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Abstract

In deep reinforcement learning (RL) systems, abnormal states pose significant risks by poten-
tially triggering unpredictable behaviors and unsafe actions, thus impeding the deployment
of RL systems in real-world scenarios. It is crucial for reliable decision-making systems to
have the capability to cast an alert whenever they encounter unfamiliar observations that
they are not equipped to handle. In this paper, we propose a novel Mahalanobis distance-
based (MD) anomaly detection framework, called MDX, for deep RL algorithms. MDX
simultaneously addresses random, adversarial, and out-of-distribution (OOD) state outliers
in both offline and online settings. It utilizes Mahalanobis distance within class-conditional
distributions for each action and operates within a statistical hypothesis testing framework
under the Gaussian assumption. We further extend it to robust and distribution-free ver-
sions by incorporating Robust MD and conformal inference techniques. Through extensive
experiments on both Atari games and autonomous driving scenarios, we demonstrate the
effectiveness of our MD-based detection framework. MDX offers a simple, unified, and prac-
tical tool for enhancing the safety and reliability of RL systems in real-world applications.

1 Introduction

Deep reinforcement learning (RL) algorithms vary considerably in their performance and are highly sensitive
to a wide range of factors, including the environment, state observations, and hyper-parameters (Jordan
et al., 2020; Patterson et al., 2020). The lack of robustness of RL algorithms hinders their deployment in
real-world scenarios, particularly in safety-critical applications, such as autonomous driving (Kiran et al.,
2021). Recently, the reliability of RL algorithms has garnered substantial attention (Chan et al., 2020;
Gu et al., 2024), emphasizing the need for anomaly detection-based strategies to build trustworthy RL
systems (Haider et al., 2023; Danesh & Fern, 2021; Sedlmeier et al., 2020).

Practical Scenarios. Observed states often contain natural measurement errors (random noises), adver-
sarial perturbations, and out-of-distribution (OOD) observations. For instance, consider an autonomous
vehicle with malfunctioning or unreliable sensors or cameras. Under such circumstances, the collected data,
such as the vehicle’s observed location, can be contaminated by random measurement errors. Furthermore,
an autonomous car can encounter sensory inputs that have been adversarially manipulated regarding traffic
signs. For example, a stop sign maliciously altered to be misclassified as a speed limit sign (Chen et al.,
2019), increases the risk of traffic accidents. Regarding OOD samples, an RL policy trained to drive only
on sunny days will struggle with observations from rainy days, which are beyond its trained experience.
Such OOD observations can lead to safety violations, performance degradation, and potentially catastrophic
failures. All these scenarios highlight the necessity of detecting inaccurate sensor signals from noisy state
observations to ensure a vehicle’s accurate and reliable operation. Beyond autonomous driving, anomaly
detection is critical in many other applications involving sequential decision-making. In healthcare, the
RL agent might adjust treatment recommendations if it detects a sudden change in the patient’s health
condition (Hu et al., 2022). Similarly, detecting fraud and anomalous market states in financial systems is
becoming increasingly instrumental in preventing substantial financial losses from market manipulation and
fraudulent activities (Hilal et al., 2022).
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(a) Unsafe behavior in autonomous driving
under noisy sensor signals.
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(b) Performance degradation when
noises injected in policy deployment.
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(c) Performance degradation when
noises injected during policy learning.

Figure 1: (a) An autonomous car navigates using location data observed from sensors such as GPS. Without
an effective anomaly detection mechanism, inaccuracies or malfunctions in these sensors can cause the car
to prematurely turn right, leading to a collision. (b) and (c): Performance degradation occurs when noisy
states are observed in the Breakout environment. Gaussian noises with increasing standard deviations are
injected into the state observations during policy deployment (b) and policy learning (c).

Motivating Examples. Figure 1(a) illustrates a potential collision scenario where an autonomous car,
relying on noisy location data in the red region (such as GPS coordinate errors), turns right prematurely,
risking an accident. Without anomaly detection, the car reacts incorrectly due to the location error. Fig-
ure 1(b) highlights how increasing measurement errors, represented by the standard deviation of Gaussian
noises, dramatically degrade policy performance. For instance, autonomous cars with RL systems may take
sub-optimal or unsafe actions when processing noisy sensory signals in deployment. In addition, incorpo-
rating excessive noise during online training (Figure 1(c)) can severely impair policy learning and diminish
performance. These motivating examples underscore the importance of detecting different types of abnormal
states for developing trustworthy RL systems in real-world applications.

Our research aims to provide a general framework for applying anomaly detection in deep RL problems,
including problem formulation, detection algorithms, and evaluation scenarios. Specifically, we strive to
develop an effective and unified anomaly detection framework for deep RL in both offline and online settings.

1. Offline Setting. In this setting, a dataset is fixed without additional online data collection. Given
a pre-trained policy, our objective is to utilize a fixed dataset to develop a distance-based anomaly
detector tailored for a pre-trained policy. This detector aims to effectively identify whether a state
is an outlier 1.

2. Online Setting. In this setting, the RL agent interacts with a noisy environment and continuously
updates its policy. Our goal is to develop a detection strategy that identifies state outliers, which
are outside the RL system’s training experience. Removing these outliers can prevent them from
interfering with policy training.

Methodologically, we first design an RL outlier detection approach using Mahalanobis Dis-
tance (MD) (De Maesschalck et al., 2000) within a statistical hypothesis test framework and extend it
to a robust MD version (Butler et al., 1993). These strategies are applied in a parametric manner under
the Gaussian assumption for state features in each class, which may not always be accurate in practice.
To address this limitation, we introduce a non-parametric conformal version of MD detection to relax the
Gaussian assumption. We empirically investigate the effectiveness of these proposed detection approaches in
both offline and online settings across a representative set of RL environments, including Atari games and
autonomous driving. Our contributions can be summarized as follows:

• Our primary technical contribution is the design of RL outlier detection strategies based on the con-
cepts of Mahalanobis Distance (MD), robust MD, and conformal inference. The anomaly detection

1Compared with the classical tasks of policy evaluation and learning in offline RL, our offline setting also utilizes a fixed
dataset but specifically focuses on developing detection methods given a fixed policy.
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strategies are specially developed for deep RL within a hypothesis test framework, accommodating
both parametric (Gaussian assumption) and non-parametric (conformal calibration) approaches.

• Secondly, in our online setting, our anomaly detection can be applied to a dynamic dataset, where
the RL policy continually improves when interacting with the environment. This dynamic setting
contrasts with the simpler anomaly detection in supervised learning with a static dataset. To address
this challenge, we particularly develop moving window estimation and double self-supervised detectors
for anomaly detection in the online RL setting.

• To our best knowledge, we are the first to conduct a comprehensive study on distance-based anomaly
detection in deep RL, covering all typical types of outliers. Our anomaly detectors can simultane-
ously identify random, adversarial, and out-of-distribution state outliers. We perform extensive
experiments to verify the effectiveness of our proposed methods in both offline and online settings.

2 Related Work

Anomaly Detection in Reinforcement Learning. Anomaly detection has yet to be extensively explored
in RL. The connection between anomaly detection and RL was first established in (Müller et al., 2022);
however, their work is mainly conceptual and does not propose practical detection algorithms. Change
point detection has been investigated in the tabular setting of RL, particularly in environments described as
doubly inhomogeneous under temporal non-stationarity and subject heterogeneity (Hu et al., 2022). They
focus on identifying “best data chunks” within the environment that exhibit similar dynamics for policy
learning, while our detection focuses on anomaly detection in deep RL scenarios. Prior studies have also
probed anomaly detection in specific RL contexts, such as the offline imitation learning with a transformer-
based policy network (Wang et al., 2024) and detecting adversarial attacks within cooperative multi-agent
RL (Kazari et al., 2023). However, these studies are limited to specific scenarios that do not address general
anomaly detection, even in single-agent RL. Haider et al. (2023) proposed a model-based method using
probabilistic dynamics models and bootstrapped ensembles, but this approach is computationally expensive.
Our research aims to develop a unified and practical anomaly detection framework that applies to general
RL scenarios.

Distance-based Anomaly Detection. Recently, there has been a growth of interest in developing anomaly
detection strategies in deep learning scenarios (Pang et al., 2021; Elmrabit et al., 2020). In image classifica-
tion, Mahalanobis distance (MD) was effectively applied by (Lee et al., 2018), who constructed a Mahalanobis
confidence score by training a logistic regression detector using validation samples. This score was evaluated
in a supervised way, relying on a validation set, and thus it is unsuitable for the RL setting. The “tied”
covariance assumption used by (Lee et al., 2018), where class-conditional distributions of pre-trained features
share the same covariance, was criticized as implausible by (Kamoi & Kobayashi, 2020) based on Gaussian
discriminant analysis (Klecka et al., 1980). In contrast, our detection framework MDX avoids the unrealistic
“tied covariance” assumption by estimating variance for each class using quadratic discriminant analysis.
This approach extends linear boundaries to quadratic ones between classes, offering a more flexible and
accurate detection (Hastie et al., 2009).

Robust Statistics for RL. Deep RL algorithms inherently face challenges related to instability and di-
vergence due to the use of function approximation, bootstrapping, and off-policy learning (Sutton & Barto,
2018). Employing Mahalanobis distance (MD) for anomaly detection can be particularly sensitive during
unstable learning phases. The computation of MD is based on Maximum Likelihood Estimate (MLE), which
is susceptible to outliers or noisy data (Rousseeuw & Van Zomeren, 1990). Robust statistics (Huber, 2004)
have been developed to address these robustness problems, especially leveraging robust estimation techniques
that are not unduly affected by outliers. For example, Robust MD is a robust version of MD that employs
robust estimators, e.g., Minimum Covariance Determinant (MCD) (Rousseeuw, 1984; Grübel, 1988), for
location and covariance estimation (Maronna & Yohai, 2014).

Conformal Prediction and Conformal Anomaly Detection. Conformal anomaly detection (Ishimt-
sev et al., 2017; Laxhammar & Falkman, 2011) is based on the conformal prediction (Teng et al., 2023;
Angelopoulos et al., 2021), a popular, modern technique for providing valid prediction intervals for arbitrar-
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ily machine learning models. Conformal prediction has garnered increasing attention as it can provide a
simple, distribution-free, and computationally effective way of tuning the distribution threshold. Its validity
relies on the data exchangeability condition (Shafer & Vovk, 2008), where different orderings of samples are
equally likely, but recent studies have verified its applicability in scenarios involving distribution shift (Tib-
shirani et al., 2019; Barber et al., 2023) and off-policy evaluation (Zhang et al., 2023). These examples justify
the potential of using conformal inference to detect outliers in the context of RL.

3 Background

Markov Decision Process. The interaction of an agent with its environment can be modeled as a Markov
Decision Process (MDP), a 5-tuple (S, A, R, P, γ). S and A are the state and action spaces, P : S ×A×S →
[0, 1] is the environment transition dynamics, R : S × A × S → R is the reward function and γ ∈ (0, 1) is
the discount factor. The policy π is continually updated in this online interaction paradigm. Compared to
the online setting, a recent popular paradigm for reinforcement learning is offline RL (Levine et al., 2020).
In the offline setting, RL algorithms utilize previously collected data to extract policies without additional
online data collection.

Proximal Policy Optimization (PPO). The policy gradient algorithm of Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) has achieved state-of-the-art or competitive performance on Atari
games (Bellemare et al., 2013) and MuJoCo robotic tasks (Todorov et al., 2012). Typical policy gradi-
ent algorithms optimize the expected reward function ρ (θ, s0) = Eπθ

[
∑∞

t=0 γtr (st) | s0] by using the policy
gradient theorem (Sutton & Barto, 2018). Here πθ is the θ-parameterized policy function. Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) and PPO (Schulman et al., 2017) utilize constraints
and advantage estimation to perform the update by reformulating the original optimization problem with
the surrogate loss L(θ) as:

L(θ) = Et

[
πθ (st, at)

πθold (st, at)
Aπθold

(st, at)
]

, (1)

where Aπθold
is the generalized advantage function (GAE) (Schulman et al., 2018). PPO introduces clipping

in the objective function in order to penalize changes to the policy that make πθ vastly different from πθold :

LCLIP(θ) = Et

[
min

(
πθ (st, at)

πθold (st, at)
Aπθold

(st, at) , clip
(

πθ (st, at)
πθold (st, at)

, 1 − ϵ, 1 + ϵ

)
Aπθold

(st, at)
)]

, (2)

where ϵ is a hyperparameter. We use PPO as the algorithm testbed to examine the efficacy of our anomaly
detection framework. However, our detection methods are general and can be easily applied to other RL algo-
rithms (Zhang & Yu, 2020) such as DQN (Mnih et al., 2015), A3C (Mnih et al., 2016), and DDPG (Lillicrap
et al., 2016).

Conformal Prediction. Conformal anomaly detection (Laxhammar & Falkman, 2011; Ishimtsev et al.,
2017) is grounded in conformal prediction (Shafer & Vovk, 2008; Angelopoulos et al., 2021), which aims to
construct a confidence band C1−α(X) for Y given a random data pair (X, Y ) ∼ P and a confidence level
1 − α. Suppose we have a pre-trained model µ̂ and a calibration dataset (X1, Y1), ..., (Xn, Yn) for conformal
prediction. We can then compute a predictive interval for the new sample Xn+1 to cover the unseen response
Yn+1 by leveraging the empirical quantiles of the residuals |Yi−µ̂(Xi)| on the calibration dataset. This further
leads to valid prediction intervals such that:

P(Yn+1 ∈ C1−α(Xn+1)) ≥ 1 − α, (3)

where the confidence band is expected to be as small as possible while maintaining the desired coverage. A
fundamental quantity in conformal prediction is the non-conformity measure, e.g., the residual |Yi − µ̂(Xi)|,
which measures how “different” an example is relative to a set of examples (Vovk et al., 2005).

4 Anomaly Detection in the Offline RL Setting

In this section, we design our MD-based detection framework MDX in the offline setting, where a fixed
dataset collected from the environment and a pre-trained RL policy are provided. Based on the Gaussian
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Figure 2: The detection pipeline of MDX. We feed the state into the policy network to extract the
feature vector and identify its class. For each class, we estimate (µ, Σ) and establish a detection threshold
depicted as a dashed ellipse. To determine whether a new state is an outlier, we evaluate its features and
compute the distance to the class centers. If the distance falls below the set threshold, the state is classified
as an inlier (green points). Conversely, the state is marked as an outlier (red points).

assumption, we introduce the basic Mahalanobis Distance (MD) detection strategy. We then extend it to
the robust MD and conformal MD-based detection methods. Finally, we present the deployment of MDX in
a potentially noisy environment.

Description of Detection Framework. Our detection framework is structured around two core com-
ponents: feature extraction and detector estimation. The process begins by assessing whether a state is
anomalous, crucially dependent on the associated policy. A state that prompts the policy to initiate a po-
tentially unsafe action is labeled an outlier. Specifically, we input the state into the policy network and
access the feature vector extracted from the penultimate layer of this network. We categorize states accord-
ing to the actions determined by the policy, where the underlying intuition is that states associated with the
same action share similar features. To ascertain whether a new state is an outlier, we compute its distance
from the established class centroids based on its feature vector. A state is deemed an outlier if the distance
surpasses a set threshold. Figure 2 illustrates the operational flow of MDX. By ensuring that only states
within the policy’s capability are considered valid, MDXthereby enhances the safety and reliability of the
RL system.

4.1 Mahalanobis Distance (MD)-based Detection

Gaussian Assumption. The given pre-trained parameterized RL policy πθ is a discriminative softmax
classifier, π(at = c|st) = exp

(
w⊤

c f(st) + bc

)
/

∑
c′ exp

(
w⊤

c′f(st) + bc′
)
, where wc and bc are the weight and

bias of the policy classifier for action class c. The function f(·) represents the output of the penultimate layer
of the policy network πθ, serving as the state feature vector. Here, C = |A| is the size of the action space, and
µc is the mean vector of f(s) corresponding to the action class c 2. If we assume that the class-conditional
distribution follows a multivariate Gaussian distribution sharing a single covariance Σ (tied covariance) in a
generative classifier, i.e., π(f(s) | a = c) = N (f(s) | µc, Σ), then the posterior distribution of f(s) matches
the form of a discriminative softmax classifier (Lee et al., 2018). This equivalence implies that f(s) fit a
Gaussian distribution under πθ. We approximate state feature vectors with a class-conditional Gaussian
distribution with µc and Σc for each action class, rather than using a single "tied" covariance Σ across all
action classes (Kamoi & Kobayashi, 2020).

An MD-based detection based on Gaussian assumption can be immediately developed based on the mean
vectors µc and the covariance matrix Σc calculated from f(s) for each action class c. We first collect Nc

state action pairs {(si, ai)}, separately for each action class c, and compute the empirical class mean and
covariance of c:

µ̂c = 1
Nc

∑
i:ai=c

f (si) , Σ̂c = 1
Nc

∑
i:ai=c

(f (si) − µ̂c) (f (si) − µ̂c)⊤
. (4)

In distance-based detection, a straightforward metric is Euclidean distance (ED). However, MD generally
outperforms ED in many tasks (Lee et al., 2018; Ren et al., 2021; Kamoi & Kobayashi, 2020), as it incorpo-

2For continuous action spaces, we can discretize the actions into several bins and then follow the same detection pipeline.
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rates the additional data covariance information to normalize the distance scales. Following the estimation
in Eq. 4, we derive the class-conditional Gaussian distribution to characterize the data structure within the
state representation space for each action class. For each state s observed by the agent, we compute its
Detection Mahalanobis Distance M(s) between s and the nearest class-conditional Gaussian distribution by:

M(s) = min
c

(f(s) − µ̂c)⊤ Σ̂−1
c (f(s) − µ̂c) . (5)

Unlike the previous work Lee et al. (2018), which defined a Mahalanobis confidence score based on a binary
classifier in a validation dataset, we utilize M(s) as the detection metric within a statistical hypothesis test
framework. Proposition 1 demonstrates that M(s) follows a Chi-squared distribution under the Gaussian
assumption.
Proposition 1. (Test Distribution of Detection Mahalanobis distance M(s)) Let f(s) be the p-dimensional
state random vector for action class c. Under the Gaussian assumption P (f(s)|a = c) = N (f(s) | µc, Σc),
the Detection Mahalanobis Distance M(s) in Eq. 5 is Chi-Square distributed: M(s) ∼ χ2

p.

Please refer to Appendix A for the proof. Based on Proposition 1, we can define a threshold Θ = χ2
p(1 − α)

by selecting a α value from the specified Chi-Squared distribution to distinguish normal states from outliers.
Given a new state observation s and a confidence level 1 − α, if M(s) > Θ, s is detected as an outlier.

4.2 Robust MD-based Detection

Motivation. The estimation of µc and Σc in Eq. 4 relies on Maximum Likelihood Estimate (MLE), which
is sensitive to the presence of outliers in the dataset (Rousseeuw & Van Zomeren, 1990). As the offline data
collected from the environment tends to be noisy, directly introducing MD for outlier detection in RL easily
results in a less statistically effective estimation of µc and Σc, thus undermining the detection accuracy for
outliers. This vulnerability of the MD-based detector against noisy states prompts us to instantiate MDX
with a more robust estimator (Huber, 2004).

To this end, we apply the Minimum Covariance Determinant (MCD) estimator (Hubert & Debruyne, 2010)
to estimate µc and Σc by only using a subset of all collected samples. It only uses the observations where
the determinant of the covariance matrix is as small as possible. Concretely, MCD determines the subset J
of observations with a size h, while minimizing the determinant of the sample covariance matrix calculated
solely from these h points. The choice of h determines the trade-off between the robustness and efficiency
of the estimator. The robust MCD mean vector µ̂rob

c and covariance matrix Σ̂rob
c in the action class c are

computed as

µ̂rob
c = 1

h

∑
i:i∈J,ai=c

f (si) , J =
{

set of h points :
∣∣∣Σ̂J

∣∣∣ ≤
∣∣∣Σ̂K

∣∣∣ for all subsets K
}

, (6)

where we set h as (number_of_samples + number_of_features + 1)/2 (Rousseeuw, 1984). K represents
the total number of subsets that contain h points. In practice, the MCD estimator can be efficiently solved
by the FAST-MCD algorithm (Hubert & Debruyne, 2010) instead of performing a brute-force search over
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Figure 3: Contours under the estimation based on MD and Robust MD across different outlier types on
Breakout. Black and red points denote inliers and outliers, respectively. The dimension of state feature
vectors after a pre-trained PPO policy is reduced by t-SNE (Van der Maaten & Hinton, 2008).
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all possible subsets. Akin to Mahalanobis Distance, we define the Detection Robust Mahalanobis Distance
Mrob(s) as robust detection metric:

Mrob(s) = min
c

(
f(s) − µ̂rob

c

)⊤ Σ̂rob−1
c

(
f(s) − µ̂rob

c

)
. (7)

Since the robust Mahalanobis distance can still approximate the true Chi-squared distribution (Hardin &
Rocke, 2005), we still employ the threshold value Θ = χ2

p(1 − α) for detecting outliers as in the MD case.

Potential Advantages of Robust MD on Real Data. As a motivating example, Figure 3 displays
contours computed by both MD and Robust MD detection methods for state feature vectors in the Breakout
game from the popular Atari benchmark (Bellemare et al., 2013; Brockman et al., 2016) with different types
of outliers. These results demonstrate that estimation based on Robust MD is less vulnerable to outlying
states (red points) and better fits inliers (black points) than MD. This robust parameter estimation highlights
the potential advantage of Robust MD for RL outlier detection, where the data used for estimation tends to
be noisy.

4.3 Conformal MD-based Detection

Motivation. Although robust MD-based detection is less vulnerable to noise in RL environments, both MD
and robust MD strategies heavily rely on the Gaussian assumption to construct the detection thresholds based
on Proposition 1. This distribution assumption is often violated in practice, diminishing the effectiveness
of MD and robust MD. In contrast, conformal prediction offers a mathematical framework that provides
valid and rigorous prediction distribution without assuming a specific underlying data distribution. The
resulting conformal anomaly detection circumvents the limitation of the distribution assumption, potentially
improving the detection efficacy.

In the context of RL, conformal anomaly detection evaluates how a state conforms to a model’s current
prediction distribution, thereby discriminating abnormal states. As a distribution-free detection approach,
conformal anomaly detection can enhance the distance-based detectors by additionally tuning the anomaly
threshold in the calibration dataset. To design the conformal anomaly detection method, we leverage the
Detection Mahalanoibis Distance M(s) as the non-conformity score, which measures how dissimilar a state
is from the instances in the calibration set. Following split conformal inference (Papadopoulos et al., 2002;
Shafer & Vovk, 2008), we split the the previously collected offline dataset into the the calibration set Dcal
and the evaluation set. A simple way is to evaluate the quantiles of the resulting empirical distribution to
create the corresponding confidence band. Using the calibration set Dcal, we define the fitted quantiles Q̂c

1−α

of the conformity scores for the action class c as follows:

Q̂c
1−α = inf

q :

 1
Nc

∑
si∈Dcal,ai=c

1{Mc(si)≤q}

 ≥ 1 − α

 , (8)

where each (si, ai) is drawn from the calibration set Dcal and c is calculated by c = arg min M c(si) in M c(si)
among all action classes. Finally, we use the class-dependent and well-calibrated detection thresholding
Θ = Q̂c

1−α in conformal MD-based detection instead of χ2
p(1 − α) used in MD and Robust MD strategies.

4.4 MD-based Detection Algorithm in the Offline Setting

Algorithm 1 summarizes the instantiation of MDX in the offline setting. We compute the (robust) mean
vector and covariance matrix among the state feature vectors in the penultimate layer of πθ for each action
class. Next, given a state observation s, we compute the detection Mahalanobis distance d = M(s) or
d = Mrob(s). And compare it with the threshold Θ = χ2

p(1−α) under the Gaussian assumption or Θ = Q̂c
1−α

from distribution-free conformal quantiles. If d > Θ, s is detected as an outlier. Conversely, if d ≤ Θ, s is
deemed as an inlier.
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Algorithm 1 MDX Detection Framework in the Offline Setting
1: Input: The given policy πθ, the dimension of state feature vectors p, and a confidence level 1 − α.
2: Output: Detection labels {ys} for each s in the evaluation trajectory.
3: / * Step 1: Detection Design by Estimating Mean and Covariance * /
4: Given state action pairs {(si, ai)} where ai ∼ πθ(·|si).
5: for each action class c do
6: if we choose MD detection then
7: Estimate µ̂c and Σ̂c via Eq. (4). / * Approach 1: MD Detection * /
8: else if we choose Robust MD detection then
9: Estimate µ̂rob

c and Σ̂rob
c via Eqs. (6) and (7). / * Approach 2: Robust MD Detection * /

10: else
11: Estimate µ̂c, Σ̂c via Eq. (4), calibrate Q̂c

1−α via Eq. (8) / * Approach 3: Conformal MD-based
Detection * /

12: end if
13: end for
14: / * Step 2: Detection Deployment * /
15: for s in the noisy environment do
16: Compute distance d = M(s) or d = Mrob(s), and threshold Θ = χ2

p(1 − α) or Θ = Q̂c
1−α.

17: Set Detection label ys = 1 if d > Θ else ys = −1.
18: end for

5 Anomaly Detection in the Online RL Setting

In the online RL setting (Sutton & Barto, 2018; Dong et al., 2020), a policy is updated continuously, unlike
the fixed pre-trained policy used in our offline setting. Robust policy training with noisy states is crucial
in safe RL, as the agents are more likely to encounter state outliers during training. In this section, we
extend MDX to the online RL training scenario. Unlike the offline setting, the challenge here stems from
the dynamic nature of policy updates, requiring our detector to adapt to the evolving distribution of feature
vector outputs. The complexity increases when the improved policy starts gathering new samples through
exploration, posing a fundamental challenge in an online RL framework. An effective detection system must
differentiate between actual noisy observations and newly collected data through exploration. Training the
RL agent and estimating the detector are interleaved in a noisy online environment. Various options for
managing detected outliers during training include removing or denoising the outlier states. In our detection
framework, we focus on direct removal and assess the resulting learning curves in the presence of noisy states
during the training process. To address the challenges in detecting abnormal states in the online training
setting, we propose Moving Window Estimation and Double Self-supervised Detectors, both of which are
pivotal for the empirical success of our anomaly detection approach.

Moving Window Estimation. In the online setting, improving the policy πθ causes a shift in the data
distribution within the replay buffer as the agent interacts with the environment (Rolnick et al., 2019; Xiao
et al., 2019). To effectively utilize information from the updated data distribution, we maintain a moving
window to store experiences throughout the interaction steps. The window size can be adjusted to either
prioritize a long historical context with a larger window size or more recent experiences with a smaller one.
Based on the constantly updated state feature vectors, µc and Σc (µrob

c and Σrob
c ) are continually estimated.

This continuous updating allows us to accurately track the state feature distribution, ensuring that our
detector remains sensitive to recent and historical data shifts.

Double Self-Supervised Detectors. Our current detector is continually refined using self-detected inliers,
while any detected outliers are promptly discarded. However, a more practical approach is to leverage these
outliers to create a complementary detector for outliers. This secondary self-supervised detector validates
the detection results from the primary detector. For example, if the primary detector classifies a state
as an inlier and the secondary detector agrees that it is not an outlier, the state is confidently classified
as such. Conversely, if there is a difference between the discrimination of the two detectors, the state is
randomly classified as either an outlier or an inlier. In the event of disagreement, this random classification
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Algorithm 2 MDX Detection Framework in the Online Setting, PPO Style
1: Initialize policy network πθ and estimator µ̂c and Σ̂c (or µ̂rob

c and Σ̂rob
c ).

2: Initialize confidence level 1 − α, the window size m, inlier and outlier buffers BI , BO.
3: for iteration = 1, 2, ..., K do
4: for actor = 1, 2, ..., N do
5: Run policy πθ in environment for T timesteps.
6: Compute distance d = M(s) or d = Mrob(s), and threshold Θ = χ2

p(1 − α) or Θ = Q̂c
1−α.

7: if d ≤ Θ then
8: Add it to BI .
9: else

10: Add it to BO.
11: end if
12: end for
13: Optimize policy πθ using inlier trajectories.
14: Update µ̂c and Σ̂c (or µ̂rob

c and Σ̂rob
c ) of the two detectors based on BI and BO respectively every Nc

samples.
15: end for

is motivated by the need to avoid systematic bias that could arise from consistently favoring one detector’s
output over the other. By introducing randomness, we ensure the system remains fair and does not overly
rely on potentially flawed outputs from either detector. This approach also preserves the system’s ability
to learn and adapt over time, preventing the reinforcement of incorrect classifications. The double-detector
system thus enhances the robustness and reliability of the detection process, ensuring more accurate and
consistent identification of abnormal states.

MD-based Detection Algorithm in the Online Setting. Algorithm 2 outlines our MD-based detection
procedure for online RL, incorporating both moving window estimation and double self-supervised detectors.
To update our double detectors, inliers and outliers are stored in buffers BI and BO, respectively. For each
class, a window size m is specified. Within each class, the state-action pairs in the window are used to
estimate µ̂c and Σ̂c (µ̂rob

c and Σ̂rob
c ). These parameters are updated after every Nc newly collected data

points in the window for action class c. This adaptive updating mechanism ensures that the detectors
remain responsive to evolving data distributions.

Online Anomaly Detection Procedure. In a real-time scenario like a recommendation system, we typi-
cally first deploy a pre-trained policy as a warm start in the online system to provide initial recommendations
for each user. Feedback from users, such as the click-through rate (CTR), is then observed to update the on-
line policy iteratively. Similarly, within our online detection algorithm, we pre-train a policy as a warm start.
After pre-training, the policy is introduced to the noisy environment for further online learning. Throughout
this process, our MDX framework is used to identify outliers in the subsequent training phases. We then
evaluate the training performance of algorithms equipped with these detection mechanisms. This systematic
approach facilitates the gradual refinement of the policy while concurrently integrating outlier detection to
enhance robustness in real-world settings.

6 Experiments

We first conduct experiments on six typical Atari games (Bellemare et al., 2013) to verify the effective-
ness of our MDX framework in both offline and online settings. The Atari games are divided into two
different groups. The first group includes Breakout, Asterix, and SpaceInvaders, which feature nearly static
backgrounds. Enduro, FishingDerby, and Tutankham in the second group have time-changing or dramat-
ically different backgrounds, presenting more challenging scenarios. We further conduct experiments on
autonomous driving environments (Dosovitskiy et al., 2017) as one potential application. We select Proxi-
mal Policy Optimization (PPO) (Schulman et al., 2017) as our baseline RL algorithm.

9
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Three Types of Outliers. (1) Random Outliers. We generate random outliers by adding Gaussian noise
with zero mean and different standard deviations on state observations, simulating natural measurement
errors. (2) Adversarial Outliers. We perform white-box adversarial perturbations (Goodfellow et al.,
2014b; Szegedy et al., 2013; Cao et al., 2020) on state observations for the current policy, following the
strategy proposed in (Huang et al., 2017; Pattanaik et al., 2017). Particularly, we denote at

w as the "worst"
action, with the lowest probability from the current policy πt(a|s). The optimal adversarial perturbation
ηt, constrained in an ϵ-ball, can be derived by minimizing the objective function J : minη J(st + η, πt) =
−

∑n
i=1 pt

i log πt(ai|st + η), s.t.∥η∥ ≤ ϵ, where pt
w = 1 and pt

i = 0 for i ̸= w. We solve this minimization
problem with the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014b), a typical adversarial attack
method in the deep learning literature. The resulting adversarial outliers st + η∗

t force the policy to choose
at

w. (3) Out-of-Distribution (OOD) outliers. OOD outliers arise from the disparity in data distribution
across different environments. To simulate them, we randomly select states from other environments and
introduce them to the current environment. In our experiments, we select images from other Atari games to
serve as Out-of-Distribution (OOD) outliers within the considered environment. In the autonomous driving
scenario, we designate rainy and nighttime observations as OOD outliers for the primary daytime setting
on a sunny day. This deliberate selection of diverse outlier examples enables comprehensive testing of our
method’s robustness across varied environments.

Baseline Methods. A fundamental obstacle in assessing the anomaly detection strategies in RL lies in
the scarcity of baselines in deep RL settings as introduced in Section 2. To rigorously substantiate the
effectiveness of MDX, we initiate our evaluation by comparing them with the foundational baselines we have
developed ourselves. (1) Euclidean distance (ED) assumes that all features are independent under the
Gaussian assumption with one standard deviation, which can be considered as a simplified version of our
MD method with an identity covariance matrix. (2) MD with Tied covariance (TMD) follows the tied
covariance assumption in (Lee et al., 2018), where features among all action classes share a single covariance
matrix estimation. (3) MD is our first proposed method with class-conditional Gaussian assumption. (4)
Robust MD (RMD) is the robust variant of MD under the Gaussian assumption. (5) MD+C uses well-

Detection Accuracy (%) Outliers ED TMD MD RMD MD+C

Breakout
Random 53.2 60.0 64.0 71.2 62.8

Adversarial 83.8 89.1 91.0 80.4 92.3
OOD 50.0 47.6 50.5 78.7 51.5

Asterix
Random 44.3 46.0 59.6 71.2 54.8

Adversarial 84.2 85.5 91.3 75.8 93.7
OOD 40.1 40.8 45.9 65.2 49.7

SpaceInvader
Random 52.1 66.2 72.3 79.2 70.4

Adversarial 72.4 91.2 95.9 83.4 96.4
OOD 45.2 56.6 51.4 83.2 50.2

Enduro
Random 49.0 51.6 60.2 78.5 51.6

Adversarial 93.9 90.8 95.2 80.4 97.5
OOD 57.0 62.8 69.8 80.3 53.2

FishingDerby
Random 49.1 66.3 69.2 85.6 65.3

Adversarial 85.3 92.9 97.5 87.4 97.4
OOD 51.1 55.9 59.2 75.7 57.9

Tutankham
Random 50.0 47.9 49.2 77.0 52.2

Adversarial 61.1 88.9 94.2 78.7 87.2
OOD 55.0 86.6 92.0 78.7 77.8

Average

Random 49.6 56.3 62.4 77.1 59.5
Adversarial 80.1 89.7 94.2 81.0 94.0

OOD 49.7 58.4 61.5 76.9 56.7
Average 59.8 68.1 72.7 78.3 70.1

Table 1: Average detection accuracy of MD, RMD, and MD+C compared with baselines across different
outlier types in all six environments in the offline setting. The averages are computed across environments
and outlier types. Accuracy is determined by applying detection techniques to the balanced data composed
equally of clean and noisy states.
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calibrated conformality scores to construct a valid empirical distance distribution instead of relying on the
Chi-Squared distribution established upon the Gaussian assumption.

6.1 Anomaly Detection in the Offline Setting

In the offline setting, we randomly split the states from the given dataset into calibration and evaluation
sets, each containing 50% The calibration set is used to construct our detectors, and the evaluation set is for
testing. We first use PCA to reduce the state feature vectors into a 50-dimensional space. We then apply
MD or robust MD to estimate mean vectors and covariances and calibrate the conformality score based on
the calibration dataset. Finally, we add the three types of noises to the evaluation dataset and combine
them with the clean evaluation dataset. We assess the performance of our detection methods on the entire
evaluation dataset.

Main results. Table 1 shows the detection accuracy of MDX instantiated with MD, robust MD, and
conformal MD with α = 0.05 across a wide range of outlier types on each game. A higher accuracy indicates
a more successful identification of anomalies for the evaluated detection method. Detailed results for settings
with different noise types are provided in Table 4 of Appendix B.1. We conclude that: (1) All MD-based
methods, i.e., TMD, MD, RMD, and MD+C, outperform ED, confirming the usefulness of covariance matrix
information in RL outlier detection. (2) Robust MD generally performs the best, significantly surpassing MD
and other methods in detecting random and OOD outliers. Nonetheless, robust MD is not effective enough
to detect adversarial outliers. (3) MD+C excels in identifying adversarial outliers and performs similarly to
MD in other scenarios.

Sensitivity Analysis on Feature Dimension Reduction. We provide a sensitivity analysis regarding
the number of feature dimensions reduced by PCA, showing that the detection accuracy for all considered
outliers tends to improve as the number of principal components increases. This indicates that better
detection performance can be achieved with higher feature dimensions. The detailed results are presented
in Appendix B.4.

Effectiveness of Robust MD. In robust MD analysis, it is typically concluded that outlier states are more
distinctly separated from inlier states. By comparing the Mahalanobis distance distributions between inliers
and outliers under both MD and Robust MD, we show that this conclusion also applies to the RL anomaly
detection scenario. This effect explains the detection advantage of robust MD in RL. Detailed results are
provided in Appendix B.3.

6.2 Anomaly Detection in the Online Setting

The PPO agent, utilizing multi-processes as detailed in the original PPO algorithm (Schulman et al., 2017),
runs eight independent environments in parallel, and we introduce state outliers into four of these envi-
ronments. For random and adversarial outliers, actions are determined based on the PPO policy network
πθ. For OOD outliers, due to the potential differences in action spaces between the original environment
and the OOD environment, we select OOD states from the OOD environment by taking random actions
within its own action space. For the Robust MD method, we use PCA to reduce state feature vectors into a
50-dimensional space due to the expensive computation of the robust MD method. For the other methods,
we use the original feature vectors output from the penultimate layer of πθ. Results are averaged over three
seeds with hyperparameters given in Table 5 of Appendix C.1. When our detectors identify an outlier, it is
removed from training. We compare the resulting learning curves for different detection methods.

Additional Baselines. We add another two baselines as performance upper bound and lower bound. (1)
For an ideal baseline, the method Auto automatically deletes true state outliers, showing the optimal training
performance of algorithms without the interruption from outliers. (2) At the other extreme, Random uses
a totally random detector that detects a state as an inlier or outlier with a probability of 0.5.

Main Results. Figure 4 presents learning curves of cumulative rewards (first row) based on the PPO
algorithm and the corresponding detection F1 Score (second row) for all tested detection methods across three
types of outliers in Tutankham games. To better highlight their differences, we omit the confidence bands
in Figure 4, while providing similar results on all six Atari games with confidence bands in Appendix C.1
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(a) Gaussian (std = 1).
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(c) OOD (Enduro).
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ingDerby).
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(e) Adversarial.

Figure 4: Learning curves and detection performance across various state outliers in online learning
on Tutankham. "Mean Score" in the first row indicates the cumulative rewards, and "F1 Score" in the second
row evaluates the detection performance during training. We present the average results over three random
seeds while omitting confidence bands for a clearer comparison.

from Figures 13 to 18 for reference. For each outlier type in Table 2, we evaluate the superiority rank of
all detectors regarding the F1 score and policy performance, where rank 1 indicates the best performance.
A smaller superiority rank implies a more effective detection. Our conclusions are as follows: (1) Conformal
MD (MD+C) generally achieves the best detection performance across all considered baselines (except Auto).
The superiority of MD+C over MD highlights the crucial role of accurately calibrated thresholds in the online
RL detection setting. (2) RMD is less effective than MD and MD+C, performing only on par with TMD
and ED. This degradation is due to the information loss in the dimension reduction of the feature vectors
for reducing the computational cost. Thus, MD+C and MD are preferable to RMD in the computationally
demanding online RL setting. (3) The average superiority ranks of all considered detectors are similar in
terms of performance and F1 score, verifying the consistency of our results.

Ablation Study on Double Self-Supervised Detectors. We conduct an ablation study of double self-
supervised detectors on Breakout with random and OOD outliers. Results in Figure 19 of Appendix C.2
show that double self-supervised detectors reduce detection errors and improve detection accuracy.

Ablation Study on Outlier Proportions. We also demonstrate the robust detection performance across
different proportions of outliers encountered by the agent during training. We conduct experiments on
Breakout, and the results are provided in Figure 20 of Appendix C.3.

Superiority Rank Outlier Type Random ED TMD MD RMD MD+C

Performance
Random 5.7 2.9 4.1 2.5 3.9 1.9

OOD 5.8 4.5 2.0 3.2 4.1 1.4
Adversarial 5.7 3.3 4.5 3.0 3.2 1.3

Average All 5.7 3.6 3.4 2.8 3.8 1.6

F1 Score
Random 6.0 3.1 4.0 3.3 3.4 1.2

OOD 6.0 4.8 2.0 2.5 4.1 1.6
Adversarial 6.0 4.2 3.3 2.8 3.7 1.0

Average All 6.0 3.9 3.1 2.9 3.7 1.3

Table 2: The average superiority rank (1 is best) of anomaly detection methods across all types of outliers
in all six environments. Numbers in bold represent the best method.
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(a) Original state (b) Random outlier (c) Adversarial outlier (d) OOD outlier (rainy) (e) OOD outlier (night)

Figure 5: The clean and noisy state observations in autonomous driving experiments.

6.3 Autonomous Driving Environment

To verify the broader applicability of our method, we perform experiments on autonomous driving environ-
ments and introduce practical scenarios in which all three types of anomalies commonly occur.

Random Noise. Malfunctioning sensors or cameras can introduce random noise into signal observations.
For instance, a faulty camera lens may produce distorted images, while a malfunctioning LiDAR sensor
might generate erroneous depth measurements. Such random noise can impair the reliability of perception
systems in autonomous vehicles.

Adversarial Attacks. Adversarial attacks involve intentionally manipulating input signals to disrupt the
functioning of RL systems. In the context of autonomous driving, an attacker might tamper with sensor data
or traffic signs, resulting in misleading observations and potentially hazardous driving behavior. Adversarial
states thus pose a significant threat to the robustness and safety of autonomous driving systems.

Out-of-Distribution (OOD) States. Consider a scenario where an RL policy is trained exclusively under
sunny weather. Encountering rainy weather poses a challenge, as the observations captured under these
conditions deviate from the training data distribution. Such observations are therefore considered Out-of-
Distribution (OOD) states.

Experimental Setup. We conduct experiments using the CARLA environment (Dosovitskiy et al., 2017).
CARLA is an open-source simulator for autonomous driving research known for its high-quality rendering
and realistic physics. The environment includes 3D models of static objects, such as buildings, vegetation,
traffic signs, and infrastructure, as well as dynamic objects, such as vehicles and pedestrians. The task is to
drive safely through the town. In each episode, the vehicle must reach a given goal without collision. The
episode ends when the vehicle reaches the goal, collides with an obstacle, or exceeds the time limit.

Noisy State Observations. Following the approach used in Atari game settings, we introduce Gaussian
noise to simulate random outliers and generate adversarial outliers using adversarial perturbations. For
OOD outliers, we leverage CycleGAN-Turbo (Zhu et al., 2017; Parmar et al., 2024), a technique designed
for adapting a single-step diffusion model (Ho et al., 2020) to new tasks and domains through adversarial
learning (Goodfellow et al., 2014a). This method can perform various image-to-image translation tasks and
outperforms existing GAN-based and diffusion-based methods for various scene translation tasks, such as
day-to-night conversion and adding/removing weather effects like fog, snow, and rain (Parmar et al., 2024).
Specifically, we use CycleGAN-Turbo to create rainy and nighttime outliers. Examples of different anomaly
states are presented in Figure 5.

Main Results. Given a fixed dataset and a pre-trained policy, we assess our detection methods across the
three types of outliers. Table 3 shows the average accuracy, with MD+C achieving the highest performance

Detection Accuracy (%) ED TMD MD RMD MD+C
Random (std ∈ [0.005, 0.06]) 50.0 60.8 69.8 72.1 61.7
Random (std ∈ (0.06, 0.3]) 50.0 95.0 95.2 73.6 96.0

Adversarial 50.0 96.7 95.3 73.8 97.5
OOD (Rain) 50.0 96.5 95.5 74.4 97.5
OOD (Night) 50.0 96.5 95.5 74.3 97.5

Table 3: Detection accuracy on the CARLA town environment over three types of outliers.
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in most scenarios, while RMD performs best in the presence of small random noises. These results suggest
that our proposed method effectively detects outliers for realistic problems, such as autonomous driving.

7 Discussions and Conclusion

In this paper, we present the first detailed study of a distance-based anomaly detection framework in deep
RL, considering random, adversarial, and OOD state outliers in both offline and online settings. The
primary detection backbone is based on Mahalanobis distance, and we extend it to robust and distribution-
free versions by leveraging robust estimation and conformal prediction techniques. Experiments on Atari
games and the autonomous driving environment demonstrate the effectiveness of our proposed methods in
detecting the three types of outliers. The conformal MD method achieves the best detection performance in
most scenarios, especially in the online setting. Our research contributes to developing safe and trustworthy
RL systems in real-world applications.

Limitations and Future Work. In the online setting, especially with a high proportion of outliers, it
may be preferable to denoise the detected state outliers via some neighboring smoothing techniques, e.g.,
mixup (Wang et al., 2020; Zhang et al., 2018), rather than deleting them directly as performed in this
paper. To relax the Gaussian assumption in the hypothesis test of our detection, we can consider other
non-parametric methods, such as one-class support vector machines (Choi, 2009) or isolation forests (Liu
et al., 2008). A substantial challenge that remains for future work is to devise a more informed detector
to distinguish between real “bad” outliers that can cause truly misleading actions and “good” new sam-
ples collected through exploration, which can potentially benefit the policy learning, especially for image
inputs (Zhang & Ranganath, 2023).
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A Proof of Proposition 1

Proof. We show that for each action class c, the square of Mahalanobis distance d is identically independent
Chi-squared distributed under the Gaussian assumption. Without loss of generality, we denote µ and Σ
as the mean and variance matrix of the closest class-conditional Gaussian distribution. We need to show
d = (f(s) − µ)⊤Σ−1(f(s) − µ) is Chi-squared distributed. Firstly, by eigenvalue decomposition, we have

Σ−1 =
p∑

k=1
λ−1

k uku⊤
k , (9)

where λk and uk are the k-th eigenvalue and eigenvector of Σ. Plugging it into the form of d, we immediately
obtain

d =(f(s) − µ)⊤Σ−1(f(s) − µ)

=(f(s) − µ)⊤(
p∑

k=1
λ−1

k uku⊤
k )(f(s) − µ)

=
p∑

k=1
λ−1

k (f(s) − µ)⊤uku⊤
k (f(s) − µ)

=
p∑

k=1

[
λ

− 1
2

k u⊤
k (f(s) − µ)

]2

=
p∑

k=1
X2

k,

(10)

where X2
k is a new Gaussian variable that results from the linear transform of a Gaussian distribution f(s)

where f(s) ∼ N (µ, Σ). Therefore, the resulting variance σ2
k can be derived as

σ2
k = λ

− 1
2

k u⊤
k Σλ

− 1
2

k uk = λ−1
k u⊤

k (
p∑

j=1
λjuju⊤

j )uk =
p∑

j=1
λ−1

k λju⊤
k uju⊤

j uk (11)

As the µj and µk are orthogonal if j ̸= k, the variance σ2
k can be further reduced to

σ2
k = λ−1

k λku⊤
k uku⊤

k uk = ∥uk|2∥uk|2 = 1. (12)

Each Xk is a standard Gaussian distribution. Then we have d, the square of Mahalanobis distance, Chi-
squared distributed, i.e., d ∼ χ2(p), independent of the action class c. Without loss of generality, the smallest
d among all action classes, i.e., M(s), is also a Chi-squared distribution. That is to say, M(s) ∼ χ2(p).

B Results in Offline Setting

B.1 Results across Different Noise Strengths

We provide detailed detection accuracy of various detection methods across different noise strengths in
Table 4.

B.2 Visualization of Outlier States on Six Games

We plot the outlier states on Breakout, Asterix, and SpaceInvaders games in Figure 6 and outliers states on
Enduro, FishingDerby, and Tutankham in Figure 7.
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Table 4: Detection accuracy (%) of our MD, Robust MD, and conformal MD strategies compared with other
baseline methods on six Atari games with α = 0.05.

Games Outliers Perturbation ED TMD MD RMD MD+C Games Outliers Perturbation ED TMD MD RMD MD+C

Breakout

Random std=0.02 50.0 52.2 56.5 66.1 55.5

Enduro

Random std=0.1 49.4 44.7 48.2 76.6 48.6
std=0.04 56.4 67.8 71.4 76.3 70.0 std=0.2 48.6 58.4 72.2 80.3 54.5

Adversarial ϵ=0.001 80.4 87.4 89.4 80.0 90.0 Adversarial ϵ=0.001 93.1 90.8 95.2 80.5 97.4
ϵ=0.01 87.2 90.7 92.5 80.7 94.5 ϵ=0.01 94.6 90.8 95.2 80.3 97.5

OOD Asterix 53.5 47.7 51.2 81.3 51.8 OOD FishingDerby 63.7 72.9 78.5 80.3 53.9
SpaceInvaders 46.5 47.4 49.8 76.1 51.2 Tutankham 50.2 52.6 61.0 80.2 52.5

Asterix

Random std=0.1 42.8 42.9 48.0 66.2 49.1

FishingDerby

Random std=0.2 49.0 48.7 51.9 83.5 51.0
std=0.2 45.8 49.1 71.1 76.1 60.4 std=0.3 49.1 83.8 86.4 87.6 79.5

Adversarial ϵ=0.001 83.9 85.2 91.1 75.7 93.3 Adversarial ϵ=0.001 82.4 92.9 97.5 87.3 97.3
ϵ=0.01 84.5 85.8 91.5 75.9 94.0 ϵ=0.01 88.2 92.9 97.5 87.5 97.4

OOD Breakout 42.3 43.0 48.1 76.1 51.9 OOD Enduro 49.0 56.7 60.6 75.6 59.9
SpaceInvaders 37.9 38.6 43.7 54.2 47.5 Tutankham 53.1 55.1 57.8 75.8 55.8

SpaceInvaders

Random std=0.02 50.1 49.7 55.1 74.7 53.8

Tutankham

Random std=0.04 50.0 48.5 49.3 75.7 51.6
std=0.04 54.0 82.6 89.5 83.6 86.9 std=0.06 50.0 47.2 49.0 78.3 52.7

Adversarial ϵ=0.001 68.6 90.5 95.5 83.2 95.9 Adversarial ϵ=0.001 60.0 88.3 93.7 78.8 81.2
ϵ=0.01 76.2 91.8 96.3 83.6 96.8 ϵ=0.01 62.1 89.5 94.7 78.6 93.1

OOD Breakout 45.7 52.7 52.6 82.9 50.6 OOD Enduro 60.0 89.6 94.7 78.9 90.9
Asterix 44.7 60.4 50.2 83.4 49.7 FishingDerby 50.0 83.5 89.2 78.4 64.7

(a) Breakout: Clean (b) Breakout: Random (c) Breakout: Adversar-
ial

(d) Breakout: Asterix (e) Breakout: Space

(f) Asterix: Clean (g) Asterix: Random (h) Asterix: Adversarial (i) Asterix: Breakout (j) Asterix: Space

(k) Space: Clean (l) Space: Random (m) Space: Adversarial (n) Space: Breakout (o) Space: Asterix

Figure 6: Visualization of various state outliers on Breakout, Asterix, and SpaceInvaders games.
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(a) Enduro: Clean (b) Enduro: Random (c) Enduro: Adversarial (d) Enduro: Fishing (e) Enduro: Tu-
tankham

(f) Fishing: Clean (g) Fishing: Random (h) Fishing: Adversar-
ial

(i) Fishing: Enduro (j) Fishing: Tutankham

(k) Tutankham: Clean (l) Tutankham: Ran-
dom

(m) Tutankham: Adv (n) Tutankham: En-
duro

(o) Tutankham: Fish-
ing

Figure 7: Visualization of various state outliers on Enduro, FishingDerby, and Tutankham games.
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B.3 Effectiveness of Robust MD

We take the cubic root of the Mahalanobis distances, yielding approximately normal distributions (Wilson &
Hilferty, 1931). In this experiment, 250 clean states are drawn from the replay buffer, and 50 abnormal states
are drawn from each of the three types of outliers. We reduce the state feature dimension to 2 via t-SNE
and compute Mahalanobis distances of these two kinds of states to their centrality within each action class
under the estimation based on MD or Robust MD, respectively. Figure 8 suggests that Robust MD separates
inliers and outliers better than MD on Breakout within a random action class, indicating its effectiveness in
detecting RL evaluation. Similar results are also given in other games.

We plot the distributions of inliers and three types of outliers on SpaceInvaders and Asterix games in
Figure 9 and 10, respectively. It is worth noting that Robust MD is also capable of enlarging the separation
of distributions between inliers and both random and adversarial outliers on SpaceInvaders game, while its
benefit seems to be negligible on OOD outliers (Breakout) on SpaceInvaders games as well as in Asterix
game. We speculate that it is determined by the game’s difficulty. Specifically, the PPO algorithm can

Inliers Random

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

3
(M

ah
al

.d
ist

.)

Using non-robust estimates
(MD)

Inliers Random
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Using robust estimates
(Robust MD)

(a) Random Outliers.

Inliers Adversarial
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

3
(M

ah
al

.d
ist

.)

Using non-robust estimates
(MD)

Inliers Adversarial

1

2

3

4

5

6

Using robust estimates
(Robust MD)

(b) Adversarial Outliers.

Inliers OOD
0.4

0.6

0.8

1.0

1.2

1.4

1.6

3
(M

ah
al

.d
ist

.)

Using non-robust estimates
(MD)

Inliers OOD

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Using robust estimates
(Robust MD)

(c) OOD Outliers.

Figure 8: Boxplot of distributions between inliers and three types of outliers in an action class on Breakout
game.
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Figure 9: Boxplot of distributions between inliers and three types of outliers in an action class on SpaceIn-
vaders game.
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Figure 10: Boxplot of distributions between inliers and three types of outliers in an action class on Asterix
game.
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achieve desirable performance on the simple Breakout game, thus yielding informative feature space vectors.
By contrast, there is room for the generalization of PPO on both SpaceInvaders and Asterix games, such
that Robust MD might not help when handling the less meaningful state feature vectors in these two games.

B.4 Sensitivity Analysis

We provide the sensitivity analysis of Robust MD in terms of the PCA dimension in Figure 11. The impact
of the number of principal components on the detection performance for robust MD detection is shown
in Figure 11. The detection accuracy over all considered outliers improves as the number of principal
components increases, except for a slight decline for random and adversarial outliers (red and blue lines) on
the Breakout game. The increase implies that the subspace spanned by principal components with small
explained variance also contains valuable information for detecting anomalous states from in-distribution
states, which coincides with the conclusion in (Kamoi & Kobayashi, 2020).

The result of MD estimation manifests in Figure 12. It suggests that there is still an ascending tendency of
detection accuracy as the number of principal components increases.
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Figure 11: Detection performance under Robust MD as the number of principal components increases.
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Figure 12: Detection performance under MD as the number of principal components increases.
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C Results in Online Setting

C.1 Setup and Full Main Results

As a supplement to the results on the main pages, we provide the whole results on all six Atari games from
Figure 13 to Figure 18. The "Mean Score" in the first row indicates the accumulated rewards of PPO, and
the "F1 Score" in the second row shows the detection performance during RL training. The F1 score is
computed based on precision and recall. We also find that the cumulative reward is not strongly correlated
with detection ability in some games. A high detection accuracy may only improve the cumulative reward to
a small degree. This suggests that we need more metrics to measure the effect of our detection performance
more effectively. Hyperparameters in our methods are shown in Table 5.

Hyperparameter Value
Confidence level (1-α) 1-0.05

Moving window size (m) 5120
Sample size (Nc) 2560

Iteration (K) ≈ 10000 (1e7 steps in total)
Environment number (N) 8

Horizon (T ) 128

Table 5: Hyper-parameters in the training phase. RL-related parameters are the same as those of the PPO
algorithm.
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(a) Gaussian std = 1.
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(b) Gaussian std = 0.3.
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(d) OOD Asterix.
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Figure 13: Detection performance across various state outliers in the online training on Breakout. “Mean
Score” in the first row indicates the accumulated rewards, “accuracy” and “F1 Score” evaluate the detection
performance during training.
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(b) Gaussian std = 0.3.
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(c) OOD Breakout.
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(d) OOD SpaceIn-
vaders.
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Figure 14: Detection performance across various state outliers in the online training on Asterix.
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(a) Gaussian std = 1.
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(b) Gaussian std = 0.3.
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(c) OOD Breakout.
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(d) OOD Asterix.
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Figure 15: Detection performance across various state outliers in the online training on SpaceInvaders.
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(a) Gaussian std = 1.
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(b) Gaussian std = 0.3.
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(c) OOD Tutankham.
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(d) OOD FishingDerby.
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(e) Adversarial.

Figure 16: Detection performance across various state outliers in the training phase on Enduro.
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(a) Gaussian std = 1.
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(b) Gaussian std = 0.3.
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(c) OOD Enduro.
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(d) OOD Tutankham.
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Figure 17: Detection performance across various state outliers in the online training on FishingDerby.
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(a) Gaussian std = 1.
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(b) Gaussian std = 0.3.
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(c) OOD Enduro.
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(d) OOD FishingDerby.
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Figure 18: Detection performance across various state outliers in the online training on Tutankham.
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C.2 Ablation Study on Double Anomaly Detectors

Figure 19 reveals that double self-supervised detectors can help adjust the detection errors and improve the
detection accuracy compared with the single detector. MD with double detectors outperforms MD with
a single detector significantly, although RMD with double detectors is comparable to RMD with a single
detector.
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(b) OOD Asterix.

Figure 19: The detection accuracy with and without double self-supervised detectors on Breakout with
random and OOD outliers on Breakout.

C.3 Ablation Study on Number of Noisy Environments

We train PPO in two, four, or six noisy environments with random and OOD outliers among all eight parallel
environments. We use PCA to reduce the feature vectors to 50 dimensions and estimate the detector using
Robust MD. Figure 20 illustrates that compared with the Auto baseline, our RMD method is robust when
encountering different ratios of outliers, especially with a higher contamination ratio. The dashed lines in
different colors represent Auto baselines that correspond to the different number of noisy environments.
The training performance with our detection method gradually approaches the ideal baselines, i.e., Auto.
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(a) Gaussian std=0.3
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(b) OOD Asterix.

Figure 20: Training performance under Robust MD detection under different proportions of outlier exposure
on Breakout (2, 4, 6 out of 8 environments).
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