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CAD Translator: An Effective Drive for Text to 3D Parametric
Computer-Aided Design Generative Modeling

Anonymous Authors

“A 3d rendering of 
a camera”

“An isometric view 
of a whistle”

“An illustration of a 
stapler”

“A 3d drawing of a 
circular object”

“A 3d rendering of 
the letter t”

“A 3d drawing of a 
pipe fitting”

“A 3d image of 
a piece of metal”

“An illustration of a 
metal object with a hole”

“An illustration of a piece 
of concrete with holes”

“A 3d drawing of a 
knob”

“A 3d image of four 
rings”

“An isometric view of 
a concrete structure”

Figure 1: An overview to show the capability of CAD Translator. Given the text prompt as input, CAD Translator would translate
them into parametric CAD sequences that can be constructed into 3D shape via designing tools.

ABSTRACT
Computer-Aided Design (CAD) generative modeling is widely ap-
plicable in the fields of industrial engineering. Recently, text-to-3D
generation has shown rapid progress in point clouds, mesh, and
other non-parametric representations. On the contrary, text to 3D
parametric CAD generative modeling is a practical task that has
not been explored well, where its shape can be defined with several
editable parametric command sequences. To investigate this, we
design an encoder-decoder framework, namely CAD Translator, for
incorporating the awareness of parametric CAD sequences into
texts appropriately with only one-stage training. We first align
texts and parametric CAD sequences via a Cascading Contrastive
Strategy in the latent space, and then we propose CT-Mix to con-
duct the random mask operation on their embeddings separately to
further get a fusion embedding via the linear interpolation. This can
strengthen the connection between texts and parametric CAD se-
quences effectively. To train CAD Translator, we create a Text2CAD
dataset with the help of Large Multimodal Model (LMM) for this
practical task and conduct thorough experiments to demonstrate
the effectiveness of our method.
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1 INTRODUCTION
Computer-Aided Design (CAD) generative modeling plays a cru-
cial role in the fields of design and engineering, providing strong
support for manufacturing, visualization, and data management,
which drives the advancement of modern design and engineering
practices [26, 39, 48, 49]. The CAD model shape design or drawing
process can be defined as a parametric CAD sequence of command
operations (e.g., line, arc, circle). This kind of representation is
called parametric CAD models and can be quickly edited to con-
struct 3D shape. Given its flexibility and practicality, various studies
recently have focused on different applications of CAD generative
modeling, such as randomCAD generation [49], machining segmen-
tation [17], CAD assembly suggestions [16, 47], shape parsing [40],
and classification [15].

The parametric CAD model inherently involves two modalities
of representation, as it combines textual information (CAD com-
mands and parameters) and (implicit) visual/shape information
simultaneously. This means that the execution order of command
operations would indicate the process of 3D shape generation. By
changing the values of these parameters, the size and shape of the
model can be automatically adjusted. Under the current trend of
unification of vision and language [35, 41] in the filed of Computer
Vision (CV), text-to-CAD will be a very interesting problem in the
intriguing CAD applications.

In this work, we tackle the problem of leveraging text for para-
metric CAD generative modeling. An important difference from
previous tasks of text-to-image or text-to-3D [1, 19, 25, 30, 38, 42, 50]
is that the generated parametric CAD model can be further edited.
This is very practical for CAD designers to quickly convert their
ideas into coarse-grained CAD models based on text descriptions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Given parametric CAD models are editable, CAD designers can
continue to utilize CAD designing tools to edit and modify these
coarse-grained CADmodels to obtain the final CADmodel, without
having to start editing command operations from scratch, acceler-
ating the design process. From another perspective, the parametric
sequence is also discrete just like a kind of sentence composed of
texts, which builds the foundation for the task of text-to-CAD. As
shown in Figure 2, parametric CAD sequences consist of the type
of command operations and their corresponding parameters [5, 53].
For each CAD model, parametric sequences can be seen as specific
descriptions of its geometry. Executing these parametric sequences
sequentially can construct its 3D shape. This is similar to describe
features of the object with texts such as "square", "circle", "line"
and so on. It motivates us to create the drive to establish a connec-
tion between texts and parametric CAD sequences, achieving the
generation task of texts to parametric CAD sequences.

Specifically, we design a CAD Translator based on an encoder-
decoder framework, that effectively incorporates text awareness
into parametric CAD sequences. As there is a large gap between
the text description and parametric CAD sequences. To this end,
we introduce a Cascading Contrastive Strategy (CCS) to make them
aligned in the latent space. Inspired by mixup [56], we further
inject the awareness of parametric CAD sequences into texts via
conducting CT-Mix to get a new fusion embedding after finishing
alignment. Finally, we put all these fusion embeddings into the
decoder to recover 3D parametric CAD sequences. By this design,
only one-stage training is required to let CAD Translator know
how to transfer text description into 3D parametric CAD sequences.
When it is well trained to learn from texts, CAD Translator would
have the ability to generate parametric CAD sequences using text
as input alone, achieving text to 3D parametric CAD generative
modeling easily. Given the text prompt for parametric CAD models
is not available in relevant datasets, we first use PythonOCC to
render a single image of each 3D CAD model within DeepCAD
dataset [49] and then leverage the pretrained CoCa [54] to generate
the text description for each parametric CAD model via feeding the
rendering image. For more details about the dataset preparation
please refer to Sec 5.1.

In summary, our key contributions are as following: (i) We pro-
pose a Cascading Contrastive Strategy (CCS) controlled by learning
steps to align texts and parametric CAD sequences. (ii) We design a
CT-Mix to incorporate the awareness of parametric CAD sequences
into texts and further consolidate CT-Mix and CCS into a novel
multi-modal framework, namely CAD Translator, achieving the text
to 3D parametric CAD generative modeling. (iii) Extensive experi-
ments demonstrate the effectiveness of our framework on a new
dataset with pairs of texts to parametric CAD sequences, namely
Text2CAD, which is created on one benchmark dataset.

2 RELATEDWORK
Parametric CADModeling.Wehavewitnessed significant progress
in parametric CAD modeling based on deep learning recently [18,
21, 51]. The graph structure has been used as the representation in
CAD for machining feature recognition [4]. BrepNet [20] achieves
good performance on the segmentation task of CADmodels with op-
erating on B-rep models directly. More recent applications of deep

learning to B-rep models have focused on reconstruction [11, 14].
Besides, several studies starts parsing reverse engineering CAD
models. ExtrudeNet [39] designs an effective representation for
"sketch-and-extrude" (a common and intuitive modeling process in
CAD) to inverse this engineer processing of shape without supervi-
sion. SECAD-Net [23] achieves reverse engineering CAD models
via learning the implicit sketches and differentiable extrusions from
raw 3D shapes as supervision. Furthermore, auto CAD assembling
as a practical application has attracted much attention [45, 47]. Un-
like these interesting applications based on parametric CAD mod-
eling, our CAD Translator is trying to face a challenge of the text
to parametric CAD generative modeling, which has not been dis-
cussed well. Among of them, ReparamCAD [18] and DeepCAD [49]
are most related to our work. DeepCAD essentially focuses on the
downstream task of random generation of parametric CAD se-
quences and ReparamCAD [18] highlights on modifying the style
of objects via feeding both the text description and parametric CAD
model. Instead, CAD Translator is mainly focusing on the genera-
tion task of texts to parametric CAD sequences.
Text-to-3D Shape. With the success of advanced technology in
Large Multimodal Models (LMMs), many inspired applications on
text-to-3D shape have raised a surge of interesting from community
recently [6, 22, 25, 31, 34]. PointCLIP [58] conducts the alignment
between point clouds and 3D category texts via CLIP encoding [35].
CLIP-Mesh [30] present a technique for zero-shot [7, 24] generation
of a 3Dmodel with the help of pretrained CLIP. DreamFields [13] op-
timizes the neural radiance fields (NeRF) [29] for diverse 3D models
generation from zero-shot caption with CLIP as guidance. In sum-
mary, existing methods either focuses on pretrained LMMs together
with distillation to generate 3D shape, or combines with NeRF, or
trains a text-conditioned 3D generative model from scratch [6]. The
common point of them is that the parametric CAD generation has
not been considered yet. Besides, the text-conditioned for paramet-
ric CAD modeling has a wide range of applications in the industrial
sector. Hence, it motivates us to dive in this interesting task.
Large Multimodal Models. Motivated by the desire to boost
the unification of language and vision. Large Multimodal Mod-
els (LMMs) have drawn significant attention recently. CLIP [35]
demonstrates an effective ability to several few-shot tasks via train-
ing on a large dataset of image-text pairs. Following works start
to combine or revise CLIP-based framework to pursue the better
performance on multimodal tasks [3, 37]. The usual approach is
to finetune LMMs on a specific task with designing appropriate
projection heads or classifiers [2, 36]. Other previous works focus
on designing a learnable adapter that can be pluged in LMMs to
finetune on only small part of parameters [28, 33, 44]. More recent
work 3DALL-E [27] integrates DALL-E [8] into 3D CAD software
as a plugin to generate 2D concept maps of 3D objects in the design
process. In our CAD Translator, we employ LMMs CoCa [54] to
generate the description of CAD models for preparing dataset, and
make it as a embedding tool for text descriptions.

3 PRELIMINARY
For easy to understand the rational design of CAD Translator, we
first make a brief concept of the parametric CAD sequence. It is
a special kind of text with command type and the corresponding
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Figure 2: An overview of the CAD Translator method. CAD Translator is an autoencoder-based architecture. For the training
stage (as shown in the black arrow), the awareness of parametric CAD sequences would be injected into texts via CT-Mix. For
the inference stage (as shown in the red arrow), only the text description needs to be input to generate the parametric CAD
sequence. Finally, these generated parametric CAD sequences can be imported into CAD tools (e.g., PythonOCC and AutoCAD)
for visualization or further recreating.

parameters (𝑐𝑡 , 𝑐𝑝 ), as shown in Figure 2, where it is always used
in the computer-aided design. It allows a designer to modify these
parameters to create the object by combining simpler, primitive
shapes such as cubes, spheres, and cylinders. The parametric CAD
sequence lends itself well to parametric design, where changes
in parameters automatically update the model. In this paper, we
focus on the generation of single object with command operations
including "Line", "Circle", "Arc", and "Extrude". For more details
about the definition of the parametric CAD sequence please refer
to [49].

4 CAD TRANSLATOR
4.1 Overview
TheCADTranslator method is, essentially, a cross-modal autoencoder-
based framework with one-stage training. Our method requires a
collection of 3D parametric CAD models and associated text de-
scriptions. The overall architecture is shown in Figure 2. During
training stage, we first adopt embedding for parametric CAD se-
quences and texts before feeding them into the encoder. Second, we
design a Cascading Contrastive Strategy to bring parametric CAD
sequences and texts closer after encoding, which is composed of
both the constraints of single-modality and cross-modality. Third,
we propose CT-Mix to achieve the fusion embedding to further in-
ject the awareness of parametric CAD sequences into texts. Finally,
the fusion embedding would be fed into the decoder to generate the
parametric CAD sequence. Once the network is well trained, the
text description as the sole input can go forward to generate the
parametric CAD sequence in the inference stage. Following the rule
of generated parametric CAD sequences, the 3D shape can be easily
achieved and modified by related CAD tools (e.g., PythonOCC and
AutoCAD). Please note that labelling the description for parametric
CAD models is very time consuming and there is no ready-made
text descriptions in existing public CAD datasets. It motivates us
to create the text description for each parametric CAD model with
the help of CoCa [54]. For more details about dataset preparation

please refer to Sec 5.1. We will release it in the future.

4.2 Architecture
Embedding. As the usual settings of the transformer-based model,
texts and parametric CAD sequences are first projected to an embed-
ding space. For the parametric CAD sequence (𝑐𝑡 , 𝑐𝑝 ), we imitate
the method in [49] to formulate it to an embedding 𝐸𝐶 in three
aspects:

𝐸𝐶 (𝑖) = 𝑒 (𝑐𝑡 )𝑖
+ 𝑒 (𝑐𝑝 )

𝑖
+ 𝑒𝑝𝑜𝑠

𝑖
, (1)

where 𝑒 (𝑐𝑡 )
𝑖

accounts for the command type 𝑐𝑖𝑡 , calculated through
𝑒
(𝑐𝑡 )
𝑖

= 𝑤𝑐𝑡 𝛿
𝑐
𝑖
. Here, 𝑤𝑐𝑡 ∈ 𝑅𝑑𝐸×𝑘 is a learnable matrix. 𝛿𝑐

𝑖
∈ 𝑅𝑘

denotes 𝑐𝑖𝑡 within the 𝑘 command types. 𝑒 (𝑐𝑝 )
𝑖

is the embedding

of command parameters 𝑐𝑖𝑝 , given by 𝑒 (𝑐𝑝 )
𝑖

= 𝑤𝑎𝑐𝑝 𝑓

(
𝑤𝑏𝑐𝑝𝛿

𝑝

𝑖

)
. 𝑓 (∗)

flattens the matrix to a vector. Each command is composed of 16 pa-
rameters and can be quantized into an 8-bit integer.𝑤𝑎𝑐𝑝 ∈ 𝑅𝑑𝐸×16𝑑𝐸

and 𝑤𝑏𝑐𝑝 ∈ 𝑅𝑑𝐸×256 are learnable matrices. The function of posi-
tional encoding 𝑒𝑝𝑜𝑠

𝑖
is the same as in Transformer [46], which is

used to record the index of the command 𝑐𝑡 in the complete para-
metric CAD sequence, In practice, the dimension of 𝑑𝐸 is set to 768.
For the text 𝑇 , we conduct the pretrained CoCa [54] to encode it
to an embedding 𝐸𝑇 with the dimension of 768, making it easy to
match with 𝐸𝐶 .
Encoder and Decoder. In the training stage, we train an autoen-
coder with a CAD encoder, a text encoder, and a fusion decoder.
For the CAD encoder and the text encoder, there are four layers of
transformer blocks with eight attention heads per block and the
feedforward dimension is 512. The output of encoders, latent vector
dimension is fixed in 256. Based on the same configuration of the
CAD encoder and the text encoder, parametric CAD sequences and
texts are matched well in terms of dimensions, facilitating cross-
modal alignment (Cascading Contrastive Strategy) and subsequent
knowledge injection (CT-Mix). Note that the weights of these two
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encoders are independent. Specifically, the encoder 𝑓𝑐𝑎𝑑 and the
encoder 𝑓𝑡𝑒𝑥𝑡 are used to encode 𝐸𝐶 and 𝐸𝑇 separately. This can
be written as:

𝑒𝑐𝑎𝑑 = 𝑓𝑐𝑎𝑑 (𝐸𝐶 ), (2)

𝑒𝑡𝑒𝑥𝑡 = 𝑓𝑡𝑒𝑥𝑡 (𝐸𝑇 ). (3)
The fusion decoder 𝑓𝑑 is identical to the encoder in all hyper-
parameter settings. One linear layer is connected to with the last
block of the fusion decoder to predict parametric CAD sequences
(𝑐∗𝑡 , 𝑐∗𝑝 ), as defined with 𝑓𝑑 (𝑒𝑐𝑎𝑑 , 𝑒𝑡𝑒𝑥𝑡 ) = (𝑐∗𝑡 , 𝑐∗𝑝 ). When the net-
work is well trained, the text as sole input can generate associated
parametric CAD sequences:

𝑓𝑑 (𝑓𝑡𝑒𝑥𝑡 (𝐸𝑇 )) = (𝑐∗𝑡 , 𝑐∗𝑝 ) . (4)

4.3 Cascading Contrastive Strategy
Contrastive learning is widely used to learn representations via
attracting positives and repelling negatives [9, 10, 35]. It must be ac-
knowledged that contrastive learning does facilitate the alignment
between different modalities for cross-modal learning. However,
CAD Translator requires a clever design to fully leverage the poten-
tial of contrastive learning. We first denote the cross-modal dataset
as 𝐷 = {(𝑐𝑖 , 𝑡𝑖 )}, where (𝑐𝑖 , 𝑡𝑖 ) denotes a pair of parametric CAD
sequence and text description. Our goal is to bring 𝑐𝑖 and 𝑡𝑖 closer,
reducing the gap between them. To go for this, we consider adding
both contrastive constraints of the single-modality and the cross-
modality simultaneously. For the single-modal contrastive learning
on 𝑐𝑖 , we let each 𝑐𝑖 pass forward the CAD encoder 𝑓𝑐𝑎𝑑 twice
with dropout under the different rate to generate a pair of positives
(𝑒𝑐𝑎𝑑 , 𝑒

′

𝑐𝑎𝑑
). For each 𝑒𝑐𝑎𝑑 , the rest of embeddings 𝑒∗

𝑐𝑎𝑑
within one

mini-batch are all negatives. Our single-modal contrastive learn-
ing aims to catch the similarity within the augmented variants
of parametric CAD sequences, making the learned representation
preserve the knowledge of 𝑐𝑖 comprehensively. For the cross-modal
contrastive learning on (𝑐𝑖 , 𝑡𝑖 ), each 𝑐𝑖 is fed into the text encoder
𝑓𝑡𝑒𝑥𝑡 to obtain 𝑒𝑡𝑒𝑥𝑡 and paired with associated 𝑒𝑐𝑎𝑑 . Similar to
the single-modal contrastive learning, 𝑒∗

𝑐𝑎𝑑
are as negatives for

each 𝑒𝑡𝑒𝑥𝑡 . The cross-modal contrastive learning aims to utilize the
knowledge of parametric CAD sequences for better textual feature
learning and strike a well connection between them. Finally, the
constraints of the single-modality LC−CAD and the cross-modality
LC−CT can be defined with InfoNCE [32] as following:

LC−CAD = −E
𝑋

log
𝑓𝑘

(
𝑒𝑐𝑎𝑑 , 𝑒

′

𝑐𝑎𝑑

)
∑
𝑒∗
𝑐𝑎𝑑

∈𝑋 𝑓𝑘
(
𝑒∗
𝑐𝑎𝑑

, 𝑒
′
𝑐𝑎𝑑

)  , (5)

LC−CT = −E
𝑋

log
𝑓𝑘 (𝑒𝑐𝑎𝑑 , 𝑒𝑡𝑒𝑥𝑡 )∑

𝑒∗
𝑐𝑎𝑑

∈𝑋 𝑓𝑘
(
𝑒∗
𝑐𝑎𝑑

, 𝑒𝑡𝑒𝑥𝑡

)  , (6)

where 𝑓𝑘 is defined with 𝑒sim(h′𝑖 ,h′′𝑖 )/𝜏 . sim(∗, ∗) denotes the cosine
similarity and 𝜏 is a temperature hyper-parameter with 0.05. 𝑋
denotes the size of one mini-batch during the training.

Inspired by themulti-stage training strategies adopted frequently
in machine learning. We propose a Cascading Contrastive Strategy
(CCS) to split the participation ofLC−CT andLC−CAD during train-
ing stage. The reason is that here lies the conflict: if LC−CAD and

LC−CT are activated simultaneously at the beginning of the train-
ing, these two constraints are getting some overlaps, making it
difficult for model to strike a well balance between them. This
would finally hinder the ability of contrastive learning (Recall in
Ablation Study 5.2). Hence, CCS activates LC−CT solely from the
scratch and incorporates LC−CAD later, which is effective to alle-
viate this conflict and fully leverage the capabilities of both two
constraints. We utilize the training step as a participating signal for
LC−CAD. It can be defined with:

LCCS =

{
LC−CT 𝐸 ≤ 𝑆
LC−CT + LC−CAD 𝐸 > 𝑆

, (7)

where E denotes the current epoch and S is the hyper-parameter of
training steps for the adaptive selection of LCCS. The advantage of
CCS is to make 𝑒𝑐𝑎𝑑 and 𝑒𝑡𝑒𝑥𝑡 establish a solid connection in early
training steps, and then LC−CAD starts to optimize the learned rep-
resentation, making it maintain the knowledge of parametric CAD
sequences comprehensively. This is quite important for delivering
the knowledge of parametric cad sequences to texts.

4.4 CT-Mix
Mixup [57] conducts the linear interpolation between two different
samples to obtain new augmented data. The detailed implementa-
tion can be defined as following:

𝑥∗ = 𝜆𝑥1 + (1 − 𝜆)𝑥2, (8)

𝑦∗ = 𝜆𝑦1 + (1 − 𝜆)𝑦2, (9)
where 𝜆 is sampled from 𝐵𝑒𝑡𝑎(𝛼, 𝛽) distribution. (𝑥1, 𝑥2) denotes
the two samples randomly chosen from datasets, and (𝑦1, 𝑦2) repre-
sents the labels of them. (𝑥∗, 𝑦∗) is a new sample by linear interpo-
lation. Given its flexibility and friendly implementation, it sparks
numerous Mix-based adaptations [43, 52, 55] for operating data
augmentation tailored to specific tasks.

The way Mix-based methods construct new data inspires us to
transfer it to mix parametric CAD sequences and texts, namely
CT-Mix. Compared to previous methods, our CT-Mix differs in the
following two aspects: (i) CT-Mix operates the mixing operation
between two different modalities rather than focusing on the sin-
gle modality. (ii) The goal of CT-Mix is to inject the awareness
of parametric CAD sequences into texts instead of adopting the
data augmentation. The advantage of CT-Mix is to achieve a fusion
embedding 𝑒𝑐𝑡 that preserves the knowledge of both texts and para-
metric CAD sequences, further reducing the gap between them.
Practically, we conduct the mixing operation between 𝑒𝑐𝑎𝑑 and
𝑒𝑡𝑒𝑥𝑡 with randommasking in the latent space to achieve the fusion
embedding 𝑒𝑐𝑡 . Based on Equation 7, This process can be defined
as:

𝑒𝑐𝑡 = 𝛾 ⊙ 𝑒𝑡𝑒𝑥𝑡 + (1 − 𝛾) ⊙ 𝑒𝑐𝑎𝑑 , (10)
where 𝛾 is a hyper-parameter to control the mixing ratio of 𝑒𝑐𝑎𝑑
and 𝑒𝑡𝑒𝑥𝑡 . In practice, we conduct 𝛾 as a random 0-1 vector with
a setting threshold 𝑅 (Recall in Hyper-parameter Discussion 5.2)
for controlling the ratio of 0 and 1. ⊙ represents the point-wise
multiplication. This is, essentially, a mask operation to combine 𝑒𝑐𝑎𝑑
and 𝑒𝑡𝑒𝑥𝑡 , which can be considered as using 𝑒𝑡𝑒𝑥𝑡 to fill the masked
parts of 𝑒𝑐𝑎𝑑 . Under this setting, the awareness of parametric CAD
sequences is easily injected into texts. For the same 3D object,
𝑒𝑐𝑎𝑑 and 𝑒𝑡𝑒𝑥𝑡 are supposed to be its two different representations.
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Hence, the directivity of 𝑒𝑐𝑡 would also aim to the same 3D object.
Based on this assumption and Equation 8, the label of 𝑒𝑐𝑡 can be
obtained as:

𝑦𝑐𝑡 = 𝑦𝑐𝑎𝑑 = 𝑦𝑡𝑒𝑥𝑡 , (11)
which means the labels of them are consistent.

4.5 Loss Function
We simultaneously conduct Cascading Contrastive Strategy and
MSE constraint LM to align 𝑒𝑐𝑎𝑑 and 𝑒𝑡𝑒𝑥𝑡 . Then we further adopt
CT-Mix to achieve the fusion embedding 𝑒𝑐𝑡 . Finally, 𝑒𝑐𝑡 is fed into
the decoder 𝑓𝑑 to generate the parametric CAD sequence (𝑐∗𝑡 , 𝑐∗𝑝 ).
To measure the distance from (𝑐∗𝑡 , 𝑐∗𝑝 ) to (𝑐𝑡 , 𝑐𝑝 ), we use a standard
Cross-Entropy loss LCE. The whole constraint of our model LCT
is defined as following:

LM =
1
N

∑︁
(𝑒𝑐𝑎𝑑 − 𝑒𝑡𝑒𝑥𝑡 )2 , (12)

LCE = −
𝑁∑︁
𝑖=1

(𝑐𝑡 , 𝑐𝑝 )𝑖 log(𝑐∗𝑡 , 𝑐∗𝑝 )𝑖 , (13)

LCT = LM + LCCS + LCE . (14)
The experiments are all trained on one NVIDIA RTX 3090 GPU
with a batch size of 256 under 100 epochs. Initial learning rate is set
to 0.001 with warm up [12] and gradient clipping of 1.0 is applied
in back-propagation.

4.6 Metrics
Accuracy. As seen in Figure 2, parametric CAD sequences are de-
fined with the command 𝑐𝑡 and its parameter 𝑐𝑝 . [49] proposes to
measure the accuracy of the recovered CAD sequence (𝑐∗𝑡 , 𝑐∗𝑝 ) by
calculating 𝐴𝐶 and 𝐴𝑃 separately. However, The generated para-
metric CAD sequence with the high accuracy of𝐴𝐶 or𝐴𝑃 may still
be failure to construct 3D shape. To make it more reasonable, we
add Sucecssful Ratio (𝑆𝑅 ) into Accuracy. It is a measurement of the
ability to reconstruct the known CAD model, where the input is
the existing CAD sequences of the test set. Finally, Accuracy (Acc)
is defined:

𝐴𝐶 =
1
𝑁

𝑁∑︁
𝑖=1

▽[𝑐𝑖𝑡 = 𝑐𝑖∗𝑡 ], (15)

𝐴𝑃 =
1
𝑇

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

▽[𝑐𝑖𝑝 = 𝑐𝑖∗𝑝 ] ▽ [
���𝑐𝑖, 𝑗𝑝 − 𝑐𝑖, 𝑗∗𝑝

��� < 𝜂], (16)

𝑆𝑅 =
𝑇𝑅 − 𝐹𝑅
𝑇𝑅

, (17)

𝐴𝑐𝑐 =
1
2
[ (𝐴𝐶 +𝐴𝑃 )

2
+ 𝑆𝑅], (18)

where ▽[∗] is a boolean function with scalar 0 or 1. 𝑇 is the total
number of parameters in all correctly predicted commands. We set
𝜂 = 3 in practice as the error threshold.𝑇𝑅 denotes the total number
of predicted CAD sequences. 𝐹𝑅 represents the total number of
shapes constructed unsuccessfully by predicted CAD sequences.
Shape Construction. When the parametric CAD sequence is con-
structed into 3D shape, we can convert it into point clouds by
randomly sampling 𝐾 points on its surface. In practice, we set
𝐾 = 2000. To measure the differences between a real shape and the
predicted shape, we calculate Median Chamfer Distance (MCD) of

them. Furthermore, we also adopt Minimum Matching Distance
(MMD) to measure the fidelity of generated shapes with calculating
the Chamfer Distance from the 3D shapes in the test set to their
nearest neighbors in the generated set. Finally, Jensen-Shanon Di-
vergence (JSD) can be calculated with these converted point clouds
in the test set and the generated set, measuring the difference of
their data distributions.
CT-Score. CT-Score is an important metric to evaluate the similar-
ity of 𝑒𝑐𝑎𝑑 and 𝑒𝑡𝑒𝑥𝑡 . It shows the effectiveness of CCS and CT-Mix
in reducing the gap between parametric CAD sequences and texts,
which can guide to determine the appropriate hyper-parameter
settings of CCS and CT-Mix (Recall in Hyper-parameter Discus-
sion 5.2). To achieve this, we calculate the cosine similarity of 𝑒𝑐𝑎𝑑
and 𝑒𝑡𝑒𝑥𝑡 in the latent space.

cos(𝜃 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝑒𝑖
𝑐𝑎𝑑

· 𝑒𝑖𝑡𝑒𝑥𝑡
∥𝑒𝑖
𝑐𝑎𝑑

|∥ | 𝑒𝑖𝑡𝑒𝑥𝑡 ∥
. (19)

5 EXPERIMENTS
5.1 Dataset Preparation
As labelling description for parametric CAD models is very time
consuming and the text description is unavailable in existing datasets
of CAD parametric models, we move to leverage a pretrained
CoCa [54] to generate text for each parametric CAD model. Pre-
cisely, we first choose a benchmark dataset, called DeepCAD, which
is consist of 178,238 CADmodels with their parametric construction
sequences [49]. With PythonOCC (OpenCASCADE technology in
the Python version), these parametric CAD models can be easily vi-
sualized to capture perspective images of them. Specifically, we set
position (150, -150, 150) and rotation radian (0.7854, 0.6155, 0.5236)
with the setting of front x-axis, right y-axis, and up z-axis as a main
viewport for rendering each 3D CAD model. Under this viewport,
it ensures capturing as much semantic information of the object as
possible in a single image. To complement the visual information
missing under the main viewport, we further make the viewport to
rotate around the z-axis in 𝜋/6 intervals, from −𝜋/2 to 𝜋/2 rotation
radian. For now, each CAD model is paired with total 7 rendering
images with different viewports. Next, we put these perspective im-
ages in a pretrained CoCa to generate the text descriptions. Finally,
we select the part with the greatest overlap from 7 text descriptions
as the final text description that would be paired with each CAD
model in DeepCAD dataset. In this way, we have successfully create
a new dataset of text to parametric CAD models with the help of
a pretrained CoCa and the DeepCAD dataset, namely Text2CAD.
We adopt the division of Text2CAD to obtain 161,240 training pairs,
8,946 validation pairs, and 8,052 testing pairs.

5.2 Experimental Results
Text to Parametric CAD Sequence. Theoretically, the parametric
CAD sequence is akin to the discrete language. These commands
and their parameters can be seen as "vocabulary" to form "sentence",
which documents the manufacturing process of the 3D object. This
formalism gives us the opportunity to leverage language models
such as Transformer [46] to achieve this new task. Given the com-
mands in parametric CAD sequences are coupled with different
parametric values, setting the parametric CAD sequence apart from
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Method 𝐴𝐶𝐶↑ MCD↓ MMD↓ JSD↓
BFSR 60.13 29.65 4.56 21.64
BFSR (Large) 62.95 26.28 3.78 17.85
BFSR + LE 62.71 26.79 3.84 18.07
BFSR + CL 63.09 25.94 3.68 17.36
BFSR + AUG 63.72 27.76 3.92 20.09
BFSR (Full) 64.62 24.07 3.57 16.73
CAD Translator 70.36 21.29 2.94 10.92

Table 1: The comparison of BFSR and CAD Translator on
the text to parametric CAD sequence generation. 𝐴𝐶𝐶 is
multiplied by 100%. MCD, MMD, and JSD are multiplied by
102 .BFSR denotes the "brute-force" seq2seq regression strat-
egy that we directly encode texts and decode them into para-
metric CAD sequences without conducting the CAD related
pipeline of CAD Translator. (Large: increasing the layers of
network, LE: longer training epochs,CL: contrastive learning,
AUG: data augmentation, Full: Large + LE + CL + AUG.)

natural language, as shown in Figure 2. Apparently, there is a no-
ticeable gap in the representation of the same 3D object between
parametric CAD sequences and texts. This is telling that, the "brute-
force" regression strategy to minimize the difference between them
is difficult. To demonstrate this, we first maintain the same con-
figuration of encoder and decoder and remove parametric CAD
sequences from the input. Then we make texts go forward to di-
rectly approach the parametric CAD sequences, treating it as a
"brute-force" seq2seq regression method, namely BFSR. Besides, we
further adopt some useful learning tricks on BFSR to improve its
performance (e.g., increasing the layers of network, longer training
epochs, contrastive learning, data augmentation.), trying to figure
out whether BFSR has the potential to catch up with CAD Trans-
lator. Specifically, we make the following adjustments to BFSR: (i)
increasing two layers of encoder and decoder separately, (ii) twice
training epochs as CAD Translator, (iii) conducting twice dropout in
the latent space to generate positive pairs, the same way also used
in Equation 6 as a part of CCS, (iiii) randomly masking 20% of each
embedding in every epoch with a certain probability as the data
augmentation. The detail results can be found in Table 1. Note that
the shape design is the ultimate goal of CAD models, which means
the rationality of parametric CAD sequence is quite important. Our
first goal is to generate the valid parametric CAD sequence as much
as possible, which can be finally reconstructed into 3D shape. CAD
Translator outperforms BFSR and its variants in all shape construc-
tion related metrics and achieves more than about 6% improvement
on the accuracy of parametric CAD sequence generation. It demon-
strates that the awareness of parametric CAD sequences is injected
into texts successfully. Compared to BFSR, this further brings texts
and parametric sequences closer, making the CAD Translator has
the strong connection between these two representations. As seen
in Figure 3, some key points of final 3D shape generated by BFSR is
seriously shifted away from Ground Truth (GT) compared to CAD
Translator. Again, it proves that the task of texts to parametric CAD
sequences is challenging, and directly making texts regressed to
parametric CAD sequences is difficult.
Cross Dataset Generalization. To further validate the generaliza-
tion capability of CAD Translator, we pick up another CAD dataset,

Text Description GTBFSR
CAD

Translator
“An illustration of an exhaust
manifold gasket”

“An image of an object that is 
in the shape of an arch” ∅
“An illustration  of a rolling 
machine”

“A 3d rendering of a metal 
arch with three holes”

“An illustration of a piece 
of metal with two holes”

“An isometric view of a 
bench seat by the parterre”

“an illustration of a metal 
disc with four holes”

Figure 3: Comparison results of texts to parametric CAD se-
quences on the Text2CAD dataset. ∅ denotes the generated
parametric sequence that is unable to accomplish shape re-
construction.

Method 𝐴𝐶𝐶↑ MCD↓ MMD↓ JSD↓
BFSR 50.38 39.52 4.63 22.20
BFSR (Large) 51.35 37.56 3.86 19.42
BFSR + LE 50.85 39.36 4.03 20.49
BFSR + CL 50.89 35.67 3.79 18.46
BFSR + AUG 51.41 39.43 4.45 21.25
BFSR (Full) 51.74 35.16 3.72 17.48
CAD Translator 56.03 32.35 3.27 12.81

Table 2: Cross Dataset Generalization. Once models are well
trained on the Text2CAD dataset, they can be tested on the
Text360 dataset.

Fusion 360 Gallery, which is composed of 2D and 3D parametric
CAD models [48]. Then we choose the reconstruction subset of
Fusion 360 Gallery and also leverage CoCa [54] to generate text
descriptions of parametric CAD models. This is similar to how we
construct Text2CAD dataset and finally 6,708 samples (Text360) are
created. Next, we train BFSR and CAD Translator on the Text2CAD
dataset and make them tested on the Text360 dataset directly. The
comparable results are as shown in Table 2. It can be found that CAD
Translator still outperforms BFSR and its variants in 𝐴𝐶𝐶 and all
shape construction metrics (especially with a larger margin in 𝐴𝐶𝐶
and JSD). Compared to BFSR, the shape generated by CAD Transla-
tor is closer to GT and more compatible with the associated text
description (Figure 4). It again proves that CAD Translator injects
the awareness of parametric CAD sequences into texts successfully,
making it to learn a robust representation with the capability to
adapt in another dataset without additional training. At the same
time, it also demonstrates there indeed exists a significant gap be-
tween texts and parametric CAD sequences even though they are
both some kind of discrete languages. Since the commands and
parameters in parametric CAD sequences are fundamentally dif-
ferent entities, it is difficult to make texts approach them directly.
Therefore, the "brute-force" method such as BFSR cannot effectively
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Text Description GTBFSR
CAD

Translator

“An illustration of a stapler”

“An illustration of a hexagonal 
object”

“An isometric view of a metal 
handle”

“A drawing of a round
object with a hexagonal design”

Figure 4: Comparison results of texts to parametric CAD
sequences on the Text360 dataset.

Method 𝐴𝐶𝐶↑ MCD↓ MMD↓ JSD↓
CAD Translator w/o LC−CT 54.18 28.72 4.25 20.03
CAD Translator w/o LM 59.92 25.23 4.13 18.57
CAD Translator w/o LC−CAD 66.91 22.45 3.49 13.68
CAD Translator w/o LCCS 66.84 21.87 3.28 12.51
CAD Translator ∗ 64.35 23.61 5.38 20.08
CAD Translator 70.36 21.29 2.94 10.92

Table 3: Ablation study on the Text2CAD dataset. w/o LCCS
means the parameter 𝑆 is set to -1 in Equation 7, making
LC−CT and LC−CAD engaged in the entire training process
without epoch split. w/o LC−CT and w/o LC−CAD represent
we set LCCS = LC−CAD and LCCS = LC−CT respectively.

address the task of texts to parametric CAD sequences.

Input (Inference Stage) Strategy 𝐴𝐶𝐶↑ MCD↓ MMD↓ JSD↓
80% CAD + 20% Mask (i) 89.86 3.88 1.86 4.11
80% CAD + 20% Text (ii) 90.75 2.65 1.79 3.88
70% CAD + 30% Mask (i) 87.02 8.65 1.97 4.79
70% CAD + 30% Text (ii) 88.19 4.44 1.89 4.35
60% CAD + 40% Mask (i) 76.25 14.02 2.07 6.75
60% CAD + 40% Text (ii) 79.63 7.09 2.01 4.91

Table 4: The results of patching CAD sequences. Note the X%
means that X% of tokens in each 𝑒𝑐𝑎𝑑 are retained, and the
rest (1-X)% tokens are masked or filled with 𝑒𝑡𝑒𝑥𝑡 .

Ablation Study.We study different settings to figure out the mech-
anism ofCADTranslator and report the results in Table 3. Compared
to any weakened version of CAD Translator, CAD Translator brings
significant improvement to the generation task of texts to para-
metric CAD sequences. It again proves each component of CAD
Translator is indispensable and effective. Especially, when remov-
ing LC−CT, the performance of CAD Translator decays drastically.
This also indicates that there is indeed a gap between texts and
parametric CAD sequences, and our model effectively reduces this
gap. Compared to CAD Translator w/o LCCS (means L𝐶−𝐶𝑇 and
L𝐶−𝐶𝐴𝐷 are conducted simultaneously), CAD Translator shows
a obvious improvement in all metrics, especially over 3% in 𝐴𝐶𝐶 .
Besides, we also attempt to let CCS start with only LC−CAD and
then combine it with LC−CT, namely CAD Translator ∗. The results

indicate a significant performance degradation when compared to
CAD Translator (e.g., about 10% in JSD). It strongly validates that
optimizing the learned representation (L𝐶−𝐶𝐴𝐷 ) prematurely is
not a good choice. On the contrary, CCS starts with LC−CT and
then combine it with LC−CAD, which can better utilize the con-
trastive learning of intra-modal and cross-modal to improve the
performance of CAD Translator.
Hyper-parameter Discussion on CT-Mix and CCS. To better
expose the mechanism of texts to parametric CAD sequences, we
conduct several different ratios to combine texts with parametric
CAD sequences to get new fusion embeddings with 100 training
epochs. Concretely, 20% to 50% as the weight for texts embedding
and 80% to 50% as the weight for parametric CAD sequences embed-
ding. Following these weights, different fusion embeddings can be
easily generated via conducting CT-Mix. Furthermore, we also test 𝑆
in LCCS with setting the values of 20 to 50 to explore the potential
of CCS. Theoretically, CT-Mix and CCS both have the capability
to bring texts and parametric CAD sequences as close as possible.
Conditioned on this analogy, the more similar 𝑒𝑐𝑎𝑑 and 𝑒𝑡𝑒𝑥𝑡 are,
the more precise the accuracy of texts to parametric CAD sequences
generation. Hence, we are trying to find a proper consolidation of
CT-Mix and CCS via calculating the CT-Score (Equation 19) of texts
and parametric CAD sequences after encoding. Let 𝑅 denotes the
ratio of texts when conducting CT-Mix. For example, 𝑅 = 20%would
result in 20% of 0-1 vector 𝛾 in Equation 10 is numerical value of 1.
𝑆 is the hyper-parameter in LCCS (Equation 7). As shown in Fig-
ure 5, it can be inferred that CAD Translator with (𝑅 = 40%, 𝑆 = 40)
achieves the highest CT-Score and outperforms other consolidation
strategies in all metrics. These comparable results validate this hy-
pothesis, the better CT-Score achieved, the stronger capability to
address this task. Besides, we discover that the performance of CAD
Translator would decay significantly when 𝑆 and 𝑅 are too large
or too small, as shown in the four corners of each image within
Figure 5. 𝑆 and 𝑅 essentially control the degree of participation for
texts in the whole training process. Apparently, too much weight
of texts makes the CAD Translator take a rough approach like the
"brute-force" method in BFSR. However, too small weight of texts
cannot fully absorb the awareness from parametric CAD sequences,
which makes it challenging to bring them closer.
Synonym Substitution. To break out of the prompt for each CAD
model in the Text2CAD dataset, we conduct synonym replacement
on text descriptions to generate similar statements. For example,
if the original description of the object starts with "An illustration
of...", we substitute its with other descriptions such as "An isometric
view of..." or "A description of..." and feed these new prompts into
CAD Translator again to show what it can generate. From Figure 6,
it can be seen that changing the expression paradigm of describing
an object would not create entirely different shapes, especially in
only substituting the prefix. More interestingly, when substituting
the key word to define the category of a object, it would make some
reasonable alterations compared to the original shape (e.g., from
"bench" to "long chair" in the second row of Figure 6). This demon-
strates that CAD Translator is not limited to the fixed expression
and has the ability to generate diverse shapes.
Patching the parametric CAD sequence. Patching the paramet-
ric CAD sequence is very meaningful for the practical designing
conditioned on reusing or recreating the designed entities with
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Figure 5: The comparable experiments on the Text2CAD dataset to explore the proper consolidation of CT-Mix and CCS. 𝑆
represents the training step for the adaptive selection of LCCS (Equation 7). The y-axis denotes the ratio (𝑅) of texts when
conducting CT-Mix. The black circle in each image highlights the best score achieved by CAD Translator in every metric.

“An illustration of a 
mirror with a border”

“A description of a 
mirror in a border”

“A 3d drawing of  a
corner couch”

“An isometric view 
of a corner couch”

Orignial Description Synonymous Description

“An isometric view of a 
metal handle”

“An isometric rendering 
of a metal handle”

“An isometric view of 
a flanged object”

“A 3d drawing of a 
flanged object”

“An illustration drawing 
of a for-way cross“

“An isometric view of 
A four-way cross“

Prefix Substitution

(a)

“A 3d image of a 
round object”

“A 3d image of a 
metal ring”

Orignial Description Synonymous Description
“Key” word Substitution

“An isometric drawing of 
a bench with four legs”

“An isometric drawing 
of a long chair with 
four legs”

“An image of an object 
that is mate out of lego”

“An image of an object 
that is mate out of a toy 
brick”

“An isometric  drawing of 
a shelf with three shelves”

“An isometric  drawing of 
a shelf with two shelves”

“A picture of a metal plate 
with four holes”

“A picture of a metal plate 
with three holes”

(b)

Figure 6: The synonym substitution results. (a): Prefix Substitution. (b): "Key" word Substitution.

missing parts of parametric CAD sequences. In addition to achiev-
ing the generation task of texts to parametric CAD sequences, CAD
Translator also can patch the incomplete parametric CAD sequence,
where its inputs change to texts and parametric CAD sequences
in the inference stage. This is different from the generation task of
texts to parametric sequences in which the texts served as the only
test inputs. To test the patching capability of CAD Translator, we
conduct two different strategies for comparing. (i) we let parametric
CAD sequences as only inputs and leverage the mask operation
with the different rate on them in the latent space. For example, 80%
CAD + 20% Mask means that, for each parametric CAD sequence
𝑒𝑐𝑎𝑑 within test set, 80% of its tokens are retained, and the rest
20% tokens are masked. (ii) compared to (i), we let both parametric
CAD sequences and texts as test inputs and set different masks
on the 𝑒𝑐𝑎𝑑 where they are filled with 𝑒𝑡𝑒𝑥𝑡 in the latent space. To
be more specific, 80% CAD + 20% Text means 80% tokens of each
parametric CAD sequence 𝑒𝑐𝑎𝑑 are retained and the rest 20% tokens
are filled with the associated text 𝑒𝑡𝑒𝑥𝑡 via our CT-Mix. Please note
that this application does not require retraining CAD Translator.
All comparison results are directly tested on CAD Translator with
hyper-parameters of (𝑅 = 40%, 𝑆 = 40), as shown in Table 4. For
strategy (i), we set three levels (60% to 80%) to imitate the missing
parts of parametric CAD sequences. Even with only 60% tokens re-
tention of each 𝑒𝑐𝑎𝑑 , CAD Translator still achieves over 75% 𝐴𝐶𝐶 of
recovering CAD sequences. It proves the effectiveness of our model
on patching the incomplete parametric CAD sequence. Besides,
compared to strategy (i), strategy (ii) further improves the accuracy
of its recovery. Specifically, we also discover that 60% CAD + 40%

Text outperforms 60% CAD + 40% Mask in MCD with the almost 7%
improvement. It indicates that CAD Translator has a strong ability
to patch incomplete parametric CAD sequences with the help of
texts. Meanwhile, this also proves that our model dose stick a solid
bridge to connect texts and parametric CAD sequences effectively.

6 LIMITATIONS
Although CAD Translator shows the potential in the generation
task of texts to parametric CAD sequences and can provide prelim-
inary CAD modeling for designers, it is still unable to handle more
complex CAD models in practical engineering applications. This is
because complex CAD models often consist of multiple primitives,
resulting in a longer parametric CAD sequence that would exceed
the limit command length of 60 in CAD Translator.

7 CONCLUSION
In this paper, we present CAD Translator for automatic text to para-
metric CAD generative modeling based on transformer network.
CAD Translator effectively incorporates text awareness into para-
metric CAD sequences via conducting mixup operation in the latent
space, making it possible to generate parametric CAD models with
text description under one-stage training. The experimental results
verify the effectiveness of our frameworks. Our approach opens
up possibilities for leveraging text to parametric CAD generative
modeling in the future. To be specific, we will aim to further explore
text to parametric CAD modeling in two points: (i) novel ways to
combine LMMs, (ii) parametric CAD sequences with text awareness
in the latent space.
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