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Abstract
Self-training and contrastive learning have
emerged as leading techniques for incorporating
unlabeled data, both under distribution shift (unsu-
pervised domain adaptation) and when it is absent
(semi-supervised learning). However, despite the
popularity and compatibility of these techniques,
their efficacy in combination remains surprisingly
unexplored. In this paper, we first undertake a sys-
tematic empirical investigation of this combina-
tion, finding (i) that in domain adaptation settings,
self-training and contrastive learning offer signifi-
cant complementary gains; and (ii) that in semi-
supervised learning settings, surprisingly, the ben-
efits are not synergistic. Across eight distribu-
tion shift datasets (e.g., BREEDs, WILDS), we
demonstrate that the combined method obtains
3–8% higher accuracy than either approach inde-
pendently. Finally, we theoretically analyze these
techniques in a simplified model of distribution
shift demonstrating scenarios under which the fea-
tures produced by contrastive learning can yield
a good initialization for self-training to further
amplify gains and achieve optimal performance,
even when either method alone would fail.

1. Introduction
Even under natural, non-adversarial distribution shifts,
the performance of machine learning models often
drops (Quinonero-Candela et al., 2008; Torralba & Efros,
2011; Koh et al., 2021; Garg et al., 2022b). Often retraining
the model on labeled data from the new distribution is im-
practical due to associated labeling costs. Consequently, re-
searchers have investigated the Unsupervised Domain Adap-
tation (UDA) setting. Here, given labeled source data and
unlabeled out-of-distribution (OOD) target data, the goal is
to produce a classifier that performs well on the target. Be-
cause UDA is generally underspecified (Ben-David et al.,
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2010), researchers have focused on two main paths: (i)
works that explore heuristics for incorporating the unlabeled
target data, relying on benchmark datasets ostensibly repre-
sentative of “real-world shifts” to adjudicate progress (San-
turkar et al., 2021; Peng et al., 2019); and (ii) papers that
explore structural assumptions under which UDA problems
are well posed (Shimodaira, 2000; Schölkopf et al., 2012).
This work engages with the former focusing on two popular
methods: self-training and contrastive pretraining.

Self-training (Scudder, 1965; Lee et al., 2013; Sohn et al.,
2020; Xie et al., 2020b) and contrastive pretraining (Caron
et al., 2020; Chen et al., 2020a; Zbontar et al., 2021) were
both proposed, initially, for traditional Semi-Supervised
Learning (SSL) problems, where the labeled and unla-
beled data are drawn from the same distribution. More re-
cently, these methods have emerged as favored empirical
approaches for UDA, demonstrating efficacy on many popu-
lar benchmarks (Sagawa et al., 2021; Garg et al., 2023; Cai
et al., 2021; Shen et al., 2022). Several attempts have been
made to understand their strong empirical performance, un-
der various assumptions on the data, task, and inductive bi-
ases of the function class (Wei et al., 2020; HaoChen et al.,
2021; Saunshi et al., 2022; Shen et al., 2022; Cai et al., 2021;
HaoChen et al., 2022; HaoChen & Ma, 2022; Cabannes
et al., 2023). Despite the strong results, there have been sur-
prisingly little work (both empirically and theoretically) ex-
ploring when either might be expected to perform best and
whether the benefits might be complementary.

In this paper, we investigate the complementary benefits
of self-training and contrastive pretraining. Interestingly,
we find that the combination yields significant gains in
UDA despite producing negligible gains in SSL. In exper-
iments across eight distribution shift benchmarks, we ob-
serve that re-using unlabeled data for self-training (with Fix-
Match (Sohn et al., 2020)) after learning contrastive repre-
sentations (with SwAV (Caron et al., 2020)), yields ą 5%
average improvement on OOD accuracy in UDA as com-
pared to ă 0.8% average improvement in SSL (Fig. 1).

Next, we address the question why the combination of self-
training and contrastive learning proves synergistic in dis-
tribution shift scenarios. To facilitate our analysis, we con-
sider a simplified distribution shift setting that includes two
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Figure 1: Self-training over Contrastive learning (STOC) improves over Contrastive Learning (CL) under distribution shift.
(a) In SSL settings, where labeled and unlabeled data are drawn from the same distribution, STOC offers negligible gains over
CL. In contrast, in UDA settings where there is a distribution shift between labeled and unlabeled data, STOC offers gains
over CL. Detailed results in Table 1 and 2. (b) 2-D illustration of our toy distribution setup, depicting decision boundaries
learned by ERM and CL and how Self-Training (ST) updates those. 1⃝, 2⃝, and 3⃝ summarize our key theoretical results.

types of features: (i) invariant features that perfectly pre-
dict the label; and (ii) domain-dependent features that are
predictive of the label in just source. Our theoretical analy-
sis reveals that self-training can achieve optimal target per-
formance but requires a “good” enough classifier to start
with. We observe that source-only ERM fails to provide a
“good” initialization. On the other hand, contrastive pretrain-
ing on unlabeled data performs better than ERM but is still
sub-optimal. This implies that contrastive pretraining ends
up decreasing reliance on domain-dependent features (as
compared to ERM) but doesn’t completely eliminate them.
Nevertheless, contrastive pretraining does provide a “good”
initialization for self-training, i.e., “good” initial pseudola-
bels on the target unlabeled data. As a result, self-training
on top of contrastive learned features effectively unlearns
the reliance on domain-dependent features and generalizes
perfectly OOD. In contrast, for SSL settings (i.e., in distri-
bution), our analysis highlights that contrastive pretraining
already acquires sufficient predictive features such that lin-
ear probing with (a small amount of) labeled data picks up
those features and attains near-optimal ID generalization.

Finally, we connect our theoretical understanding of “good”
representations from contrastive learning and improved lin-
ear transferability from self-training to observed empirical
gains. We linearly probe representations (fix representations
and train only the linear head) learned by contrastive pre-
training vs. no pretraining and find: (i) contrastive pretrain-
ing substantially improves the ceiling on the target accuracy
(performance of optimal linear probe) compared to ERM;
(ii) self-training mainly improves linear transfer, i.e. OOD
accuracy of the linear probe trained with source labeled data.

1.1. Setup and Preliminaries
Task. Our goal is to learn a predictor that maps x P X Ď

Rd to y P Y . We parameterize predictors f “ h˝Φ : Rd ÞÑ

Y , where Φ : Rd ÞÑ Rk is a feature map and h P Rk is a
classifier that maps the representation to the final scores or

logits. Let PS,PT be the source and target joint probability
measures over X ˆ Y . The distribution over unlabeled
samples from both the union of source and target is denoted
as PU “ p1{2q ¨ PSpxq ` p1{2q ¨ PTpxq.

We study two scenarios: (i) Unsupervised Domain Adapta-
tion (UDA); and (ii) Semi-Supervised Learning (SSL). In
UDA, we assume that the source and target distributions
have the same label marginals i.e., PSpyq “ PTpyq and the
same Bayes optimal predictor, i.e., argmaxy pSpy | xq “

argmaxy pTpy | xq. We are given labeled samples from the
source, and unlabeled pool from the target. In SSL, there
is no distribution shift, i.e., PS “ PT, and we are given a
small number of labeled examples along with a compara-
tively large amount of unlabeled examples, both drawn from
the same distribution, which we denote as PT. Our goal
in both settings is to leverage this along with labeled data
to achieve good performance on the target distribution. In
the DA scenario, the challenge lies in generalizing out-of-
distribution, while in SSL, the challenge is to generalize in-
distribution despite the paucity of labeled examples.

Methods. We consider four algorithms (refer to App. E for
precise details on the setup):
1. Source-only ERM (ERM): This is standard supervised

learning on labeled data by minimizing empirical risk
řn

i“1 ℓph ˝Φpxq, yq, for some loss ℓ : RˆY ÞÑ R (e.g.,
softmax cross-entropy) and labeled points tpxi, yiquni“1.

2. Contrastive Learning (CL): We use unlabeled data to
learn a feature extractor Φcl by optimizing an objective
that maps augmentations (for e.g. crops or rotations) of
the same input close to each other and far from augmen-
tations of other random inputs (Caron et al., 2020; Chen
et al., 2020a). We then learn a linear classifier h on top
to minimize a classification loss on the labeled source
data. We could either keep Φcl fixed or propagate gradi-
ents through. When clear from context, we also use CL
to refer to just the contrastively pretrained backbone.
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Table 1: Results in the UDA setup. We report accuracy on
target (OOD) data from which we only observe unlabeled
examples during training. For benchmarks with multiple
target distributions (e.g., OH, Visda), we report avg accuracy
on those targets. Refer App. F.4 for std. deviation numbers.

Method Living17 Nonliv26 Entity13 Entity30 FMoW
(2 tgts)

Visda
(2 tgts)

OH
(3 tgts)

CIFARÑ

CINIC
Avg

ERM 60.31 45.54 68.32 55.75 56.50 20.91 9.51 74.33 48.90

ST 71.29 56.79 77.93 66.37 56.79 38.03 10.47 78.19 56.98

CL 74.14 57.02 76.58 66.01 61.78 63.49 22.63 77.51 62.39

STOC (ours) 82.22 62.23 81.84 72.00 65.25 70.08 27.12 79.94 67.59

3. Self-training (ST): This is a two-stage procedure, where
first stage does source-only ERM using source-labeled
data. In the second stage, we iteratively apply the cur-
rent classifier on the unlabeled data to generate “pseudo-
labels” and then update the classifier by minimizing a
classification loss on the pseudolabeled data.

4. Self-Training Over Contrastive learning (STOC): Finally,
rather than starting with a source-only ERM classifier, we
propose to initialize ST with CL classifier that was pre-
trained on unlabeled data from source and target. Now,
ST uses target unlabeled data again for pseudolabeling.

2. Self-Training Improves Contrastive
Pretraining Under Distribution Shift

Datasets. We conduct experiments across eight
benchmark datasets: four BREEDs datasets (Santurkar
et al., 2021)—Entity13, Entity30, Nonliving26, Living17;
FMoW (Koh et al., 2021; Christie et al., 2018); Office-
home (Venkateswara et al., 2017); Visda (Peng et al., 2018;
2017); and CIFAR-10 (Krizhevsky & Hinton, 2009). Each
of these datasets consists of several domains, enabling us to
construct source-target pairs (e.g., CIFAR10, we consider
CIFAR10ÑCINIC shift (Darlow et al., 2018)). More de-
tails about datasets are in App. F.2. Because the SSL setting
lacks distribution shift, we default to using source alone.
To simulate limited supervision in SSL, we sub-sample the
original labeled training set to 10%.

Experimental Setup and Protocols. SwAV (Caron et al.,
2020) is the specific algorithm that we use for contrastive
pretraining. In all UDA settings, unless otherwise specified,
we pool all the (unlabeled) data from the source and target to
perform SwAV. For self-training, we apply FixMatch (Sohn
et al., 2020). For SSL settings, we perform SwAV and Fix-
Match on in-distribution unlabeled data. We experiment
with Resnet18, Resnet50 (He et al., 2016) trained from
scratch (i.e. random initialization). Moreover, unless oth-
erwise specified, we default to full finetuning with source-
only ERM, both from scratch and after contrastive pretrain-
ing, and for ST with FixMatch. For more details on model
architectures, and experimental protocols, see App. F.

Results on UDA setup. Both ST and CL individually im-
prove over ERM across all datasets, with CL significantly

Table 2: Results in the SSL setup. We report accuracy on
hold-out ID data. Recall that SSL uses labeled and unlabeled
data from the same distribution during training. Refer to
App. F.5 for ERM and ST with std. deviation numbers.

Method Living17 Nonliv26 Entity13 Entity30 FMoW Visda OH CIFAR Avg

CL 91.15 84.58 90.73 85.47 43.05 97.67 49.73 91.78 79.27

STOC (ours) 92.00 85.95 91.27 86.14 44.43 97.70 49.95 93.06 80.06

performing better than ST on 5 out of 8 benchmarks (see
Table 1). Even on datasets where ST is better than CL,
their performance remains close. Combining ST and CL
with STOC shows 3–8% improvement over the best alterna-
tive, yielding improvement of 5.2% in average accuracy. In
App. F.4, we highlight the significance of unlabeled target
data in contrastive pretraining, where we experiment with
CL model trained solely on unlabeled source data.

Results on SSL setup. While CL improves over ST (as in
UDA), unlike UDA, STOC doesn’t offer any significant im-
provements over CL (see Table 2); ERM and ST results (re-
fer to App. F.5). We conduct ablation studies with varying
proportions of labeled data used for SSL, illustrating that
there’s considerable potential for improvement. These find-
ings highlight that the complementary nature of STOC over
CL and ST individually is an artifact of distribution shift.

3. Theoretical Analysis and Intuitions
Data distribution. We consider binary classification
and model inputs as: x “ rxin, xsps, where xin P Rdin is
the invariant feature that is predictive of label y on both
source PS and target PT and xsp P Rdsp is the spurious
feature that is only correlated with y on source. Formally,
we sample y„Unift´1, 1u and generate x in source as
PS :xin„N pγ ¨yw‹,Σinq, xsp “ y1dsp and in target as PT :
xin „ N pγ ¨ yw‹,Σinq, xsp „ N p0,Σspq. Here, γ is the
margin afforded by the invariant feature whose covariance
is Σin “ σ2

in ¨ pIdin
´ w‹w‹J

q. The spurious feature is dis-
tributed as Gaussian in the target data with Σsp “ σ2

spIdsp
.

For convenience, we assume access to infinite unlabeled
data. For SSL, we additionally sample finite labeled from
PT where spurious features are absent and for UDA, we as-
sume access to infinite labeled data from the source.

Methods. We consider linear feature extractor, i.e. Φ P

Rdˆk, linear layer h : Rk Ñ R over it, and the prediction
as sgnphJΦxq. We use the exponential loss ℓpfpxq, yq “

exp p´yfpxqq. For ERM and ST, we train both h and Φ
(equivalent to Φ being identity and training a linear head).
We obtain Φcl :“ argminΦ LclpΦq by minimizing the Bar-
low Twins objective (Zbontar et al., 2021). The augmen-
tation distribution PApa | xq scales the magnitude of each
co-ordinate of x uniformly by an independent amount, i.e.,
a „ PAp¨ | xq “ c d x, where c „ Unifr0, 1sd. We try to
mirror practical settings where the augmentations are fairly
“generic”. Keeping the Φcl fixed, we then learn a linear clas-
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Figure 2: Our simplified model of shift captures real-world trends and theoretical behaviors: (a) Target (OOD) accuracy
separation in the UDA setup (for problem parameters in Example G.1). (b) Comparison of the benefits of STOC (ST over
CL) over just CL in UDA and SSL settings, done across training iterations for contrastive pretraining. (c) Comparison
between different methods in UDA setting, as we vary problem parameters γ and σsp, connecting our theory results in Sec. 3.

sifier hcl over Φcl to minimize the exponential loss on la-
beled source data (refer to as linear probing). For STOC,
keeping the Φcl fixed and initializing the linear head with
the CL linear probe (instead of source only ERM), we per-
form ST. For precise details on the objectives used for each
method, along with problem parameters chosen for the data
distribution see App. G.1.

3.1. Simulations and Intuitive Story
Our setup captures real-world trends in the UDA setting (see
Fig. 2(a)). Before we present intuitions for this, we discuss
ablating over γ{σsp which is higher for easier problems.

Effect of γ{σsp on success of ST. By increasing the ratio
of margin γ and variance of spurious feature on target σsp

(keeping others constant), the problem becomes easier be-
cause γ directly affects the signal on xin and reducing σsp

helps ST to unlearn xsp (see App. G.3). In Fig. 2(c), we
see that a phase transition occurs for ST, i.e., after a certain
threshold of γ{σsp, ST successfully recovers the optimal tar-
get predictor. This hints that ST has a binary effect, where
beyond a certain magnitude of γ{σsp, ST can amplify the
signal on domain invariant feature to obtain optimal target
predictor. On the other hand, the performance of CL and
ERM improve gradually where CL achieves high perfor-
mance even at small ratios of γ{σsp. One way of viewing
this trend with CL is that it magnifies the effective γ{σsp

in its representation space, because of which a linear head
trained these representations have a good performance at
low values of the ratio. Consequently, the phase transition
of STOC occurs much sooner then that of ST. Finally, we
note that for CL the rate of performance increase diminishes
at high values of γ{σsp because CL fails to reduce depen-
dency along xsp beyond a certain point.

An intuitive story. We return to the question of why self-
training improves over contrastive learning under distribu-
tion shift in Example G.1. When the classifier at initializa-
tion of ST relies more on spurious features, ST aggravates
this dependency. However, as the problem becomes eas-
ier (with increasing γ{σsp), the source-only ERM classifier

will start relying more on invariant rather than spurious fea-
ture. Once this ERM classifier is sufficiently accurate on
the target, ST unlearns any dependency on spurious features
achieving optimal target accuracy. In contrast, we observe
that CL performs better than ERM but is still sub-optimal.
This implies that CL ends up decreasing reliance on spuri-
ous features (as compared to ERM) but doesn’t completely
eliminate them. Combining ST and CL, a natural hypothe-
sis explaining our trends is that CL provides a “favorable”
initialization for ST by sufficiently increasing signal on in-
variant features.

Why disparate behaviors for out-of-distribution vs. in
distribution? In the SSL setup, recall, there is no distribu-
tion shift. In Example G.1, we sample 50k unlabeled data
and 100 labeled data from the same (target) distribution to
simulate SSL setup. Substantiating our findings on real-
world data, we observe that STOC provides a small to neg-
ligible gain over CL (refer to App. G). To understand why
such disparate behaviors emerge, recall that in the UDA set-
ting, the main benefit of STOC lies in picking up reliance on
“good” features for OOD data, facilitated by CL initializa-
tion. While contrastive pretraining uncovers features that are
“good” for OOD data, it also learns more predictive source-
only features (which are not predictive at all on target). As
a result, linear probing with source-labeled data picks up
these source-only features, leaving considerable room for
improvement on OOD data with further self-training. On the
other hand, in the SSL setting, the limited ID labeled data
might provide enough signal to pick up features predictive
on ID data, leaving little to no room for improvement for fur-
ther self-training. Corroborating our intuitions, throughout
the CL training in the toy setup, when CL doesn’t achieve
near-perfect generalization, the improvements provided by
STOC for each checkpoint remain minimal. Contrary, for
UDA setup, after reaching a certain training checkpoint in
CL, STOC yields significant gains (Fig. 2(b)).

In App. G.3, G.4 we provide more results and in App. H,
we formally analyze why ST and CL offer complementary
benefits when dealing with distribution shifts.
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Appendix
Appendix Outline

A. Limitations of Our Work

B. Connecting Experimental Gains with Theoretical Insights

C. Connections to Prior Analysis

D. Other Related Works

E. More Details on Problem Setup and Methods

F. Additional Real-world Experiments and Details

G. Additional Results in Toy Setup

H. Theoretical Results from Sec. 3

I. Limitations of Prior Work

J. Additional Lemmas

A. Broader Impacts and Limitations of Our work
In this study, we highlight the synergistic behavior of self-training and contrastive pretraining under distribution shift. Shifts
in distribution are commonplace in real-world applications of machine learning, and even under natural, non-adversarial
distribution shifts, the performance of machine learning models often drops. By simply combining existing techniques in
self-training and constrastive learning, we find that we can improve accuracy by 3–8% rather than using either approach
independently. Despite these significant improvements, we note that one limitation of this combined approach is that
performing self-training sequentially after contrastive pretraining increases the computation cost for UDA. The potential for
integrating these benefits into one unified training paradigm is yet unclear, presenting an interesting direction for future
exploration.

Beyond this, we note that our theoretical framework primarily confines the analysis to training the backbone and linear
network independently during the pretraining and fine-tuning/self-training phases. Although our empirical observations
apply to deep networks with full fine-tuning, we leave a more rigorous theoretical study of full fine-tuning for future
work. Our theory also relies on a covariate shift assumption (where we assume that label distribution also doesn’t shift).
Investigating the complementary nature of self-training and contrastive pretraining beyond the covariate shift assumption
would be another interesting direction for future work.

B. Connecting Experimental Gains with Theoretical Insights
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Figure 3: Target accuracy with source and target linear probes,
which freezes backbones trained with various objectives and
trains only the head in UDA setup. Avg. accuracy across all
datasets. We observe that: (i) ST improves the linear transfer-
ability of source probes, and (ii) CL improves representations.

Our theory emphasizes that under distribution shift con-
trastive pretraining improves the representations for target
data, while self-training primarily improves linear classi-
fiers learned on top. To investigate different methods in
our UDA setup, we study the representations learned by
each of them. We fix the representations and train linear
heads over them to answer two questions: (i) How good
are the representations in terms of their ceiling of target
accuracy (performance of the optimal linear probe)?—we
evaluate this by training the classifier head on target la-
beled data (i.e., target linear probe); and (ii) How well do
heads trained on source generalize to target?—we assess
this by training a head on source labeled data (source lin-
ear probe) and evaluate its difference with target linear
probe. For both, we plot target accuracy. We make two
intriguing observations Fig. 3):
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Does CL improve representations over ERM features? Yes. We observe a substantial difference in accuracy (« 14%
gap) of target linear probes on backbones trained with contrastive pretraining (i.e. CL, STOC) and without it (i.e., ERM, ST)
highlighting that CL significantly pushes the performance ceiling over non-contrastive features. As a side, our findings also
stand in contrast to recent studies suggesting that ERM features might be “good enough” for OOD generalization (Rosenfeld
et al., 2022; Kirichenko et al., 2022). Instead, the observed gains with contrastively pretrained backbones (i.e. CL, STOC)
demonstrate that target unlabeled data can be leveraged to further improve over ERM features.

Do CL features yield perfect linear transferability from source to target? Recent works (HaoChen et al., 2022; Shen
et al., 2022) conjecture that under certain conditions CL representations, linear probes learned with source labeled data may
transfer perfectly from source to target. However, we observe that this doesn’t hold strictly in practice, and in fact, the linear
transferability can be further improved with ST. We first note a significant gap between the performance of source linear
probes and target linear probes illustrating that linear transferability is not perfect in practice. Moreover, while the accuracy
of target linear probes doesn’t change substantially between CL and STOC, the accuracy of the source linear probe improves
significantly. Similar observations hold for ERM and ST, methods trained without contrastive pretraining. This highlights
that ST performs “feature refinement” to improve source to target linear transfer (with relatively small improvements in their
respective target probe performance). The findings highlight the complementary nature of benefits on real-world data: ST
improves linear transferability while CL improves representations.

C. Connections to Prior Analysis
Prior works (HaoChen et al., 2022; Shen et al., 2022) analyzing CL first make assumptions on the consistency of augmenta-
tions with labels (HaoChen et al., 2021; Cabannes et al., 2023; Saunshi et al., 2022; Johnson et al., 2022), and specifically
for UDA make stronger ones on the augmentation graph connecting examples from same domain or class more than cross-
class/cross-domain ones. While this is sufficient to prove linear transferability, it is unclear if this holds in practice when
augmentations are imperfect, i.e. if they fail to mask the spurious features completely—as corroborated by our findings
in Sec. B. We show why this also fails in our simplified setup in App. I.1. Some prior works on self-training view it as
consistency regularization that constrains pseudolabels of original samples to be consistent with all their augmentations (Cai
et al., 2021; Wei et al., 2020; Sohn et al., 2020). Since this framework does not account challenges of propagating labels
(e.g., when augmentation distribution has long tails) iteratively for deep networks, in our analysis we instead adopt the
iterative analysis of self-training (Chen et al., 2020b) (for more discussion see App. I.2). Notably, our empirical results and
our analyses offer a perspective that contrasts with the prior literature that argue for the individual optimality of contrastive
pretraining and self-training. We expand on this and other related works in App. D.

D. Other Related Works
Unsupervised domain adaption. Without assumption on the nature of shift, UDA is underspecified (Ben-David et al.,
2010). This challenge has been addressed in various ways by researchers. One approach is to investigate additional structural
assumptions under which UDA problems are well posed (Shimodaira, 2000; Schölkopf et al., 2012). Popular settings
for which DA is well-posed include (i) covariate shift (Zhang et al., 2013; Zadrozny, 2004; Cortes et al., 2010; Cortes &
Mohri, 2014; Gretton et al., 2009) where ppxq can change from source to target but ppy|xq remains invariant; and (ii) label
shift (Saerens et al., 2002; Lipton et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2021; Garg et al., 2020; Zhang
et al., 2021; Roberts et al., 2022; Garg et al., 2023) where the label marginal ppyq can change but ppx|yq is shared across
source and target. Principled methods with strong theoretical guarantees exists for adaptation under these settings when
target distribution’s support is a subset of the source support. Other works (Elkan & Noto, 2008; Bekker & Davis, 2020;
Garg et al., 2021; 2022a) extend the label shift setting to scenarios where previously unseen classes may appear in the target
and ppx|yq remains invariant among seen classes. A complementary line of research focuses on constructing benchmarks to
develop heuristics for incorporating the unlabeled target data, relying on benchmark datasets ostensibly representative of
“real-world shifts” to adjudicate progress (Santurkar et al., 2021; Venkateswara et al., 2017; Sagawa et al., 2021; Peng et al.,
2019; 2017). As a result, various benchmark-driven heuristics have been proposed (Long et al., 2015; 2017; Sun & Saenko,
2016; Sun et al., 2017; Zhang et al., 2019; 2018; Ganin et al., 2016; Sohn et al., 2020). Our work engages with the latter,
focusing on two popular methods: self-training and contrastive pretraining.

Domain generalization. In domain generalization, the model is given access to data from multiple different domains and
the goal is to generalize to a previously unseen domain at test time (Blanchard et al., 2011; Muandet et al., 2013). For a
survey of different algorithms for domain generalization, we refer the reader to Gulrajani & Lopez-Paz (2020). A crucial
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distinction here is that unlike the domain generalization setting, in DA problems, we have access to unlabeled examples
from the test domain.

Semi-supervised learning. To learn from a small amount of labeled supervision, semi-supervised learning methods
leverage unlabeled data alongside to improve learning models. One of the seminal works in SSL is the pseudolabeling
method (Scudder, 1965), where a classifier is trained on the labeled data and then used to classify the unlabeled data, which
are then added to the training set. The work of Zhu & Ghahramani (2003) built on this by introducing graph-based methods,
and the transductive SVMs (Joachims et al., 1999) presented an SVM-based approach. More recent works have focused on
deep learning techniques, and similar to UDA, self-training and contrastive pretraining have emerged as two prominent
choices. We delve into these methods in greater detail in the following paragraphs. For a discussion on other SSL methods,
we refer interested readers to (Chapelle et al., 2006; Van Engelen & Hoos, 2020; Yang et al., 2022).

Self-training. Two popular forms of self-training are pseudolabeling (Lee et al., 2013) and conditional entropy minimiza-
tion (Grandvalet & Bengio, 2006), which have been observed to be closely connected (Berthelot et al., 2019; Lee et al.,
2013; Sohn et al., 2020; Shu et al., 2018). Motivated by its strong performance in SSL and UDA settings (Sohn et al., 2020;
Xie et al., 2020a; Garg et al., 2023; Shu et al., 2018), several theoretical works have made attempts to understand its behav-
ior (Kumar et al., 2020; Wei et al., 2020; Chen et al., 2020b). (Wei et al., 2020; Cai et al., 2021) aims to understand the
behavior of the global minimizer of self-training objective by studying input consistency regularization, which enforces
stability of the prediction for different augmentations of the unlabeled data. Our analysis of self-training is motivated by the
work of Chen et al. (2020b) which explores the iterative behavior of self-training to unlearn spurious features. The setting of
spurious features is of particular interest, since prior works have specifically analyzed the failures of out-of-distribution
generalization in the presence of spurious features (Nagarajan et al., 2020; Sagawa et al., 2020).

Contrastive learning. An alternate line of work that uses unlabeled data for learning representations in the pretraining
stage is contrastive learning (Grill et al., 2020; Oord et al., 2018; Caron et al., 2020; Chen et al., 2020a; Wu et al., 2018).
Given an augmentation distribution, the main goal of contrastive objectives is to map augmentations drawn from the same
input (positive pairs) to similar features, and force apart features corresponding to augmentations of different inputs (negative
pairs) (Caron et al., 2020; 2021; He et al., 2020). Prior works (Cabannes et al., 2023; Johnson et al., 2022; HaoChen &
Ma, 2022) have also shown a close relationship between contrastive (Chen et al., 2020a; HaoChen et al., 2021) and non-
contrastive objectives (Bardes et al., 2021; Zbontar et al., 2021). Consequently, in our analysis pertaining to the toy setup we
focus on the mathematically non-contrastive objective Barlow Twins (Zbontar et al., 2021). Using this pretrained backbone
(either as an initialization or as a fixed feature extractor) a downstream predictor is learned using labeled examples. Several
works (HaoChen et al., 2021; Saunshi et al., 2022; HaoChen & Ma, 2022; Arora et al., 2019; Johnson et al., 2022) have
analyzed the in-distribution generalization of the downstream predictor via label consistency arguments on the graph of
positive pairs (augmentation graph). In contrast, we study the impact of contrastive learning under distribution shifts in the
UDA setup. Other works (Shen et al., 2022; HaoChen et al., 2022) that examine contrastive learning for UDA also conform
to the augmentation graph view point, making additional assumptions that guarantee linear transferability. In our simplified
setup involving spurious correlations, these abstract assumptions break easily when the augmentations are of a generic
nature, akin to practice. Finally, some empirical works (Mishra et al., 2021; Ma et al., 2021) have found self-supervised
objectives like contrastive pretraining to reduce dependence on spurious correlations. Corroborating their findings, we
extensively evaluate the complementary benefits of contrastive learning and self-training on real-world datasets. Finding
differing results in SSL and UDA settings, we further examine their behavior theoretically in our toy setup.

E. More Details on Problem Setup
In this section, we elaborate on our setup and methods studied in our work.

Task. Our goal is to learn a predictor that maps inputs x P X Ď Rd to outputs y P Y . We parameterize predictors
f “ h ˝ Φ : Rd ÞÑ Y , where Φ : Rd ÞÑ Rk is a feature map and h P Rk is a classifier that maps the representation to the
final scores or logits. Let PS,PT be the source and target joint probability measures over X ˆ Y with pS and pT as the
corresponding probability density (or mass) functions. The distribution over unlabeled samples from both the union of
source and target is denoted as PU “ p1{2q ¨ PSpxq ` p1{2q ¨ PTpxq.

We study two particular scenarios:
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Unsupervised Domain Adaptation (UDA). We assume that we are given labeled data from the source distribution and
unlabeled data from a shifted, target distribution, with the goal of performing well on target data. We assume that the
source and target distributions have the same label marginals PSpyq “ PTpyq (i.e., no label proportion shift) and the same
Bayes optimal predictor, i.e., argmaxy pSpy | xq “ argmaxy pTpy | xq. We are given labeled samples from the source,
and unlabeled pool from the target. Here, even with infinite labeled source data, the challenge lies in generalizing out-of-
distribution. In experiments, we assume access to finite data but in theory, we assume population access to labeled source
and unlabeled target.

Semi-Supervised Learning (SSL). Here, there is no distribution shift, i.e., PS “ PT. We are given a small number of
labeled examples and a comparatively large amount of unlabeled examples, both drawn from the same distribution. Without
loss of generality, we denote this distribution with PT. The goal in SSL is to generalize in-distribution. The challenge
is primarily due to limited access to labeled data. Here, in experiments, we assume limited access to labeled data but a
comparatively larger amount of unlabeled in-distribution data. In theory, we assume population access to unlabeled data but
limited labeled examples.

Unlabeled data is typically much cheaper to obtain, and our goal in both these settings is to leverage this along with labeled
data to achieve good performance on the target distribution. In the DA scenario, the challenge lies in generalizing out-of-
distribution, while in SSL, the challenge is to generalize in-distribution despite the paucity of labeled examples. A predictor
f is evaluated on distribution P via its accuracy, i.e., Apf,Pq “ EPpargmax fpxq “ yq.

Methods. We now introduce the algorithms used for learning from labeled and unlabeled data.

1. Source-only ERM (ERM): A standard approach is to simply perform supervised learning on the labeled data by minimizing
the empirical risk

řn
i“1 ℓph ˝ Φpxq, yq, for some classification loss ℓ : R ˆ Y ÞÑ R (e.g., softmax cross-entropy) and

labeled points tpxi, yiquni“1.

2. Contrastive Learning (CL): We first use the unlabeled data to learn a feature extractor. In particular, the objective is to
learn a feature extractor Φcl that maps augmentations (for e.g. crops or rotations) of the same input close to each other
and far from augmentations of random other inputs (Caron et al., 2020; Chen et al., 2020a; Zbontar et al., 2021). Once
we have Φcl, we learn a linear classifier h on top to minimize a classification loss on the labeled source data. We could
either keep Φcl fixed or propagate gradients through.

When clear from context, we also use CL to refer to just the contrastively pretrained backbone without training for
downstream classification.

3. Self-training (ST): This is a two-stage procedure, where the first stage performs source-only ERM by just looking at source-
labeled data. In the second stage, we iteratively apply the current classifier on the unlabeled data to generate “pseudo-
labels” and then update the classifier by minimizing a classification loss on the pseudolabeled data (Lee et al., 2013).

4. Self-Training Over Contrastive learning (STOC): Finally, rather than starting with a source-only ERM classifier, we
propose to initialize self-training with a CL classifier, that was pretrained on unlabeled source and target data. ST uses
that same unlabeled data again for pseudolabeling. As we demonstrate experimentally and theoretically, this combination
of methods improves substantially over each independently.

Table 8 summarizes the main methods and key differences between those methods in UDA and SSL setup. For exact
implementation in our experiments, we refer reader to App. F.3.

F. Additional Experiments and Details
F.1. Additional setup and notation

Recall, our goal is to learn a predictor that maps inputs x P X Ď Rd to outputs y P Y . We parameterize predictors
f “ h ˝ Φ : Rd ÞÑ Y , where Φ : Rd ÞÑ Rk is a feature map and h P Rk is a classifier that maps the representation to
the final scores or logits. With A : X Ñ A, we denote the augmentation function that takes in an input x and outputs an
augmented view of the input Apxq. Unless specified otherwise, we perform full-finetuning in all of our experiments on real-
world data. That is, we backpropagate gradients in both the linear head h and the backbone ϕ. For UDA, we denote source
labeled points as tpxi, yiquni“1 and target unlabeled points as tpx1

iqumi“1. For SSL, we use the same notation for labeled and
unlabeled in-distribution data.
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F.2. Dataset details

For both UDA and SSL, we conduct experiments across eight benchmark datasets. Each of these datasets consists of domains,
enabling us to construct source-target pairs for UDA. The adopted source and target domains are standard to previous
studies (Shen et al., 2022; Garg et al., 2023; Sagawa et al., 2021). Because the SSL setting lacks distribution shift, we do not
need to worry about domain designations and default to using source alone. To simulate limited supervision in SSL, we sub-
sample the original labeled training set to 10%. Below provide exact details about the datasets used in our benchmark study.

• CIFAR10 We use the original CIFAR10 dataset (Krizhevsky & Hinton, 2009) as the source dataset. For target domains,
we consider CINIC10 (Darlow et al., 2018) which is a subset of Imagenet restricted to CIFAR10 classes and downsampled
to 32ˆ32.

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs (Koh et al., 2021; Christie
et al., 2018) from WILDS benchmark, which contains satellite images taken in different geographical regions and at
different times. We use the original train as source and OOD val and OOD test splits as target domains as they are
collected over different time-period. Overall, we obtain 3 different domains (1 source and 2 targets).

• BREEDs We also consider BREEDs benchmark (Santurkar et al., 2021) in our setup to assess robustness to subpopulation
shifts. BREEDs leverage class hierarchy in ImageNet (Russakovsky et al., 2015) to re-purpose original classes to be the
subpopulations and defines a classification task on superclasses. We consider distribution shift due to subpopulation shift
which is induced by directly making the subpopulations present in the training and test distributions disjoint. BREEDs
benchmark contains 4 datasets Entity-13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees
and levels in the hierarchy. Overall, for each of the 4 BREEDs datasets (i.e., Entity-13, Entity-30, Living-17, and Non-
living-26), we obtain one different domain which we consider as target. We refer to source and target as follows: BREEDs
sub-population 1, BREEDs sub-population 2.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset (Venkateswara et al., 2017).
We use the product domain as source and the other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset (Peng et al., 2018; 2017). While ‘train’ domain
contains synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images. To avoid confusing, the
domain names with their roles as splits, we rename them as ‘synthetic’, ‘Real-1’ and ‘Real-2’. We use the synthetic
(original train set) as the source domain and use the other domains as target.

We summarize the information about source and target domains in Table 3.

Dataset Source Target

CIFAR10 CIFAR10v1 CINIC10

FMoW FMoW (2002–’13) FMoW (2013–’16), FMoW (2016–’18)

Entity13 Entity13 (sub-population 1) Entity13 (sub-population 2)

Entity30 Entity30 (sub-population 1) Entity30 (sub-population 2),

Living17 Living17 (sub-population 1) Living17 (sub-population 2),

Nonliving26 Nonliving26 (sub-population 1) Nonliving26 (sub-population 2),

Officehome Product Product, Art, ClipArt, Real

Visda
Synthetic

(originally referred
to as train)

Synthetic, Real-1 (originally referred to as val),
Real-2 (originally referred to as test)

Table 3: Details of source and target sets in each dataset considered in our testbed.

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d. splits. We use 80% splits for training
and 20% splits for evaluation (or validation). We throw away labels for the 80% target split and only use labels in the 20%
target split for final evaluation. The rationale behind splitting the target data is to use a completely unseen batch of data
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Dataset Domains

CIFAR10

FMoW

Visda

Entity13

Entity30

Living17

Nonliving26

Officehome

CIFAR10v1 CINIC10

Year 2002-’13 Year ’13-’16 Year ’16-’18

Synthetic Real-1 Real-2

Sub-pop. 1 Sub-pop. 2

Sub-pop. 1 Sub-pop. 2

Sub-pop. 1 Sub-pop. 2

ClipArt

Sub-pop. 2

Product Real

Sub-pop. 1

Art

Figure 4: Examples from all the domains in each dataset.

for evaluation. This avoids evaluating on examples where a model potentially could have overfit. over-fitting to unlabeled
examples for evaluation. In practice, if the aim is to make predictions on all the target data (i.e., transduction), we can simply
use the (full) target set for training and evaluation.

Simulating SSL settings and limited supervision. For SSL settings, we choose the in-distribution domain as the source
domain. To simulate limited supervision in SSL, we sub-sample the original labeled training set to 10% and use all the
original dataset as unlabeled data. For evaluation, we further split the original holdout set into two partitions (one for
validation and the other to report final accuracy numbers).

F.3. Method details

For implementation, we build on top of WILDs (Sagawa et al., 2021) and RLSbench (Garg et al., 2023) open source libraries.

ERM (Source only) training. We consider Empirical Risk Minimization (ERM) on the labeled source data as a baseline.
Since this simply ignores the unlabeled target data, we call this as source only training. As mentioned in the main paper, we
perform source only training with data augmentations. Formally, we minimize the following ERM loss:

Lsource onlypfq “
1

n

n
ÿ

i“1

ℓpfpApxiq, yiqq , (1)

where A is the stochastic data augmentation operation and ℓ is a loss function. For SSL, the ERM baseline only uses the
small of labeled data available.
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Contrastive Learning (CL). We perform contrastive pretraining on the unlabeled dataset to obtain the backbone ϕcl. And
then we perform full fine-tuning with source labeled data by initializing the backbone with ϕcl. We use SwAV (Caron et al.,
2020) for contrastive pretraining. The main idea behind SwAV is to train a model to identify different views of the same
image as similar, while also ensuring that it finds different images to be distinct. This is accomplished through a swapped
prediction mechanism, where the goal is to compute a code from an augmented version of the image and predict this code
from other augmented versions of the same image. In particular, given two image features ϕpx1

a1q and ϕpx1
a2q from two

different augmentations of the same image x1, i.e., x1
a1, x

1
a2 „ Apx1q, SwAV computes their codes za1 and za2 by matching

the features to a set of K prototypes tc1, ¨ ¨ ¨ , cKu. Then SwAV minimizes the following loss such that ϕpx1
a1q can compute

codes za2 and ϕpx1
a2q can compute codes za1:

LSwAVpϕq “

m
ÿ

i“1

ÿ

x1
i,a1,x

1
i,a2„Apx1

iq

ℓ1pϕpx1
i,a1q, zi,a2q ` ℓ1pϕpx1

i,a2q, zi,a1q , (2)

where ℓ1 computes KL-divergence between codes computed with features (e.g. ϕpxa1q) and the code computed by another
view (e.g. za2). For more details about the algorithm, we refer the reader to Caron et al. (2020). In all UDA settings, unless
otherwise specified, we pool all the (unlabeled) data from the source and target to perform SwAV. For SSL, we leverage
in-distribution unlabeled data.

We employ SimCLR (Chen et al., 2020a) for the CIFAR10 dataset, aligning with previous studies that have utilized
contrastive pretraining on the same dataset (Kumar et al., 2022; Shen et al., 2022). The reason for this choice is that SwAV
relies on augmentations that involve cropping images to a smaller resolution, making it more suitable for datasets with larger
resolutions beyond 32 ˆ 32.

Self-Training (ST). For self-training, we apply FixMatch (Sohn et al., 2020), where the loss on labeled data and on
pseudolabeled unlabeled data are minimized simultaneously. Sohn et al. (2020) proposed FixMatch as a variant of the simpler
Pseudo-label method (Lee et al., 2013). This algorithm dynamically generates psuedolabels and overfits on them in each
batch. FixMatch employs consistency regularization on the unlabeled data. In particular, while pseudolabels are generated
on a weakly augmented view of the unlabeled examples, the loss is computed with respect to predictions on a strongly
augmented view. The intuition behind such an update is to encourage a model to make predictions on weakly augmented
data consistent with the strongly augmented example. Moreover, FixMatch only overfits to the assigned labeled with weak
augmentation if the confidence of the prediction with strong augmentation is greater than some threshold τ . Refer to Aweak
as the weak-augmentation and Astrong as the strong-augmentation function. Then, FixMatch uses the following loss function:

LFixMatchpfq “
1

n

n
ÿ

i“1

ℓpfpAstrongpxiq, yiqq

`
λ

m

m
ÿ

i“1

ℓpfpAstrongpx1
iq, ryiqq ¨ I

„

max
y

fypAstrongpx1
iqq ě τ

ȷ

,

where ryi “ argmaxy fypTweakpxiqq. For UDA, our unlabeled data is the union of source and target unlabeled data. For
SSL, we only leverage in-distribution unlabeled data.

We adapted our implementation from Sagawa et al. (2021) which matches the implementation of Sohn et al. (2020) except
for one detail. While Sohn et al. (2020) augments labeled examples with weak augmentation, Sagawa et al. (2021) proposed
to strongly augment the labeled source examples.

Self-Training Over Contrastive learning (STOC). Finally, rather than performing FixMatch from a randomly initialized
backbone, we initialize FixMatch with a contrastive pretrained backbone.
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F.4. Additional UDA experimemts

Table 4: Results in the UDA setup. We report accuracy on target (OOD) data from which we only observe unlabeled
examples during training. For benchmarks with multiple target distributions (e.g., OH, Visda), we report average accuracy
on those targets.

Method Living17 Nonliv26 Entity13 Entity30 FMoW
(2 tgts)

Visda
(2 tgts)

OH
(3 tgts)

CIFARÑ

CINIC

ERM 60.2˘0.1 45.4˘0.2 68.6˘0.1 55.7˘0.0 56.5˘0.1 20.8˘0.2 9.5˘0.2 74.3˘0.1

ST 71.1˘0.2 56.8˘0.1 78.0˘0.3 66.7˘0.1 56.9˘0.4 39.1˘0.1 11.1˘0.1 78.3˘0.3

CL 74.1˘0.2 57.4˘0.3 76.9˘0.2 66.6˘0.3 61.5˘0.5 63.2˘0.2 22.8˘0.1 77.5˘0.1

STOC (ours) 82.6˘0.1 62.1˘0.2 81.9˘0.2 72.0˘0.2 65.3˘0.1 70.1˘0.2 27.1˘0.3 79.9˘0.3

Note that by default, we train with CL on the combined unlabeled data from source and target. However, to better understand
the significance of unlabeled target data in contrastive pretraining, we perform an ablation where the CL model was trained
solely on unlabeled source data (refer to this as CL (source only); see Table 5). We observe that ST on top of CL (source
only) improves over ST (from scratch). However, the average performance of ST over CL (source only) is similar to that of
standalone CL, maintaining an approximate 6% performance gap observed between CL and ST. This brings two key insights
to the fore: (i) the observed benefit is not merely a result of the contrastive pretraining objective alone, but specifically CL
with unlabeled target data helps; and (ii) both CL and ST leverage using target unlabeled data in a complementary nature.

Table 5: Results in the UDA setup with source only contrastive pretraining. We report accuracy on target (OOD) data from
which we only observe unlabeled examples during training. For benchmarks with multiple target distributions (e.g., OH,
Visda), we report average accuracy on those targets.

Method Living17 Nonliv26 Entity13 Entity30 FMoW
(2 tgts)

Visda
(2 tgts)

OH
(3 tgts)

CIFARÑ

CINIC

CL (source only) 67.3˘0.1 49.1˘0.2 71.5˘0.1 58.5˘0.3 53.9˘0.1 33.3˘0.2 21.7˘0.1 77.7˘0.1

STOC (source only) 75.0˘0.2 58.4˘0.1 79.8˘0.3 67.5˘0.1 56.3˘0.4 42.7˘0.1 25.7˘0.1 77.8˘0.1

CL 74.1˘0.2 57.4˘0.3 76.9˘0.2 66.6˘0.3 61.5˘0.5 63.2˘0.2 22.8˘0.1 77.5˘0.1

STOC 82.6˘0.1 62.1˘0.2 81.9˘0.2 72.0˘0.2 65.3˘0.1 70.1˘0.2 27.1˘0.3 79.9˘0.3

F.5. Additional SSL experimemts

Table 6: Results in the SSL setup. We report accuracy on hold-out ID data. Recall that SSL uses labeled and unlabeled data
from the same distribution during training.

Method Living17 Nonliv26 Entity13 Entity30 FMoW Visda OH CIFAR

ERM 76.8˘0.1 64.9˘0.2 80.1˘0.0 70.4˘0.3 33.6˘0.4 99.2˘0.0 32.0˘0.2 85.5˘0.1

ST 85.4˘0.1 75.7˘0.2 85.4˘0.2 77.3˘0.1 33.6˘0.3 99.2˘0.1 32.0˘0.1 93.1˘0.1

CL 91.1˘0.5 84.6˘0.6 90.7˘0.4 85.5˘0.3 43.1˘0.2 97.6˘0.3 49.7˘0.2 91.7˘0.2

STOC (ours) 92.0˘0.1 85.8˘0.2 91.3˘0.3 86.1˘0.2 44.4˘0.1 97.7˘0.2 49.9˘0.2 93.06˘0.3

F.6. Other experimental details

Augmentations. For weak augmentation, we leverage random horizontal flips and random crops of pre-defined size. For
SwAV, we also perform multicrop augmentation as proposed in Caron et al. (2020). For strong augmentation, we apply
the following transformations sequentially: random horizontal flips, random crops of pre-defined size, augmentation with
Cutout (DeVries & Taylor, 2017), and RandAugment (Cubuk et al., 2020). For the exact implementation of RandAugment,
we directly use the implementation of Sohn et al. (2020). Unless specified otherwise, for all methods, we default to using
strong augmentation techniques.
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Architectures. In our work, we experiment with Resnet18, Resnet50 (He et al., 2016) trained from scratch (i.e. random
initialization). We do not consider off-the-shelf pretrained models (e.g., on Imagenet (Russakovsky et al., 2015)) to avoid
confounding our conclusions about contrastive pretraining. However, we note that our results on most datasets tend to be
comparable to and sometimes exceed those obtained with ImageNet pretrained models. For BREEDs datasets, we employ
Resnet18 architecture. For other datasets, we train a Resnet50 architecture.

Except for Resnets on CIFAR dataset, we used the standard pytorch implementation (Gardner et al., 2018). For Resnet
on Cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar. For all the
architectures, whenever applicable, we add antialiasing (Zhang, 2019). We use the official library released with the paper.

Hyperparameters. For all the methods, we fix the algorithm-specific hyperparameters to the original recommendations. For
UDA, given that the setup precludes access to labeled data from the target distribution, we use source hold-out performance
to pick the best hyperparameters. During pretraining, early stopping is done according to lower values of pretraining loss.

We tune the learning rate and ℓ2 regularization parameter by fixing the batch size for each dataset that corresponds to the
maximum we can fit to 15GB GPU memory. We default to using cosine learning rate schedule (Loshchilov & Hutter, 2016).
We set the number of epochs for training as per the suggestions of the authors of respective benchmarks. For SSL, we run
both ERM and FixMatch for approximately 2000 epochs. Note that we define the number of epochs as a full pass over the
labeled training source data. We summarize the learning rate, batch size, number of epochs, and ℓ2 regularization parameter
used in our study in Table 7.

Dataset Batch size ℓ2 regularization set Learning rate set

CIFAR10 200 t0.001, 0.0001, 10´5, 0.0u t0.2, 0.1, 0.05, 0.01, 0.003, 0.001u

FMoW 64 t0.001, 0.0001, 10´5, 0.0u t0.01, 0.003, 0.001, 0.0003, 0.0001u

Entity13 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Entity30 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Entity30 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Nonliving26 256 t0.001, 0.0001, 10´5, 0.0u t0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005u

Officehome 96 t0.001, 0.0001, 10´5, 0.0u t0.01, 0.003, 0.001, 0.0003, 0.0001u

Visda 96 t0.001, 0.0001, 10´5, 0.0u t0.03, 0.01, 0.003, 0.001, 0.0003u

Table 7: Details of the batch size, learning rate set and ℓ2 regularization set considered in our testbed.

Compute infrastructure. Our experiments were performed across a combination of Nvidia T4, A6000, and V100 GPUs.

G. Additional Results in Toy Setup
In this section we will first give more details on our simplified setup that captures both contrastive pretraining and self-
training in the same framework. Then, we provide some additional empirical results that are not captured theoretically but
mimic behaviors observed in real world settings, highlighting the richness of our setup.

G.1. Detailed description of our simplified setup

In this subsection, we will first re-iterate the problem setup in Sec. 3 and provide some comparisons between our setup and
those in closely related works. We will then describe the four methods: ERM, ST, CL, and STOC, providing details on the
exact estimates returned by these algorithms in the SSL and UDA settings.

Our results on real-world datasets suggest that although self-training may offer little to no improvement over contrastive
pretraining for in-distribution (i.e., SSL) settings, it leads to substantial improvements when facing distribution shifts in
UDA (Sec. 2). Why do these methods offer complementary gains, but only under distribution shifts? In this section, we seek
to answer this question by first replicating all the empirical trends of interest in a simple data distribution with an intuitive
story (Sec. 3.1). In this toy model, we formally characterize the gains afforded by contrastive pretraining and self-training

https://github.com/kuangliu/pytorch-cifar
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both individually (Secs. H.1, H.2) and when used together (Sec. H.3).

Data distribution. We consider binary classification and model the inputs as consisting of two kinds of features:
x “ rxin, xsps where xin P Rdin is the invariant feature that is predictive of the label across both source PS and target PT

and xsp P Rdsp is the spurious feature that is correlated with the label y only on the source domain PS but uncorrelated with
label y in PT. Here, xin P Rdin determines the label using the ground truth classifier w‹ „ UnifpSdin´1q, and xsp P Rdsp is
strongly correlated with the label on source but random noise on target. Formally, we sample y „ Unift´1, 1u and generate
inputs x conditioned on y as follows

PS : xin „ N pγ ¨ yw‹,Σinq xsp “ y1dsp
(3)

PT : xin „ N pγ ¨ yw‹,Σinq xsp „ N p0,Σspq, (4)

where γ is the margin afforded by the invariant feature. We set covariance of the invariant features Σin “ σ2
in ¨pIdin ´w‹w‹J

q

to capture structure in the invariant feature that the variance is less along the latent predictive direction w‹. Note that the
spurious feature is completely predictive of the label in the source data, and is distributed as spherical Gaussian in the target
data with Σsp “ σ2

spIdsp
.

Our distribution shift setting bears similarities but also exhibits important differences (discussed below). For mathematical
convenience, we assume access to infinite unlabeled data and hence replace the empirical quantities over unlabeled data
with their population counterpart. For SSL, we sample finite labeled and infinite unlabeled data from PT where spurious
features are absent (to exclude easy-to-generalize features). For UDA, we further assume access to infinite labeled data from
the source. Note that due to distribution shift, population access of labeled data doesn’t trivialize the problem as “ERM” on
infinite labeled source data does not necessarily achieve optimal performance on the target.

Methods and objectives Recall from Section 1.1 that we learn linear classifiers h over features extractors Φ. We consider
linear feature extractor i.e. Φ is a matrix in Rdˆk and the linear layer h : Rk Ñ R with a prediction as sgnphJΦxq. We use
the exponential loss ℓpfpxq, yq “ exp p´yfpxqq.

Self-training. ST performs ERM in the first stage using labeled data from the source, and then subsequently updates the
head h by iteratively generating pseudolabels on the unlabeled target:

Lstph; Φq :“ EPTpxqℓph
JΦx, sgnphJΦpxqqq Update: ht`1 “

ht ´ η∇hLstph
t; Φq

||ht ´ η∇hLstpht; Φq||2
(5)

For ERM and ST, we train both h and Φ (equivalent to Φ being identity and training a linear head).

Contrastive pretraining. We obtain Φcl :“ argminΦ LclpΦq by minimizing the Barlow Twins objective (Zbontar et al.,
2021), which prior works have shown is also equivalent to spectral contrastive and non-contrastive objectives (Garrido
et al., 2022; Cabannes et al., 2023). Given probability distribution PApa | xq for input x, and marginal PA, we consider a
constrained form of Barlow Twins in (6) which enforces features of “positive pairs” a1, a2 to be close while ensuring feature
diversity. We assume a strict regularization pρ “ 0q for the theory arguments in the rest of the paper, and in App. G.2 we
prove that all our claims hold for small ρ as well. For augmentations, we scale the magnitude of each co-ordinate uniformly
by an independent amount, i.e., a „ PAp¨ | xq “ c d x, where c „ Unifr0, 1sd. We try to mirror practical settings where
the augmentations are fairly “generic”, not encoding information about which features are invariant or spurious, and hence
perturb all features symmetrically.

LclpΦq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}22 s.t.

ˇ

ˇ

ˇ

ˇEa„PA

“

ΦpaqΦpaqJ
‰

´ Ik
ˇ

ˇ

ˇ

ˇ

2

F
ď ρ (6)

Keeping the Φcl fixed, we then learn a linear classifier hcl over Φcl to minimize the exponential loss on labeled source
data (refer to as linear probing). For STOC, keeping the Φcl fixed and initializing the linear head with the CL linear probe
(instead of source only ERM), we perform ST with (5).
Example G.1. For the setup in (4), we choose γ “ 0.5, σ2

sp “ 1., and σ2
in “ 0.05 with din “ 5 and dsp “ 20 for our running

example. γ{
?

dsp controls signal to noise ratio in the source such that spurious feature is easy-to-learn and the invariant feature
is harder-to-learn. σ2 controls the noise in target which we show later is critical in unlearning the spurious feature with CL.

Why is our simplified setup interesting? In our setup, xin is the hard to learn feature that generalizes from source to target.
The hardness of learning this feature is determined by the value of the margin γ and how it compares with size of the spurious
feature (

a

dsp). Since, γ{
a

dsp is small in our setup, xin is much harder to learn on source data (even with population access)
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compared to the spurious feature xsp which generalizes poorly from source to target. These two types of features have been
captured in similar analysis on spurious correlations (Sagawa et al., 2020; Nagarajan et al., 2020) since it imitates pitfalls
emanating from the presence of spurious features in real world datasets (e.g., the easy to learn background feature in image
classification problems). While this setup is simple, it is also expressive enough to elucidate both self-training and contrastive
learning behaviors we observe in real world settings. Specifically, it captures the separation results we observe in Sec. 2.

Differences of our setup with prior works. While our distribution shift settings bears the above similarities it also
has important differences with works analyzing self-training and contrastive pretraining individually. Chen et al. (2020b)
analyze the iterative nature of self-training algorithm, where the premise is that we are given a classifier that not only has
good performance on source data but in addition does not rely too much on the spurious feature. Under the strong condition
of small norms along the spurious feature, they show that self-training can provably unlearn this small dependence when the
target data along the spurious feature is random noise. This assumption is clearly violated in setups where the spurious
correlation is strong (as in our toy setup), i.e., the dependence on the spurious feature is rather large (much larger than that
on the invariant feature) for any classifier that is trained directly on source data. Consequently, we show the need for “good”
pretrained representations from contrastive pretraining over which if we train a linear predictor (using source labeled data),
it will provably have a reduced “effective” dependence on the spurious feature.

Using an augmentation distribution similar to ours, Saunshi et al. (2022) carried out contrastive pretraining analysis with
the backbone belonging to a capacity constrained function class (similar analysis also in (HaoChen et al., 2022)). Our
setup differs from this in two key ways: (i) we specifically consider a distribution shift from source to target. Unlike their
setting, it is not sufficient to make augmentations consistent with ground truth labels, since the predictor that uses just the
spurious feature also assigns labels consistent with both ground truth predictions and augmentations on the source data; and
(ii) our augmentation distribution assumes no knowledge of the invariant feature, which is why we augment all dimensions
uniformly, as opposed to selectively augmenting a set of dimensions. In other words, we assume no knowledge of the
structure of the optimal target predictor. For e.g., if we had knowledge of the spurious dimensions we could have just
selectively augmented those. Assuming knowledge of these perfect augmentations is not ideal for two reasons: (a) it makes
the problem so easy that just training an ERM model on source data with these augmentations would already yield a good
target predictor (which rarely happens in practice); and (b) in real-world datasets perfect augmentations for the downstream
task are not known. Hence, we stick to generic augmentations in our setup.

G.2. Discussion on self-training and contrastive learning objectives

Method UDA Setup SSL Setup

ERM: herm “ argminh EPSℓphpxq, yq
herm “ argminh

1
n

řn
i“1 ℓphpxiq, yiq

tpxi, yiqu
n
i“1 „ PT

n

ST:
Starting from herm optimize over h (to get hst): Starting from herm optimize over h (to get hst):

EPTpxqℓphpxq, sgnphpxqqq EPTpxqℓphpxq, sgnphpxqqq

CL:

Φcl “ argminϕ LclpΦq Φcl “ argminϕ LclpΦq

Use pPSpxq ` PTpxqq{2 for LclpΦq Use PTpxq for LclpΦq

hcl “ argminh EPSℓph ˝ Φclpxq, yq hcl “ argminh
1
n

řn
i“1 ℓph ˝ Φclpxiq, yiq

STOC:

Starting from hcl optimize over h (to get hstoc): Starting from hcl optimize over h (to get hstoc):

EPTpxqℓph ˝ Φclpxq, sgnph ˝ Φclpxqqq EPTpxqℓph ˝ Φclpxq, sgnph ˝ Φclpxqqq

Table 8: Description of methods for SSL vs. UDA: For each method we provide exact objectives used for experiments and
analysis in the SSL and UDA setups (pertaining to Sec. 3).

In text we will describe our objectives and methods for the UDA setup. In Table 8 we constrast the differences in the methods
and objectives for SSL and UDA setups. Recall from Section 1.1 that we learn linear classifiers h over features extractors Φ.
We consider linear feature extractor i.e. Φ is a matrix in Rkˆd. For mathematical convenience, we assume access to infinite
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unlabeled data and hence replace the empirical quantities over unlabeled data with their population counterpart. In the
UDA setting, we further assume access to infinite labeled data from the source. Note that due to distribution shift between
source and target, “ERM” on infinite labeled data from the source does not necessarily achieve optimal performance on the
target. For binary classification, we assume that the linear layer h maps features to a scalar in R such that the prediction is
sgnphJΦxq. We use the exponential loss ℓpfpxq, yq “ exp p´yfpxqq as the classification loss.

Contrastive pretraining. We obtain Φcl :“ argminΦ LclpΦq by minimizing the Barlow Twins objective (Zbontar et al.,
2021), which prior works have shown is also equivalent to spectral contrastive and non-contrastive objectives (Garrido
et al., 2022; Cabannes et al., 2023). In Sec. 3, we consider a constrained form of Barlow Twins in (6) which enforces
representations of different augmentations a1, a2 of the same input x to be close in representation space, while ensuring
feature diversity by staying in the constraint set. We assume a strict constraint on regularization pρ “ 0q for the theoretical
arguments in the rest of the main paper. In App. H.6.2 we prove that all our claims hold for small ρ as well. In (7), we
redefine the pretraining objective with a regularization term (instead of a constraint set) where κ controls the strength of the
regularization term, with higher values of κ corresponding to stronger constraints on feature diversity. We then learn a linear
classifier hcl over Φcl to minimize the exponential loss on labeled source data.

LclpΦq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}22 ` κ ¨

ˇ

ˇ

ˇ

ˇEa„PA

“

ΦpaqΦpaqJ
‰

´ Ik
ˇ

ˇ

ˇ

ˇ

2

F
(7)

Augmentations. Data augmentations play a key role in contrastive pre-training (and also as we see later, state-of-the-art
self-training variants like FixMatch). Given input x P X , let PApa | xq denote the distribution over its augmentations, and
PA denote the marginal distribution over all possible augmentations. We use the following simple augmentations where we
scale the magnitude of each co-ordinate by a uniformly independent amount, i.e.,

a „ PAp¨ | xq ” c d x where, c „ Unifr0, 1sd. (8)

The performance of different methods heavily depends on the assumptions we make on augmentations. We try to mirror
practical settings where the augmentations are fairly “generic”, not encoding any information about which features are
invariant or spurious, and hence perturb all features symmetrically.

Self-training. ST performs ERM in the first stage using labeled data from the source, and then subsequently updates the
head h by iteratively generating pseudolabels on the unlabeled target:

Lstph; Φq :“ EPTpxqℓph
JΦx, sgnphJΦpxqqq Update: ht`1 “

ht ´ η∇hLstph
t; Φq

||ht ´ η∇hLstpht; Φq||2
(9)

For convenience, we keep the feature backbone Φ fixed across the self-training iterations and only update the linear head on
the pseudolabels.

STOC(Self-training after contrastive learning). Finally, we can combine the two unsupervised objectives where we do the
self-training updates( 5) with h0 “ hcl and Φ0 “ Φcl starting with the contrastive learning model rather than just source-
only ERM. Here, we only update h and fix Φcl.

G.3. Additional empirical results in our simplified setup

We conduct two ablations on the hyperparameters for contrastive pretraining. First, we vary the dimensionality k of the
linear feature extractor Φ P Rkˆd. Second, we vary the regularization strength κ that enforces feature diversity in the Barlow
Twins objective (7). In Figure 5 we plot these ablations in the UDA setup.

Varying feature dimension. We find that CL recovers the full set of predictive features (i.e. both spurious and invariant) only
when k is large enough (Figure 5(left)). Since the dimensionality of the true feature is 5 in our Example 1, reducing k below
the true feature dimension hurts CL. Once k crosses a certain threshold, CL features completely capture the projection of the
invariant feature win. After this point, it amplifies the component along win. It retains the amplification over the spurious
feature wsp even as we increase k. This is confirmed by our finding that further increasing k does not hurt CL performance.
This is also inline with our theoretical observations, where we find that for suitable w‹, the subspace spanned by win and wsp

are contained in a low rank space (as low as rank 2) of the contrastive representations (Theorem H.3). Once CL has amplified
the dependence along win STOC improves over CL by unlearning any remaining dependence on the spurious wsp. The
above arguments for the CL trend also explain why the performance of STOC continues to remain « 100% as we vary k.
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Figure 5: Ablations on pretraining hyperparameters: In the UDA setup we plot the performance of CL and STOC as we
vary two pretraining hyper-parameters: (left) the output dimension pkq of the feature extractor Φ; and (right) the strength
pκq of the regularizer in the Barlow Twins objective in (7). While ablating on k we fix κ “ 0.5, and while ablating on κ we
fix k “ 10. Other problem parameters are taken from Example 1.
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Figure 6: Results with linear backbone: We plot the OOD accuracy for ERM, CL, ST and STOC in the UDA setup and ID
accuracy in the SSL setup when the feature extractor Φ is a linear network. Note, that the feature extractor is still fixed
during CL and STOC.

Varying regularization strength. In our main theoretical arguments we consider the constrained form of the Barlow
Twins objective (6) with a strict constraint of ρ “ 0 (we relax this theoretically as well, see H.6.2). For our experiments, we
optimize the regularized version of this objective (7), where the constraint term now appears as a regularizer which enforces
feature diversity, i.e. the features learned through contrastive pretraining span orthogonal parts of the input space (as governed
under the metric defined by augmentation covariance matrix ΣA). If κ is very low, then trivial solutions exist for the Barlow
Twins objective. For e.g., ϕ « 0 (zero vector) achieves very low invariance loss. When κ ă 0.05, we find that CL recovers
these trivial solutions (Figure 5(right)). Hence, both CL and STOC perform poorly. As we increase κ the performance of
both CL and STOC improve, mainly because the features returned by Φcl now comprise of the predictive directions win and
wsp, as predictive by our theoretical arguments for ρ “ 0 (which corresponds to large κ). On the other hand, when κ is too
high optimization becomes hard since κ directly effects the Lipschitz constant of the loss function. Hence, the performance
of CL drops by some value. Note that this does not effect the performance of STOC since CL continues to amplify win over
wsp even if it is returning suboptimal solutions with respect to the optimization loss of the pretraining objective.
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G.4. Reconciling Practice: Experiments with deep networks in toy setup

In this section we delve into the details of Sec. H.4, i.e., we analyze performance of different methods when we make some
design choices that imitate practice. First, we look at experiments involving a deep non-linear backbone Φ. Here, the non-
linear Φ is learned during contrastive pretraining and fixed for CL and STOC. Then, we investigate trends when we continue
to propagate gradients onto Φ during STOC (we call this full-finetuning). Unlike previous cases, this allows features to be
updated.

Results with non-linear feature extractor Φ. In Fig. 7 we plot the performance of the four methods when we use a
non-linear feature extractor during contrastive pretraining. This feature extractor is a one-hidden layer neural network
(hidden dimension is 500) with ReLU activations. We find that the trends observed with linear backbones in Fig. 6 are also
replicated with the non-linear one. Specifically, we note that STOC improves over CL under distribution shifts, whereas
CL is already close to optimal when there are no distribution shifts. We also see that CL and ST individually are subpar.
In SSL, we see a huge drop in the performance of ST (over ERM) mainly because we only fit on pseudolabels during ST.
This is different from practice where we continue to optimize loss on labeled data points while fitting the pseudolabels.
Consequently, when we continue to optimize performance on source labeled data the performance of ST in SSL setup is
improves from 51.1% Ñ 72.6%.

Results with full fine-tuning. Up till this point, we have only considered the case (for both SSL and UDA) where we fix the
contrastive learned features when running CL and STOC, i.e., we only optimized the linear head h. Now, we shall consider
the setting where gradients are propagated to Φ during STOC. Note that we still fix the representations for training the linear
head during CL. Results for this setting are in Figure 8. We show two interesting trends that imitate real world behaviors.

STOC benefits from augmentations during full-finetuning: In the UDA setup we find that ST while updating Φcl can hurt due
to overfitting issues when training with the finite sample of labeled and unlabeled data (drop by ą 7% over CL). This is due
to overfitting on confident but incorrect pseudolabels on target data. This can exacerbate components along spurious feature
wsp from source. One reasoning behind this is that deep neural networks can perfectly memorize them on finite unlabeled
target data (Zhang et al., 2017). Heuristics typically used in practice (e.g. in FixMatch (Sohn et al., 2020)) help avoid
overfitting on incorrect pseudolabels: (i) confidence thresholding; to pick confident pseudolabel examples; (ii) pseudolabel
a different augmented input than the one on which the self-training loss is optimized; and (iii) optimize source loss with
labeled data simultaneously when fitting pseudolabels. Intuitively, thresholding introduces a curriculum where we only
learn confident examples in the beginning whose pseudolabels are mainly determined by component along the invariant
feature win. Augmentations prevent the neural network from memorizing incorrect pseudolabels and optimizing source loss
prevents forgetting of features learned during CL. When we implement these during full-finetuning in STOC we see that
STOC now improves over CL (by ą 20%).

Can we improve contrastive pretraining features during STOC? We find that self-training can also improve features learned
during contrastive pretraining when we update the full backbone during STOC (see Figure 8(right)). Specifically, in the SSL
setup we find that STOC can now improve substantially over CL. Recall, that when we fixed Φcl this was not possible (see
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Figure 7: Results with non-linear backbone: We plot the OOD accuracy for ERM, CL, ST and STOC in the UDA
setup and ID accuracy in the SSL setup when the feature extractor Φ is a non-linear one-hidden layer network with ReLU
activations. Note, that the feature extractor is still fixed during CL and STOC.
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Figure 8: Finetuning the contrastive representations during STOC: We propagate gradients to the feature backbone Φ
when running STOC algorithm. Note that CL still fixes the contrastive representations when learning a fixed linear head over
it. On the (left) we show results in UDA setup where we compare the performance of STOC with and without augmentations
(along with other practical design choices like confidence thresholds and continuing to optimize source loss as done in
FixMatch) when the feature backbone is non-linear. On the (right) we show results for STOC and CL in the SSL setup when
the feature backbone is linear.

H.8 and Fig. 2(b)). This is mainly because STOC can now improve performance beyond just recovering the generalization
gap for the linear head (which is typically small). This feature improvement is observed even when we fully finetune a
linear feature extractor. Similar trends are also observed with the non-linear backbone. But, it becomes harder to identify a
good stopping criterion for CL training. Thus, it remains unclear if STOC and CL have complementary benefits for feature
learning in UDA or SSL settings. Investigating this is an interesting avenue for future work.

H. Theoretical Results from Sec. 3
H.1. Conditions for Success and Failure of Self-training over ERM from Scratch

In our results on Example G.1, we observe that performing ST after ERM yields a classifier with near-random target accuracy.
In Theorem H.1, we characterize conditions under which ST fails and succeeds.

Theorem H.1 (Informal; Conditions for success and failure of ST over ERM). The target accuracy of ERM classifier, is
given by 0.5 ¨ erfc

`

´γ2
{p

?
2dsp¨σspq

˘

. Then for σsp ą σ0, ST performed in the second stage yields: (i) a classifier with
« 0.5 target accuracy when γ{dsp ă c1 ¨ σsp; and (ii) a classifier with near-perfect target accuracy when γ{dsp " c1 ¨ σsp

for some constant c1.

The informal theorem above abstracts the exact dependency of γ, σsp, and dsp for the success and failure of ST over ERM.
Our analysis highlights that while ERM learns a perfect predictor along win“rw‹, 0, ..., 0sJ (with norm γ), it also learns to
depend on wsp “ r0, ..., 0, 1dsp{

?
dspsJ with norm

a

dsp because of the perfect correlation of xsp with labels on the source.
Our conditions depict that when the γ{dsp is sufficiently smaller than σsp, then ST continues to erroneously enhance its
reliance on the xsp feature for target prediction, resulting in near-random target performance. Conversely, when γ{dsp is
much larger than σsp, the signal in xin is correctly used for predictor on the majority of target points, and ST eliminates the
xsp dependency, converging to an optimal target classifier.

Our proof analysis shows that if the ratio of the norm of the classifier along in the direction of w‹ is smaller than wsp by
a certain ratio then the generated pseudolabels (incorrectly) use xsp for its prediction further increasing the component
along wsp. Moreover, normalization further diminishes the reliance along w‹, culminating in a near-random performance.
The opposite occurs when the ERM classifier achieves a signal along w‹ that is sufficiently stronger than along wsp. Upon
substituting the parameters used in Example G.1, the ERM and ST performances as determined by Theorem H.1 align with
our empirical results, notably, ST performance on target being near-random.
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H.2. CL Captures Both Features But Amplifies Invariant Over Spurious Features

Recall, minimizing the contrastive loss in (6) gives us Φcl, for which we derive a closed form expression in Proposition H.2
that holds generally for any linear backbone and augmentation distribution.

Proposition H.2 (Barlow Twins solution). The solution for (6) is UJ
k Σ

´1{2
A where Uk are the top k eigenvectors of

Σ
´1{2
A

rΣΣ
´1{2
A . Here, ΣA :“ Ea„PA

raaJs is the covariance over augmentations, and rΣ :“ Ex„PU
rrapxqrapxqJs is the

covariance matrix of mean augmentations rapxq :“ EPApa|xqras.

Intuitively, the above result captures the effect of augmentations through the matrix Uk. If there were no augmentations, then
ΣA “ rΣ, implying that Uk could then be any random orthonormal matrix. On the other hand if augmentation distributions
change prevalent covariances in the data, i.e., ΣA is very different from original feature covariance on actual data, the
matrix Uk would bias the CL solution towards directions that capture significant variance in mean augmentations but only if
augmentations do not scale the variance along it by a lot—precisely the directions with low invariance loss. In the final
solution UJ

k Σ
´1{2
A , while the invariance loss in (6) determines Uk, the constraint in (6) determines the norm along each

direction which is corrected once Uk is scaled by Σ
´1{2
A .

Based on this we can conjecture, that CL would learn components along both invariant win and spurious wsp components
because: (i) these directions explain a large fraction of variance in the raw data; (ii) augmentations that randomly scale down
dimensions would not add a lot of variance along wsp and win as compared to noise directions in their null space. But, since
the spurious feature is random on target, the variance along wsp in target would be much higher under augmentations as
compared to that along the invariant win. Thus, when CL is done on the union of source and target unlabeled data, it would
amplify win over wsp. For w‹ “ 1din{

?
din, we formalize this intuition in Theorem H.3. While we do this for mathematical

convenience in trying to analyze claims tightly, our results in Sec. 3.1 hold for the general case of any w‹ (for discussion on
this, see App. G.1).
Theorem H.3 (Informal; CL recovers both invariant win and spurious wsp but amplifies win). For w‹ “ 1din{

?
din, the CL

solution Φcl“rϕ1, ϕ2, ..., ϕks satisfies ϕJ
j win “ ϕJ

j wsp “ 0 @j ě 3, ϕ1 “ c1win ` c3wsp and ϕ2 “ c2win ` c4wsp. For
bounded γ{

a

dsp and σsp, the signal along win is amplified, i.e., for some small ϵ ą 0, |c2{c4| ě p1 ´ ϵq
a

dsp{γ and
5γ{

?
dsp ď c1{c3 ď 20γ{

?
dsp.

Based on our intuition above, Theorem H.3 first conveys that CL recovers components along both win and wsp through
ϕ1, ϕ2 where it increases the norm along win more than wsp. We can see this because the margin separating labeled points
along win is now amplified by a factor of |c2{c4| “ Ωp

?
dsp{γq in ϕ1 and c1{c3 ě 2γ in ϕ2, as compared to the same margin on

source distribution. Naturally, this will improve the target performance of a linear predictor trained over CL representations.
At the same time, we also see that in ϕ1, the component along wsp is still significant (c1{c3 is upper bounded). This is
because, while the random noise along wsp in target is amplified by augmentations, the variance induced by augmentations
along wsp in source is still very small. Due the remaining components along wsp, the target performance for CL can remain
less than ideal. Both the above arguments on target performance are captured in Corollary H.4.
Corollary H.4 (Informal; CL improves OOD error over ERM but is still imperfect). Under the conditions of Theorem H.3
the target accuracy of CL is at least 0.5 ¨ erfc

`

´c1{pωc3q ¨ γ{p
?

2dsp¨σspq
˘

, and at most ď 0.5 ¨ erfc
`

´c1{c3 ¨ γ{p
?

2dsp¨σspq
˘

.
Note that since c1{c3 ě 5γ{

?
dsp, the lower bound is strictly better than ERM when 1 ď ω ď 5.

While Φcl is still not ideal for linear probing, in the next part we will see how Φcl can instead be sufficient for subsequent
self-training to unlearn the remaining components along spurious features.

H.3. Improvements with Self-training Over Contrastive Learning

The result in the previous section highlights that while CL may improve over ERM, the linear probe continues to depend on
the spurious feature. Next, we characterize the behavior STOC. Recall, in the ST stage, we iteratively update the linear head
with (5) starting with the CL backbone and head.
Theorem H.5 (Informal; ST improves over CL). Under the conditions of Theorem H.3, the target accuracy of ST over CL is
lower bounded by 0.5 ¨ erfc p´ |c2{c4| ¨ γ{p

?
2σ2qq « 0.5 ¨ erfc

`

´
?
d2{p

?
2σ2q

˘

where c2 and c4 are the coefficients of feature
ϕ2 along w‹ and wsp learned by BT.

The above theorem states that when
?
d2{σ2 ! 1 the target accuracy of ST over CL is close to 1. In Example G.1, the

lower bound of the accuracy of ST over CL is erfc
`

´
?
10

˘

« 2 showing near-perfect target generalization. Recall
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that Theorem H.4 shows that CL yields a linear head that mainly depends on both the invariant direction w˚ and the
spurious direction wsp. At initialization, the linear head trained on the CL backbone has negligible dependence on ϕ2

(under conditions in Theorem H.4). Building on that, the analysis in Theorem H.5 captures that ST gradually reduces the
dependence on wsp by learning a linear head that has a larger reliance on ϕ2, which has a higher “effective” margin on the
target, thus increasing overall dependency on w˚.

Theoretical comparison with SSL. Our analysis until now shows that linear probing with source labeled data during CL
picks up features that are more predictive of source label under distribution shift, leaving a significant room for improvement
on OOD data when self-trained further. In UDA, the primary benefit of ST lies in picking up the features with a high
“effective” margin on target data that are not picked up by linear head trained during CL. In contrast, in the SSL setting,
the limited ID labeled data may provide enough signal in picking up high-margin features which are predictive on ID data,
leaving little to no room for improvement for further ST. We formalize this intuition in App. H.

H.4. Reconciling Practice: Implications for Deep Non-Linear Networks

In this section, we experiment with deep non-linear backbone (i.e., Φcl). When we continue to fix Φcl during CL and STOC,
the trends we observed with linear networks in Sec. 3.1 continue to hold. We then perform full fine-tuning with CL and
STOC, i.e., propagate gradients even to Φcl, as commonly done in practice. We present key takeaways here but detailed
experiments are in App. G.4.

Benefits of augmentation for self-training. ST while updating Φcl can hurt due to overfitting issues when training with
the finite sample of labeled and unlabeled data (drop by >10% over CL). This is due to the ability of deep networks to overfit
on confident but incorrect pseudolabels on target data (Zhang et al., 2017). This exacerbates components along wsp and we
find that augmentations (and other heuristics) typically used in practice (e.g. in FixMatch (Sohn et al., 2020)) help avoid
overfitting on incorrect pseudolabels.

Can ERM and ST over contrastive pretraining improve features? We find that self-training can also slightly improve
features when we update the backbone with the second stage of STOC and when the CL backbone is early stopped sub-
optimally (i.e. at an earlier checkpoint in Fig. 2(b)). This feature finetuning can now widen the gap between STOC and
CL in SSL settings, as compared to the linear probing gap (as in 2). This is because STOC can now improve performance
beyond just recovering the generalization gap for the linear head (which is typically small). However, STOC benefits are
negligible when CL is not early stopped sub-optimally, i.e., trained till convergence. Thus, it remains unclear if STOC and
CL have complementary benefits for feature learning in UDA or SSL settings. Investigating this is an interesting avenue for
future work.

Jumping into formal proofs and analysis. The above discussion concludes our empirical findings in our simplified setup.
Next, we jump into the proofs for the theorems introduced in previous subsections. Before that, recall from Section 1.1 that
we learn linear classifiers h over features extractors Φ. We consider linear feature extractor i.e. Φ is a matrix in Rdˆk and
the linear layer h : Rk Ñ R with a prediction as sgnphJΦxq. We use the exponential loss ℓpfpxq, yq “ exp p´yfpxqq.

H.5. Analysis of ERM and ST: Formal Statement of Theorem H.1

For ERM and ST, we train both h and Φ. This is equivalent to Φ “ Idˆd being identity and training a linear head h. Recall
that the ERM classifier is obtained by minimizing the population loss on labeled source data:

hERM “ argmin
h

Epx,yq„PS
rℓpx, yqs . (10)

We split Theorem H.1 into Theorem H.6 and Theorem H.7. Before we characterize the ERM solution, we recall some
additional notation. Define win“rw‹, 0, ..., 0sJ, and wsp “ r0, ..., 0, 1dsp{

?
dspsJ. The following proposition characterizes

hERM and 0-1 error of the classifier on target:

Theorem H.6 (ERM classifier and its error on target). ERM classifier obtained as in (10) is given by

hERM

||hERM||2
“

γ ¨ win `
a

dsp ¨ wsp
a

γ2 ` dsp
.

The target accuracy of hERM is given by 0.5 ¨ erfc
`

´γ2
{p

?
2dsp¨σspq

˘

.
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Proof. To prove this theorem, we first derive a closed-form expression for the ERM classifier and then use Lemma J.9 to
derive its 0-1 error on target. For Gaussian data with the same covariance matrices for class conditional PSpx|y “ 1q and
PSpx|y “ 0q, Bayes decision rule is given by the Fisher’s linear discriminant direction (Chapter 4; Bishop (2006)):

hpxq “

#

1, if hJx ą 0

0, otherwise

where h “ 2 ¨ γpwinq ` 2 ¨
a

dsppwspq. Plugging h in Lemma J.9 we get the desired result.

ST performs ERM in the first stage using labeled data from the source, and then subsequently updates the head h by
iteratively generating pseudolabels on the unlabeled target:

Lstphq :“ EPTpxqℓph
Jx, sgnphJxqq . (11)

Starting with h0
ST “ hERM{||hERM||2 (the classifier obtained with ERM) we perform the following iterative procedure for self-

training:

ht`1
ST “

ht
ST ´ η∇hLstph

t
STq

||ht
ST ´ η∇hLstpht

STq||2
(12)

Next, we characterize ST solution:

Theorem H.7 (ST classifier and its error on target). Starting with ERM solution, ST will lead to:

(i) (Necessary condition) ht
ST “ wsp as t Ñ 8, such that the target accuracy is 50% when the problem parameters

γ, σsp, dsp satisfy:

exp
`

´σ2
0{50

˘

4σ0

5
?
2

`

c

´

4σ0

5
?
2

¯2

` 4{π

´
exp

`

´σ2
0{50

˘

σ0
ď

¨

˚

˚

˝

1

σ0?
2

`

c

´

σ0?
2

¯2

` 4{π

´
1

σ0

˛

‹

‹

‚

¨
γ2

σsp
, (13)

where σ0 “
σsp

dsp`γ2 .

(ii) (Sufficient condition) ht
ST “ win as t Ñ 8, such that the target accuracy is 100% when the problem parameters

γ, σsp, dsp satisfy: σsp ě 1 and γ2 ě 2
a

dspσsp.

Proof. The proof can be divided into two parts: (i) deriving closed-form expressions for updates on ht
ST in terms of ht´1

ST
and (ii) obtaining conditions under which the component along win monotonically increases or decreases with t after re-
normalizing the norm of updated h. For notation convenience, we denote hST with h in the rest of the proof.

Part-1. First, the loss of self-training with classifier h :“ rhin, hsps where hin P Rdin and hsp P Rdsp is given by:

Lstphq “ EPTpxq

“

ℓphJx, sgnphJxqq
‰

(14)

“ EPTpxq

“

exp
`

´ signphJxq ¨ phJxq
˘‰

(15)

“ EPTpxq

“

exp
`

´
∣∣hJx

∣∣˘‰

(16)

“ EPTpxq

“

exp
`

´
∣∣hJ

inxin ` hJ
spxsp

∣∣˘‰

(17)

“ Ey„Ut´1,1u,z„N p0,1q

“

exp
`

´
ˇ

ˇγ ¨ y ¨ hJ
inw

‹

`

”

σinp||hin||
2
2 ´ phT

inw
‹q2q ` σsp ¨ ||hsp||2

ı

¨ z
ˇ

ˇ

ˇ

¯ı

. (18)

“ Ez„N p0,1q

”

exp
´

´

∣∣∣γ ¨ hJ
inw

‹ `

”

σinp||hin||
2
2 ´ phT

inw
‹q2q ` σsp ¨ ||hsp||2

ı

¨ z
∣∣∣¯ı

, (19)

where (17) to (18) is implied by simply replacing the definition of target distribution and (18) to (19) is implied by the
symmetry of the function with respect to y and ´y due to the symmetry of the absolute function and Gaussian distribution.
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For a classifier ht, we denote µt “ γ ¨ ht
in

J
w‹ and σt “

”

σinp||ht
in||

2
2 ´ pht

in
T
w‹q2q ` σsp ¨

ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2

ı

. With this notation, we

can re-write the loss in (19) as Lstph
tq “ Ez„N p0,σ2

t q rexp p´ |µt ` z|qs.

Now we derive a closed-form expression of Lstph
tq in Lemma J.10:

Lstph
tq “

1

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

. (20)

Define:

α1pµt, σtq “ ´exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

, (21)

α2pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2

?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

. (22)

Let rht`1 denote the un-normalized gradient descent update at iterate t ` 1. We have:

rht`1 “ ht ´ η ¨
BLstph

tq

Bh
. (23)

Now we will individually argue about the update of rht`1 along the first din dimensions and the last dsp dimensions. First,
we have:

rht`1
in “ ht

in ´ η ¨
BLstph

tq

Bhin

“ ht
in ´

η

2

ˆ

´exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

¨ γ ¨ w‹

´
η

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2

?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙˙

¨ p2ht
in ´ 2pht

in
J
w‹qw‹q ¨ σ2

in

“ ht
in ´

η

2
¨ α1pµt, σtq ¨ γ ¨ w‹ ´

η

2
¨ α2pµt, σtq ¨ p2ht

in ´ 2pht
in

J
w‹qw‹q ¨ σ2

in . (24)

Notice that the update of ht`1
in is split into two components, one along w‹ and the other along the orthogonal component

2ht
in ´ 2pht

in
J
w‹qw‹. We will now argue that since at initialization, the component along pI ´ w‹w‹J

q is zero then it will
remain zero. In particular, we have:

h0
in

J
pI ´ w‹w‹J

q 9w‹J
pI ´ w‹w‹J

q “ 0 . (25)

With (24), we can argue that if pI ´ w‹w‹J
qht

in “ 0, then pI ´ w‹w‹J
qrht`1

inv “ 0 implying that pI ´ w‹w‹J
qrht

in “ 0 for
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all t ą 0. Hence, we have:

rht`1
inv “ ht

in ´ η ¨
BLstph

tq

Bhin

“ ht
in ´

η

2
¨ α1pµt, σtq ¨ γ ¨ w‹ . (26)

Second, we have the update rht`1
sp given by:

rht`1
sp “ ht

sp ´ η ¨
BLstph

tq

Bhsp

“ ht
sp ´

η

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

`exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

´
2
?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙˙

¨ ht
sp ¨ σ2

sp

“ ht
sp ´

η

2
¨ α2pµt, σtq ¨ ht

sp ¨ σ2
sp . (27)

Re-writing the expressions (26) and (27) for the update of rht`1, we have:

rht`1
in “ ht

inp1 ´
η

2
¨ α1pµt, σtq ¨ γ2{µtq . (28)

rht`1
sp “ ht

spp1 ´
η

2
¨ α2pµt, σtq ¨ σ2

spq . (29)

Here, we replace ht
sp “ µt ¨ w‹{γ in (26) to get (28). Updates in (28) and (29) show that rht`1

inv remains in the direction of
ht
in and rht`1

sp remains in the direction of ht
sp.

Part-2. Now we will derive conditions under which ht
in and ht

sp will show monotonic behavior for necessary and sufficient
conditions. We will first argue the condition under which ST will provably fail and converge to a classifier with a random
target performance. For this, at every t, if we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ą
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
, (30)

then we can argue that as t Ñ 8, we have
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
“ 1 and hence, the ST classifier will have random target performance.

Thus, we will focus on conditions, under which the norm on
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
increases with t. Re-writing (30), we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ą

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
¨
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
(31)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ą

´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
in

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¯

¨
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
(32)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
¨

´

1 ´
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2

¯

ą

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
in

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
¨
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2
(33)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
sp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇht
sp

ˇ

ˇ

ˇ

ˇ

2

ą

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rht`1
in

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

||ht
in||2

. (34)

Plugging in (28) and (29) into (34), we get:∣∣∣1 ´
η

2
¨ α2pµt, σtq ¨ σ2

sp

∣∣∣ ą

∣∣∣1 ´
η

2
¨ α1pµt, σtq ¨ γ2{µt

∣∣∣ . (35)
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For small enough η, we have the necessary condition for the failure of ST as:

α2pµt, σtq ¨ σ2
sp ă α1pµt, σtq ¨ γ2{µt . (36)

Now we show in Lemma H.9 and Lemma H.8 that if the conditions assumed in the theorem continue to hold, then we can
success and failure respectively.

Lemma H.8 (Necessary conditions for ST). Define α1 and α2 as in (21) and (22) respectively. Assume that B
Bµα2pµ, σq ě 0

for all µ P r0, µ0s. If σsp ě 1, µ0 ď
σ2
0

5 , and

exp
`

´σ2
0{50

˘

4σ0

5
?
2

`

c

´

4σ0

5
?
2

¯2

` 4{π

´
exp

`

´σ2
0{50

˘

σ0
ď

¨

˚

˚

˝

1

σ0?
2

`

c

´

σ0?
2

¯2

` 4{π

´
1

σ0

˛

‹

‹

‚

¨
γ2

σsp
, (37)

then we have for all t:

α2pµt, σtq ¨
σ2
sp ¨ µt

γ2
ď α1pµt, σtq . (38)

Proof. We first recall that µt decreases and σt increases as (38) continues to hold true. We perform Taylor’s expansion of
α1pµt, σtq at µt “ 0. We have:

α1pµt, σtq “ α1p0, σtq `

„

B

Bµt
α1pµt, σtq

ȷ

µt“0

¨ µt `

„

B2

Bµ2
t

α1pµt, σtq

ȷ

µt“ϵ

¨
ϵ2

2
, (39)

for some ϵ P r0, µtq. Notice that
”

B
Bµt

α1pµt, σtq

ı

µt“0
“ α2p0, σtq. By assumption, we have

”

B
2

Bµ2
t
.α1pµt, σtq

ı

µt“ϵ
ě 0.

This implies that α2 is increasing in µ in the interval r0, µ0s and hence, the necessary condition reduces to the following:

α2pµ0, σ0q ¨
σ2
sp

γ2
ď α2p0, σ0q . (40)

We now use Lemma J.1 to obtain an upper bound on LHS and lower bound on RHS. In particular, we get:

α2pµ0, σ0q ď
2

?
π

exp
`

´µ2
0{p2 ¨ σ2

0q
˘

´
µ0?
2σ0

` σ0?
2

`

c

´

´
µ0?
2σ0

` σ0?
2

¯2

` 4{π

(41)

`
2

?
π

exp
`

´µ2
0{p2 ¨ σ2

0q
˘

µ0?
2σ0

` σ0?
2

`

c

´

µ0?
2σ0

` σ0?
2

¯2

` 4{π

´
2
?
2

σ0

?
π
exp

ˆ

´
µ2
0

2σ2
0

˙

. (42)

when µ0 ď σ2
0{5, we have:

α2pµ0, σ0q ď
2

?
π

exp
`

´σ2
0{50

˘

4σ0

5
?
2

`

c

´

4σ0

5
?
2

¯2

` 4{π

`
2

?
π

exp
`

´σ2
0{50

˘

6σ0

5
?
2

`

c

´

6σ0

5
?
2

¯2

` 4{π

´
2
?
2exp

`

´σ2
0{50

˘

σ0

?
π

, (43)

Similarly, we have:

α1p0, σ0q ě
2

?
π

1

σ0?
2

`

c

´

σ0?
2

¯2

` 4{π

`
2

?
π

1

σ0?
2

`

c

´

σ0?
2

¯2

` 4{π

´
2
?
2

σ0

?
π
, (44)
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Thus, if we have:

exp
`

´σ2
0{50

˘

4σ0

5
?
2

`

c

´

4σ0

5
?
2

¯2

` 4{π

´
exp

`

´σ2
0{50

˘

σ0
ď

¨

˚

˚

˝

1

σ0?
2

`

c

´

σ0?
2

¯2

` 4{π

´
1

σ0

˛

‹

‹

‚

¨
γ2

σsp
, (45)

then α2pµt, σtq ¨
σ2
sp¨µt

γ2 ď α1pµt, σtq will continue to hold for all t.

Lemma H.9 (Sufficiency conditions for ST). Define α1 and α2 as in (21) and (22) respectively. If σsp ě 1 and µ0 ě 2σ2
0 ,

then we have for all t:

α2pµt, σtq ¨
σ2
sp ¨ µt

γ2
ě α1pµt, σtq . (46)

Proof. We first recall that µt increases and σt decreases as (46) continues to hold true. First, we use Lemma J.1, to obtain
an upper bound on α1pµt, αtq:

α1pµt, αtq “ ´exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

(47)

ď ´
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 2

`
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

µt?
2σt

` σt?
2

, (48)

ď 0 , (49)

whenever
´

´
µt

2σt
` σt

2

¯2

` 1 ď
µ2
t

σ2
t

. Simplifying this further, we get σ2
t

4 ` 1 ď
3µ2

t

4σ2
t

. Moreover, since µt is increasing and

σt is decreasing, if we have σ2
0

4 ` 1 ď
3µ2

0

4σ2
0

then αpµt, σtq ď 0 for all iterations.

Now, we will show that under the assumed conditions α2pµt, σtq is lower bounded by zero. In particular, we use Lemma J.1,
to obtain an lower bound on α2pµt, αtq. Recall,

α2pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

(50)

´
2

?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

. (51)

ą exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

´
2

?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

(52)

ą
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 2

´
2
?
2

σt

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

(53)

ą
2

?
π

¨ exp
`

´µ2
t {p2 ¨ σ2

t q
˘

¨

˚

˚

˝

1

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 2

´

?
2

σt

˛

‹

‹

‚

(54)

ą
2

?
π

¨ exp
`

´µ2
t {p2 ¨ σ2

t q
˘

¨

?
2

σt

¨

˚

˚

˝

1

´
µt

σ2
t

` 1 `

c

´

´
µt

σ2
t

` 1
¯2

` 2
?
2

σt

´ 1

˛

‹

‹

‚

(55)

ą 0 , (56)
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whenever µt ě 2σ2
t and σsp ě 1 which further implies that since µt is increasing and σt is decreasing, if we have µ0 ě 2σ2

0

then α2pµt, σtq remains positive.

H.6. Analysis of CL

H.6.1. PROOF OF PROPOSITION H.2

For convenience, we first restate the Proposition H.2 which gives us a closed form solution for (6) when ρ “ 0. Then, we
provide the proof, focusing first on the case of k “ 1, and then showing that extension to k ą 1 is straightforward and
renders the final form in the proposition that follows.

Proposition H.10 (Barlow Twins solution). The solution for (6) is UJ
k Σ

´1{2
A where Uk are the top k eigenvectors of

Σ
´1{2
A

rΣΣ
´1{2
A . Here, ΣA :“ Ea„PA

raaJs is the covariance over augmentations, and rΣ :“ Ex„PU
rrapxqrapxqJs is the

covariance matrix of mean augmentations rapxq :“ EPApa|xqras.

Proof. We will use ϕpxq to denote ϕJx where ϕ P Rd. Throughout the proof, we use a to denote augmentation and x
to denote the input. We will use PApa | xq as the probability measure over the space of augmentations A, given some
input x P X (with corresponding density) pAp¨ | xq. Next, we use pAp¨q to denote the density associate with the marginal
probability measure over augmentations: PA “

ş

X PApa | xqdPU. Finally, the joint distribution over positive pairs
A`pa1, a2q “

ş

X PApa1 | xqPApa2 | xqdPU, gives us the positive pair graph over augmentations.

Before we solve the optimization problem in (6) for Φ P Rkˆd for any general k, let us first consider the case where k “ 1,
i.e. we only want to find a single linear projection ϕ. The constraint ρ “ 0, transfers onto ϕ in the following way:

Ea„PA
rϕpaq2s “ 1 ” ϕJΣAϕ “ 1 (57)

Under the above constraint we want to minimize the invariance loss, which according to Lemma J.2 is given by 2 ¨
ş

A ϕpaqLpϕqpaq dPA, where Lpϕqp¨q is the following linear operator.

Lpϕqpaq “ ϕpaq ´

ż

A

A`pa, a1q

pApaq
¨ ϕpa1q da1. (58)

Based on the definition of the operator, we can reformulate the constrained optimization for contrastive pretraining as:

argmin
ϕ:ϕJΣAϕ“1

ż

A
ϕpaq ¨ Lpϕqpaq dPA (59)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq2s ´

ż

A

ż

A
ϕpaq ¨ ϕpa1q ¨ A`pa, a1q dada1 (60)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq2s ´

ż

X

ż

A

ż

A
pApa | xqpApa1 | xq ¨ ϕpaqϕpa1q dPU (61)

ùñ argmin
ϕ:ϕJΣAϕ“1

Ea„PA
rϕpaq2s ´

ż

X
rrϕpxqs2 dPU, (62)

where rϕpxq “ Ea„PAp¨|xqϕpxq “ Ec„Unifr0,1sdrϕJpc d xqs. Note that,

rϕpxq2 “
`

Ec„Unifr0,1sdrϕJpc d xqs
˘2

(63)

“ ϕJpEc„Unifr0,1sdrc d xsqpEc„Unifr0,1sdrc d xsqJϕ (64)

ùñ

ż

X
rrϕpxqs2 dPU “ ϕJ

rΣϕ (65)

Further, since Ea„PA
rϕpaq2s “ ϕJΣϕ we can now rewrite our main optimization problem for k “ 1 as:
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argmin
ϕ:ϕJΣAϕ“1

ϕJΣAϕ ´ ϕJ
rΣϕ (66)

“ argmax
ϕ:ϕJΣAϕ“1

ϕJ
rΣϕ (67)

Recall that in our setup both rΣ and ΣA are positive definite and invertible matrices. To solve the above problem, let’s
consider a re-parameterization: ϕ1 “ Σ

1{2
A ϕ, thus ϕJΣAϕ “ 1, is equivalent to the constraint }ϕ1}22 “ 1. Based on this

re-parameterization we are now solving:

argmax
}ϕ1}22“1

ϕ1JΣ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A ϕ1, (68)

which is nothing but the top eigenvector for Σ´1{2
A ¨ rΣ ¨ Σ

´1{2
A .

Now, to extend the above argument from k “ 1 to k ą 1, we need to care of one additional form of constraint in the form of
feature diversity: ϕJ

i ΣAϕj “ 0 when i ‰ j. But, we can easily redo the reformulations above and arrive at the following
optimization problem:

argmax
}ϕ1

i}
2
2 “ 1, @i

ϕ1J
i ϕ1

j “ 0, @i ‰ j

“

ϕ1
1, ϕ

1
2, . . . , ϕ

1
k

‰J
Σ

´1{2
A ¨ rΣ ¨ Σ

´1{2
A

“

ϕ1
1, ϕ

1
2, . . . , ϕ

1
k

‰

, (69)

where ϕ1
i “ Σ

1{2
A ϕi. The above is nothing but the top k eigenvectors for the matrix Σ

´1{2
A ¨ rΣ ¨ Σ

´1{2
A . This completes the

proof of Proposition H.10.

H.6.2. ANALYSIS WITH ρ ą 0 IN CONTRASTIVE PRETRAINING OBJECTIVE (6)

In (6) we considered the strict version of the optimization problem where ρ “ 0. Here, we will consider the following
optimization problem that we optimize for our experiments in the simplified setup:

LclpΦ, κq :“ Ex„PU
Ea1,a2„PAp¨|xq }Φpa1q ´ Φpa2q}22 ` κ ¨

ˇ

ˇ

ˇ

ˇEa„PA

“

ΦpaqΦpaqJ
‰

´ Ik
ˇ

ˇ

ˇ

ˇ

2

F
, (70)

where κ ą 0 is some finite constant (note that every ρ corresponds to some κ and particularly ρ “ 0, corresponds to κ “ 8).
Let Φ‹ be the solution for (6) with ρ “ 0, i.e. the solution described in Proposition H.2. Now, we will show that in practice
we can provably recover something close to Φ‹ when κ is large enough.

Theorem H.11 (Solution for (70) is approximately equal to Φ‹). If pΦ is some solution that achieves low values of the
objective LclpΦ, κq in (70), i.e., LclppΦ, κq ď ϵ, then there exists matrix W P Rkˆk such that:

Ea„PA
}W ¨ Φ‹paq ´ pΦpaq}22 ď

kϵ

2γk`1
,

where, γk`1 ě
2γ2

1

kϵ
¨

ˆ

1 ´

c

ϵ

κ

˙

´
γ1
k
,

where γk`1 is the the k ` 1th eigenvalue for Id ´ Σ
´1{2
A

rΣ Σ
´1{2
A . Here, λ1 ď λ2 ď . . . ď λd.

Proof. Since we know that LclppΦ, κq ď ϵ, we can individually bound the invariance loss and the regularization term:

Ex„PU
Ea1,a2„PAp¨|xq }pΦpa1q ´ pΦpa2q}22 ď ϵ (71)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ea„PA

”

pΦpaqpΦpaqJ
ı

´ Ik

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

F
ď

ϵ

κ
(72)
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Thus,

@i P rks : 1 ´

c

ϵ

κ
ď pϕJ

i ΣA
pϕi ď 1 `

c

ϵ

κ
(73)

@i P rks : Ex„PU
Ea1,a2„PAp¨|xqppϕJ

i a1 ´ pϕJ
i a2q2 ď ϵ (74)

Let ϕ‹
1, ϕ

‹
2, ϕ

‹
3, . . . , ϕ

‹
d be the solution returned by the analytical solution for ρ “ 0, i.e. the solution in Proposition H.2. Now,

since Φ‹ would span Rd when ΣA is full rank, we can denote:

pϕi “

d
ÿ

j“1

η
pjq

i ϕ‹
j (75)

Now from Lemma J.2, the invariance loss for pϕi can be written using the operator Lpϕqpaq “ ϕpaq ´
ş

A
A`pa,a1

q

pApaq
ϕpa1q da1:

Invariance Lossppϕiq :“ Ex„PU
Ea1,a2„PAp¨|xqppϕJ

i a1 ´ pϕJ
i a2q2 (76)

“ 2 ¨ Ea„PA
rpϕipaqLppϕiqpaqs (77)

“ 2 ¨ Ea„PA

«˜

d
ÿ

j“1

η
pjq

i ϕ‹
i

¸

L

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸

paq

ff

(78)

“ 2 ¨ Ea„PA

«˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸ ˜

d
ÿ

j“1

η
pjq

i Lpϕ‹
j qpaq

¸ff

(79)

“ 2 ¨

d
ÿ

j“1

´

η
pjq

i

¯2

Ea„PA

“

ϕ‹
j paqLpϕ‹

j qpaq
‰

(80)

` 2 ¨

d
ÿ

m“1,n“1,m‰n

η
pmq

i η
pnq

i Ea„PA
rϕ‹

mpaqLpϕ‹
nqpaqs (81)

Since, ϕ‹
i p¨q are eigenfunctions of the operator L (HaoChen & Ma, 2022), we can conclude that:

d
ÿ

m“1,n“1,m‰n

η
pmq

i η
pnq

i Ea„PA
rϕ‹

mpaqLpϕ‹
nqpaqs “ 0,

and if γ1 ď γ2 ď γ3 . . . ď γd are the eigenvalues for ϕ‹
1, ϕ

‹
2, ϕ

‹
3, . . . , ϕ

‹
d under the decomposition of Lpϕqp¨q then:

Ex„PU
Ea1,a2„PAp¨|xqppϕJ

i a1 ´ pϕJ
i a2q2 “ 2 ¨

d
ÿ

j“1

γj

´

η
pjq

i

¯2

(82)

Recall, we are also aware of a condition on the regularization term: 1 ´
a

ϵ
κ ď pϕJ

i ΣA
pϕi ď 1 `

a

ϵ
κ .

pϕJ
i ΣA

pϕi “

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸J

ΣA

˜

d
ÿ

j“1

η
pjq

i ϕ‹
j

¸

“

d
ÿ

j“1

´

η
pjq

i

¯2

(83)

ùñ 1 ´

c

ϵ

κ
ď

d
ÿ

j“1

´

η
pjq

i

¯2

ď 1 `

c

ϵ

κ
@i. (84)

In order to show that the projection of pϕi on Φ˚ is significant, we need to argue that the term
řd

j“k`1

´

η
pjq

i

¯2

is small. The
argument for this begins with the condition on invariance loss, and the fact that γ1 ď γ2 ď . . . ď γk ď γk`1 ď . . . ď γd:
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ϵ

2
ě

d
ÿ

j“k`1

´

η
pjq

i

¯2

γj ě γk`1 ¨

˜

d
ÿ

j“k`1

´

η
pjq

i

¯2
¸

(85)

ùñ

d
ÿ

j“k`1

´

η
pjq

i

¯2

ď
ϵ

2γk`1
(86)

Extending the above result @i by simply adding the bounds completes the claim of our first result in Theorem H.11. Next,

we will lower bound the eigenvalue γk`1. Recall that,
řk

j“1

´

η
pjq

i

¯2

ě 1 ´
a

ϵ
κ ´ ϵ

2γk`1
. Thus,

γ1 ¨

ˆ

1 ´

c

ϵ

κ
´

ϵ

2γk`1

˙

ď

k
ÿ

j“1

γj

´

η
pjq

i

¯2

ď kγk`1 ¨
ϵ

2γ1
(87)

We assume that all eigenvalues are strictly positive, which is true under our augmentation distribution. Given, γk`1 ě γ1,
we can rearrange the above to get:

γk`1 ě
2γ2

1

kϵ
¨

ˆ

1 ´

c

ϵ

κ

˙

´
γ1
k

(88)

This completes the claim of our second result in Theorem H.11.

H.6.3. PROOF OF THEOREM H.3

Recall the definition of win :“ rw‹, 0, . . . , 0s and wsp :“ r0, . . . 0, w1s where w1 “ 1dsp
{
a

dsp. Let us now define u1, u2 as
the top two eigenvectors of ΣA with eigenvalues λ1, λ2 ą 0, (note that in our problem setup both ΣA and rΣ are full rank
positive definite matrices), and τ :“

a

λ1{λ2. Next we define α as the angle between u1 and win, i.e., cospαq “ uJ
1 win.

Based on the definitions of α and τ , both of which are fully determined by the eigen decomposition of the post-augmentation
feature covariance matrix ΣA we can re-write Theorem H.3 formally as:

Theorem H.12 (Formal; CL recovers both invariant win and spurious wsp but amplifies win). For w‹ “ 1din{
?
din, the CL

solution Φcl“rϕ1, ϕ2, ..., ϕks satisfies ϕJ
j win “ ϕJ

j wsp “ 0 @j ě 3. For τ, α as defined above, the solution for ϕ1, ϕ2 is:

„

w‹ ¨ cotpαq{τ, w‹

w1 ¨ 1{τ, w1 ¨ cotpαq

ȷ

¨

„

cos θ, sin θ
sin θ, ´ cos θ

ȷ

,

where 0 ď α, θ ď π{2. Now, if we redefine ϕ1 “ c1win ` c3wsp and ϕ2 “ c2win ` c4wsp, then @γ, din, dsp, σin satisfying
γ{

a

dsp ă p0 and σin{γ ă p1, we can show that Dσsp1, σsp2 such that when σsp1 ď σsp ď σsp2, the the signal along win

is amplified, i.e.:

• In ϕ1, we have 5γ{
?

dsp ď c1{c3 ď 20γ{
?

dsp.

• In ϕ2, for some small ϵ ą 0, we have |c2{c4| ě p1 ´ ϵq ¨
a

dsp{γ.

Here, it is sufficient for the constants p0, p1 to satisfy p0, p1 ! 1. For e.g., p0 “ 0.15, p1 “ 0.5 (satisfied by our problem
parameters in Example 1) are sufficient for our arguments to hold.

Proof. We will first show that the only components of interest are ϕ1, ϕ2. Then, we will prove conditions on the amplification
of win over wsp in ϕ1, ϕ2. Following is the proof overview:

I. From the derived closed form expressions for ΣA and rΣ, show that the solution returned by solving the Barlow Twins
objective depends on win and wsp only through the first two components ϕ1, ϕ2, when w‹ “ 1din{

?
din.
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II. For the components ϕ1, ϕ2, we will show that the dependence along win is amplified over that on wsp when the target
data sufficiently denoises the spurious feature.

Part-I:

We can divide the space Rd into two subspaces that are perpendicular to each other. The first subspace is W “ tb1 ¨

win ` b2 ¨ wsp : b1, b2 P Ru, i.e. the rank 2 subspace spanned by win and wsp. The second subspace is WK where
WK “ tu P Rd : uJwin “ 0, uJwsp “ 0u. Then, from Lemma J.3 we can conclude that the matrix ΣA can be written as:

ΣA “ ΣAW ` ΣAWK
(89)

ΣAW “
1

4

„`

γ2p1 ` 1{3dinq ` σ2
in{3p1 ´ 1{dinq

˘

¨ w‹w‹J, γ
?

dsp{2 ¨ w‹w1J

γ
?

dsp{2 ¨ w1w‹J,
`

dsp{2 ` 4{3 ¨ σ2
sp ` 1{6

˘

¨ w1w1J

ȷ

, (90)

where ΣAWK
:“ Ea„PA

“

ΠWK
paqpΠWK

paqqJ
‰

is the covariance matrix in the null space of W , i.e. the covariance matrix in
the space of non-predictive (noise) features. Similarly we can define:

rΣ “ rΣW ` rΣWK
(91)

rΣW “
1

4

„

γ2 ¨ w‹w‹J, γ
?

dsp{2 ¨ w‹w1J

γ
?

dsp{2 ¨ w1w‹J,
`

dsp{2 ` σ2
sp{2

˘

¨ w1w1J

ȷ

(92)

Here again rΣWK
:“ Ex„PU

“

ΠWK
pEc„Unifr0,1sdpc d xqqpΠWK

pEc„Unifr0,1sdpc d xqqqJ
‰

is the covariance matrix of mean
augmentations after they are projected onto the null space of predictive features. The above decomposition also follows
from result in Lemma J.3.

From Proposition H.2 we know that the closed form expression for the solution returned by optimizing the Barlow Twins
objective in (6) is UJΣ

´1{2
A where U are the top-k eigenvectors of:

Σ
´1{2
A ¨ rΣ ¨ Σ

´1{2
A (93)

When w‹ “ 1din
{
?
din, then ΣAWK

“ rΣWK
` 1

3 ¨ diagprΣWK
q. Further, since diagprΣWK

q “ p ¨ Id for some constant p, the

eigenvectors of rΣWK
and ΣAWK

are exactly the same. Hence, when we consider the SVD of the expression Σ
´1{2
A

rΣΣ
´1{2
A ,

the matrices ΣAWK
and rΣWK

have no effect on the SVD components that lie along the span of the predictive features. In

fact, we only need to consider two rank 2 matrices (first terms in (91), (89)) and only do the SVD of Σ´1{2
AW

¨ rΣW ¨ Σ
´1{2
AW

.

There are only two eigenvectors of Σ
´1{2
AW

¨ rΣW ¨ Σ
´1{2
AW

. We use λ1, λ2 to denote the eigenvalues of ΣAW , and
rcospαqw‹, sinpαqw1s

J, rsinpαqw‹,´ cospαqw1s
J for the corresponding eigenvectors. Similarly, we use rλ1, rλ2 to denote

the eigenvalues of rΣW , and rcospβqw‹, sinpβqw1s
J, rsinpβqw‹,´ cospβqw1s

J for the corresponding eigenvectors. Let
SVDU p¨q denote the operation of obtaining the singular vectors of a matrix. Then, to compute the components of the final
expression: SVDU pΣ

´1{2
A

rΣΣ
´1{2
A qJΣ

´1{2
A that lies along the span of predictive features (in W), we need only look at the

decomposition of the following matrix:

„

cos θ , sinpθq

sin θ ,´ cospθq

ȷ

“ SVDU

¨

˝

„

1{
?
λ1, 0

0, 1{
?
λ2

ȷ

¨

„

cospα ´ βq, sinpα ´ βq

sinpα ´ βq, ´ cospα ´ βq

ȷ

¨

»

–

b

rλ1, 0

0,

b

rλ2

fi

fl

˛

‚ (94)

Based on the above definitions of θ, α, λ1, λ2, we can then formulate ϕ1 and ϕ2 in the following way:

rϕ1, ϕ2s “

«

w‹ ¨
cospαq
?
λ1

, w‹ ¨
sinpαq
?
λ2

w1 ¨
sinpαq
?
λ1

, w1 ´ cospαq
?
λ2

ff

¨

„

cos θ , sinpθq

sin θ ,´ cospθq

ȷ

(95)
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To summarize, using arguments in Lemma J.3 and the fact that w‹ “ 1din
{
?
din, we can afford to focus on just two rank

two matrices ΣAW , rΣW in the operation: SVDU pΣ
´1{2
A qrΣΣ

´1{2
A . The other singular vectors from the SVD only impact

directions that span WK, and the singular vectors obtained by considering only the rank 2 matrices lie only in the space of W .

Part-II:

From the previous part we obtained forms of ϕ1, ϕ2 in terms of: λ1, λ2, α, θ, all of which are fully specified by the SVD of
ΣAW and rΣW . If we define τ :“

?
λ1?
λ2

, we can evaluate c1, c2, c3, c4 as:

c1 “
cotpαq

τ
` tanpθq (96)

c2 “ ´1 `
cotpαq tanpθq

τ
(97)

c3 “
1

τ
´ cotpαq tanpθq (98)

c4 “
tanpθq

τ
` cotpαq (99)

Since 0 ď α, θ ď π{2, and τ ą 0, we conclude that c1, c4 ě 0. In Lemma J.8, we show that when γ?
dsp

! 1 and

σsp1 ď σsp ď σsp2, c2 ă 0, and c3 ą 0. Now, we are ready to begin proofs for our claims on the amplification factors,
i.e. on the ratios c1{c3, |c2{c4|. We will first show conditions on |c1{c3|, followed by those on |c2{c4|. For each of these
conditions we will rely on the forms for c1, c2, c3, c4 derived in the previous part, in terms of α, θ, τ (where 0 ď α, θ ď π{2).
We will also rely on some lemmas that characterize the behavior of α, θ and τ as we vary σsp and keep all other problem
parameters fixed. We defer the full proof of these lemmas to later sections. For this part of the proof, we also define
additional notations: α0, τ0, θ0 as the quantities α, τ, θ respectively, when σsp “ 0.

Lower bound on c1{c3.

From Lemma J.6, Lemma J.5, we know that for σsp1 ď σsp ď σsp2, the following conditions are satisfied:

• cotα tanpθq ď
9γ cotpα0q?

dspτ0
. Furthermore, from Lemma J.6, we can also verify that 9γ cotpα0q{

?
dsp ! 1 (as cotα0 »

γ{
?

dsp).

• We know τ ď pτ0 where p P p1, 2q (from Lemma J.5). Thus, 1τ ´ cotα tanpθq ě 1
pτ0

´
9γ cotpα0q?

dspτ0
ą 0, since γ2

dsp
! 1

and p ă 2. Thus, c1{c3 remains positive under our conditions on problem parameters.

• Dσsp ě σsp1, such that tanpθq ě
5γ?
dspτ0

.

Now, since τ ě τ0 (see Lemma J.7), we can conclude that:

c1{c3 “
cotpαq{τ ` tanpθq

1{τ ´ cotpαq tanpθq
(100)

ě
tanpθq

1{τ0 ´ cotpαq tanpθq
(101)

ě
tanpθq

1{τ0 ´
9γ cotpα0q?

dspτ0

(102)

ě
tanpθq

1{τ0
ě

5γ{
?

dspτ0

1{τ0
“

5γ
a

dsp
(103)

Thus some amplification on ϕ1 is guaranteed as long as there is sufficient noise on the distribution of the spurious feature
xsp in the target domain.

Upper bound on c1{c3.
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Now, we show that for the amplification on ϕ1 is bounded when the noise on xsp is not too high in target. From the same
conditions on σsp as in the previous part, we know that |c1{c3|:

c1{c3 “
cotpαq{τ ` tanpθq

1{τ ´ cotpαq tanpθq
(104)

ď
cotpα0q{τ0 ` tanpθq

1{τ ´ cotpα0q tanpθq
(105)

ď
cotpα0q{τ0 ` 9γ{

?
dspτ0

1{τ ´ 9γ cotpα0q{
?

dspτ0
(106)

ď
cotpα0q{τ0 ` 9γ{

?
dspτ0

1{pτ0 ´ 9γ cotpα0q{
?

dspτ0
(107)

“
cotpα0q ` 9γ{

?
dsp

1{p ´ 9γ cotpα0q{
?

dsp

(108)

where the first inequality uses τ0 ď τ (see Lemma J.7) and cotpα0q ě cotpαq, @σsp ą 0 (see Lemma J.6), the second
inequality uses Lemma J.5 which upper bounds tanpθq with 9γ{

?
dspτ0, and the last inequality uses τ ď pτ0 for some

2 ą p ą 1 (see Lemma J.5). Note that the final equality is a positive constant which is Θp10γp{
?

dspq since cotpα0q “

Θpγ{
a

dspq (see Lemma J.6) when γ{
?

dsp ! 1. Since p ă 2 from Lemma J.5, we can conclude that c1{c3 ď 20γ{
?

dsp.
This upper bounds the amplification on ϕ1 in Theorem H.12.

The lower and upper bounds on c1{c3 predominantly depend on the bounded nature of the noise on xsp in target, i.e. when
σsp is bounded, it implies that tanpθq and τ cannot be too large as compared to their values at no noise (σsp “ 0). Next, we
will verify the amplification claims on |c2{c4|.

Lower bound on |c2{c4|.

|c2{c4| “
| ´ 1 ` cotpαq tanpθq{τ|

|tanpθq{τ ` cotpαq|
(109)

ě
1 ´ cotpα0q tanpθq{τ

tanpθq{τ ` cotpα0q
(110)

ě
1 ´ cotpα0q9γ{

?
dspτ0τ

9γ{
?

dspτ0τ ` cotpα0q
(111)

ě
1 ´ cotpα0q9γ{

?
dspτ

2
0

9γ{
?

dspτ
2
0 ` cotpα0q

(112)

“
tanpα0q ´ 9γ{τ2

0

?
dsp

9γ{τ2
0

?
dsp ` 1

(113)

where the first inequality uses the condition cotpα0q ě cotpαq (see Lemma J.6), and the second inequality uses tanpθq ď
9γ{

?
dspτ0 (see Lemma J.5). The final inequality use the condition τ ě τ0 (see Lemma J.7).

Let us now parse the final expression in the lower bound on |c2{c4|. When γ{
a

dsp ! 1, for e.g., γ{
a

dsp ď 0.2 (as satisfied
by our problem parameters in Example 1), then we can show that

?
dsp{γp1 ` ϵ0q ě 1{cotpα0q ě

?
dsp{γp1 ´ ϵ0q for some

small ϵ0 ą 0 (see Lemma J.6). Further, we also know that p1 ` ϵ1q
a

dsp{γ ě τ0p1 ´ ϵ1q
a

dsp{γ for some small ϵ1 ą 0
(see Lemma J.7). Substituting these conditions in the final equality, we get:

|c2{c4| ě
p1 ´ ϵ0q

?
dsp{γ ´ γ2

p1´ϵ1q
2
{dsp ¨ 9γ{

?
dsp

γ2
p1´ϵ1q

2
{dsp ¨ 9γ{

?
dsp ` 1

ě p1 ´ ϵq

a

dsp

γ
(114)

when γ ! ϵ, where ϵ ą 0 is some small positive constant.

Thus, with bounds on |c2{c4|, and c1{c3 (in Part-II) that amplify the effective margin in ϕ1, ϕ2, along with the claim on
ϕj ,@j ě 3 lying in the null space of win, wsp we have completed all parts of the claims in Theorem H.12.
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H.6.4. PROOF OF COROLLARY H.4

Corollary H.13 (CL improves OOD error over ERM but is still imperfect). Under the conditions of Theorem H.12 the
target accuracy of CL is at least 0.5 ¨ erfc

`

´c1{pωc3q ¨ γ{p
?
2¨σspq

˘

, and at most 0.5 ¨ erfc
`

´c1{c3 ¨ γ{p
?
2¨σspq

˘

. Note that
since c1{c3 ě 5γ{

?
dsp, the lower bound is strictly better than ERM when 1 ď ω ď 5 which holds when σ2 is small enough.

Proof. Recall from Theorem H.12, all ϕj , for j ě 3, lie in the null space of win and wsp. Since, the predictive features are
strictly contained in the rank t space spanned by win and wsp, without loss of generality we can restrict ourselves to the case
where k “ 2, and when doing training a head h “ rh1, h2sJ P R2 over contrastive pretrained representations using source
labeled data, we get the following max margin solution:

h1 “ c1 ¨ γ ` c3 ¨
a

dsp (115)

h2 “ c2 ¨ γ ` c4 ¨
a

dsp (116)

Without loss of generality we can divide both h1 and h2 by h1 and get the final classifier to be ϕ1 ` h2

h1
¨ ϕ2:

pc1win ` c3wspq `
h2

h1
¨ pc2win ` c4wspq (117)

“ pc1win ` c3wspq `
pc2γ ` c4

a

dspq

pc1γ ` c3
a

dspq
¨ pc2win ` c4wspq (118)

From the final part of Theorem H.12, we argued that: p1 ´ ϵq
?

dsp{γ ď |c2{c4| ď
?

dsp{γ, where ϵ is a small positive constant
0 ď ϵ ď 1. Note that, c2 is negative and c1, c3, c4 are positive. Hence,

´p1 ´ ϵq

a

dsp

γ
ě

c2
c4

ě ´

a

dsp

γ

ùñ 0 ď
pc2γ ` c4

a

dspq

pc1γ ` c3
a

dspq
ď

ϵc4
a

dsp

c1γ ` c3
a

dsp
(119)

Now, from Lemma J.9, we can derive the target accuracy of the classifier h on top of CL representations to be the following
where β “ pc2γ`c4

?
dspq{pc1γ`c3

?
dspq:

0.5 erfc

ˆ

´
c1 ` βc2
c3 ` βc4

¨
γ

?
2σsp

˙

(120)

Upper bound on target accuracy:

Note that β “ 0, when ϵ “ 0. Hence, the best accuracy that we can get is 0.5 erfc p´c1{c3 ¨ γ{
?
2σspq. From Theorem H.12,

we know that c1{c3 ě 5γ{
?

dsp. Thus, the upper bound of the target performance is at least 0.5 erfc
`

´5γ2
{
?

2dspσsp

˘

which is
better than the performance of ERM classifier (see Theorem H.6). But, also note that the upper bound on c1{c3 ď 20γ{

?
dsp,

which tells us that while c1{c3 scales up the effective margin, it does not solve the problem fully, i.e. the target accuracy is
still not 100%. We will revisit this argument in the proof of STOC.

Lower bound on target accuracy:

As β increases the accuracy worsens. But, we have an upper bound on β that scales with ϵ. Now, for all sufficiently small
ϵ ě 0, Dω ą 1 such that:

c1 ` βc2
c3 ` βc4

ě
1

ω

c1
c3

(121)

When ω ď
?

dsp{γ, the lower bound on target accuracy will become strictly better than ERM. Under our problem parameters
in Example 1, ω “ 4 satisfies the constraint above.
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H.7. Analysis of STOC: Formal Statement of Theorem H.5

Recall ERM solution over contrastive pretraining. We showed that without loss of generality when k (the output dimension-
ality of Φ) is greater than 2, we can restrict k to 2 and the Φ can be denoted as rϕ1, ϕ2sJ where ϕ1 “ c1w

‹ ` c3wsp and
ϕ2 “ c2w

‹ ` c4wsp. The ERM solution of the linear head is then given by h1, h2 P R:

h1 “ c1 ¨ γ ` c3 ¨
a

dsp , and h2 “ c2 ¨ γ ` c4 ¨
a

dsp . (122)

STOC performs self-training of the linear head over the CL solution. Before introducing the result, we need some additional
notation. Let ht denote the solution of the linear head at iterate t. Without loss of generality, assume that the coefficients in
ϕ1 “ c1win ` c3wsp and ϕ2 “ c2win ` c4wsp are such that c2 is positive and c1, c3, and c4 are negative. Moreover, for
simplicity of exposition, assume that |c4| ą |c3|.

Theorem H.14. Under the conditions of Corollary H.13, when
∣∣∣ c2c4 ∣∣∣ ě 2 ¨

σsp

γ ¨ pp|c4σsp| , 0.5 |c1γ|q ` c1
c4

(for p defined in

(208)), the target accuracy of ST over CL is lower bounded by 0.5 ¨ erfc p´ |c2{c4| ¨ γ{p
?
2σ2qq ě 0.5 ¨ erfc

`

´
?
d2{p

?
2σ2q

˘

.

Proof. First, we create an outline of the proof. We argue about the updates of ht showing that both ht
1 and ht

2 increase with
|ht

2| becoming greater than |ht
1| for some large t. Then we show that |ht

2| ě |ht
1| is sufficient to obtain near-perfect target

generalization.

Part 1. Recall the loss of used for self-training of h:

Lstphq “ EPTpxq

“

ℓphJΦx, sgnphJΦxqq
‰

(123)

“ EPTpxq

“

exp
`

´
∣∣hJΦx

∣∣˘‰

(124)

“ Ez„N p0,1q rexp p´ |c1γh1 ` c2γh2 ` pc3σsph1 ` c4σsph2q ¨ z|qs . (125)

Define µt “ c1γh
t
1 ` c2γh

t
2 and σt “ c3σsph

t
1 ` c4σsph

t
2. With this notation, we can re-write the loss in (125) as

Lstph
tq “ Ez„N p0,σ2

t q rexp p´ |µt ` z|qs.

Similar to the the treatment in Theorem H.7, we now derive a closed-form expression of Lstph
tq in Lemma J.10:

Lstph
tq “

1

2

ˆ

exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

` exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙˙

. (126)

Define:

A1pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

, (127)

A2pµt, σtq “ exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

, (128)

A3pµt, σtq “
2

?
2

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

. (129)

Let rht`1 denote the un-normalized gradient descent update at iterate t ` 1. We have:

rht`1 “ ht ´ η ¨
BLstph

tq

Bh
. (130)
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Now we will individually argue about the update of rht`1. First, we have:

rht`1
1 “ ht

1 ´ η ¨
BLstph

tq

Bh1

rht`1
1 “ ht

1 ´ η ¨ rA1 ¨ pσtc3σsp ´ c1γq ` A2 ¨ pσtc3σsp ` c1γq ´ A3c3σsps
l jh n

δ1

. (131)

and second, we have:

rht`1
2 “ ht

2 ´ η ¨
BLstph

tq

Bh2

rht`1
2 “ ht

2 ´ η ¨ rA1 ¨ pσtc4σsp ´ c2γq ` A2 ¨ pσtc4σsp ` c2γq ´ A3c4σsps
l jh n

δ2

. (132)

We will now argue the conditions under which ht`1
2 increases till its value reaches 1{

?
2. In particular, we will argue that

when ht
2 is negative, the norm |ht

2| decreases and when ht
2 becomes positive, then its norm increases. We show that the

following three conditions are sufficient to argue the increasing value of ht
2: for all t, we have (i) µt ě µc and |σt| ă σc for

constant µc “ |c1 ¨ γ| {2 and σc “ |c4σsp|; (ii) δ2 ă 0; (iii) |δ2| ě δ1. In Lemma H.16, we argue that our assumption on the
initialization of the backbone learned with BT implies the previous three conditions.

Case-1. When ht
2 is negative (and after the update, it remains negative). Then we want to argue the following:

pht
2 ´ ηδ2q2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
ď pht

2q2 (133)

ñ
pht

2 ´ ηδ2q2

pht
2q2

ď pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2 (134)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q2

ď ht
2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1 (135)

ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

ď 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1 (136)

ñ η2δ22 ´ 2ηδ2h
t
2 ď

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q2 (137)

ñ η2δ22pht
1q2 ´ 2ηδ2h

t
2pht

1q2 ď η2δ21pht
2q2 ´ 2ηht

1δ1pht
2q2 (138)

ñ η2δ22pht
1q2 ´ η2δ21pht

2q2 ď 2ηδ2h
t
2pht

1q2 ´ 2ηht
1δ1pht

2q2 (139)

ñ
“

ηδ2pht
1q ´ ηδ1pht

2q
‰ “

ηδ2pht
1q ` ηδ1pht

2q
‰

ď 2ht
2h

t
1

“

ηδ2pht
1q ´ ηδ1pht

2q
‰

(140)

ñ
“

ηδ2pht
1q ` ηδ1pht

2q
‰

ď 2ht
2h

t
1 (141)

Since δ2 ă 0, |δ2| ě |δ1| and ht
2 ă ht

1 ă 0, we have rηδ2pht
1q ´ ηδ1pht

2qs as positive. This implies inequality (140) to
(141) and for small enough η, (141) will continue to hold true.
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Case-2. When ht
2 is positive but less than 1{

?
2. Then we want to argue the following:

pht
2 ´ ηδ2q2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
ě pht

2q2 (142)

ñ
pht

2 ´ ηδ2q2

pht
2q2

ě pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2 (143)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q2

ě ht
2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1 (144)

ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

ě 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1 (145)

ñ η2δ22 ´ 2ηδ2h
t
2 ě

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q2 (146)

ñ η2δ22pht
1q2 ´ 2ηδ2h

t
2pht

1q2 ě η2δ21pht
2q2 ´ 2ηht

1δ1pht
2q2 (147)

ñ η2δ22pht
1q2 ´ η2δ21pht

2q2 ě 2ηδ2h
t
2pht

1q2 ´ 2ηht
1δ1pht

2q2 (148)

ñ
“

ηδ2pht
1q ´ ηδ1pht

2q
‰ “

ηδ2pht
1q ` ηδ1pht

2q
‰

ě 2ht
2h

t
1

“

ηδ2pht
1q ´ ηδ1pht

2q
‰

(149)

ñ
“

ηδ2pht
1q ` ηδ1pht

2q
‰

ě 2ht
2h

t
1 (150)

Since δ2 ă 0, |δ2| ě |δ1|, ht
1 ď ´1{

?
2 and 0 ă ht

2 ă 1{
?
2, we have rηδ2pht

1q ´ ηδ1pht
2qs as positive. This implies

inequality (149) to (150). Focusing on (150), we note that ht
1 ¨ δ2 is positive and greater in magnitude than ht

2 ¨ δ1. Moreover,
since ht

2h
t
1 is negative, (150) will continue to hold true.

Now, when ht
2 is positive and greater than 1{

?
2, then ht

2 will stay in that region. Convergence of STOC together with
conditions of convergence as in Lemma H.15 will imply that the at convergence ht

2 will remain greater than 1{
?
2, such that

htc
1

htc
2

“ δ1
δ2

. Now we bound the target error of STOC.

Part 2. To bound the accuracy at any iterate t when ht
2 ě 1{

?
2, we have from Lemma J.9:

EPT

”

y ¨

´

htJ
ϕclx

¯

ą 0
ı

“ Ez„N p0,1q

„

z ą ´
c1γh

t
1 ` c2γh

t
2

|c3σspht
1 ` c4σspht

2|

ȷ

. (151)

We now upper bound and lower bound the fraction c1γh
t
1`c2γh

t
2

|c3σspht
1`c4σspht

2|
in RHS in (151): (i) c1γht

1 ` c2γh
t
2 ě c2γh

t
2 since

both c1γh
t
1 and c2γh

t
2 have same sign; (ii) |c3σsph

t
1 ` c4σsph

t
2| ď |c4σsph

t
2| because |c4σsph

t
2| ě |c3σsph

t
1| and they have

opposite signs. Hence, from (151), we have:

EPT

”

y ¨

´

htJ
ϕclx

¯

ą 0
ı

“ Ez„N p0,1q

„

z ą ´
c2γh

t
2

|c4σspht
2|

ȷ

“ Ez„N p0,1q

„

z ą ´
c2γ

|c4σsp|

ȷ

. (152)

Substituting the definition of erfc, the expression (152) gives us the required lower bound on the target accuracy.

Lemma H.15 (Convergence of STOC). Assume the gradient updates as in (131) and (132). Then STOC converges at t “ tc

when htc
1

htc
2

“ δ1
δ2

. For t ą tc, (131) and (132) make no updates to the linear h.

Proof. When the gradient updates δ1 and δ2 are such that ht`1
1 matches ht

1, we have convergence of STOC.
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pht
2 ´ ηδ2q2

pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2
“ pht

2q2 (153)

ñ
pht

2 ´ ηδ2q2

pht
2q2

“ pht
2 ´ ηδ2q2 ` pht

1 ´ ηδ1q2 (154)

ñ
ht
2
2

` η2δ22 ´ 2ηδ2h
t
2

pht
2q2

“ ht
2
2

` η2δ22 ´ 2ηht
2δ2 ` ht

1
2

` η2δ21 ´ 2ηht
1δ1 (155)

ñ 1 `
η2δ22 ´ 2ηδ2h

t
2

pht
2q2

“ 1 ` η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1 (156)

ñ η2δ22 ´ 2ηδ2h
t
2 “

“

η2δ22 ´ 2ηht
2δ2 ` η2δ21 ´ 2ηht

1δ1
‰

pht
2q2 (157)

ñ η2δ22pht
1q2 ´ 2ηδ2h

t
2pht

1q2 “ η2δ21pht
2q2 ´ 2ηht

1δ1pht
2q2 (158)

ñ η2δ22pht
1q2 ´ η2δ21pht

2q2 “ 2ηδ2h
t
2pht

1q2 ´ 2ηht
1δ1pht

2q2 (159)

ñ
“

ηδ2pht
1q ´ ηδ1pht

2q
‰ “

ηδ2pht
1q ` ηδ1pht

2q
‰

“ 2ht
2h

t
1

“

ηδ2pht
1q ´ ηδ1pht

2q
‰

(160)

Thus either rηδ2pht
1q ´ ηδ1pht

2qs “ 0 or rηδ2pht
1q ` ηδ1pht

2qs “ 2ht
2h

t
1. Since η is such that h1 ´ ηδ1 ă 0,

rηδ2pht
1q ` ηδ1pht

2qs ‰ 2ht
2h

t
1 implying that rηδ2pht

1q ´ ηδ1pht
2qs “ 0 giving us the required condition.

Lemma H.16. Under the initialization conditions assumed in Theorem H.14, for all t, we have: (i) µt ě µc and |σt| ď σc

for constant µc “ |c1 ¨ γ| {2 and σc “ |c4σsp|; (ii) δ2 ă 0; (iii) |δ2| ě δ1, where δ1 “ A1 ¨ pσtc3σsp ´ c1γq ` A2 ¨

pσtc3σsp ` c1γq ´ A3c3σsp and δ2 “ A1 ¨ pσtc4σsp ´ c2γq ` A2 ¨ pσtc4σsp ` c2γq ´ A3c4σsp for A1, A2 and A3 defined
in (127), (128), and (129).

Proof. Recall, µt “ c1γh
t
1 ` c2γh

t
2 and σt “ c3σsph

t
1 ` c4σsph

t
2.

First, we argue that µt increases from the initialization value. Notice that µ0 “ c1γh
0
1 ` c2γh

0
2. Due to Corollary H.13,

we have h0
2 ¨ c2 ! c1h

0
1 implying µ0 ě |c1γ| {2 as both c1 and h0

1 are of same sign and h0
1 is close to ´1. As ht

2 becomes
positive since c2 ąą c1, c2ht

2 increases at a faster rate than the decrease in c1h
t
1 implying that µt ě µc continues to hold

true. Since |c4| ą |c3|, and both |ht
1| , |ht

2| ď 1, we have σt ď |c4σsp|.

To argue (ii) and (iii), we use Lemma J.11 which provides an upper bound on A3´A1σt´A2σt

A1´A2
as ppσ0, µ0q with p defined in

(208). According to the expression of δ2, we have:

δ2 “ A1 ¨ pσtc4σsp ´ c2γq ` A2 ¨ pσtc4σsp ` c2γq ´ A3c4σsp (161)
“ pA1 ¨ σt ` A2 ¨ σt ´ A3q c4σsp ´ c2pA1γ ´ A2γq (162)

“

ˆ

p´A1 ¨ σt ´ A2 ¨ σ ` A3q

pA1 ´ A2q
´

c2γ

´c4σsp

˙

p´c4σsp ˚ pA1 ´ A2qq (163)

ď 0 , (164)

when c2γ
p´c4σspq

ě pp|c4σsp| , 0.5 |c1γ|q. Similarly for (iii), putting in expressions for δ1 and δ2, we get: c2γ
p´c4σspq

ě

2 ¨ pp|c4σsp| , 0.5 |c1γ|q `
c1γ
c4σsp

.

H.8. Analysis for SSL

For SSL analysis, we argue that the projection learned by contrastive pretraining can significantly improve the generalization
of the linear head learned on top, leaving little to no room for improvement for self-training. Our analysis leverages
the margin-based bound for linear models from Kakade et al. (2008). Before introducing the result, we present some
additional notation. Let ErrDpwq denote 0-1 error of a classifier on a distribution D. Define 0-1 error with margin γ as
yErr

γ
pwq “

řn
i“1

Iryiw
Jxiďγs
n .

Theorem H.17 (Corollary 6 in Kakade et al. (2008)). For all classifiers w and margin γ, we have with probability at least
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1 ´ δ:

ErrT pwq ď yErr
γ

pwq ` 4
B

γ

c

1

n
`

c

logp1{δq

n
`

c

logplog2p4B{γqq

n
, (165)

where B is an upper bound on the ℓ2 norm of the input points x.

When ĄErr
γ

pwq is close to zero, the denominating term in RHS of (165) is 4B
γ

b

1
n . SSL mainly reduces the B on the

projected data by reducing the dependency from order
?
d to

?
k where k is the dimensionality of the output of ϕ. This

reduction is the best possible in the setting where contrastive representations do not significantly lose the margin (separating
classes) on the original input data, i.e., γ does not drop too much. This is true in our theoretical analysis when the conditions
in Theorem H.12 are satisfied. Intuitively, since the target data has only one predictive feature (along win), CL directly
recovers this predictive feature since it is the predominant direction that minimizes invariance loss.

Moreover, in our setup, all the points are at the margin, and hence ĄErr
γ

pwq will be zero or one. When training error is close
to zero,

I. Limitations of Prior Work
I.1. Contrastive learning analysis

Prior works that analyze contrastive learning show that minimizers of the CL objective recover clusters in the augmentation
graph, which weights pairs of augmentations with their probability of being sampled as a positive pair (HaoChen et al., 2021;
Cabannes et al., 2023; Saunshi et al., 2022; Johnson et al., 2022). When there is no distribution shift in the downstream task,
assumptions made on the graph in the form of consistency of augmentations with downstream labels, is sufficient to ensure
that a linear probed head has good ID generalization. Under distribution shift, these assumptions are not sufficient and
stronger ones are needed. E.g., some works assume that same-domain/class examples are weighted higher that cross-class
cross-domain pairs (HaoChen et al., 2022; Shen et al., 2022).

Using notation defined in (Shen et al., 2022), the assumption on the augmentation graph requires cross-class and same-
domain weights (β) to be higher than cross-class and cross-domain weights (γ). It is unclear if examples from different
classes in the same domain will be “connected” if strong spurious features exist in the source domain and augmentations fail
to mask them completely (e.g., image background may not be completely masked by augmentations but it maybe perfectly
predictive of the label on source domain). In such cases, the linear predictor learnt over CL would fail to generalize OOD.
In our toy setup as well, the connectivity assumption fails since on source xsp is perfectly predictive of the label and the
augmentations are imperfect, i.e., augmentations do not mask xsp and examples of different classes do not overlap in source
(i.e., β “ 0). On the other hand, since xsp is now random on target, augmentations of different classes may overlap, i.e.,
γ ą 0, thus breaking the connectivity assumption. This is also highlighted in our empirical findings of CL furnishing
representations that do not fully enable linear transferability from source to target (see Sec. B). These empirical findings
also call into question existing assumptions on data augmentations, highlighting that perfect linear transferability may
not typically hold in practice. It is in this setting that we believe self-training can improve over contrastive learning by
unlearning source-only features and improving linear transferability.

I.2. Self-training analysis

Some prior works on self-training view it as consistency regularization that constrain pseudolabels of original samples to
be consistent with all their augmentations (Cai et al., 2021; Wei et al., 2020; Sohn et al., 2020). This framework abstracts
the role played by the optimization algorithm and instead evaluates the global minimizer of a population objective that
enforces consistency of pseudolabels. In addition, certain expansion assumptions on class-conditional distributions are
needed to ensure that pseudolabels have good accuracy on source and target domains. This framework does not account
for challenges involved in propagating labels iteratively. For e.g., when augmentation distribution has long tails, the
consistency of pseudolabels depends on the sampling frequency of “favorable” augmentations. As an illustration, consider
our augmentation distribution in the toy setup in Sec. 3. If it were not uniform over dimensions, but instead something that
was highly skewed, then a large number of augmentations need to be sampled for every data point to propagate pseudolabels
successfully from source labeled samples to target unlabeled samples during self-training. This might hurt the performance
of ST when we are optimizing for only finitely many iterations and over finitely many datapoints. This is why in our analysis
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we instead adopt the iterative analysis of self-training (Chen et al., 2020b).

J. Additional Lemmas
In this section we define some additional lemmas that we use in our theoretical analysis in H.
Lemma J.1 (Upper bound and lower bounds on erfc; Kschischang (2017)). Define erfcpxq “ 2?

π
¨
ş8

x
expp´z2q ¨ dz. Then

we have:

2
?
π

¨
expp´x2q

x `
?
x2 ` 2

ă erfcpxq ď
2

?
π

¨
expp´x2q

x `
a

x2 ` 4{π

Lemma J.2 (invariance loss as product with operator L). The invariance loss for some ϕ P Rd is given as: 2 ¨
ş

A ϕpaq ¨

Lpϕqpaq dPA where the operator L is defined as:

Lpϕqpaq “ ϕpaq ´

ż

A

A`pa, a1q

pApaq
¨ ϕpa1q da1

Proof. The invariance loss for ϕ is given by:

Ex„PU
Ea1,a2„PAp¨|xqpaJ

1 ϕ ´ aJ
2 ϕq2 “ 2Ex„PU

Ea„PAp¨|xq

“

ϕpaq2
‰

´ 2Ea1,a2„A`p¨,¨q rϕpa1qϕpa2qs (166)

“ 2 ¨

ż

A
ϕpaq2 dPA ´ 2 ¨

ż

A
ϕpaq

ˆ
ż

A

A`pa, a2q

pApaq
¨ ϕpa2q da2

˙

dPA (167)

“ 2 ¨

ż

A
ϕpaq ¨ Lpϕqpaq dPA (168)

Lemma J.3. If W is the space spanned by win and wsp, and WK is the null space for W , then for any u P W and any
v P WK, the covariance along these directions Ea„PA

raJuvJas “ 0.

Proof: We can write the covariance over augmentations after we break down the augmentation a into two projections:
a “ ΠWpaq ` ΠWK

paq

Ea„PA
raJuvJas “ Ea„PA

“`

uJpΠWpaq ` ΠWK
paqq

˘ `

vJpΠWpaq ` ΠWK
paqq

˘‰

(169)

“ Ea„PA

“`

uJΠWpaq
˘ `

vJΠWK
paq

˘‰

(170)

“ uJ
`

Ea„PA

“

ΠWpaqΠWK
paqJ

‰˘

v “ 0 (171)

where the last inequality follows from the fact that Ea„PA

“

ΠWpaqΠWK
paqJ

‰

“ Ea„PA
rΠWpaqsEa„PA

rΠWK
paqs

J, since
the noise in the null space of W is drawn independent of the component along W , and furthermore the individual expectations
evaluate to zero.

Lemma J.4. For a 2 ˆ 2 real symmetric matrix
„

a, b
c, d

ȷ

the eigenvalues λ1, λ2 are given by the following expressions:

λ1 “ pa ` b ` δq{2

λ2 “ pa ` b ´ δq{2,

where δ “
a

4c2 ` pa ´ bq2. Further, the eigenvectors are given by U “

„

cospθq, sinpθq

sinpθq,´cospθq

ȷ

, where tanpθq is defined as

follows:

tanpθq “
b ´ a ` δ

2c

For full proof of the above statements see (Deledalle et al., 2017). Here, we will use these statements to arrive at closed
form expressions for the eigenvalues and eigenvectors of ΣA, rΣ and their approximations when γ !

a

dsp, i.e. γ?
dsp

ď ϵ,

where ϵ is a small positive constant (of the order of « 0.1 for the problem parameters defined in Example 1).
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Proof. We can now substitute the above formulae with a, b, c, d taken from the expressions of ΣA and rΣ, to
get the following values: λ1, λ2 are the eigenvalues of ΣA, with α determining the corresponding eigenvectors
rcospαq, sinpαqs, rsinpαq,´ cospαqs; and rλ1, rλ2 are the eigenvalues of rΣ, with β determining the corresponding eigenvec-
tors: rcospβq, sinpβqs, rsinpβq,´ cospβqs.

λ1 “
1

8

˜

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
dsp
2

`
2σ2

sp

3
`

1

6

`

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(172)

λ2 “
1

8

˜

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙

`
dsp
2

`
2σ2

sp

3
`

1

6

´

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(173)

rλ1 “
1

8

˜

γ2 `
dsp
2

`
σ2
sp

2
`

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(174)

rλ2 “
1

8

˜

γ2 `
dsp
2

`
σ2
sp

2
´

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(175)

tanpαq “
1

γ
a

dsp

˜

dsp
2

`
2σ2

sp

3
`

1

6
´

ˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

`

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

(176)

tanpβq “
1

γ
a

dsp

˜

dsp
2

`
σ2
sp

2
´ γ2 `

d

γ2dsp `

ˆ

γ2 ´

ˆ

dsp
2

`
σ2
sp

2

˙˙2
¸

(177)

For each of these quantities: λ1, λ2, tanpαq, rλ1, rλ2, tanpβq, we can directly apply the limit γ{
?

dsp Ñ 0 to get the following
expressions:

λ1 «
1

8
¨

ˆ

γ2

ˆ

1 `
1

3din

˙

` dsp `
4

3
σ2
sp `

1

3

˙

(178)

tanpαq «
dsp ` 4

3 ¨ σ2
sp ´ γ2 ¨ p1 ` 1{3dinq ` 1{3

γ
a

dsp
(179)

rλ1 «
1

8
¨
`

γ2 ` dsp ` σ2
sp

˘

(180)

tanpβq «
σ2
sp ` dsp ´ γ2

γ
a

dsp
(181)

Lemma J.5. When γ, σin ! dsp (conditions from Theorem H.12), we can show that Dσsp1, σsp2 such that for the range of
σsp1 ď σsp ď σsp2, 5γ{τ0

?
dsp ď tan θ ď 9γ{τ0

?
dsp. Further, there exists p P p1, 2q such that τ ď pτ0. For the problem

parameters defined in Example 1, σsp
2
1 “ 0.8, and σsp

2
2 “ 1.5 satisfies the conditions we need.

Proof. Using (Stewart, 1993), we know that the singular vectors of a 2 ˆ 2 asymmetric matrix
„

a, b
c, d

ȷ

, is
„

cos θ, sin θ
sin θ, ´ cos θ

ȷ

.
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Here, tanp2θq is given by:

tanp2θq “
2ac ` 2bd

a2 ` b2 ´ c2 ´ d2

Now, substituting the values in the expression (94), we get:

tanp2θq “
2 tanpα ´ βq ¨ prλ1 ´ rλ2q ¨

?
λ1λ2

pλ2
rλ1 ´ λ1

rλ2q ´ pλ1
rλ1 ´ λ2

rλ2q ¨ tan2pα ´ βq
(182)

“
2 tanpα ´ βq ¨ prλ1{Ăλ2 ´ 1q ¨

?
λ1{

?
λ2

prλ1{rλ2 ´ λ1{λ2q ´ pλ1
rλ1{λ2

rλ2 ´ 1q ¨ tan2pα ´ βq
(183)

Controlling α ´ β:

We will first note that α increases based on our arguments in Lemma J.6. Using similar arguments, we can also claim
β increases, but the key point here is that due to the effect of augmentations α increases at a rate that is faster than
rate of increase of β, specifically when σsp is not too large. We can see this by analyzing B tanpαq

Bσsp
and comparing it

with B tanpβq

Bσsp
, in the region σsp ď σsp2 (essentially the region where we can approximate tanpαq, tanpβq with their first

order Taylor approximations). From the expressions for tanpαq, tanpβq in Lemma J.4, under γ, σin !
a

dsp, we get:
B tanpβq

Bσsp
“ Op2σsp{γ

?
dspq, and B tanpαq

Bσsp
“ Op8σsp{3γ

?
dspq. This establishes the fact that tanpα´βq increases monotonically

in some range for σsp, as long as γ, σin !
a

dsp.

Controlling functions of λ1, λ2, rλ1, rλ2:

Next, it is easy to see that
a

λ1{λ2 increases monotonically, as we increase σsp. The same is true, for rλ1{rλ2, and similarly

λ1{λ2. Both of these hold since, once again the rate of increase Bλ1

Bσsp
ą Bλ2

Bσsp
, and Brλ1

Bσsp
ą Brλ2

Bσsp
— both of which are derived

from the expressions in Lemma J.4, taking σin ! γ, and γ !
a

dsp. Consequently, λ1
rλ1{λ2

rλ2 also increases as we increase
σsp.

Finally, we will focus on the expression rλ1{rλ2 ´ λ1{λ2. Here, we will first see that Dσsp2 such that this expression is positive
@σsp ď σsp2. If we evaluate the expressions: rλ1{rλ2 and λ1{λ2, we will note that:

rλ1{rλ2 “
1 ` rz

1 ´ rz
λ1{λ2 “

1 ` z

1 ´ z
, (184)

rz :“

g

f

f

e

γ2dsp ´ 4γ2
`

dsp{2 ` σ2
sp{2

˘

`

dsp{2 ` σ2
sp{2 ` γ2

˘2 ` 1 (185)

z :“

g

f

f

e

γ2dsp ´ 4 pγ2p1 ` 1{3dinq ` σ2
inp1{3 ´ 1{3dinqq

`

dsp{2 ` 2σ2
sp{3 ` 1{6

˘

`

dsp{2 ` 2σ2
sp{3 ` 1{6 ` γ2p1 ` 1{3dinq ` σ2

inp1{3 ´ 1{3dinq
˘2 ` 1 (186)

When σsp ! dsp, rz{z “ O
ˆ ?

pdsp{2q2´γ2dsp´2γ2σ2
sp?

pdsp{2q2´γ2dsp´p8{3qγ2σ2
sp

˙

. Since rz{z ą 1 in the region: 0 ď rz, z ď 1, from the properties

of the function x ÞÑ 1`x{1´x, we can argue that rλ1{rλ2 ą λ1{λ2. Thus, the term, rλ1{rλ2 ´ λ1{λ2 is positive. Additionally, in the
same region, i.e., for some dsp ě dsp0, we can argue that rz and z remain constant (up to some approximation terms). Thus,
the expression rλ1{rλ2 ´ λ1{λ2 remains stable for small enough σsp.

Thus, when α ´ β increases, and consequently tanpα ´ βq2 increases, the denominator term (in tanp2θq) decreases
monotonically. Recall that numerator also is increasing monotonically under conditions: γ, σin, σsp ! dsp, when we increase
σsp from 0 to a positive value. Because of this monotonic behavior there would necessarily exist σsp1 such that as σsp ě σsp1,
we have: tanpθq ě 5γ{τ0

?
dsp. Similarly, there would exist σsp2 ě σsp1, such that @σsp ď σsp2, tanpθq ď 9γ{τ0

?
dsp.

Bounded nature of τ :
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The expression for τ is simply:

τ “

c

1 ` z

1 ´ z
(187)

z “

g

f

f

e

γ2dsp ´ 4 pγ2p1 ` 1{3dinq ` σ2
inp1{3 ´ 1{3dinqq

`

dsp{2 ` 2σ2
sp{3 ` 1{6

˘

`

dsp{2 ` 2σ2
sp{3 ` 1{6 ` γ2p1 ` 1{3dinq ` σ2

inp1{3 ´ 1{3dinq
˘2 ` 1 (188)

Since γ, σin ! dsp, z “ O
ˆc

1 ´
γ2dsp´8{3γ2σ2

sp

pdsp{2`2σ2
sp{3q2

˙

. Further, z increases monotonically, since the term pdsp{2 ` 2σ2
sp{3q2

increases at a rate that is much faster than rate at which 8{3γ2σ2
sp increases, when dsp ě dsp0 (or, dgpσspq

dσsp
ą 0 for large

enough dsp where gpσspq “

c

1 ´
γ2dsp´8{3γ2σ2

sp

pdsp{2`2σ2
sp{3q2

. Consequently, τ increases monotonically as σsp increases. Thus, there

would exist some σ1
sp2

such that @σsp ď σ1
sp2

we have τ ď pτ0 (where p P p1, 2q). Now, both τ and tanpθq increase
monotonically, but the rate of increase of tanpθq is much faster than τ . Recall, that to in the argument for increase in tanpθq,
it was sufficient for z to remain constant, i.e., remain close to its value at σsp “ 0 for the term tanp2θq to increase. Thus, the
condition for τ ď pτ0 (for p P p1, 2q) is satisfied more easily, and σ1

sp2
ą σsp2.

Note that our arguments above do not necessarily treat dsp as a free parameter. In fact, recall that dsp controls the rate at
which α´β increases, given by Opγ{

?
dspq. Hence, γ{

?
dsp cannot be exactly 0. The key point here is that our required lower

bound on τ is Ωp1{τ20 q and τ0 »
a

dsp{γ. Thus the required conditions on c1{c3 also relax, and do so with quadratic rates.

Combining arguments on τ, tanpθq, we conclude that, when σin ! γ and γ ! dsp (conditions in Theorem H.12), we can
show that Dσsp1, σsp2 such that for the range of σsp1 ď σsp ď σsp2, 5γ{τ0

?
dsp ď tan θ ď 9γ{τ0

?
dsp. Further, there exists

p P p1, 2q such that τ ď pτ0.

Lemma J.6. As we increase σsp, the value of cotpαq decreases monotonically, i.e. cotpα0q ě cotα, @σsp. Furthermore,

when γ, σin !
a

dsp (conditions from Theorem H.12), we get p1 ` ϵ0q

?
dsp

γ ě tanα0 ě p1 ´ ϵ0q

?
dsp

γ for some small
1 ą ϵ0 ą 0.

Proof. Let us look at the expression of tanpαq from J.4.

tanpαq “
1

γ
a

dsp

˜

dsp
2

`
2σ2

sp

3
`

1

6
´

ˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

`

d

γ2dsp `

ˆˆ

γ2

ˆ

1 `
1

3din

˙

`
σ2
in

3

ˆ

1 ´
1

din

˙˙

´

ˆ

dsp
2

`
2σ2

sp

3
`

1

6

˙˙2
¸

As we increase σsp, the term 2σ2
sp{3 monotonically increases in the numerator. Also, the term inside the

?
¨ expression:

´´

γ2
´

1 ` 1
3din

¯

`
σ2
in

3

´

1 ´ 1
din

¯¯

´

´

dsp

2 `
2σ2

sp

3 ` 1
6

¯¯

monotonically increases in magnitude. Thus, it is evident that
tanpαq would monotonically increase as we increase σsp, and consequently cotpαq would decrease with increase in σsp,
making cotpα0q the maximum value of cotα for fixed γ, dsp, σin, din.

Next, we look at the value of tanα0 under the condition γ, σin !
a

dsp. Here we see that,

tanpα0q “

dsp

2 ` Opγ2 ` σ2
inq ` γ

a

dsp
`
?

dsp{2γ ` Op1{
?

dspγq
˘

γ
a

dsp
“

a

dsp

γ
` Θp1{

a

dspq (189)

Thus, when dsp is sufficiently large, compared to σin, γ, p1 ` ϵ0q

?
dsp

γ ě tanα0 ě p1 ´ ϵ0q

?
dsp

γ , for some small
1 ą ϵ0 ą 0.
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Lemma J.7. As we increase σsp, the value of τ increases monotonically, i.e. τ0 ď τ, @σsp. Additionally, when γ, σin ! dsp

(conditions from Theorem H.12), we have p1 ` ϵ1q

?
dsp

γ ě τ0 ě p1 ´ ϵ1q

?
dsp

γ for some small 1 ą ϵ1 ą 0.

Proof. The proof of this lemma follows from arguments made in Lemma J.6 and Lemma J.5. Recall that:

τ0 “

c

1 ` z0
1 ´ z0

(190)

τ “

c

1 ` z

1 ´ z
(191)

z “

g

f

f

e

γ2dsp ´ 4 pγ2p1 ` 1{3dinq ` σ2
inp1{3 ´ 1{3dinqq

`

dsp{2 ` 2σ2
sp{3 ` 1{6

˘

`

dsp{2 ` 2σ2
sp{3 ` 1{6 ` γ2p1 ` 1{3dinq ` σ2

inp1{3 ´ 1{3dinq
˘2 ` 1, (192)

where z0 is the value that z takes at σsp “ 0. In the second part of Lemma J.5 we have already argued that τ increases
monotonically as σsp increases from 0 Ñ σsp2. Thus, now we are only left to reason about τ0. We can see that z0 evaluates to:

z0 “

d

γ2dsp ´ 4 pγ2p1 ` 1{3dinq ` σ2
inp1{3 ´ 1{3dinqq pdsp{2 ` 1{6q

pdsp{2 ` 1{6 ` γ2p1 ` 1{3dinq ` σ2
inp1{3 ´ 1{3dinqq

2 ` 1 (193)

Under conditions of Theorem H.12, we know σin ! γ !
a

dsp. Taking σin ! γ, we get z0 »
a

1 ´ 4γ2
{dsp. Now taking

γ !
a

dsp we can use Taylor approximation to approximate
?
1 ´ x2 with 1 ´ x2

{2 when x is close to 0. Consequently, we
get z0 » 1 ´ 2γ2

{dsp. Plugging this in to
?
1`z0{

?
1´z0 we get τ0 »

?
dsp{γ. Thus, we can conclude that Dϵ1 « 0 such that

p1 ` ϵ1q

?
dsp

γ ě τ0 ě p1 ´ ϵ1q

?
dsp

γ .

Lemma J.8. Under conditions on γ, dsp, σin in Theorem H.12, and bounded range of σsp1σsp ď σsp2 (from Lemma J.5),
we can show the following is true: c1, c3, c4 ą 0 and c2 ă 0.

Proof. By definition, c1, c4 ě 0. In the proof on the lower bound over c1{c3, we argue that under conditions on problem
parameters defined in Theorem H.12 and for a bounded range of noise in target (Lemma J.5), c1{c3 remains positive. Hence,
c3 ą 0. Now, consider the expression for c2 “ ´1 `

cotpαq tanpθq

τ .

Primarily, we note from Lemma J.6 and Lemma J.5 that:

cotpαq tanpθq

τ
ď

cotpα0q9γ{
?

dspτ0

τ0
“ Opγ

4
{dsp

2q,

since cotα0 » γ{
?

dsp and τ0 »
?

dsp{γ.. As a result, we can conclude c2 ă 0.

Lemma J.9 (0-1 error of a classifier on target). Assume a classifier of the form w “ l1 ¨ win ` l2 ¨ wsp where l1, l2 P

R and win“rw‹, 0, ..., 0sJ, and wsp “ r0, ..., 0, 1dsp{
?

dspsJ. Then the target accuracy of this classifier is given by

0.5 ¨ erfc
´

´
l1¨γ

?
2¨l2¨σsp

¯

.
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Proof. Assume px, yq „ PT. Accuracy of w is given by EPT

“

psign
`

wJx
˘

“ yq
‰

.

EPT

“

sign
`

wJx
˘

“ y
‰

“ EPT

“

y ¨ sign
`

wJx
˘

“ 1
‰

“ EPT

“

y ¨ pwJxq ą 0
‰

“ EPT

“

y ¨ pxJpl1 ¨ win ` l2 ¨ wspqq ą 0
‰

“ EPT
ry ¨ pγ ¨ l1 ¨ y ` l2 ¨ σspq ą 0s

“ Ez„N p0,1q rpγ ¨ l1 ` y ¨ l2 ¨ σsp ¨ zq ą 0s

“ Ez„N p0,1q ry ¨ l2 ¨ σsp ¨ z ą ´γ ¨ l1s

“ Ez„N p0,1q rl2 ¨ σsp ¨ z ą ´γ ¨ l1s

“ Ez„N p0,1q

„

z ą ´
γ ¨ l1
l2 ¨ σsp

ȷ

Using the definition of erfc function, we get the aforementioned accuracy expression.

Lemma J.10. For σ ą 0 and µ P R, we have

gpµ, σq :“ Ez„N p0,σq rexp p´ |µ ` z|qs (194)

“
1

2

`

exp
`

σ2
{2 ´ µ

˘

¨ erfc p´µ{
?
2σ ` σ{

?
2q ` exp

`

σ2
{2 ` µ

˘

¨ erfc pµ{
?
2σ ` σ{

?
2q

˘

(195)

Proof. The proof uses simple algebra and the definition of erfc function.

gpµ, σq :“ Ez„N p0,σq rexp p´ |µ ` z|qs

“
1

?
2π

ż

z

exp p´ |µ ` z|q ¨ exp

ˆ

´
z2

2σ2

˙

dz

“
1

?
2π

ż 8

´8

exp p´ |µ ` z|q ¨ exp

ˆ

´
z2

2σ2

˙

dz

“
1

?
2π

ż 8

´µ

exp p´µ ` zq ¨ exp

ˆ

´
z2

2σ2

˙

dz `
1

?
2π

ż ´µ

´8

exp pµ ` zq ¨ exp

ˆ

´
z2

2σ2

˙

dz

“ exp
`

σ2{2 ´ µ
˘

ż 8

´µ
?

2σ
`

?
2σ
2

expp´z2qdz ` exp
`

σ2{2 ` µ
˘

ż

´µ
?

2σ
´

?
2σ
2

´8

expp´z2qdz

“
1

2

`

exp
`

σ2
{2 ´ µ

˘

¨ erfc p´µ{
?
2σ ` σ{

?
2q ` exp

`

σ2
{2 ` µ

˘

¨ erfc pµ{
?
2σ ` σ{

?
2q

˘

Lemma J.11. For µt ě µ0 and |σt| ď σ0, we have for all t:

A3 ´ A1σt ´ A2σt

A1 ´ A2
ď ppσ0, µ0q ,

where A1, A2 and A3 defined in (127), (128), and (129), and p is defined in (208).

Proof. Recall the definition of A1, A2, and A3.

A1pµt, σtq “ exp

ˆ

σ2
t

2
´ µt

˙

¨ erfc

ˆ

´
µt

?
2σt

`
σt
?
2

˙

, (196)

A2pµt, σtq “ exp

ˆ

σ2
t

2
` µt

˙

¨ erfc

ˆ

µt
?
2σt

`
σt
?
2

˙

, (197)

A3pµt, σtq “
2

?
2

?
π
exp

ˆ

´
µ2
t

2σ2
t

˙

. (198)
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We now use upper bounds and lower bounds on erfc as in Lemma J.1. In particular, we have the following bounds on A1

and A2:

A1 ď
2

?
π
exp

ˆ

σ2
t

2
´ µt

˙

¨

exp
´

´
σ2
t

2 ` µt ´ µ2
t {p2 ¨ σ2

t q

¯

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 4{π

(199)

“
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 4{π

. (200)

A1 ě
2

?
π
exp

ˆ

σ2
t

2
´ µt

˙

¨

exp
´

´
σ2
t

2 ` µt ´ µ2
t {p2 ¨ σ2

t q

¯

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 2

(201)

“
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

´
µt?
2σt

` σt?
2

`

c

´

´
µt?
2σt

` σt?
2

¯2

` 2

. (202)

A2 ď
2

?
π
exp

ˆ

σ2
t

2
` µt

˙

¨
exp

´

´
σ2
t

2 ´ µt ´ µ2
t {p2 ¨ σ2

t q

¯

µt?
2σt

` σt?
2

`

c

´

µt?
2σt

` σt?
2

¯2

` 4{π

(203)

“
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

µt?
2σt

` σt?
2

`

c

´

µt?
2σt

` σt?
2

¯2

` 4{π

. (204)

A2 ě
2

?
π
exp

ˆ

σ2
t

2
` µt

˙

¨
exp

´

´
σ2
t

2 ´ µt ´ µ2
t {p2 ¨ σ2

t q

¯

µt?
2σt

` σt?
2

`

c

´

µt?
2σt

` σt?
2

¯2

` 2

(205)

“
2

?
π

exp
`

´µ2
t {p2 ¨ σ2

t q
˘

µt?
2σt

` σt?
2

`

c

´

µt?
2σt

` σt?
2

¯2

` 2

. (206)

Using these bounds, we get:

A3 ´ A1σt ´ A2σt

A1 ´ A2
ď ppσt, µtq , (207)

where

ppσt, µtq “

?
2 ¨

˜

µt?
2σt

` σt?
2

`

c

´

µt?
2σt

` σt?
2

¯2

` 2

¸ ˜

´µt?
2σt

` σt?
2

`

c

´

´µt?
2σt

` σt?
2

¯2

` 2

¸

?
2µt

σt
`

c

´

µt?
2σt

` σt?
2

¯2

` 4{π ´

˜

c

´

´µt?
2σt

` σt?
2

¯2

` 2

¸ . (208)

We observe that the RHS of (208) increases with σt and decreases with µt and takes the maximum value at boundary points
σ0 and µ0.


