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Abstract. Industries are increasingly reliant on advanced process mod-
eling techniques to improve development and operational efficiency. Util-
ising these models for optimisation holds the potential to significantly
enhance performance, reduce costs, and ensure the highest standards
of quality. However, when the underlying models become too complex
or computationally expensive, surrogate-based optimisation offers a vi-
able solution. In this work, we introduce a multi-target tree regression
approach designed to address the complexities of multi-objective opti-
misation. The proposed methodology simultaneously handles multiple
outputs, effectively captures nonlinear relationships, and enhances in-
terpretability, making it a powerful tool for process optimisation. Addi-
tionally, we propose a novel methodology to mitigate the challenges of
high dimensionality which is inherent in large datasets, enabling more
efficient use of mathematical programming surrogates. By leveraging the
developed methodologies, we aim to implement multi-objective optimi-
sation to optimise key performance metrics like yield and purity in a
real-world Active Pharmaceutical Ingredient Manufacturing Case Study,
while deriving a Pareto curve to effectively illustrate the trade-off be-
tween competing objectives.
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1 Introduction

Advanced process modeling has transformed multiple industries, especially phar-
maceuticals, by offering insights into complex systems, supporting informed
decision-making, and improving process efficiency. Optimisation further enhances
this by minimising resource use, reducing costs, and meeting sustainability goals.
Traditional optimisation techniques, such as gradient-based methods, are lim-
ited by the complexity and computational demands of contemporary systems.
Surrogate-based optimisation overcomes these limitations by employing simpli-
fied models to approximate complex behaviors, thereby reducing computational
costs and time while improving decision-making [6].
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At the same time, mathematical programming-based techniques have proven
to be practical tools for developing various machine learning methods for small
and medium-sized datasets [11]. Various tree-based surrogate modeling tech-
niques have been explored in the literature, demonstrating effectiveness in ad-
dressing complex problems. A heuristic approach, the Classification and Regres-
sion Tree (CART), applies recursive binary partitioning to each node until no
further splitting is possible or a specified termination criterion is met [3]. Regard-
ing mathematical programming, Yang et al. [21] introduced MPtree, a regression
tree algorithm that utilises OPLRA [20] to optimise binary node splitting. An
enhanced version of this algorithm, known as StatTree, was later developed [7].
StatTree employs an optimisation model for data splitting and uses Chow sta-
tistical test to manage the structure of the tree. As a non-recursive approach,
Optimal Regression Trees (ORT) are proposed, formulating the construction of
the optimal decision tree as a discrete optimisation problem, enabling the en-
tire tree to be built in a single step and identifying the tree that minimises the
training error most effectively [2].

The concept of applying surrogate models in optimisation has been intro-
duced in the literature [13], while early foundational work explored how individ-
ual surrogates can fit into large decision-making problems [9]. One of the most
widely adopted techniques for optimising expensive simulations is Bayesian Op-
timisation, which typically employs Gaussian Processes as surrogate models. A
key strength of this approach is its ability to quantify uncertainty, which allows
for the use of an acquisition function to guide the sampling process [19].

Among the early strategies for optimising neural networks are big-M mixed-
integer programming formulations specifically designed for ReLU activation func-
tions [12, 5]. In terms of software implementations, mathematical programming
formulations of gradient-boosted regression trees are available in the black-box
optimiser ENTMOOT [18] and the Optimisation and Machine Learning Toolkit
(OMLT), which integrates with the algebraic modeling language Pyomo [4].

Motivated by the need to optimise complex flowsheets while working with
high-dimensional datasets, this study introduces a multi-target tree regression
methodology to predict multiple performance metrics simultaneously, effectively
capturing nonlinear relationships while maintaining interpretability. Moreover,
a tailored optimisation approach is presented to handle the challenges of high-
dimensional data. The mathematical model of the reverse optimisation is de-
rived while the combined framework supports the generation of Pareto fronts to
visualise trade-offs between competing objectives, facilitating informed decision-
making in optimisation tasks. This approach enhances interpretability, computa-
tional efficiency, and practical applicabil ity, offering a powerful tool for decision-
making.

2 Methodology

In this section, a novel approach of surrogate-based optimisation is presented.
First, a Simultaneous Multi-tARget Tree regression (SMART ) mathematical
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model is presented, along with a methodology to mitigate the challenges of high
dimensionality inherent in large datasets. This surrogate model builds upon con-
cepts from existing regression tree formulations, such as those used in Optimal
Regression Trees (ORT) [2, 1], extending them to handle multiple targets, along
with additional enhancements to refine the leaf predictions. The complete Mixed-
Integer Linear Programming (MILP) mathematical model is presented below.

Indices
m Attribute (m = m1,m2, ...,M)
s Sample (s = s1, s2, ..., S)
n, n′ Node (n = n1, n2, ..., N)
r Response-target (r = r1, r2, ..., R)
Sets
NB Branch nodes
NL Leaf nodes
Pn Parent node of node n
Ln Set of ancestors of n whose left child has been encountered along the path

from the root node to n
Rn Set of ancestors of n whose right child has been encountered along the path

from the root node to n
Parameters
Asm Value of sample s on attribute m
Ysr Real output value of sample s for response r
Nmin Minimum number of samples at each active leaf node
ϵm Smallest non-zero difference between two adjacent values on attribute m
U,U ′ Suitably large numbers
Binary Variables
dn 1 if a split is applied at node n
Wmn 1 if a split is applied at node n using attribute m
Esn 1 if sample s falls into leaf node n
Yn 1 if leaf node n is active
Continuous Variables
bn Split point of node n
Cmnr Regression coefficient for feature m in leaf node n for response r

Ĉmnr Regression coefficient of the quadratic term for feature m in leaf node n for response r
Inr Intercept of regression function in leaf node n for response r
Pdsnr Predicted output for sample s in leaf node n for response r
Dsr Absolute deviation between predicted output and real output for sample s for response r

Tree Structure Constraints∑
m

Wmn = dn ∀n ∈ NB (1)

0 ≤ bn ≤ dn ∀n ∈ NB (2)
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dn ≤ dn′ ∀n ∈ NB, n′ ∈ Pn (3)

∑
m

Wmn′ ·Asm ≥ Bn′ − U · (1− Esn) ∀s, n ∈ NL, n′ ∈ Rn (4)

∑
m

(Wmn′ ·Asm + ϵm) ≤ Bn′ + U · (1− Esn) ∀s, n ∈ NL, n′ ∈ Ln (5)

Prediction Definition

Pdsnr =
∑
m

Cmnr ·Asm +
∑
m

C1mnr ·A2
sm + Inr ∀s, n, r ∈ NL (6)

Dsr ≥ Ysr − Pdsnr − U ′ · (1− Esn) ∀s, n, r ∈ NL (7)

Dsr ≥ Pdsnr − Ysr − U ′ · (1− Esn) ∀s, n, r ∈ NL (8)

Logical Conditions

Esn ≤ Yn ∀s, n ∈ NL (9)

∑
s

Esn ≥ Nmin · Yn ∀n ∈ NL (10)

∑
n

Esn = 1 ∀s (11)

Objective Function

Min
∑
rs

Dsr (12)

The initial constraints define the splits implemented at branch nodes. Binary
variables Wmn are introduced to represent whether attribute m is utilised for a
binary split at branch node n. Constraints (1) ensure that at most one attribute
can be selected for splitting at each branch node, thereby enforcing univariate
splits. If no attribute is selected for splitting at a branch node, the node becomes
inactive and constraints (1) and (2) set variables dn and bn to zero. Constraints
(3) prevent a branch node from applying a split if its parent node is not active
for splitting [10].

Constraints (4) and (5) are introduced to enforce the splits applied by the
branch nodes and ensure that samples follow the appropriate path to the leaf
nodes. Specifically, constraints (4) model the path from branch node n′ to leaf
node n, where n′ is an ancestor of n and its right child has been encountered
along the path from the root node to n. Similarly, constraints (5) model the path
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from branch node n′ to leaf node n, where n′ is an ancestor of n and its left child
has been encountered along the path from the root node to n. A small constant
ϵm representing the smallest non-zero difference between two adjacent values
on the attribute m, is added to the left-hand-side. If Esn = 0, the constraints
become redundant, as the sufficiently large constant U ensures they are satisfied.

For any sample s and every response r, the training error is equal to the
absolute deviation between the real output and the predicted output of the leaf
node n where the sample belongs to (i.e Esn = 1). It is expressed by equations
(7) and (8). Through equations (6), for each leaf node n, a polynomial function
of order 2 is employed to predict the value of samples for each response (Psnr).
It is noted that although equations (6) are closed-form functions of the features,
coefficients Cmnr and C1mnr can take the value of zero, allowing for a flexibility in
the predictions. Furthermore, constraints (9) state that if Yn = 0, then a leaf node
n cannot contain samples. Constraints (10) set a minimum number of samples
Nmin to fall in a leaf node, to avoid overfitting, while every sample can fall into
only one leaf node, which is ensured by constraints (11). The objective function
minimises the sum of absolute training errors and it’s expressed by Equation
(12). Figure 1 depicts how a sample s can end up in a leaf node by following
either the right or the left branch of its ancestors, respecting the corresponding
split.

Fig. 1. Tree Visualisation

2.1 Proposed Methodology: Tailored Optimisation

In this approach, a single regression tree can effectively predict multiple outputs
by leveraging both linear and quadratic terms of the predictors. This struc-
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ture enables the tree to capture complex relationships while maintaining inter-
pretability. However, as the complexity and the number of samples increase,
mathematical programming approaches often struggle. To tackle the above in
the case of SMART , the following methodology is developed.

Algorithm 1 Proposed Methodology
Require: Initial dataset D
1: Apply K-Medoids clustering.
2: Solve SMART using the clustered dataset.
3: Fix Wmn and set bn for initialisation.
4: Solve SMART using all samples to minimise MAE.

As shown in Algorithm 1, the process begins with KMedoids clustering [15]
applied to the dataset using the feature variables, reducing it to a representative
subset in which only the cluster centers are kept [16], preserving the most essen-
tial patterns and variability. SMART is then trained on this reduced dataset
from which the optimal values of the key binary variables Wmn are obtained,
along with the optimal values of the continuous variables Bn. The binary vari-
ables Wmn are then fixed, and the continuous variables Bn are set as initial
values for the subsequent fitting of the full dataset to the SMART model, en-
suring a refined and computationally efficient fit. This second fitting is able to
produce a feasible and good quality solution within the CPU limit applied.

The proposed tailored optimisation implies that the optimal binary decisions
Wmn are inferred from a reduced representation of the dataset rather than the
full information. In scenarios where computational resources are sufficient to
handle the full dataset directly, bypassing clustering may allow for more precise
and globally optimal decisions regarding Wmn, however, the methodology pro-
vides a pragmatic and effective alternative that unlocks the interpretability and
representational capacity of SMART under realistic constraints.

2.2 Reverse Optimisation

After the training, the fitted model information is extracted. It can then be
used in the reverse optimisation step, where the optimum sample that optimises
the objectives needs to be found. In this model, the variables of the previously
presented mathematical model switch to parameters. More specifically, the con-
tinuous variables bn, Cmnr, C1mnr, and Inr as well as the binary Wmn and Yn

become parameters, while the continuous variables Pdnr for the predicted out-
put per leaf node n and Xm for the optimal value of feature m are introduced.
Binary variable En is added to decide if optimal sample falls into leaf node n.

The cardinality of the s index is equal to 1 as the goal is to derive the sample
that optimises a key target while restricting other(s) (epsilon constraint [22]).
For the case where r1 is the key target and r2 is the one restricted, the complete
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Mixed-Integer Quadratically Constrained Programming (MIQCP) mathematical
model follows.

Max/Min
∑
n

Pdnr1 · En (13)

st.
∑
n

Pdnr2 · En ≤ ϵ (14)

Equations (4),(5),(8),(9), and (11)

3 Computational Results

The developed methodology is designed to optimise real-world processes, with its
effectiveness best demonstrated through application to a practical Case Study.
The Case Study utilised features a system model of a drug substance manufac-
turing process stage, which includes a multi-phase batch reactor, a liquid-liquid
extractor, and a crystallisation step. The model encompasses various process
phenomena, mass and energy balances, and chemical reactions. Operating con-
ditions such as temperatures or solution volumes may vary, resulting in 22 crit-
ical factors that can be optimised with respect to 2 target Quality Attributes,
namely Yield and Impurity D. An uncertainty analysis was conducted for this
flowsheet in gPROMS software [17], where the Monte Carlo method was applied
with quasi-random Sobol sampling over 5000 uncertainty scenarios [14]. This
generated a dataset of 5000 samples, referred to as the "Initial dataset D" in the
proposed methodology.

To evaluate the developed methodology, a scenario was considered for the
Case Study described. The goal is to maximise Yield while restricting Impurity
D levels to maintain high purity. The dataset of 5,000 samples was analysed and
the mean value of Impurity D was chosen as a benchmark, as it was observed
that no samples achieved a Yield > 96 % weight/weight (w/w) with Impurity
D below the mean which is equal to the value of 0.0215 % w/w. The above
illustrates the complexity of the optimisation problem, as improving Yield while
constraining Impurity D to desired levels presents a significant challenge, with
no solutions in the initial dataset.

Table 1 describes the optimally trained tree of depth 2 for the Case Study
Scenario. As depicted in Figure 1, a sample progresses through the regression tree
to arrive at a specific leaf node based on the splitting rules. Thus, the normalised
splitting thresholds corresponding to the solution are summarised in Table 1. At
each leaf node, both responses are predicted by distinct equations, enhancing the
interpretability of the methodology. This structure allows for clear insight into
the relationship between input features and outputs. The reverse optimisation
process identifies the leaf node that best optimises the objectives and determines
the corresponding optimal feature values.

Furthermore, adjusting the threshold for Impurity D, allows the exploration
of a spectrum of possible outcomes (points in Figure 2) and the generation of
a Pareto curve. This curve represents the trade-off frontier between compet-
ing objectives—in this case, maximising Yield while minimising Impurity D. By
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Table 1. Rules of leaf nodes

Leaf node Conditions
Leaf Node 4 m2 < 0.241, m4 < 0.718

Leaf Node 5 m2 < 0.241, m4 ≥ 0.718

Leaf Node 6 m2 ≥ 0.241, m22 < 0.119

Leaf Node 7 m2 ≥ 0.241, m22 ≥ 0.119

systematically varying the threshold for Impurity D and applying the developed
methodology, we can obtain a series of optimisation results that reveal the max-
imum Yield that can be achieved at different impurity levels. This approach
highlights how much one objective needs to be compromised to improve the
other. Figure 2 presents the Pareto Curve generated through the multi-target
tree regression approach for multi-objective optimisation applied to the Active
Pharmaceutical Ingredient (API) Case Study. The points on the curve represent
validated results obtained from the mechanistic model for various thresholds of
Impurity D.

Fig. 2. Pareto Curve

Regarding computational details, the implementation was done in GAM-
SPy, while the mathematical programming optimisation problems presented are
solved through Gurobi solver [8]. Notably, the initial MILP training, performed
using the clustered dataset, is solved to optimality under 10 seconds, as is the
MIQCP reverse optimisation step. As for the subsequent training using the en-
tire dataset, a computational time limit of 600 seconds is imposed to balance
computational efficiency with solution quality.
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4 Concluding Remarks

This work introduced a multi-target tree regression methodology tailored for
surrogate-based optimisation. The proposed mathematical programming tech-
niques effectively capture non-linear relationships, handle datasets of high dimen-
sionality, and provide interpretable predictions. The methodology has demon-
strated its potential in optimising key performance metrics in the context of
Active Pharmaceutical Ingredient manufacturing, while the Pareto curve gener-
ated serves as a valuable tool for understanding the limitations imposed by the
process and allows decision-makers to select an optimal balance between trade-
offs of competing objectives. In future work, we aim to explore the impact of
deeper trees, and investigate the balance between error and complexity in order
to avoid overffiting in this case.
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