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Abstract
Windows malware classifiers that rely on static
analysis have been proven vulnerable to adver-
sarial EXEmples, i.e., malware samples care-
fully manipulated to evade detection. How-
ever, such attacks are typically optimized via
query-inefficient algorithms that iteratively ap-
ply random manipulations on the input malware,
and require checking that the malicious func-
tionality is preserved after manipulation through
computationally-expensive validations. To over-
come these limitations, we propose RAMEn, a
general framework for creating adversarial EX-
Emples via functionality-preserving manipula-
tions. RAMEn optimizes their parameters of
such manipulations via gradient-based (white-
box) and gradient-free (black-box) attacks, imple-
menting many state-of-the-art attacks for crafting
adversarial Windows malware. It also includes
a family of black-box attacks, called GAMMA,
which optimize the injection of benign content
to facilitate evasion. Our experiments show that
gradient-based and gradient-free attacks can by-
pass malware detectors based on deep learning,
non-differentiable models trained on hand-crafted
features, and even some renowned commercial
products.

1. Introduction
Windows malware is still a threat in the wild, as thousands of
malicious programs are uploaded to VirusTotal every day.1

To counter such trend, modern approaches use machine
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1https://www.virustotal.com/it/
statistics/

learning to detect these threats at scale (Saxe & Berlin,
2015; Kolosnjaji et al., 2016; Hardy et al., 2016; David
& Netanyahu, 2015; Incer et al., 2018; Anderson & Roth,
2018; Raff et al., 2018).

However, these techniques have not been tested under the
lens of adversarial machine learning (Huang et al., 2011;
Biggio & Roli, 2018), that studies the security aspects of
machine-learning algorithms under attacks staged either
at training or at test time. In particular, recent work has
shown how an attacker can create adversarial EXEmples,
i.e., Windows malware samples carefully perturbed to evade
learning-based detection while preserving malicious func-
tionality (Kolosnjaji et al., 2018; Demetrio et al., 2019; 2021;
Anderson et al., 2017; Castro et al., 2019a; Kreuk et al.,
2018; Sharif et al., 2019). Manipulating programs is not
as easy as perturbing images, hence the attacker can either
apply invasive perturbations and use sandboxes to ensure
that functionality of the binary is not compromised (Castro
et al., 2019a; Song et al., 2020), wasting a lot of queries to
the target model in the process, or focus the perturbation
on areas of the file that do not impact functionality (Kreuk
et al., 2018; Demetrio et al., 2019; Kolosnjaji et al., 2018).

To overcome these limitations, we propose RAMEn as an
unifying framework for creating adversarial EXEmples by
leveraging practical manipulations, i.e. transformations that
alter the representation of a program without compromising
its original functionality. This allows the attacker to skip
the validation inside a sandbox, saving computations and
queries sent to the target. This framework is formalized as a
minimization problem over the parameters of such manip-
ulations, and it can be optimized with both gradient-based
(white-box) and gradient-free (black-box) techniques. We
test both scenarios, showing that end-to-end networks are
weak against minimal perturbations, and that decision trees
trained on hand-crafted features can be bypassed by inject-
ing content harvested from legitimate goodware samples.
We also remark how the latter can transfer also against com-
mercial products on VirusTotal 2, successfully bypassing 12
of them.

2https://virustotal.com
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2. Formalization and Manipulations
Let be Z ⊂ {0, . . . , 255}∗ all possible functioning pro-
grams in the input space as string of bytes. We define the
target detector as two different components: the feature ex-
tractor φ : Z → X , being X ⊆ Rd a d-dimensional vector
space (i.e., the feature space); and the the prediction func-
tion f : X → R. On top of these objects, we formalize
RAMEn, a general framework that reduces the problem of
computing adversarial EXEmples to optimization problems
of the form:

minimize
t ∈ T

F (t) = L(f(φ(h(z, t)), y) . (1)

where L : R × Y → R is a loss function that measures
how likely an input sample is classified as malware, by com-
paring the output of the prediction f(φ(z)) on a malicious
input sample z against the class label y = −1 of benign
samples. This problem is connected to the practical manip-
ulations (Demetrio et al., 2020), formalized as a function
h : Z × T → Z . These are functions that perturb malware
samples without compromising their original functionality,
allowing the attacker to skip any validation step, speeding
up the procedure and saving resources.
Practical manipulations. Malware can be manipulated by
using two different families of manipulation functions, ei-
ther by altering its file representation, or by altering its code.
We focus on the first family, since we are interested in test-
ing the robustness of detectors that work at static time, and
we report the manipulations that address the runtime of a
program in the Appendix. To alter the representation, the
attacker leverage ambiguities of the format used for storing
program as regular file, i.e. the Windows PE file format. 3

We leave to the Appendix a more detailed overview of such
format.
(s.1) Perturb Header Fields (Anderson et al., 2017; Castro
et al., 2019a;b). This technique includes altering section
names, breaking the checksum, and altering debug informa-
tion.
(s.2) Filling Slack Space (Kreuk et al., 2018; Anderson et al.,
2017; Castro et al., 2019b;a). This technique manipulates
the slack space inserted by the compiler to maintain the
alignments inside the file. The corresponding slack bytes
are usually set to zero, and they are never referenced by the
code of the executable.
(s.3) Padding (Kolosnjaji et al., 2018; Kreuk et al., 2018).
This technique injects additional bytes at the end of the file.
(s.4) Manipulating DOS Header and Stub (Demetrio et al.,
2019; 2020). This technique edit partially or completely the
DOS Header and Stub of a program, which are not used by
modern programs.
(s.5) Extend the DOS Header (Demetrio et al., 2020). This
technique extends the DOS header by injecting content be-

3https://docs.microsoft.com/it-it/
windows/win32/debug/pe-format

Algorithm 1 Gradient-based attack for optimizing Eq. 1
Input :z, initial malware sample; N , iterations; y, target

class label; f , target model.
Output :z?, the adversarial EXEmple.

1 t(0) ∈ T
2 for i in [0, N − 1] do
3 x′ ← φ(h(z, t(i)))
4 x? ← arg minx′∈X L(f(x

′), y)

5 t(i+1) ← arg mint∈T ‖x? − φ(h(z, t(i)))‖2

6 z? ← h(z, t(N))
7 return z?

Algorithm 2 Gradient-free (Black-box) Attacks for Opti-
mizing Adversarial Malware EXEmples in RAMEn.
Data: z, initial malware sample; N , total number of itera-

tions; y, target class label; f , target model function
Result: z?, the adversarial EXEmple.

8 t(0) ∈ T
9 for i in [0, N − 1] do

10 t(i+1) = arg mint∈T L(f(φ(h(z, t
(i)))), y)

11 z? = h(z, t(N))
12 return z?

fore the actual header of the program.
(s.6) Content shifting (Demetrio et al., 2020). This tech-
nique creates additional space before the beginning of a
section, by shifting the content forward, and injects adver-
sarial content in between.
(s.7) Import Function Injection (Anderson et al., 2017; Cas-
tro et al., 2019a;b). This technique injects import functions
by adding an appropriate entry to the Import Address Table,
specifying which function from which library must be in-
cluded during the loading process.
(s.8) Section Injection (Anderson et al., 2017; Castro et al.,
2019a;b). This technique injects new sections into the input
file by creating an additional entry inside the section table.
Each section entry is 40 bytes long, so all the content has to
be shifted by that amount, without compromising file and
section alignments as specified by the header.
Solving the minimization. Depending on the differentia-
bility of the terms that build Eq. 1, the attacker can decide
to land gradient-based (white-box) or gradient-free (black-
box) attacks.
Gradient-based attacks. In the case of end-to-end security
detectors, the model function f is differentiable, but both
the feature extractor φ and the manipulation h are not. To
overcome this issue, the proposed attacks perform gradi-
ent descent in the feature space, while iteratively trying to
reconstruct the corresponding adversarial malware exam-
ple in the input space, using different strategies, as shown
in Alg. 1. The procedure firstly perturb the sample, and

https://docs.microsoft.com/it-it/windows/win32/debug/pe-format
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it encodes it into the feature space (line 3). It then solves
the problem in feature space, by applying a gradient de-
scent algorithm on the loss function L (line 4). Since the
attacker wants a real functioning malware, they must invert
the feature mapping, hence solving such reconstruction as a
minimization problem, where the output is the best vector
t that creates an adversarial EXEmple as close as possible
to the one computed in feature space (line 5). This strat-
egy is general enough for recasting most of the proposed
attacks inside RAMEn, as shown in Table 1, by defining the
building blocks of this procedure: the loss function to be
minimized, the practical manipulations they will use, the
algorithm for the feature-space optimization, and procedure
for reconstructing the sample in input space.
Gradient-free attacks. Either when the target model is un-
available, or it is not-differentiable, the attacker must rely
on gradient-free techniques, as described by Algorithm 2. In
each iteration, the attack solves the minimization problem
with the chosen optimizer, perturbing the malware with the
given practical manipulations (line 10). Again, this pro-
cedure is general enough for recasting already-proposed
techniques, and we show such generalization in Table 2.
To do so, the attacker must define the loss function to be
minimized, the practical manipulations they will use, and
the black-box optimizer that will combine them together.
To speed up the optimization and save more queries, we
propose GAMMA, a black-box optimizer that solves Eq. 1
by using practical manipulations that injects content taken
from goodware samples (Demetrio et al., 2021). In this way,
the optimizer does not have to explore blindly the space of
solutions, but rather aggregating patterns of byte that de-
crease most the loss of the attack. Such loss is also enriched
with a regularization term C that weights the size of the
resulting adversarial EXEmple, controlled by a parameter λ.

3. Experimental results
We now test attacks encoded using RAMEn against state-of-
the-art classifiers.
Gradient-based attacks. We select two architectures as
target of our gradient-based attacks, both of them take as in-
put an unprocessed malware, and they compute a malicious
score by looking at their bytes. One is MalConv (Raff et al.,
2018), that uses the first 1 MB of the input sample, and
the other are DNN-Lin and DNN-ReLU (Coull & Gardner,
2019) depending on the activation function that has been
used, both using the first 100 KB of the input sample as
input. For both architectures, each sample is padded with
a special character or truncated if necessary. All networks
are trained using the EMBER (Anderson & Roth, 2018)
dataset, and also we test the robustness of DNN-Lin and
DNN-ReLU trained on a proprietary dataset of 16M sam-
ples (Demetrio et al., 2020). We test these networks using
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Figure 1. Gradient-based attacks against end-to-end networks. The
numbers below each label represent the percentage of the input
window length that has been manipulated.
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Figure 2. Gradient-free GAMMA attacks against the Gradient
Boosting Decision Tree (GBDT). Each curve represent a particular
combination of query budget and regularization parameter.

our gradient optimizer (Demetrio et al., 2021), and we show
the efficacy of manipulating malware using s.5 and s.6. We
also report the results of other practical manipulations in
the Appendix, as the chosen two outperforms the other in
terms of decrement of the detection rate. The optimizer run
for 50 iterations, and at each step, the algorithm perturbs
at most 256 bytes inside the sample. We show the results
of our attacks in Fig. 1, where we plot the decrement of
the detection rate while optimizing the attack. The detec-
tion threshold of each classifier has been set to match their
performance at 1% False Positive Rate (FPR). Both the Ex-
tend and Shift attacks replace a portion of the real header of
the program, and it might be possible that the adversarial
noise interferes with the local patterns learned by the net-
works at training time, i.e. the position of the meaningful
metadata of the program. Gradient-free attacks We select
a state-of-the-art gradient boosting decision tree (GBDT)
trained on hand-crafted features (Anderson & Roth, 2018),
extracted from the EMBER dataset. We consider GAMMA
as attacking algorithm, and we use padding (s.3) and section
injection (s.8) as practical manipulations. We extract 75
.rdata sections from goodware program to use as content
to be injected using both the section injection and padding
manipulations. we set different query budgets T between
10 and 510, and regularization parameters λ ∈ {10−i}9i=3.
We plot the efficacy of GAMMA in Fig. 2, where we report



Adversarial EXEmples: Functionality-preserving Optimization of Adversarial Windows Malware

Attack Loss Function L Practical Manipulations h(·, t) Feature-space Optimization Input-space Reconstruction

Full DOS (Demetrio et al., 2020) malware score manipulate all DOS header single gradient step closest positive (iterative)
Extend (Demetrio et al., 2020) malware score extend DOS header single gradient step closest positive (iterative)
Shift (Demetrio et al., 2020) malware score shift section content single gradient step closest positive (iterative)
Padding (Kolosnjaji et al., 2018) malware score padding single gradient step closest positive (iterative)
Partial DOS (Demetrio et al., 2019) malware score partial DOS header single gradient step closest positive (iterative)
FGSM (Kreuk et al., 2018) malware score padding + slack space FGSM closest (non-iterative)
Binary Diversification (Sharif et al., 2019) CW loss equivalent instructions single gradient step gradient-aligned transformation (iterative)

Table 1. Recasting gradient-based (white-box) attacks within RAMEn, according to the steps detailed in Algorithm 1.

Attack Loss Function L Practical Manipulations h(·, t) Optimizer Validation

Full DOS (Demetrio et al., 2020) malware score manipulate all DOS header genetic none
Extend (Demetrio et al., 2020) malware score extend DOS header genetic none
Shift (Demetrio et al., 2020) malware score shift section content genetic none
Partial DOS (Demetrio et al., 2019) malware score partial DOS header genetic none
Padding (Kolosnjaji et al., 2018) malware score padding genetic none
GAMMA (Demetrio et al., 2021) malware score + size penalty padding with benign sections / benign section injection genetic none
RL Agent (Anderson et al., 2017) malware score padding + section / API inj. + header fields + binary rewriting reinforcement learning none
AIMED (Castro et al., 2019a) malware score padding + section/API inj. + header fields + binary rewriting genetic sandbox
AEG (Song et al., 2020) malware score padding + section inj. + header fields + binary rewriting random manipulations sandbox

Table 2. Recasting gradient-free (black-box) attacks within RAMEn, according to the steps detailed in Algorithm 2

the efficacy of the usage of Padding (Fig. 2a) and Section In-
jection (Fig. 2b). As the value of λ decreases, the algorithm
finds more evasive samples with bigger payloads, since the
penalty term is negligible while computing the objective
function. On the other hand, by increasing the value of λ the
resulting attack feature vector become sparse, generating
smaller but more detectable adversarial example. In this
case, the penalty term engulfs the score computed by the
classifier, which becomes irrelevant during the optimization.
Also, the query budget matters, since GAMMA can explore
more solutions that are stealthy and evasive at the same time,
but such solutions could not be found at early stages of the
optimization process. To prove the efficacy of our methodol-
ogy, we report the results of the application of random byte
sequences of increasing length. This experiment highlights
a slight descending trend, but the optimized attack with be-
nign content injection is way more effective than random
perturbations. The detection rate of GBDT is decreased
more by the section-injection attack than by padding. Since
the first technique also introduces a section entry inside the
section table, the adversarial payload perturbs more features
than those modified by the padding attack.
Transfer attack on VirusTotal. We test the robustness of
commercial products leveraging responses from VirusTo-
tal,4, an online interface for many threat detectors. We use
the results obtained against the GBDT classifier through the
application of the Section Injection manipulation,compared
to a baseline random attack that injects 50 KB of random
content. We report in Table 3 the detection rate of the com-
mercial products hosted on VirusTotal (70 in total). While
the random attack only slightly decreases the number of
detections per sample, the section-injection attack is able

4https://virustotal.com

Malware Random Sect. Injection
Detections 46 ± 12 41 ± 12 34 ± 13

Table 3. Detection achieved by commercial products hosted on
VirusTotal, before and after manipulations.

to bypass an average of more than 12 detectors per sample.
We report less aggregated results inside the Appendix. The
reason may be that some of these antivirus programs already
use static machine learning-based detectors to implement a
first line of defense when protecting end-point clients from
malware, as also confirmed in their blog or website, and this
makes them more vulnerable to our attacks.

4. Conclusions
We propose RAMEn, a lightweight formalization for com-
puting adversarial EXEmples, leveraging practical manip-
ulations that do no alter the original functionality of input
samples, and general enough for encoding both gradient-
based and gradient-free approaches. We show that we can
recast most of the proposed attacks inside RAMEn, and
we parametrize the manipulations to allow the optimization
of the injected content. We analyze the efficacy of both
gradient-based and gradient-free attacks, highlighting the
weakness of both end-to-end deep networks and a detector
based on hand-crafted features. The latter is also used for
computing transfer attacks against commercial product, suc-
cessfully evading 12 of them. As future work, we would
like either to extend our attacks to detectors that extract
features from the execution of malware, or also to improve
the robustness of machine learning malware classifiers by
leveraging domain knowledge in the form of constraints and
regularizers.
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Appendix

A. Windows PE File format
The Windows Portable Executable (PE)5 format specifies
how programs are stored as a file on disk, and it instructs
the loader on where to find the software main components.

DOS Header and Stub. The DOS header contains meta-
data for loading the executable inside a DOS environment,
while the DOS Stub is made up of few instructions that
will print “This program cannot be run in DOS mode” if
executed inside a DOS environment. These two compo-
nents have been kept to maintain compatibility with older
Microsoft operating systems.

PE Header. The real header of the program contains the
magic number PE and the characteristics of the executable,
i.e. the target architecture , the size of the header and at-
tributes of the file.

Optional Header. It contains the information needed by
the OS for loading the binary into memory such as: (i)file
alignment, that acts as a constraint on the structure of the
executable since each section of the program must start at
an offset multiple to that field, and the (ii) size of headers
that specifies the amount of bytes that are reserved to all the
headers of the programs, and it must be a multiple of the file
alignment. Lastly, this header contains offsets that point to
other structures, like the Import Table (needed by the OS for
resolving dependencies), the Export Table (to find functions
that can be referenced by other programs), and more.

Section Table. It is a list of entries that indicates the char-
acteristics of each section of the program. Each entry is
provided with a name, an offset to the location inside the bi-
nary, a virtual address where the content should be mapped
in memory, and the characteristics of such content (i.e. is
read-only, write-only, or it is executable, and more).

Sections. These are contiguous chunks of bytes, loaded in
memory by the loader after the parsing of the Section Table.
To maintain the alignment specified inside the Optional
Header, these sections might be zero-padded to match the

5https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format

format constraint.

B. Behavioral manipulations.
These functions alter the code of input programs, by either
replacing instructions, adding new ones, or by applying
packing techniques (Wenzl et al., 2019).
(b.1) Packing (Anderson et al., 2017; Castro et al., 2019a;b).
This technique amounts to encrypting or encoding the con-
tent of the binary inside another binary and decoding it at
run-time. The effect of a packer is invasive since the whole
structure of the input sample is modified.
(b.2) Direct (Wenzl et al., 2019). This approach rewrites
specific portions of the code, like replacing assembly instruc-
tions with equivalent ones (e.g., additions and subtractions
with opposed sign).
(b.3) Minimal Invasive (Anderson et al., 2017; Wenzl et al.,
2019). This technique sets the entry-point to a new exe-
cutable section that jumps back to the original code.
(b.4) Full Translation (Wenzl et al., 2019). This approach
lifts all the code to a higher representation, e.g., LLVM,6

since it simplifies the application of perturbations, and it
then translates the code back to the assembly language.
(b.5) Dropper (Ceschin et al., 2019). This approach stores
the code as a resource of another binary, which is then
loaded at runtime.

C. Gradient-based attacks
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(a) Partial DOS
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(b) Full DOS
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(c) Padding
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Figure 3. Gradient-based attacks using practical manipulations,
against end-to-end neural networks.

6https://llvm.org/

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://llvm.org/
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Malware Random Sect. Injection
AV1 93.5% 85.5% 30.5%
AV2 85.0% 78.0% 68.0%
AV3 85.0% 46.0% 43.5%
AV4 84.0% 83.5% 63.0%
AV5 83.5% 79.0% 73.0%
AV6 83.5% 82.5% 69.5%
AV7 83.5% 54.5% 52.5%
AV8 76.5% 71.5% 60.5%
AV9 67.0% 54.5% 16.5%

Table 4. Detection rate of 9 antivirus programs from VirusTotal
computed on (i) the initial set of 200 malware samples, and on
the same samples manipulated with (ii) random attacks and (iii)
section-injection attacks.

We show in Fig. 3 the efficacy of other strategies proposed
in literature. We apply the manipulation s.4, editing either a
fraction of the DOS header (Partial DOS, Fig. 3a) or all of
it (Full DOS, Fig. 3b). While the Partial DOS technique is
generally ineffective against all classifiers except for Mal-
Conv (as already pointed put by Demetrio et al. (Demetrio
et al., 2019)), the Full DOS attack does substantially lower
the detection rate of the networks proposed by Coull et
al. (Coull & Gardner, 2019). This might be caused by spu-
rious correlations learnt by the network, and altering these
values cause the classifier to lose precision. We test the s.3
manipulation (Padding, Fig. 3c) (Kolosnjaji et al., 2018),
and the FGSM attack proposed by Kreuk et al. (Kreuk et al.,
2018) (Fig. 3d) do not decrease much the detection rates
of the networks, since most of the manipulations applied
are cut off by the limited window size of the network itself.
For instance, if a sample is larger than 100 KB, it can not
be padded, and all the strategies that rely on padding fail.
To achieve evasion, these FGSM attacks can only leverage
the perturbation of the slack space, but the number of bytes
that can be safely manipulated is too few to have significant
impact. Also, this strategy is incapacitated by the inverse-
mapping problem: they compute the adversarial examples
inside the feature space, and they project them back only at
the end of the algorithm. This means that the attack might be
successful inside the feature space, but not inside the input
space, where there are a lot of constraints that are ignored
by the attack itself. Against MalConv, the Padding attack
proves to be quite effective, but it needs at most 10 KB to
land successful attacks, as already highlighted by Kolosnjaji
et al. (Kolosnjaji et al., 2018). The adversarial payload must
include as many bytes as possible to counterbalance the high
score carried by the ones contained inside the header.

D. Detailed Detection Rate of Commercial
Products

To better highlight such result, we report on Table 4 the de-
tection rates of 9 different antivirus products that appear on
the 2019 Gartner Magic Quadrant for Endpoint Protection
Platforms,7 including many leading and visionary products,
before and after executing the random and section-injection
attacks. In many cases, our section-injection attack is able to
drastically decrease the detection rate (e.g., AV1, AV3, AV7
and AV9), significantly outperforming the random attack
(e.g., AV1 and AV9).

7https://www.microsoft.com/security/
blog/2019/08/23/gartner-names-microsoft-
a-leader-in-2019-endpoint-protection-
platforms-magic-quadrant/
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