trained primarily on math), RC-Qwen
matches or surpasses it on math benchmarks and delivers clear gains on most non-math tasks. Com-
pared with Guru-32B (trained on diverse domains and similar data as ours), RC-Qwen is compet-
itive on the majority of tasks and leads on six benchmarks, supporting our claim that a math-first
curriculum followed by joint cross-domain RL yields strong general reasoning in compact models.

4.2 RESULTS ON LLAMA

Table 2 reports results on Llama. Simply porting the Qwen recipe to Llama-3.1-8B yielded negligi-
ble gains, so we introduced two adjustments. First, we initialized from the instruct model (Llama-
3.1-8B-Instruct)1 rather than the base model, because the base model does not reliably follow in-
structions, which complicates reward extraction and impedes learning. Second, within the Math-RL
stage we added a difficulty curriculum with two sub-stages: medium problems followed by hard
problems. This curriculum made learning more stable and enabled a smooth handoff to joint RL.
Because most prior work on RL for general reasoning evaluates Qwen models, directly comparable
Llama baselines are scarce (Ma et al., 2025; Cheng et al., 2025; Hu et al., 2025a; Akter et al., 2025).
Against our internal baselines, RL (direct joint RL) and CS+RL (cold start + joint RL), the cur-
riculum consistently improves performance across all domains, supporting the claim that math-first
elicitation followed by cross-domain RL is effective for Llama.

4.3 COGNITIVE SKILLS USAGE

We compare cognitive skill frequencies across models trained with Direct Joint RL (RL), Cold-
Start + Joint RL (CS+RL), and our Reasoning Curriculum (RC). Following prior work (Gandhi
et al., 2025; Zeng et al., 2025), we use GPT-4o-mini to tag four skills: subgoal setting, enumer-
ation, backtracking, and verification. Figure 2 summarizes the results (upper: Qwen3-4B; lower:
Llama-3.1-8B). Overall, RC increases the frequency of these skills for both backbones, supporting
our hypothesis that math-first training improves cognitive skills across domains via the reasoning
curriculum. Also, two observations are noteworthy. First, all settings exhibit a similarly high rate
of subgoal setting (often near 100%), which suggests that it is necessary but not sufficient for solv-
ing complex problems. Second, CS+RL can show comparable rates of advanced skills in certain
domains (for example, backtracking in Tabular for Qwen and verification and backtracking in Simu-
lation for Llama). This suggests that Cold-Start helps models quickly imitate surface-level reasoning
patterns, but on-policy training in the Math-RL stage appears important for fully consolidating the
skills and converting them into the performance gains observed under the full RC pipeline.

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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Table 1: Evaluation Results on Qwen.

32B 7B 4B

Task GURU SimpleRL GURU General
Reasoner SimpleRL RL CS+RL Reasoning

Curriculum

Math
AIME-24 34.89 27.20 17.50 17.08 15.60 26.56 27.71 32.60
Math-500 86.00 89.60 77.25 70.40 87.00 83.20 85.20 89.00

STEM
GPQA 50.63 46.46 40.78 38.64 35.98 45.83 48.99 53.16
SuperGPQA 43.60 37.73 31.80 30.64 27.29 33.00 39.60 41.40

Code
HumanEval 90.85 81.25 82.62 61.12 58.08 88.79 89.55 90.85
LiveCodeBench 29.30 19.80 16.49 8.51 6.72 23.66 23.21 26.34
MBPP 78.80 76.75 70.00 39.80 49.60 72.40 75.80 80.00

Simulation
CodeIO 12.63 9.75 15.63 7.13 6.63 6.13 14.75 20.63
CruxEval-I 80.63 72.63 61.72 63.63 56.25 70.75 78.13 82.13
CruxEval-O 88.75 67.75 71.28 56.50 58.31 71.50 76.25 79.75

Logic
Knights Knaves 17.62 16.22 14.43 14.73 15.26 65.94 68.69 71.10
BoxNet 0.12 0.25 1.06 1.60 0.78 83.85 88.77 93.80
Zebra 45.21 1.16 39.40 0.07 0.62 40.51 40.11 44.07

Tabular
FinQA 46.14 45.41 34.70 34.33 35.10 42.69 44.50 45.14
HiTab 82.00 69.00 74.20 54.40 50.40 73.80 71.30 76.60
MultiHiertt 55.28 52.83 44.94 31.62 37.57 52.38 50.30 54.02

RL = direct joint RL; CS+RL = cold-start then joint RL.

4.4 ABLATIONS

We ablate the components of the reasoning curriculum. Table 3 reports average performance. Re-
moving the Math-RL stage, that is, using CS+RL (Cold-Start followed by Joint RL), reduces perfor-
mance relative to the full curriculum. Removing Cold-Start as well, i.e., direct joint RL, leads to a
further drop. The same pattern is observed for both Qwen and Llama models. These results indicate
that each component contributes meaningfully to the performance of reasoning curriculum.

4.5 IMPROVEMENTS ACROSS REASONING CURRICULUM

We track performance across the curriculum stages (Cold-Start, Math-RL, and Joint-RL) in Figure 3
(top: Qwen3-4B; bottom: Llama-3.1-8B). In each sub-figure, the y-axis is the average score within
a domain and the x-axis indexes the curriculum stage. Three patterns are consistent across both
backbones. First, in Math, STEM, and Tabular, scores improve stage by stage: Math-RL exceeds
Cold-Start, and Joint-RL further improves over Math-RL, suggesting shared reasoning representa-
tions across these domains. Second, in Simulation and Code, Math-RL reduces performance relative
to Cold-Start even though both stages use only math data, indicating possible overfitting to math.
Joint-RL however recovers the drop, and the full curriculum still outperforms the variant that skips
Math-RL (see the CS+RL columns in Tables 1 and 2). Third, in Logic, performance is near zero after
Cold-Start and Math-RL, implying that logic requires domain-specific training. Nevertheless, these
stages appear to have a latent positive effect: under the full curriculum, logic accuracy surpasses
direct joint RL (compare the RL column with Reasoning Curriculum in Tables 1 and 2).
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Table 2: Evaluation Results on Llama.

Task RL CS+RL Reasoning Curriculum

Math
AIME-24 7.40 9.58 14.37
Math-500 55.60 69.60 74.40

STEM
GPQA 32.94 35.86 39.90
SuperGPQA 27.50 29.50 31.70

Code
HumanEval 70.27 69.82 74.24
LiveCodeBench 15.68 17.74 18.46
MBPP 60.40 58.80 64.00

Simulation
CodeIO 10.75 16.25 17.38
CruxEval-I 50.50 61.00 65.50
CruxEval-O 23.00 61.00 60.62

Logic
Knights Knaves 64.47 66.67 67.63
BoxNet 74.11 75.20 96.23
Zebra 35.43 32.86 41.08

Tabular
FinQA 27.79 33.70 35.33
HiTab 74.90 75.30 78.30
MultiHiertt 40.25 38.99 44.05

RL = direct joint RL; CS+RL = cold-start then joint RL

Table 3: Ablations on training curriculum.

Ablation Qwen3-4B Llama-3.1-8B

Reasoning Curriculum 61.29 51.45
−Math-RL 57.68 46.99
−Math-RL, −CS 55.06 41.94

−Math-RL removes math RL; −CS further removes
cold-start.

5 RELATED WORK

5.1 LLM REASONING

A key breakthrough in eliciting reasoning from LLMs is Chain-of-Thought (CoT) prompting (Wei
et al., 2022), which asks models to produce intermediate steps before the final answer. Building on
this foundation, recent proprietary models have pushed the boundaries of LLM reasoning by com-
bining massive model scale with large-scale RL. OpenAI’s GPT-o1 (OpenAI, 2024), for instance,
leverages RL to explore and refine long, complex reasoning chains. This approach has demonstrated
unprecedented performance on highly challenging domains like competitive math and programming.

The success of this paradigm has inspired the open-source efforts to develop similar capabilities.
Models like QwQ (Team, 2024) and DeepSeek-R1 (Guo et al., 2025) take a similar RL approach and
achieve results competitive with leading proprietary models. These efforts have also helped demys-
tify the training process. Community ablations scrutinize when zero or minimal warm-up succeeds
and how base model choice affects outcomes (Zeng et al., 2025). There is also evidence that careful
scaling and length control can push small models to strong results, for example DeepScaleR-1.5B
and DeepCoder-14B, which report competitive performance on verifiable benchmarks (Luo et al.,

7
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(a) Qwen3-4B results

(b) Llama-3.1-8B results

Figure 2: Cognitive skill frequencies by training setting. RL = direct joint RL; CS+RL = cold-start
then joint RL; RC = reasoning curriculum. Top: Qwen3-4B; bottom: Llama-3.1-8B.

2025b;a). Intriguingly, recent studies show that substantial gains on math can be triggered by weak
or even misleading reward signals, including rewards that are random or known to be incorrect (Shao
et al., 2025b), and in extreme cases by training on a single example (Wang et al., 2025). This sensi-
tivity of math reasoning to RL supervision motivates our approach: we leverage these dynamics to
improve reasoning across domains through a cross-domain reasoning curriculum.

5.2 REASONING ACROSS DOMAINS

Despite rapid progress, most open research concentrates on math and code, where a large amount
of data is available and rewards are easily verifiable. Recent efforts have begun to expand coverage
beyond these areas. Akter et al. (2025) and Ma et al. (2025) curate STEM datasets with verifiable
rewards, exploiting the ease of multiple-choice verification and using LLMs to normalize and com-

8
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(a) Qwen3-4B results

(b) Llama-3.1-8B results

Figure 3: Trends across curriculum stages by task. CS = Cold-Start; RL = Math-RL; Joint-RL =
RL on mixed-domain data. Top: Qwen3-4B; bottom: Llama-3.1-8B. Each point shows the average
score within a domain at each stage.

pare answers across varied surface forms. Building on such resources, Cheng et al. (2025) introduce
Guru, which further incorporates logic, simulation, and tabular domains. Collectively, these works
advance data collection, cleaning, and cross-domain evaluation, revealing distinct performance pat-
terns across tasks. In our work, we leverage these multi-domain resources and other logic datasets
to study how to train a strong reasoning model across domains.

6 CONCLUSION

We introduced Reasoning Curriculum, a minimal two-stage curriculum that first elicits rea-
soning skills in math through cold start and RL, then adapts and refines them with joint RL across
diverse domains. On Qwen3-4B and Llama-3.1-8B, Reasoning Curriculum delivers consis-
tent multi-domain gains. Ablations show that both stages are necessary, and a cognitive-skill analysis
indicates increased use of advanced behaviors such as verification and backtracking. The recipe is
backbone-agnostic and relies only on standard verifiability checks, which makes it easy to adopt.

9
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language model (LLM) assistants to improve the clarity of the manuscript. Allowed
uses included: suggesting word choices, fixing grammatical errors, and smoothing sentences and
transitions. All generated edits were reviewed and, when necessary, rewritten by the authors.
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