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ABSTRACT

Self-play alignment algorithms have been developed as effective methods for fine-
tuning large language models (LLMs), formulating preference optimization as a
two-player game. However, the regularization to the reference policy, which is
crucial for mitigating over-optimization, has been insufficiently investigated in
self-play alignment. In this paper, we show that our regularization method can
improve the unregularized self-play significantly. To study the impact of differ-
ent regularization in self-play alignment, we propose Regularized Self-Play Pol-
icy Optimization (RSPO), a generalized framework that allows for regularizing
self-play by simply adding a chosen regularization term into the loss, while main-
taining provable last-iterate convergence to the Nash Equilibrium of the corre-
sponding regularized game. Surprisingly, empirical evaluations using the Mistral-
7B-Instruct base model reveal that forward KL divergence regularization reduces
response length in RSPO, whereas reverse KL divergence markedly improves raw
win rates. RSPO with a linear combination of forward and reverse KL divergence
regularization substantially increase the length-controlled win rate in AlpacaEval-
2, elevating the unregularized self-play alignment method (SPPO) from 28.53%
to 35.44%. Finally, we show that RSPO also improves the response diversity.

1 INTRODUCTION

Large Language Models (LLMs) recently have obtained remarkable capabilities to accomplish a
range of tasks (Jiang et al., 2023a; Dubey et al., 2024; DeepSeek-AI et al., 2025), generating more
desirable and helpful content following the user’s intention. One of the most important methods
to align LLMs with human intentions is Reinforcement Learning from Human Feedback (RLHF),
maximizing a preference-based reward penalized by a reverse KL regularization term of LLM policy
and a supervised fine-tuning (SFT) reference model (Christiano et al., 2017; Ouyang et al., 2022;
Rafailov et al., 2024; Azar et al., 2024; Xiong et al., 2024). This regularization is crucial in RLHF
to prevent over-optimization, which has been extensively studied and even extended beyond KL
divergence (Go et al., 2023; Huang et al., 2024).
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Figure 1: Our Regularized Self-Play Pol-
icy Optimization (RSPO) with base model
Mistral-7B-Instruct outperforms Llama-3-
70B, GPT-4 (0613), and (unregularized)
Self-Play Policy Optimization (SPPO) (Wu
et al., 2024) in AlpacaEval-2 LC win rate.

Self-play is a general line of works conducting it-
erative self-competition of models, which has been
demonstrated as an effective approach for improv-
ing AI systems (Goodfellow et al., 2020; Wang
et al., 2022), particularly in strategic decision-
making problems (Silver et al., 2016; Heinrich &
Silver, 2016; Pinto et al., 2017; Brown & Sandholm,
2018). In the human alignment of LLMs, self-play
recently started to be used and has shown superior
empirical performance than other iterative RLHF
methods on benchmarks like AlpacaEval and Arena-
Hard Evaluation (Dubois et al., 2024; Jiang et al.,
2024; Wu et al., 2024; Rosset et al., 2024). By for-
mulating the preference optimization problem as a
two-player game, self-play alignment methods seek
to identify a Nash Equilibrium (NE) of the game in
which utility is determined by a general preference
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model (Munos et al., 2023; Calandriello et al., 2024; Azar et al., 2024). This NE is regarded as the
most aligned LLM policy, achieved without Bradley-Terry (BT) assumption (David, 1963).

Despite the significant empirical improvements achieved through self-play, the impact of regulariza-
tion to the reference policy—commonly used in RLHF to mitigate over-optimization—has received
insufficient investigation in self-play alignment. Most existing self-play methods lack explicit
regularization (Swamy et al., 2024; Rosset et al., 2024; Wu et al., 2024; Wang et al., 2024; Gao et al.,
2024). In practice, unregularized self-play is also susceptible to over-optimization, particularly
when the preference model is misspecified. While some approaches incorporate regularization,
they are typically constrained to a reverse KL divergence penalty that restricts deviations from the
reference policy (Munos et al., 2023; Zhang et al., 2024).

In this paper, we introduce a generalized framework for incorporating diverse regularization meth-
ods into self-play alignment, termed Regularized Self-Play Policy Optimization (RSPO). RSPO
offers a simple way to apply various regularization strategies in self-play by directly adding the reg-
ularization term to the loss function, while maintaining last-iterate convergence to the Nash Equi-
librium of the corresponding regularized preference optimization game. Empirical analysis reveals
distinct effects of different regularization methods: forward KL regularization reduces the response
length in RSPO, whereas reverse KL regularization significantly enhances the raw win rate. Conse-
quently, we adopt a linear combination of forward and reverse KL divergences, yielding a substantial
improvement over the unregularized self-play alignment method, SPPO (Wu et al., 2024), on var-
ious benchmarks. Particularly on AlpacaEval-2, RSPO outperforms SPPO with a 6.9% increase
in length-controlled win rate (LCWR) and an 18% LCWR improvement over the base model,
Mistral-7B-Instruct. Furthermore, we offer an analysis of response diversity that regularization also
promotes greater diversity. In summary, regularization plays a crucial role in self-play alignment,
significantly improving both the quality and diversity of responses in previously unregularized self-
play methods.

2 RELATED WORK

Azar et al. (2024) presents the first work on optimizing general preference models. Nash-MD
(Munos et al., 2023) is the first approach to address general preference optimization with self-play,
by formulating preference optimization as a two-player game. Subsequent methods either aims to
learn the Nash Equilibrium (NE) of the original unregularized game Swamy et al. (2024); Wu et al.
(2024); Rosset et al. (2024); Wang et al. (2024), or seek to incorporate only reverse KL regular-
ization and solving the NE of a reverse-KL-regularized preference optimization game Munos et al.
(2023); Calandriello et al. (2024); Zhang et al. (2024). In contrast, we explore the broad class of
divergence-based regularization techniques for self-play alignment.

We highlight the distinction between our self-play approach and the self-play methods based
on pairwise comparisons, which construct loss functions by leveraging the difference in policy
logits between preferred and rejected responses (Rafailov et al., 2024; Calandriello et al., 2024).
Direct Nash Optimization (Rosset et al., 2024) and Iterative Nash Policy Optimization (INPO)
(Zhang et al., 2024) follow Mirror Descent (MD) update (Beck & Teboulle, 2003) while indirectly
compute loss with pairwise comparisons. This pairwise-comparison-based loss as in Direct Policy
Optimization (DPO) has shown merely increasing relative likelihood gap, which may not elevate
the probability of the preferred response (Pal et al., 2024). Our methods, instead approximate the
MD update directly, by converting MD to an RL problem.

Online iterative RLHF, incorporating a trustworthy reward or preference model—including
self-play—serves as a self-improving framework by iteratively generating new data using models
and optimizing policies based on this data (Schulman et al., 2017; Ouyang et al., 2022; Bai et al.,
2022; Touvron et al., 2023; Dong et al., 2024). Additionally, extending powerful offline methods
such as Direct Preference Optimization (DPO) to iterative procedures has demonstrated remarkable
performance improvements (Xu et al., 2023; Liu et al., 2023; Tran et al., 2023; Dong et al., 2024;
Calandriello et al., 2024; Pang et al., 2024; Xiong et al., 2024; Guo et al., 2024; Tajwar et al., 2024;
Cen et al., 2024; Xie et al., 2024). While in this work, we study the general preference optimization
with self-play from a game-theoretic perspective.
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3 PRELIMINARIES

We denote a prompt as x, a response as y, and a LLM policy as π(y|x), where π(·|x) ∈ ∆Y , X is
the set of all prompts and Y = {y0, y1, · · · } is the set of all responses. We denote the probability
simplex over the responses given a specific prompt, as ∆Y . We parametrize the LLM policy π as
πθ. The reference policy is an LLM denoted as µ ∈ ∆X

Y . For notational brevity, we remove the
dependence of policy π and loss functions on the prompt x throughout the paper.

3.1 GAME-THEORETIC PREFERENCE OPTIMIZATION

We study the preference optimization problem in an online setting by formulating it as a two-player
max-min game, as studied in previous self-play works (Munos et al., 2023; Wu et al., 2024). The
players are two LLMs whose strategies are LLM policies, denoted as max-player π and min-player
π′. The utility of the max-player is the preference:

u(π;π′) = P(π ≻ π′)
def
= Ey∼π,y′∼π′ [P(y ≻ y′)], (1)

where u : ∆X
Y ×∆X

Y → R is linear in π and π′; P : X × Y × Y → [0, 1] is a general preference
model that quantifies the preference of y over y′ given a prompt as in (Munos et al., 2023; Wu et al.,
2024; Zhang et al., 2024). We extend the notation P(y ≻ π′) = Ey′∼π′ [P(y ≻ y′)] for any response
y. The objective is finding a Nash Equilibrium (NE) policy π∗ of the preference model:

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′). (2)

Therefore, an NE strategy π∗ is an LLM that can generate the most preferred responses in expecta-
tion, thus achieving human alignment based on the preference model.

Existing game-theoretic self-play methods solve this NE following Algorithm 1 (Wu et al., 2024;
Swamy et al., 2024; Zhang et al., 2024; Wang et al., 2024). Specifically, the policy is first initialized
as π0 = µ. Then in each iteration t, the opponent is set to be the last-iterate policy πt (the reason why
it’s called self-play), and the responses are sampled from πt (Line 4). The pairwise preferences of
the sampled responses are collected using the preference model P (Line 5). The policy parameters
are updated by minimizing a specified loss function L(θ;P) based on preferences over responses
(Line 6). The loss function L(θ;P) is dependent on the inherent online learning method.

3.2 PREFERENCE OPTIMIZATION VIA MULTIPLICATIVE WEIGHTS UPDATE

An effective self-play method to solve the preference optimization game in Equation (2) is Self-Play
Policy Optimization (Wu et al., 2024). SPPO derives its loss function from the no-regret learning
algorithm, Multiplicative Weights Update (MWU) (Freund & Schapire, 1997). Specifically in a
game setting, denote learning rate as η, and normalization constant Z(πt). In iteration t, the policy
update ∀y ∈ Y is

πt+1(y) = πt(y) ·
exp

(
ηEy′∼πt

[u(y; y′)]
)

Z(πt)
, (3)

where u(y; y′) is the utility function defined in Equation equation 1.

The practical loss function of SPPO for policy update in each iteration t is the square error between
LHS and RHS in Equation (3) at a logarithmic scale,

LSPPO(θ) = Ey∼πt

[
log

πθ(y)

πt(y)
−
(
ηP(y ≻ πt)− logZ(πt)

)]2
. (4)

SPPO converges to the NE of the preference optimization game. However, after multiple iterations
training, the deviation of the policy πθ from µ can be large. Such deviation is particularly problem-
atic when the preference model is only accurate at evaluating responses sampled from the reference
policy (Munos et al., 2023). Furthermore, in aligning LLMs in practice, the preference model is
typically a surrogate P̂, such as PairRM (Jiang et al., 2023b), which may be misspecified at some
out-of-distribution responses and inaccurate due to estimation error or limited model expressiveness
(e.g., PairRM is only a 0.4B model), causing over-optimization problem. Regularizing the policy op-
timization to a reference SFT model, which is typically trained on high-quality data (Ouyang et al.,
2022), can mitigate the problem. We provide a synthetic example in C.1 to demonstrate the problem.
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3.3 REGULARIZED PREFERENCE OPTIMIZATION GAME WITH REFERENCE POLICY

To address the regularization in self-play, we adopt the objective in Nash Learning from Human
Feedback (Munos et al., 2023), and extend the KL divergence regularization to a general regular-
ization function, to penalize the deviation from reference policy. We define a convex regularization
function R : ∆X

Y × ∆X
Y → (−∞,∞), where R(π, µ) measures the distance between π and the

reference model µ, such as KL divergence DKL(π∥µ). Denote regularization temperature as τ , the
objective becomes to optimize a regularized preference model by solving the Nash Equilibrium
(π∗, π∗) of the regularized game, where the utility of max player is still u(π;π′) = P(π ≻ π′):

argmax
π

min
π′

P(π ≻ π′)− τR(π, µ) + τR(π′, µ). (5)

We provide the proof of the existence of this Nash Equilibrium in Appendix A.2. Various meth-
ods leverage Mirror Descent (MD) to find a regularized NE in Equation (5) (Munos et al., 2023;
Calandriello et al., 2024; Zhang et al., 2024; Wang et al., 2024), based on its last-iterate convergence.

However, these MD-based methods have regularizer limited to a reverse KL divergence. Nash-MD1

addresses the reverse KL regularization of π and µ using a geometric mixture policy πµt (Munos
et al., 2023):

πt+1 = argmin
π

−η⟨π, ∂πu(πt;πµt )⟩+DKL(π, π
µ
t ). (6)

While the LLMs optimized via self-play exhibit significant improvement (Wu et al., 2024; Wang
et al., 2024; Zhang et al., 2024), they all have limited regularization of π and µ. They either
completely lack explicit regularization, or only employing reverse KL divergence, imposing only a
narrow form of regularization. The potential benefits of alternative regularization, such as adopting
other f -divergences than reverse KL, remain unexplored.

4 REGULARIZED SELF-PLAY POLICY OPTIMIZATION

We propose a generalized framework of applying different regularization methods for self-play
algorithms, called Regularized Self-Play Policy Optimization (RSPO). In Section 4.1, we
propose a novel no-regret learning method, Generalized Magnetic Mirror Descent, as the theoretical
foundation of RSPO. In Section 4.2, we introduce our novel RSPO framework, and introduce our
implementation of regularization methods in Section B.3. Finally, in Section 4.3, we demonstrate
the novel connections of RSPO to existing self-play methods.

4.1 GENERALIZED MAGNETIC MIRROR DESCENT

We propose Generalized Magnetic Mirror Descent (GMMD) extended from Magnetic Mirror De-
scent Sokota et al. (2022), to solve a regularized max-min game. Denote the utility function of the
game as U . We denote G as the element of the gradient vector of U :

∂πU(π;π′) =
(
G(y0;π′), · · · , G(y|Y|;π′)

)⊤ ∈ R|Y|. (7)

In iteration t, GMMD updates policy as

πt+1 = argmin
π

−ηEπ[G(y;πt)] +Bψ(π;πt) + τR(π, µ), (8)

where τ is regularization temperature, R is a general regularization function, serving as a “magnet”
to attract π to µ during policy updating. Bψ is the Bregman Divergence generated by a convex
potential function ψ (Bregman, 1967).

Notably, the vanilla Magnetic Mirror Descent limits R to be the same regularization method of
π and πt, i.e., Bψ(π;πt) (Sokota et al., 2022, Section 3.2); whereas in this paper we aim at a
general regularizer of π and µ, which could be different from Bψ , and study the effects of different
regularizations methods.

1We call regularization by default meaning the one between π and µ, which is more important in preference
optimization.
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Proposition 4.1 (Last-iterate Convergence). If R(·, µ) is 1-strongly convex relative to ψ, η ≤ τ ,
and U is linear, then policy updated by GMMD in Equation (8) has last-iterate convergence to the
following regularized Nash Equilibrium:

max
π

min
π′

U(π;π′)− τR(π, µ) + τR(π′, µ). (9)

Proposition 4.1 is a direct application of Theorem 3.4. by Sokota et al. (2022). We provide the proof
in Appendix A.3. Proposition 4.1 guarantees the last-iterate convergence to the Nash Equilibrium
of a regularized game.

To adapt GMMD to preference optimization problems, RL techniques are commonly employed as
practical implementations of MD (Munos et al., 2023; Wang et al., 2024). Define the loss function
of conducting GMMD in preference optimization as

LGMMD(θ)
def
= −ηEπθ

[
G(y;πt)

]
+DKL(πθ||πt) + τR(πθ, µ). (10)

Here, we set the Bregman divergence to Reverse KL in preference optimization as in previous works
(Munos et al., 2023; Zhang et al., 2024). The gradient estimation of LGMMD(θ) for policy updates
is required since the expectation in the first term is dependent on πθ. Following Policy Gradient
theorem (Sutton et al., 1999), then we have

∇θLGMMD(θ) = Ey∼πθ

[
∇θ log πθ(y)

(
− ηG(y;πt) + log

πθ(y)

πt(y)
+B

)]
+ τ∇θR(πθ, µ), (11)

where B is a baseline function to reduce the variance as in REINFORCE (Williams, 1992).
We set B independent to θ so that adding B won’t change the value of Equation (10), due to
Ey∼πθ

[∇θ log πθ(y) · ηB] = ηB∇θEy∼πθ
[1] = 0.

We follow SPPO to replace the samples y ∼ πθ with y ∼ πt directly since they are equivalent while
computing the loss before updating, and rewrite the loss equivalent to GMMD:

∇θLGMMD(θ) = ∇θ

(
1

2
Ey∼πt

[
− ηG(y;πt) + log

πθ(y)

πt(y)
+ηB

]2
+ τR(πθ, µ)

)
. (12)

4.2 RSPO FRAMEWORK

Based on the loss equivalent to Generalized Magnetic Mirror Descent (GMMD) in Equation (12),
we propose Regularized Self-Play Policy Optimization (RSPO). The loss function of RSPO
LRSPO(θ;G,B,R) is defined as

LRSPO(θ;G,B,R) = Ey∼πt

[
log

πθ(y)

πt(y)
− η
(
G(y, πt, µ)−B(πt, µ)

)]2
+λR(πθ, µ) . (13)

Here we call the first Mean Square Error term a self-play loss function LSP. G : Y ×∆X
Y ×∆X

Y →
(−∞,∞) defines the update direction of πθ, which can be set as the gradient of a utility function to
guide the iterative optimization; The baseline function B : ∆X

Y ×∆X
Y → (−∞,∞) is for variance-

reduction for G similar to the baseline in REINFORCE; R : ∆X
Y ×∆X

Y → R is the regularization
function, λ is the regularization temperature.

The loss function of RSPO comprises a quadratic self-play loss LSP and an external regularization
R. RSPO serves as a generalized framework, offering flexibility in incorporating different regu-
larization methods into self-play-based preference optimization methods. The expectation term in
Equation (13) can be interpreted as a loss function facilitating exponentiated gradient descent (Beck
& Teboulle, 2003). The subsequent regularization term R provides a flexible mechanism for inte-
grating different regularization functions by simply adding it to the self-play loss.

Besides the flexibility, by setting the update direction of RSPO as the gradient of the preference
against πt, ∀y ∈ Y:

G(y, πt, µ) = ∂π(y)P(π ≻ πt) = P(y ≻ πt), (14)

5
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RSPO is theoretically guaranteed to solve the regularized preference optimization game in Equa-
tion (5). Specifically, we execute Algorithm 1 by applying the following RSPO loss to approximate
the GMMD:

LRSPO
(
θ;G = P(y ≻ πt), B = 1

2 , R
)

=Ey∼πt

[
log

πθ(y)

πt(y)
− η
(
P(y ≻ πt)− 1

2

)]2
+ λR(πθ, µ). (15)

Proposition 4.2. Self-play following Algorithm 1 with the RSPO loss function in Equation (15) and
regularizer R satisfying the assumption in Proposition 4.1, has last-iterate convergence to the Nash
Equilibrium of the regularized preference optimization game, as described in Equation (5).

We provide the proof details in Appendix A.4. Here, we set B = 1
2 following Nash-MD and SPPO.

In theory, B helps minimize the variance of G the most when B = Ey∼πt [G(y, πt, µ)]. But in
preference optimization, due to the typically small minibatch size, estimation error of the mean ofG
could be large, leading to additional estimation error of the loss. Thus, we also set the baseline value
for variance reduction to be a constant 1

2 , the mean value of G when the algorithm is converged.

Apart from the flexibility and simplicity of applying different regularization methods, RSPO can
generalize existing self-play methods including the unregularized ones, which enables regularizing
off-the-shelf self-play methods in practice with no change on their original loss functions or hyper-
parameters, directly adding external regularization term to their loss functions.

4.3 GENERALIZING EXISTING SELF-PLAY METHODS

We show that existing methods have loss functions equivalent to the special case of the quadratic
self-play loss LSP, i.e., RSPO without external regularization: LRSPO(R = 0).

Unregularized self-paly method SPPO (Wu et al., 2024), has loss function in Equation (4) exactly in
the form of LSP:

LSPPO(θ) = LSP

(
θ;G = P(y ≻ πt), B =

1

2

)
. (16)

Other unregularized self-play methods following the preference-based exponential update in Equa-
tion (3) can also be generalized by LSP, and thus can be regularized by simply adding regularization
term to the loss functions. SPO (Swamy et al., 2024), based on the same exponential update rule as
in SPPO, is equivalent to be updated via LSP in Equation (16). Magnetic Policy Optimization (Wang
et al., 2024) though has regularization in the policy update, periodically update µ = πt. Thus, it’s
inherently still conducting Equation (3) but incorporating multiple policy updates in each iteration
following (Tomar et al., 2020).

In addition, even existing regularized methods can be generalized by LSP. Mirror Descent methods
including Online Mirror Descent and Nash-MD have direct connection to RSPO and LSP due to the
same basic update rule (derivations provided in Appendix A.1).

∇θLNash-MD(θ) = ∇θLSP

(
θ;G = P(y ≻ πµt )− τ log

πt(y)

µ(y)
, B =

1

2

)
. (17)

Therefore, our generalized loss framework RSPO enables to even add extra regularization to exist-
ing regularized self-play methods, while maintaining the convergence to Nash Equilibrium of the
corresponding regularized game. We summarize how RSPO generalize existing self-play methods
in Table 3.

Comparisons to Existing Methods. RSPO is more efficient for regularization in self-play, which
requires no change on existing self-play loss nor their hyperparameters. RSPO is flexible for users to
apply different divergences for regularization by simply changing an additive regularization term R
to the loss function and tuning the single additional hyper-parameter λ. While existing regularized
self-play methods are limited to the reverse KL divergence for regularization. Incorporating with
regularization (e.g. from SPPO to Nash-MD) requires significant changes.

5 EXPERIMENTS

In this section of experiments, we answer the following questions:

6
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Methods
(Base Model: Mistral-7B-Instruct)

AlpacaEval-2
LCWR

Arena-Hard
Auto-v0.1 MT-Bench

Mistral-7B-Instruct 17.1 12.6 7.51
Snorkel (PairRM-Iterative-DPO) 26.4 20.7 7.58

SPPO Iter3 28.5 19.2 7.59
SimPO 32.1 21.0 7.60

RSPO (IS-For.+Rev.) Iter3 35.4 22.9 7.75

Table 1: Performance of existing methods, and our strongest model RSPO with Importance-
Sampling-based Forward KL (λ1 = 0.1) + Reverse KL (λ2 = 0.5) divergence as regularization,
on AlpacaEval-2 and Arena-Hard-Auto-v0.1.

• Does regularization improve the performance of self-play? (Sec. 5.1).

• Which regularization method is the most effective in self-play? (Sec. 5.2).

• What additional advantages can be derived from utilizing regularization in self-play? (Sec.
5.3).

Experiment Setup. We investigate our methods mainly on benchmarks AlpacaEval (Dubois et al.,
2024), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023). We follow the experiment
setup of SPPO and Snorkel-Mistral-PairRM-DPO (Snorkel) (Tran et al., 2023) to examine our regu-
larization methods, where Snorkel is based on iterative DPO and has achieved strong performance on
AlpacaEval. Our reference policy model is Mistral-7B-Instruct-v0.2. Since iterative self-play meth-
ods require no response data for training, we only use the the prompts of the Ultrafeedback dataset
(Cui et al., 2023), whose size is ∼ 60K. Following SPPO and Snorkel, we also split the prompts into
three subsets and use only one subset per iteration to prevent over-fitting. To understand the later-
iterate performance of self-play, in section 5.1, we also train on single fold of the prompts iteratively.
We use a 0.4B response-pair-wise preference model PairRM (Jiang et al., 2023b), evaluated as com-
parable to 10× larger reward/preference models (Cui et al., 2023). We investigate the effect of regu-
larization mainly via AlpacaEval-2.0, where the main metric is length-controlled win rate (LCWR).

Implementations and Baselines. The implementation of self-play methods follows Algorithm 1.
In each iteration, given response-pair-wise preference from PairRM and K = 5 number of response
samples from the current policy, we estimate the policies’ preference P(π ≻ πt) and regularization
via Monte-Carlo estimation to compute the loss function. We replicate the SPPO with the default
hyper-parameters and extend to 9 iterations. We implement RSPO as described in Theorem 4.2. The
implementation of regularizations in RSPO are demonstrated in Appendix B.3 using theK samples.
We report some of the baseline results from the previous papers, including SPPO, Snorkel (Mistral-
PairRM-DPO) (Tran et al., 2023), Mistral-7B (Instruct-v0.2) (Jiang et al., 2023a), iterative DPO by
Wu et al. (2024), and SimPO Meng et al. (2024). Since SPPO paper only provides results across 3
iterations (Wu et al., 2024), we replicate SPPO as an important baseline to study the performance
across more than 3 iterations.

5.1 EFFECTIVENESS OF REGULARIZATION

In this section, we assess the effectiveness of regularization primarily by comparing the performance
of unregularized and regularized self-play methods. We first examine the over-optimization issue in-
herent in practical self-play preference optimization by extending the execution of SPPO to iteration
9. As depicted in Figure 2, a decline in performance appears during the later iterations of SPPO.
We hypothesize that this behavior arises from the practical challenges associated with a misspecified
preference model, as the signals driving policy updates in SPPO rely only on the preference model.

In Table 2, we further contrast the unregularized self-play method, SPPO and other iterative meth-
ods, with the best RSPO, namely RSPO (For.+Rev.). The regularization is a linear combination of
Forward KL and Reverse KL divergence with coefficients 0.1 and 0.5, respectively. The compar-
ative results reveal that regularization enhances the SPPO win rate from 31.02% to 38.31%, and
the LC win rate increases from 28.53% to 35.44% in iteration 3. Notably, in the first iteration, reg.
SPPO exhibits a slightly lower LC win rate, potentially attributable to the influence of strong reg-
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RSPO
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(IS-For.)
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(IS-For. 
 +Rev.)
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35

AlpacaEval 2.0 LC Win Rate (%)
Iter 1
Iter 2
Iter 3

Figure 2: Left: LC win rate across iterations for standard SPPO, SPPO trained on a subset of the data
(SPPO (subset)), and reverse-KL-regularized SPPO (SPPO (Rev. KL)). The base-model is Mistrial-
7B. SPPO starts to degrade after 3 iterations. Right: LC win rate of SPPO and RSPO with different
regularization methods. From left to right regularization methods: Reverse KL (λ = 0.5), Forward
KL (λ = 1.0), Chi-Squared (λ = 0.1), Importance-Sampling Forward KL (λ = 0.1), Forward and
Reverse KL linear combination (λ1 = 0.1, λ2 = 0.5).

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B 17.11 14.72 1676
Snorkel 26.39 30.22 2736
SimPO 32.1 34.8 2193

DPO Iter1 23.81 20.44 1723
DPO Iter2 24.23 24.46 2028
DPO Iter3 22.30 23.39 2189

SPPO Iter1 24.79 23.51 1855
SPPO Iter2 26.89 27.62 2019
SPPO Iter3 28.53 31.02 2163
SPPO ≤ 9 29.17 29.75 2051

RSPO Iter1 23.16 21.06 1763
RSPO Iter2 27.91 27.38 1992
RSPO Iter3 35.44 38.31 2286

Regularization Iteration AlpacaEval 2.0
LCWR ↑ Self-BLEU ↓

×
1 24.79 0.751
2 26.89 0.754
3 28.53 0.758

IS-Forward KL
+ Reverse KL

1 23.16 0.747
2 27.91 0.743
3 35.44 0.714

Reverse KL
1 25.52 0.747
2 32.26 0.730
3 34.21 0.691

IS-Forward KL
1 24.88 0.756
2 27.9 0.759
3 30.09 0.760

χ2
1 26.7 0.745
2 28.78 0.740
3 29.97 0.739

Table 2: Left: Comparisons of iterative methods with reference models Mistral-7B (Instruct-v0.2).
SPPO ≤ 9 represents the best results among the 9 iterations of SPPO. Here the Regularized SPPO
(RSPO) is regularized by the linear combination of Forward KL and Reverse KL divergence, i.e.
RSPO (For. + Rev.), where the regularization temperatures are 0.1 and 0.5, respectively. Right:
Response diversity of SPPO with different regularization methods using Self-BLEU score. The
regularization temperatures are the same as in Figure 2 (Right). Lower Self-BLEU score means
higher diversity of the sampled responses. Regularization methods involving Reverse KL resulted
in higher diversity of the responses.

ularization. However, subsequent iterations show a marked improvement, with the LC win rate of
reg. SPPO increasing by up to 7.53% within a single iteration. In summary, the findings in Table 2
underscore the effectiveness of regularization in self-play optimization.

In addition, to exclude the possibility of insufficient iterations, we report the the best result among
9 iterations of our replicated SPPO in Table 2, denoted as ”SPPO ≤ 9”. SPPO ≤ 9 consistently
underperforms the RSPO result at iteration 3. These observations emphasize that even extended
training under the unregularized framework fails to match the performance gains achieved through
regularization, thereby affirming the critical role of regularization in self-play methodologies for
preference optimization.

5.2 IMPACT OF DIFFERENT REGULARIZATIONS

We then study the effect of applying different regularizationR in RSPO. To obtain a well-regularized
self-play, the tuning of regularization temperature λ is necessary. An ablation study of regularization
temperature of different methods is shown in Figure 3. According to the figure, the response length
is increased along with the temperature in reverse KL divergence and Chi-square divergence

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.01 0.1 0.5
1.7

2.2

2.6

Re
sp

on
se

 L
en

gt
h 

(K
) RSPO (IS-For. KL)

Iter 1
Iter 2
Iter 3

0.1 0.5 1.0
Regularization Temperature

RSPO (Rev. KL)

0.01 0.1 0.5

RSPO ( 2)

0.01 0.1 0.5
20

29

38

Ra
w 

W
in

 R
at

e(
%

) RSPO (IS-For. KL)

0.1 0.5 1.0
Regularization Temperature

RSPO (Rev. KL)

0.01 0.1 0.5

RSPO ( 2)

Figure 3: Ablation Study of regularization temperature λ conducted on AlpacaEval 2.0. We evaluate
how the average response length and raw WR are affected by the regularization temperature.

regularized RSPO. While, the length is decreased with stronger regularization via Forward KL
divergence, implemented using importance sampling. This result underscores the distinct effects of
different regularization strategies. In particular, the raw win rate analysis highlights reverse KL di-
vergence as a crucial factor in enhancing self-play performance. Given that forward KL divergence
tends to reduce response length while reverse KL divergence yields significant improvements, we
adopt a linear combination of both. This approach is designed to balance their complementary
effects, ultimately optimizing for a higher LCWR (RSPO (IS-For. + Rev.) in Figure 2 RHS).

In Figure 2 (Right), we show the results of win rate and LCWR in AlpacaEval 2.0 of different
regularizations. Only vanilla Forward KL decreases the win rate of SPPO. The regularizations that
consists of Reverse KL including RSPO (Rev. KL) and RSPO (For.+Rev.) have shown significant
improvement in win rates compared to vanilla SPPO. In particular, the results of RSPO (For.+Rev.)
demonstrates the largest improvement between iterations, achieving the best LCWR.

We study the effect of applying different regularizationR in RSPO. In Figure 2 (Right), we show the
results of win rate and average response length on AlpacaEval 2.0. Among different regularizations,
only Forward KL decreases the win rate of SPPO. The regularizations that consist of Reverse KL
including RSPO (Rev. KL) and RSPO (For.+Rev.) have shown significant improvement in win rates
compared to vanilla SPPO. In particular, the results of RSPO (For.+Rev.) demonstrates the largest
improvement between iterations. We test the best RSPO model on different benchmarks 2 in Table 1.

5.3 RESPONSE DIVERSITY

We demonstrate an additional advantage introduced by regularization, the diversity of the response.
We provide a motivating example in Appendix C.2. We investigate it by estimating the diversity
of the generations from trained models. We use Self-BLEU (Zhu et al., 2018) score to measure the
diversity of the responses, where lower score implies higher response diversity. We take the first
200 tokens of each of the 16 generated responses using the prompts of AlpacaEval.

The trend of Self-BLEU scores presented in Table 2 (Right) show that applying Reverse KL to SPPO
increases response diversity the most, as well as the LCWRs of AlpacaEval 2.0. Application of
Forward KL results in slightly less generation diversity than vanilla SPPO, while they still achieve
better win rates. The win rates are the highest when Forward KL and Reverse KL are linearly
combined for regularization, while the Self-BLEU scores imply that the response diversity is lower
than when only Reverse KL is applied. These results highlight that applying regularization in self-
play methods can improve test performance and the diversity of the generations simultaneously.

6 CONCLUSION

In this paper, we study the regularization in self-play by proposing a framework, namely Regular-
ized Self-Play Policy Optimization (RSPO). Based on RSPO, we can apply different regularization
function for policy update by adding the regularization term to the loss functions, which is still guar-
anteed to converge to the Nash Equilibrium of the regularized Preference Optimization Game. In the
empirical assessments, we achieve significant improvement over the base model and unregularized
self-play method, SPPO. We also empirically demonstrate that regularization promotes the response
diversity. These findings underscore the critical role of regularization as a fundamental component
in optimizing self-play alignment.

2We report our replicated testing of SPPO Iter3 (https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-
SPPO-Iter3) on Arena-Hard, so it can be different from the result presented in SPPO (Wu et al., 2024).
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A PROOFS

In this section, we provide detailed derivations, proofs of propositions, and corollaries.

A.1 PROOF OF EQUIVALENCE BETWEEN MD AND RSPO

In this section, we first provide derivations of Nash-MD and Online Mirror Descent (Munos et al.,
2023) to LSP.

Nash-MD . Nash-MD practical loss satisfies that

∇θLNash-MD(θ)
def
= Ey∼πθ,

y′∼πµ
t

[
∇θ log πθ(y)

(
P(y ≻ y′)− 1

2
− τ log

πθ(y)

µ(y)

)]
,

= Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ y′)− 1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
= Ey∼πθ

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
= Ey∼πt

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
= ∇θEy∼πt

[
τ log

πθ(y)

πt(y)
−
(
P(y ≻ πµt )− τ log

πt(y)

µ(y)
− 1

2

)]2
/2

= τ2∇θEy∼πt

[
log

πθ(y)

πt(y)
− 1

τ

(
P(y ≻ πµt )− τ log

πt(y)

µ(y)
− 1

2

)]2
/2. (18)

The first equation is according to Section 7 in Munos et al. (2023). The second equation holds by
adding an subtracting the same element log πt(y). The third equation holds due to Ey′∼πµ

t
[P(y ≻

y′)] = P(y ≻ πµt ). The fourth equation holds since in each iteration before updating while comput-
ing the loss, y ∼ πθ is equivalent to y ∼ πt.

The learning rate η is originally omitted in the paper (Munos et al., 2023). Here Nash-MD is gener-
alized by LSP with η = 1

τ .

Online Mirror Descent. OMD is to execute argmaxπ ηEy∼π
[
P(y ≻ πt)− τ log πt(y)

µ(y)

]
−

KL(π, πt). Therefore, the parametrized policy is updated by descending the negative gradient

−∇θηEy∼πθ

[
P(y ≻ πt)− τ log

πt(y)

µ(y)

]
+DKL(πθ, πt)

= −∇θηEy∼πθ

[
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ
πt

]
= ηEy∼πθ

[
−∇θ log πθ

(
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ
πt

)]
=
η

2
· Ey∼πθ

[
∇θ

(
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ(y)

πt(y)

)2]
=
η

2
· Ey∼πt

[
∇θ log

πθ(y)

πt(y)
−
(
P(y ≻ πt)− τ log

πt(y)

µ(y)

)]2
. (19)

The first equation holds due to the definition of DKL. The second equation holds due to importance
sampling.

Therefore, OMD can also be generalized by RSPO with G = P(y ≻ πt) − τ log πt(y)
µ(y) and without

external regularization.

A.2 PROOF OF THE EXISTENCE OF NASH EQUILIBRIUM IN EQUATION (5)

We prove the existence of Nash Equilibrium in the regularized game in this section, largely following
idea of proving the existence of KL regularized Nash Equilibrium by Munos et al. (2023).
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Proof. Since the utility u(π, π′) is linear in π and π′, and the regularization function is assumed to
be convex (Assumption A.1), the regularized preference is concave in π and convex in π′. Therefore,
the existence and the uniqueness of a regularized Nash Equilibrium in Equation (5) can be directly
derived from minimax theorem (Sion, 1958).

A.3 PROOF OF PROPOSITION 4.1

Assumption A.1 (Relative Convexity w.r.t. ψ). We assume the regularization function R of policy
π is a 1-strongly convex relative to negative entropy function ψ(π). In other words, ∀π, π′ ∈ ∆X

Y ,

⟨∂πR(π)− ∂πR(π
′), π − π′⟩ ≥ ⟨∂πψ(π)− ∂πψ(π

′), π − π′⟩ (20)

If R(·, µ) is 1-strongly convex relative to ψ, policy updated by GMMD in Equation (8) has last-
iterate convergence to the following Nash Equilibrium of a regularized game:

max
π

min
π′

U(π;π′)− τR(π, µ) + τR(π′, µ). (21)

Proof. According to Equation (8), GMMD is equivalent to the Algorithm 3.1 in Sokota et al. (2022):

zt+1 = argmin
z∈Z

η (⟨F (zt), z⟩+ αg(z)) +Bψ(z; zt), (22)

where in our setting, z = π is the LLM policy, F (zt) = −∇πU(π;πt) is the vector of negative
partial derivatives of preference w.r.t. each component of π, α = τ , g(z) is the regularizer R(π),
and we set ψ(z) = z log z to convert the Bregman divergence Bψ to KL divergence. Here U(π;πt)

is treated as a function of vector form of π, i.e., [π0 π1 · · · π|Y|], thus the gradient is a vector
gradient where ∇πU(π;πt) = [∂U/∂π0 ∂U/∂π1 · · · ∂U/∂π|Y|]. We then show that in our
setting the following assumptions are satisfied:

F satisfies that for µ > 0 and any z, z′, ⟨F (z)−F (z′), z−z′⟩ = 0 since U is linear in π, and F (z)−
F (z′) = −∇πU(π;πt) +∇πU(π′;πt) = 0. Therefore, F is Monotone and L-smooth. According
to Assumption A.1, g is 1-strongly convex relative to ψ, i.e., g(z) ≥ g(z′) + g′(z)

ψ′(z) (ψ(z)− ψ(z′)).

Given the assumptions above, according to the Theorem 3.4. in Sokota et al. (2022), the update
rule defined in Equation (22) has a last-iterate convergence guarantee to a policy π∗, which is the
solution to the variational inequality problem VI(∆X

Y , F + α∇g), i.e., π∗ satisfies

⟨∇
(
− U(π;π∗) + τR(π, µ)

)
|π=π∗ , π − π∗⟩ ≥ 0, ∀π ∈ ∆X

Y

⇔ ⟨∇
(
− U(π;π∗) + τR(π, µ)− τR(π∗, µ)

)
|π=π∗ , π − π∗⟩ ≥ 0, ∀π ∈ ∆X

Y . (23)

Equation (23) indicates that moving from π∗ towards any direction π − π∗ can not increase the
value of the objective preference model U(π;π∗) − τR(π, µ) + τR(π∗, µ) at the point of π = π∗,
given the opponent is π∗. Therefore, by symmetry, π∗ is the Nash Equilibrium of the regularized
preference model:

max
π

min
π′

U(π;π′)− τR(π, µ) + τR(π′, µ). (24)
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A.4 PROOF OF PROPOSITION 4.2

Proof. We prove that RSPO in Equation (15) is equivalent to GMMD up to multiplying a constant
to the gradient, leading to a regularized Nash Equilibrium.

∇θLRSPO(θ;G = P(y ≻ πt), B =
1

2
) (25)

= ∇θ

(
Ey∼πt

[
log

πθ(y)

πt(y)
− η
(
P(y ≻ πt)−

1

2

)]2
+ λR(πθ, µ)

)
(26)

= ∇θ

(
⟨πt, ,

(
− η∂πP(π ≻ πt) + log

πθ
πt

+B
)2⟩+ λR(πθ, µ)

)
(27)

= 2
(
∇θEy∼πt

[
(
− ηG(y, πt) + log

πθ(y)

πt(y)
+B

)2
] · 1

2
+ τ∇θR(πθ, µ)

)
(28)

= 2∇θLGMMD(θ). (29)

• Equation (26) holds due to definition.

• Equation (27) holds by treating policy as a vector and rewrite the expectation in vector prod-
uct form, and ∇πP(π ≻ πt) |π=πt

|π=πt
= [P(y0 ≻ πt) P(y1 ≻ πt) · · · P(y|Y| ≻

πt)]
T , where y0, y1, · · · , yY represent all possible values of y.

• Equation (28) holds by rewriting the form of dot product as expectation.

• Equation (29) holds due to the equivalent loss form of GMMD in Equation (12).

Thus, according to Proposition 4.1, update following Algorithm 1 with the above loss function has
last-iterate convergence to the Nash Equilibrium of the regularized preference optimization game in
Equation (5) by setting u(π;π′) = P(π ≻ π′).

A.5 PROOF OF PROPOSITION B.1

Proof. π is parametrized by θ, ∇θDKL(π||µ) = Eπθ
[∇θ log πθ(y)− logµ(y)]2/2. This is because

∇θDKL(π||µ) = ∇θ

∑
y

πθ(y) · (log πθ(y)− logµ(y))

=
∑
y

∇θπθ(y) · (log πθ(y)− logµ(y)) +
∑
y

∇θπθ(y)

=
∑
y

πθ(y)
∇θπθ(y)

πθ(y)
· (log πθ(y)− logµ(y)) +∇θ

∑
y

πθ(y)

= Eπθ
[(log πθ(y)− logµ(y)) · ∇θ(log πθ(y)− logµ(y))]

= Eπθ
[∇θ(log πθ(y)− logµ(y))2]/2. (30)
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A.6 PROOF OF PROPOSITION B.2

Proof. π is parametrized by θ, then ∇θDKL(µ||π) = Eµ[∇θ
µ(y)
πθ(y)

] because

∇θDKL(µ||π) = ∇θ

∑
y

µ(y) · (logµ(y)− log πθ(y))

= −
∑
y

µ(y)∇θ log πθ(y)

= −
∑
y

πθ(y)
µ(y)

πθ(y)
∇θ log πθ(y)

= −Eπθ

[
µ(y)∇θ log πθ(y)

πθ(y)

]
= −Eπθ

[
µ(y)∇θπθ(y)

πθ(y)2

]
= ∇θEπθ

[
µ(y)

πθ(y)

]
. (31)

A.7 PROOF OF PROPOSITION B.3

Proof. π is parametrized by θ, ∇θDχ2(πθ(y)||µ(y)) = Eπθ

[
∇θπθ(y)
µ(y)

]
since

Dχ2(πθ(y)||µ(y)) =
1

2

∑(
πθ(y)

µ(y)
− 1

)2

µ(y)dy

=
1

2

∑ πθ(y)
2 − 2πθ(y)µ(y) + µ(y)2

µ(y)
dy

=
1

2

∑ πθ(y)
2

µ(y)
dy + C

=
1

2
Eπθ(y)

[
πθ(y)

µ(y)

]
+ C, (32)

where C is independent to θ.

B ADDITIONAL DETAILS

In this section, we provide additional details of this paper, including the algorithm describtions
of self-play algignment methods, a summarizing table for generalizing existing methods, and our
implementation of regularizations.

B.1 SELF-PLAY ALIGNMENT ALGORITHM

Algorithm 1 Self-Play Alignment

1: Input: LLM πθ, preference model P, number of iterations T , reference policy µ, loss function
for policy update L(θ;P), sample size K.

2: Initialize: π0 = µ.
3: for t ∈ [T ] do
4: Sample prompts and responses: x ∼ X , y1:K ∼ πt
5: Get pair-wise preferences P(yi ≻ yj), ∀i, j ∈ [K]
6: Update policy parameters θ = argminθ L(θ;P)
7: πt+1 = πθ
8: end for
9: Output: Last-iterate policy πT .
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B.2 GENERALIZING EXISTING METHODS

Loss Update Direction (G) Baseline (B) Preference Model

LSPPO (Wu et al., 2024) P(y ≻ πt) 0.5 P(y ≻ y′)

LOMD (Munos et al., 2023) P(y ≻ πt)− τ log πt(y)
µ(y) Est. Pτ (y ≻ y′)

LNash-MD (Munos et al., 2023) Pµ(y ≻ πt)− τ log πt(y)
µ(y) 0.5 Pτ (y ≻ y′)

Table 3: Self-play losses LSP with different game-theoretic RLHF policy optimization methods.
Pµ(y ≻ πt) = P(y ≻ πµt ), π

µ
t is the geometric mixture of πt and µ. We abbreviate the estimated

baseline that reduce the variance of G the most as est.. Pτ (y ≻ y′) = P(y ≻ y′) − τ log πθ(y)
µ(y) +

τ log π′(y′)
µ(y′) is the regularized preference model.

B.3 IMPLEMENTATION OF REGULARIZATION

In practice, accurately estimating the gradient of the regularizer is essential, as many commonly
used divergence measures are defined as expectations over πθ. The estimation of divergences has
been extensively studied and widely applied in various domains (Rubenstein et al., 2019). While
for completeness, in this section, we introduce the regularization methods investigated in this study,
including Reverse KL, Forward KL, and Chi-Square Divergence.

We begin by deriving the estimation of the Reverse KL divergence based on the following proposi-
tion.

Proposition B.1. Reverse KL divergence satisfies:

∇θDKL(πθ||µ) = Ey∼πθ
[∇θ(log πθ(y)− logµ(y))2]. (33)

Due to the equivalent gradient in Proposition B.1, we can estimate the divergence with
Ey∼πθ

[(log πθ(y)− logµ(y))2].

We employ two distinct approaches to estimate the forward KL divergence. The first method utilizes
importance sampling, referred to as IS-For. KL, and is derived based on the following proposition.

Proposition B.2. The gradient of forward KL divergence satisfies that

∇θDKL(µ||πθ) = Ey∼πθ
[∇θµ(y)/πθ(y)]. (34)

Therefore, we can estimate the forward KL divergence by leveraging the expectation
Ey∼πθ

[µ(y)/πθ(y)] to estimate the forward KL. Notably, to mitigate the risk of gradient explosion,
we apply gradient clipping with a maximum value of 10.

The second method for forward KL is a direct estimation of DKL(µ||πθ). To achieve this, we re-
sample responses from the reference policy µ using the same prompts from the training dataset,
constructing a reference dataset. The KL divergence is then estimated directly based on its defini-
tion by uniformly drawing samples from this reference dataset. A key advantage of this approach
is that it eliminates the need for importance sampling, as each policy update iteration only requires
samples from πt.

Similarly, we estimate the Chi-Square divergence using Ey∼πθ
[πθ(y)/µ(y)], based on the following

proposition. Due to the presence of the ratio term, Chi-Square divergence estimation also necessi-
tates gradient clipping to prevent instability, for which we set a clip value of 10.

Proposition B.3. Chi-Square divergence has gradient

∇θDχ2(πθ||µ) = Ey∼πθ
[∇θπθ(y)/µ(y)] . (35)
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We also explore the linear combination of different regularization functions to leverage their com-
plementary effects, as in offline RLHF (Huang et al., 2024). The previously established propositions
for estimating divergences can still be used in the combined regularization method.

Apart from the flexibility and simplicity of applying different regularization methods, RSPO can
generalize existing self-play methods including the unregularized ones, which enables regularizing
off-the-shelf self-play methods in practice with no change on their original loss functions or hyper-
parameters, directly adding external regularization term to their loss functions.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments, including two synthetic motivating examples and
additional results on language tasks.

C.1 REGULARIZATION IN GAME SOLVING

The regularization in preference model is not used in all game-theoretic self-play methods. Here we
investigate the necessity of regularization and offer a motivating example in Figure 4, a saddle point
solving problem minxmaxy

α
2 x

2 + (x − 1)(y − 1) − α
2 y

2. There exists a reference point as the
initial values of x and y. We assume that both reference point and the Nash Equilibrium (NE) of the
surrogate preference model (Surrogate NE) are close to the original NE but on different sides of the
original NE.

0.0 0.2 0.4 0.6 0.8
y′

0.20

0.15

0.10

0.05

0.00

y

Self-Play MWU: Iteration 20 
MWU
Reg. MWU
Reference Policy
Surrogate NE ( = 1)
Original NE ( = 2)

Figure 4: Motivating Example: 20 iterations of MWU and regularized MWU with the same learn-
ing rate to solve saddle point problem maxyminy′ f(y, y

′, α), where f(y, y′;α) = α
2 y

′2 + (y′ −
1)(y − 1) − α

2 y
2, first introduced in (Sokota et al., 2022). We assume that we only have access to

a misspecified (surrogate) preference f(y, y′;α = 1), while the ground truth human preference is
f(y, y′;α = 2). The dynamics show that regularization can be efficient to prevent over-optimization
in self-play.
Typically, the surrogate preference/reward models are not positive related to the reference policy.
Thus, it is a reasonable abstracted example of NLHF by treating reference point as reference policy
and surrogate NE as the optimal policy obtained by optimizing the surrogate preference/reward. The
results of the 20 iterations self-play MWU with early stopping show that regularization can be used
to prevent reward over-optimization (reaching surrogate NE). A well-tuned regularization leads to
faster convergence to the unknown original NE.

C.2 DIVERSITY ON 2D EXAMPLE

We offer an analysis of our method compared to unregularized self-play (SPPO) on a 2D example
in Figure 5. The area with darker color is assigned higher reward value. We use the preference
defined by the L2 norm between two actions. We also set the reference policy to be a uniform
policy. According to the figure, unregularized method tends to converge to a single point on the
manifold of the large reward. While regularized method have diverse sampled actions.
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Figure 5: Samples in a 2D example of different iterations of SPPO (top) and RSPO (bottom) with
external forward KL regularization. SPPO added simple external regularization can generate multi-
modal policies.

C.3 MORE RESULTS ON ALPACAEVAL-2.0

SPPO RSPO
(Rev. KL)

RSPO
(For. KL)

RSPO
( 2)

RSPO
(IS-For.)

RSPO
(IS-For. 
 +Rev.)
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2150
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Figure 6: Win rates and average length of SPPO and RSPO with different regularization methods.
From left to right regularization methods: Reverse KL, Forward KL, Chi-Squared, Importance-
Sampling Forward KL, Importance-Sampling Forward and Reverse KL linear combination.
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