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Abstract

Recent advancements in Retrieval-Augmented001
Language Models (RALMs) have demon-002
strated their efficacy in knowledge-intensive003
tasks. However, existing benchmarks often as-004
sume a singular view of optimal information005
use, neglecting diverse user needs where ’cor-006
rectness’ can mean faithfulness to instructed007
sources over factual recall. This paper in-008
troduces a novel evaluation framework that009
systematically assesses RALMs under three010
user need cases—Context-Exclusive, Context-011
First, and Memory-First—across three distinct012
context settings: Context Matching, Knowl-013
edge Conflict, and Information Irrelevant. By014
varying both user instructions and the nature015
of retrieved information, our approach cap-016
tures the complexities of real-world applica-017
tions where models must adapt to diverse018
user requirements. Through extensive experi-019
ments on multiple QA datasets, including Hot-020
potQA, DisentQA, and our synthetic URAQ021
dataset, we find that restricting memory us-022
age improves robustness in adversarial retrieval023
conditions but decreases peak performance024
with ideal retrieval results and model family025
dominates behavioral differences. Our find-026
ings highlight the necessity of user-centric027
evaluations in the development of retrieval-028
augmented systems and provide insights into029
optimizing model performance across varied030
retrieval contexts, explicitly separating factual031
correctness from faithfulness-to-instruction so032
readers know which dimension each score re-033
flects. We will release our code and URAQ034
dataset upon acceptance of the paper.035

1 Introduction036

Recent advances in Language Models (LMs) have037

yielded impressive performance in knowledge-038

intensive tasks through Retrieval Augmented Gen-039

eration (RAG) (Lewis et al., 2020), including Real-040

time Question Answering (Wang et al., 2024b),041

Educational Tutoring (Han et al., 2024), and Per-042
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Figure 1: User needs may have different directions on
how to use retrieved context and internal memory as
knowledge sources and most of the previous work only
focused on a small portion of them.

sonal Assistants (Wang et al., 2024c). While 043

these applications showcase RAG’s versatility, they 044

also demand LMs that can adapt to diverse user 045

needs—expressed via instructions on whether to 046

prioritize external evidence or internal knowledge, 047

or adhere strictly to specified (even potentially 048

counter-factual) contexts, as seen in compliance, 049

creative writing, or hypothetical scenarios. For 050

instance, Real-time QA may rely heavily on up- 051

dated external facts, whereas tutoring may draw 052

more on the model’s conceptual understanding. 053

Despite this potential, current RAG methods still 054

struggle with identifying relevant references (La- 055

ban et al., 2024), resolving knowledge conflicts 056

(Wang et al., 2024a), and reasoning effectively (Is- 057

lam et al., 2024). These challenges underscore 058

the need for robust evaluation strategies capturing 059

how well Retrieval Augmented Language Models 060

(RALMs) adapt to evolving user requirements. 061

Even though existing RAG/RALM benchmarks 062

(Yu et al., 2024; Es et al., 2023; Chen et al., 063

2024)—including those that focus on multi- 064

scenario evaluations (Friel et al., 2024; Zhu et al., 065

2024)—have advanced retrieval-augmented eval- 066

uation, they typically assume a single “optimal” 067
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approach to external information (e.g., always rely-068

ing on retrieved context). This narrow perspective069

overlooks how diverse user instructions can dra-070

matically alter the desired model’s behavior within071

the same scenario. In medical fact-checking, for072

instance, one user might demand answers derived073

only from peer-reviewed studies, while another re-074

lies on the model’s internal knowledge—even if075

these sources conflict (Miao et al., 2024). Such076

constraints underscore an urgent question: how077

can we systematically evaluate LMs under varying078

context usage requirements to reflect different user079

needs?080

In this paper, we present a simple yet effec-081

tive evaluation framework that rigorously exam-082

ines how Retrieval-Augmented Language Models083

(RALMs) respond and be faithful to varying user084

instructions and context conditions. We consider085

three generic user cases—(1) Context-Exclusive ,086

(2) Context-First, and (3) Memory-First —to cap-087

ture different degrees of reliance on external infor-088

mation versus internal knowledge. Alongside these089

cases, we vary the context settings—(a) Context090

Matching, (b) Knowledge Conflict, and (c) Infor-091

mation Irrelevant—to represent scenarios where092

retrieved materials may align with, contradict, or093

fail to address the query. By intersecting user cases094

with distinct context conditions, we more closely095

mirror the complexities of real-world applications,096

where both the user’s priorities and the reliability of097

retrieved information can shift dramatically. This098

approach reveals how each scenario might alter099

the correct response—especially when context and100

memory conflict—an aspect often overlooked in101

previous work.102

We conduct extensive experiments on our cu-103

rated dataset, URAQ, along with two public104

datasets, DisentQA (Neeman et al., 2023) and105

HotpotQA (Yang et al., 2018), evaluating two106

model families, Llama3.1 Grattafiori et al. 2024107

and Qwen2.5 Qwen et al. 2025, across various108

model sizes and numbers of retrieved contexts. Our109

findings reveal that: 1) Current LMs struggle to110

satisfy diverse user needs, achieving below 50%111

accuracy across all datasets, with Llama-3.1-8B-112

Instruct occasionally nearing 0%. 2) Contextual113

restriction alters performance: Restricting mod-114

els to rely solely on retrieved context improves115

LMs performance when external context content is116

different from internal memory by up to 23% accu-117

racy difference on the same model but decreases the118

performance under ideal retrieval by up to 17%. 3)119

Model family dominate behavioral differences: 120

Model family contributes the majority of behav- 121

ioral differences, which further emphasize the im- 122

portance of choosing the correct model for differ- 123

ent user needs through proper evaluations. For 124

instance, under retrieval with knowledge conflict, 125

Llama3.1 models exhibit a performance decline of 126

up to 10.2% in accuracy when transitioning from 127

Context-First and Memory-First to the Context- 128

Exclusive case, whereas Qwen2.5 models show the 129

opposite pattern, with an improvement of nearly 130

20%. 131

2 Related Work 132

Our work intersects with four key research ar- 133

eas: (1) Retrieval-Augmented Generation Systems 134

(§2.1), (2) Knowledge Conflict Resolution (§2.2), 135

and (3) RAG Evaluation Benchmarks (§2.3). We 136

situate our framework within this landscape and 137

highlight critical gaps in current approaches. 138

2.1 RAG Systems 139

Modern RAG systems built on foundational archi- 140

tectures like REALM (Guu et al., 2020) and DPR 141

(Karpukhin et al., 2020), which first demonstrated 142

the value of integrating neural retrieval with lan- 143

guage modeling. Subsequent work improved con- 144

text utilization through better attention mechanisms 145

(RETRO (Borgeaud et al., 2021)) and multi-stage 146

reasoning (Atlas (Izacard et al., 2023)). While 147

these systems demonstrate impressive performance 148

on knowledge-intensive tasks, they primarily opti- 149

mize for single objective functions under the im- 150

plicit assumption that retrieved context should al- 151

ways be prioritized. Recent work on controllable 152

generation (Li et al. 2023; Ashok and Poczos 2024; 153

Wei et al. 2024) begins to address this limitation but 154

focuses on content style rather than source prioriti- 155

zation. We aim to raise the attention to diversified 156

objectives of RAG system by this work about eval- 157

uating performance under different user needs. 158

2.2 Knowledge Conflict 159

The challenge of resolving conflicts between inter- 160

nal knowledge and external context has gained at- 161

tention as LMs and RAG systems mature (Xu et al., 162

2024b). Early work by Longpre et al. (2021) identi- 163

fied context-memory conflicts as a key failure mode 164

of LMs through evaluation on QA dataset. Subse- 165

quent works proposed multiple solutions, including 166

but not limit to various fine-tuning, prompting, or 167

decoding methods, to context-memory conflicts 168
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that require LM to be faithful to context in order to169

ignore outdated knowledge (Shi et al., 2024; Zhou170

et al., 2023) or faithful to memory in order to dis-171

criminate misinformation are rarely explored (Xu172

et al., 2024a). However, the hybrid strategies that173

utilize both context and memory with prioritiza-174

tion, although commonly appeared in real-world175

applications, are rarely explored. In addition, there176

also exists applications that require LMs and RAG177

systems to work along or accept fictitious informa-178

tion or knowledge, which are commonly ignored179

by the previous works. Our framework includes the180

hybrid strategies that stem from the fundamental181

user needs, providing a wider coverage of evaluat-182

ing RALMs performance under context-memory183

conflict situations.184

2.3 Recent RAG Benchmark185

Previous RAG benchmarks like RAGAS (Es et al.,186

2023) and RGB (Chen et al., 2024) have facili-187

tated progress by quantifying performance across188

various scenarios. However, many of these bench-189

marks focused on a single type of optimal setting190

in terms of context usages (for instance, always191

prioritizing the context), overlooking how differ-192

ent user instructions may drastically affect model193

behaviors and performances. Moreover, previous194

multi-scenario evaluations (Friel et al. 2024; Zhu195

et al. 2024), while covering a wide range of specific196

tasks and purpose abundant metrics for evaluating197

different aspects of RAG systems, also tend to fol-198

low the paradigm of focusing on singular optimal-199

ity, neglecting that different user needs can actually200

happen in the same scenario, ultimately hindering201

the comprehensiveness of benchmark. FaithEval202

(Ming et al., 2025) proposes a benchmark to evalu-203

ate the faithfulness of the RAG system. Our work204

diverges by decoupling evaluation criteria from pre-205

defined singular optimality and measuring model206

capability to adapt to dynamic user needs by using207

different instructions. This mirrors real-world de-208

ployments where systems must honor diverse users’209

requirements rather than optimize for monolithic210

accuracy.211

3 Evaluation Framework212

In this section, we present our evaluation frame-213

work to measure Language Models’ (LMs’) perfor-214

mance. Specifically, we first describe the design of215

three abstract user need cases (§3.1) representing216

different typical user needs expressed by context us-217

Framework
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Question: What is the name of the only star in the solar system?
Match Context: Earth is circling the Sun in the solar system which
has only one star in it.
Conflict Context: Earth is circling the Proxima Centauri in the
solar system.
Irrelevant Context: Dinosaur is extinct probably because of
meteor strike.

Figure 2: An illustration of the framework with an ex-
ample question with its possible retrieved context and
the ground truth answer under each situation. According
to different user needs and context settings, the ground
truth answer can be different, reflecting instructed faith-
fulness (e.g., to ’Proxima Centauri’ if dictated by con-
text and user need) rather than absolute factual correct-
ness.

ages. Then, we describe the three context settings 218

(§3.2) motivated by practical usage conditions in 219

which the relevancy of the context varies and may 220

conflict with the LMs’ memory. 221

3.1 User Need Cases 222

To evaluate RALMs under varying user needs, we 223

define a spectrum based on reliance on contextual 224

information versus internal memory. This spec- 225

trum, illustrated in Figure 2, consists of three dis- 226

tinct user needs, determined by how LMs are in- 227

structed. Example prompts are in Appendix B. 228

Context-Exclusive: LMs must strictly base an- 229

swers on retrieved context, responding “I don’t 230

know” if context is unhelpful. Prompts enforce 231

unconditional adherence to external evidence, elim- 232

inating reliance on internal knowledge. 233

Context-First: LMs prioritize retrieved context 234

but fall back on memory when no relevant context 235

exists. Prompts establish context as primary, with 236

memory as a secondary source. 237

Memory-First: LMs rely on internal memory 238

unless uncertain, in which case they defer to re- 239

trieved context. Prompts invert the hierarchy, mak- 240

ing memory the default unless confidence is low. 241

3.2 Context Settings 242

To better analyze RALMs under real-world situa- 243

tions with sub-optimal retrieval results, it is benefi- 244

cial to also consider the spectrum of context quality 245
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on top of each user case. For any context retrieved246

in an RAG system, we can assess its quality based247

on two primary dimensions: 1) Relevance to the248

Task or Question: Whether the retrieved context249

contains information that is semantically or factu-250

ally related to the question. 2) Alignment with251

LM’s Internal Knowledge: Whether the retrieved252

context supports or contradicts the knowledge that253

the model already possesses. These two dimen-254

sions create a 2 × 2 space (relevant/irrelevant ×255

match/conflict), but due to the nature of irrelevant256

context (which neither supports nor contradicts),257

the space reduces to three distinct context settings.258

Conext Matching. There is at least one retrieved259

context relevant to the question and matches with260

the LM’s memory. This is an ideal situation for261

RALMs as correct knowledge is presented in both262

the external context and the internal memory.263

Knowledge Conflict. There is at least one re-264

trieved context relevant to the question but con-265

flicts with the LM’s memory. This setting sim-266

ulates context-memory knowledge conflicts (Xu267

et al., 2024b) and tests the model’s ability on gener-268

ation with strictly following instructions regarding269

context usages.270

Information Irrelevant. All retrieved contexts271

are unrelated to the question. This setting simulates272

the Needle-In-a-Haystack (Laban et al., 2024) sit-273

uation and tests the model’s ability on knowledge274

selection.275

4 Experimental Setup276

4.1 Datasets277

Overview of QA Datasets This experiment em-278

ploys three QA datasets: HotpotQA (Yang et al.,279

2018), DisentQA (Neeman et al., 2023), and our280

synthetic User-focused Retrieval-Augmented QA281

(URAQ). To assess RALMs’ real-world perfor-282

mance, we use HotpotQA and DisentQA versions283

augmented with conflicted knowledge by Shaier284

et al. (2024) for the retrieval-content knowledge285

conflict setting. While valuable, these benchmarks286

lack controlled knowledge boundaries and have287

varying question difficulty, limiting evaluation.288

They also rely on long-document contexts only,289

thereby restricting retrieval diversity in terms of290

document length. In addition, the nature of factual-291

based for these datasets makes them may not be292

fully aligned with the evaluation of under needs.293

URAQ complements these by providing uniformly 294

difficult questions and numerous concise modi- 295

fied contexts, specifically to isolate instruction- 296

following and conflict-resolution capabilities when 297

adapting to varied user needs, distinct from gen- 298

eral comprehension over long or highly complex 299

factual texts. While specialized domain datasets 300

(e.g., medical, real-time QA) would be ideal for 301

demonstrating our three user needs, we opted for 302

these known and synthetic benchmarks to ensure 303

reproducibility, broader comparability, and general- 304

izability within budget constraints. The framework 305

itself remains applicable to more domain-specific 306

evaluations. 307

Dataset Num. of Context Sequence Size Max. Token

Synthetic 1, 10, 25, 50, 100, 250, 500, 1000 231 25k
DisentQA 1, 2, 4, 8, 16, 32, 64 1415 59k
HotpotQA 1, 2, 4, 8, 16, 32 1274 35k

Table 1: Basic information of the three datasets used
in the experiment. The number of retrieved context is
increased in a exponential way until the average num-
ber of tokens at the highest number of each sequence
reaches around 20k in order to balance the effectiveness
of the experiment on long context and the consumption
of computational resources. The number of maximum
tokens among all samples for a dataset may vary based
on context retrieved.

URAQ Construction We construct URAQ by 308

first generating simple, distinct knowledge state- 309

ments via GPT-4o-mini (OpenAI et al., 2024) and 310

removing near-duplicates using SentenceBERT 311

(Reimers and Gurevych, 2019), then creating both 312

original and “manipulated” versions by substitut- 313

ing key information or adding negations. For each 314

knowledge pair, we produce a question requiring 315

1–5 reasoning steps and two separate answers (one 316

from the original knowledge, one from the manipu- 317

lated), ultimately selecting the 4-hop subset for the 318

final dataset. A detailed description of this proce- 319

dure is provided in Appendix A. To ensure fairness 320

in evaluating multiple models, which may possess 321

different internal knowledge, our experiments (par- 322

ticularly with URAQ) utilize a subset of questions 323

for which the underlying correct factual knowledge 324

is confirmed to be known by all evaluated mod- 325

els. This is achieved by pre-screening models on 326

single-hop versions of questions related to the orig- 327

inal knowledge. This pipeline ensures applicability 328

across various domains and enables users to convert 329

any datasets that previously designed for factuality 330

and truthfulness into a faithfulness-oriented dataset, 331

which adapts to our experiment on user needs. 332
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4.2 Retrieval Context Setup333

To examine how performance changes with varying334

amounts of retrieved context, rather than using a335

fixed retrieval count as in previous work (Zhu et al.,336

2024), we evaluate LM performance by exponen-337

tially increasing the retrieval count across different338

datasets, shown in Table 1. To assess the models’339

tolerance to distracting or irrelevant contexts, we340

ensure that only one relevant context is present for341

both the context-matching and conflicting settings,342

randomly positioned within the prompt. A detailed343

description of the prompt formatting and exam-344

ple is in the Appendix C. All other contexts are345

selected from a pool of original and manipulated346

knowledge that excludes any information directly347

related to the current question.348

4.3 Evaluation Metrics349

To rigorously assess user-need awareness across350

different user needs with different retrieval content,351

we test each user need with identical questions but352

varying the guidance on context usage, spanning353

three levels:354

1. Overall User Need Accuracy : The model355

must satisfy all user needs simultaneously. Specifi-356

cally, each test sample can be counted as correct if357

and only if the model can answer the same question358

under all user cases and all context settings. In this359

way, we can evaluate the LMs in a generic setting.360

2. Case-Level Accuracy For each individual361

user need, we assess the model’s performance362

across multiple context settings. A test sample363

is considered correct only if the model consistently364

provides the correct answer across all variations of365

context under that specific user need. This evalua-366

tion method ensures that the model demonstrates367

reliability in addressing a given requirement, inde-368

pendent of the context variations presented.369

3. Setting-Specific Accuracy In each context set-370

ting, test sample is considered correct if the model371

obtain the answer is same as the ground truth in372

the corresponding setting. By evaluating models at373

these three levels, we obtain a comprehensive view374

of how consistently and robustly they meet each375

user need across different contextual requirements.376

4.4 Evaluation model377

To evaluate user-need awareness, we conduct com-378

prehensive experiments on 4 Instruct LMs using379

two distinct open-source LLM families—Llama380

3.1 (Grattafiori et al., 2024), and Qwen 2.5 (Qwen 381

et al., 2025)—which vary in model size. We set the 382

maximum context length to 128k, the temperature 383

to 0, and Top-p to 1, while leaving all other config- 384

urations at their default values which defers to the 385

Appendix D. 386

5 Result & Analysis 387

5.1 Overall Performance 388

We start our analysis on the overall performance 389

across all three user cases by using the overall user 390

need accuracy to access the capacity of user need 391

awareness on different LMs. The results are shown 392

in Figure 3. 393

LMs struggle across all datasets, and URAQ 394

is more challenging than existing benchmarks 395

No model surpasses 50% accuracy across differ- 396

ent user needs, with Llama-3.1-8B-Instruct per- 397

forming particularly poorly, nearing 0%. While 398

performance is low across all datasets, URAQ 399

proves significantly more challenging than Disen- 400

tQA and HotpotQA. The best-performing model, 401

Qwen2.5-72B-Instruct, scores up to 44.4% lower 402

on URAQ. URAQ’s diverse external information, 403

multi-step reasoning, and conflicting knowledge 404

make retrieval and synthesis more challenging for 405

LLMs, emphasizing the need for stronger reason- 406

ing capabilities to handle complex real-world user 407

needs. 408

LMs behave differently at the model-family level 409

but similarly within the same family. Overall, 410

we observe distinct patterns in LMs across differ- 411

ent model families on two out of three datasets. 412

Specifically, there is a clear divergence in behavior 413

between the Qwen2.5 and Llama-3.1 model fam- 414

ilies on DisentQA and HotpotQA. The Qwen2.5- 415

7B-Instruct and its larger 72B variant exhibit an 416

increasing trend in accuracy as the number of re- 417

trieved contexts grows, whereas the Llama-3.1-8B- 418

Instruct and 70B-Instruct models follow a decreas- 419

ing trend. This difference likely stems from model- 420

specific behavioral tendencies and a potential trade- 421

off between instruction-following capability and 422

multi-hop reasoning ability, which we further dis- 423

cuss in Section 5.2. On URAQ, although both 424

model families exhibit declining trends, the Llama- 425

3.1 models experience a steeper drop in perfor- 426

mance compared to the Qwen2.5 models. For ex- 427

ample, the performance gap from 1 to 10 retrieved 428

contexts in the Qwen family is around relative ac- 429
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Figure 4: Case-Level Accuracy curve of Qwen2.5 and
Llama-3.1 on HotpotQA.
curacy 1.5%, whereas for the Llama-3.1 family, it430

is 9.1%, indicating a more pronounced decline.431

Larger models exhibit better user needs aware-432

ness. Within the same model family, larger433

models (70B+/72B) consistently outperform their434

smaller counterparts (7B/8B), demonstrating im-435

proved user needs awareness. Notably, Qwen mod-436

els exhibit up to a 37.7% accuracy improvement,437

while Llama models achieve a 36.3% gain on Dis-438

entQA, highlighting the substantial benefits of scal-439

ing model size. However, it is also important to440

note that the magnitude of performance improve-441

ment diminishes as the number of retrieved con-442

texts increases, suggesting potential saturation ef-443

fects or increased difficulty in effectively leverag-444

ing larger context windows.445

5.2 General Performance for Each User Need446

To further analyze the behavior of LMs on each447

user need, we measure the curve of Case-Level448

Accuracy versus number of retrieved context on 449

HotpotQA, as shown in Figure 4. We defer other 450

two datasets to Figure 10 in the Appendix E. 451

Restricting memory usage improves real-world 452

performance. We find that the model’s accu- 453

racy increased from Context or Memory-First to 454

Context-Exclusive case, meaning that limiting the 455

usage of internal memory improves the lower limit 456

of general performance, possibly because Context- 457

Exclusive strategy forces strict reliance on retrieved 458

evidence and prevents hallucinations. This trend 459

is particularly evident in Qwen2.5 models on Hot- 460

potQA dataset that maintain at least 7.7% increase 461

in accuracy. However, as the number of context in- 462

creases, the performance gap gradually shrinks and 463

may even be inverted on Llama-3.1 models where 464

Context-Exclusive accuracy drops by up to 12.5% 465

when the number of retrieved context increases to 466

32. 467

Models Tend to Be Lazy with More Context. 468

To investigate the counterintuitive pattern in which 469

the accuracy of Context or Memory-First cases in- 470

creases as the number of retrieved contexts grows 471

across all models, we analyze the impact of dif- 472

ferent context settings in both cases, as shown in 473

Figure 5. Interestingly, the Information Irrelevant 474

setting appears to contribute to this upward trend. 475

By randomly sampling 100 cases across different 476

retrieval context lengths, we observe that models 477

are easily influenced by irrelevant information, of- 478

ten generating responses such as “no,” “none,” or 479

“0.” However, as more context is retrieved, models 480

exhibit emergent Chain-of-Thought reasoning capa- 481

bilities. This phenomenon may stem from a form of 482

"lazy" behavior, where models, instead of actively 483

identifying the correct context, increasingly rely on 484

their own memory as the context length grows. We 485

defer the case study example into Appendix D. 486
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Figure 6: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 models on HotpotQA dataset with con-
text matching setting. These two model as the represen-
tative demonstrate the large and small performance drop
from Context or Memory-First user need to Context-
Exclusive.

5.3 Individual Setting Performance487

To provide more detailed analysis on models’ be-488

havior on the context setting-level, we measure the489

Setting-Specific Accuracy Accc curve for each user490

need case, categorizing them into two groups: Op-491

timal Context, where the provided context aligns492

with the model’s memory, and Challenging Con-493

text, where the context is conflicting or irrelevant.494

5.3.1 Performance on Optimal Context495

Under the Context Matching setting, where the496

model receives fully relevant and correct context,497

we assess its maximum potential performance.498

This defines an optimal performance, isolating499

the model’s ability to utilize ideal context without500

retrieval constraints.501

Dataset Llama-3.1-Instruct Qwen2.5-Instruct

8B (%) 70B (%) 7B (%) 72B (%)

URAQ 52 74 85 97
DisentQA 70 84 92 98
HotpotQA 63 76 84 95

Table 2: Percentage of errors that is "I don’t know"
among the shortest 100 randomly selected samples that
under Context Matching setting that is incorrect for
Context-Exclusive user need and correct for Context or
Memory-First.

Restricting memory usage limits optimal perfor- 502

mance. Based on the results in Figure 6, we ob- 503

serve that models’ accuracy declines when internal 504

memory is restricted under the Context-Exclusive 505

strategy. This effect is more pronounced in the 506

Qwen2.5 family, where Qwen2.5-7B-Instruct expe- 507

riences up to a 12.1% accuracy drop from Context 508

or Memory-First to Context-Exclusive, whereas 509

the Llama-3.1 family shows only a slight decrease, 510

with Llama-3.1-8B-Instruct losing up to 4.1%. 511

LLMs exhibit self-protective conservatism. 512

To examine the accuracy drop under the Context- 513

Exclusive setting, we analyze 100 randomly se- 514

lected cases with up to four retrieved context seg- 515

ments, where the model provides an incorrect an- 516

swer under Context-Exclusive but a correct one 517

under Context or Memory-First. Errors are catego- 518

rized into two types: (1) the model refuses to an- 519

swer by stating, "I don’t know," and (2) the model 520

generates an incorrect hallucinated response. Table 521

2 reports the percentage of refusals. 522

We observe that models overwhelmingly pre- 523

fer rejection over hallucination when they struggle 524

to locate relevant context, with refusal rates ex- 525

ceeding 50% across all models and datasets. This 526

tendency is particularly strong in the Qwen2.5 fam- 527

ily, where the 7B and 72B models reject answers 528

in over 85% of cases, with Qwen2.5-72B-Instruct 529

reaching a 98% rejection rate on DisentQA. Simi- 530

larly, the Llama-3.1 models exhibit high rejection 531

rates, ranging from 70% to 84% on DisentQA. This 532

conservative behavior may stem from its training 533

objectives or alignment strategies prioritizing an- 534

swer correctness over speculative responses. 535

5.3.2 Performance with Challenging Context 536

For performance under Knowledge Conflict or Ir- 537

relevant Context, we realize that evaluating only 538

the performance of single context setting in isola- 539

tion can introduce bias and skewed interpretations 540

7



30
35
40
45
50
55
60

1 2 4 8 16 32

Ac
cu

ra
cy

 (%
)

Num. Retrieved Context

Qwen2.5-7B-Instruct

45

50

55

60

65

1 2 4 8 16 32

Ac
cu

ra
cy

 (%
)

Num. Retrieved Context

Qwen2.5-72B-Instruct

Context-FirstContext-Exclusive Memory-First

(1) Setting-Specific Accuracy curve of Qwen2.5 model family
on HotpotQA dataset with knowledge conflict.
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(2) Setting-Specific Accuracy curve of Llama-3.1 model fam-
ily on HotpotQA dataset with knowledge conflict.

Figure 7: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 model family on HotpotQA dataset with
knowledge conflict. While two models have similar
accuracy on Context or Memory-First case, Llama mod-
els has lower accuracy on Memory-Exclusive compared
with Context or Memory-First and Qwen models has
higher accuracy.

due to LMs preference on using memory than con-541

text or vise versa (Longpre et al., 2021; Jin et al.,542

2024), resulting performing perfectly in one setting543

but failed in other. For example, succeeding in Ir-544

relevant Context but failing in Matching Context545

may suggest that the model is prone always rely-546

ing on memory without actually complying with547

the instructions to use retrieved context. Therefore,548

we measure the Setting-Specific Accuracy Accc for549

Challenging Context in a way that the same ques-550

tion need to be also answered correctly in Context551

Matching settings, ensuring the robustness of eval-552

uation. Such measuring method is applied to all553

experiments in this section shown in Figure 7 and554

8.555

Model family dominates behavioral difference.556

Model families still exhibit distinct behavioral pat-557

terns: When knowledge conflict exists as Figure558

7, Llama3.1 models show degradation of perfor-559

mance from Context-First and Memory-First to560

Context-Exclusive case for up to 10.2% accuracy,561

while Qwen2.5 models demonstrate the opposite562

trend with an increase close to 20%. This behavior563

suggests fundamental differences in knowledge re-564

liance—Llama3.1 appears more context-dependent,565
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(1) Setting-Specific Accuracy curve of Qwen2.5 model family
on HotpotQA dataset with irrelevant context.
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ily on HotpotQA dataset with irrelevant context.

Figure 8: Setting-Specific Accuracy curve of Qwen2.5
and Llama-3.1 model family on HotpotQA dataset with
irrelevant context.

struggling to effectively integrate memory, whereas 566

Qwen2.5 leverages its parametric knowledge more 567

effectively when permitted. Such difference also 568

appears in the as Figure 8 with Information Irrele- 569

vant setting, Llama models exhibit significant de- 570

creasing accuracy on Context-Exclusive strategy 571

with increasing context length for up to 60.1%, 572

whereas Qwen exhibit almost no loss in perfor- 573

mance, for the same reason as discussed in Section 574

5.2. 575

6 Conclusion 576

We introduce an evaluation framework for RALMs 577

that systematically assesses performance across 578

diverse user needs and context settings. By decom- 579

posing user instructions into three generic user need 580

cases (Context-Exclusive, Context-First, Memory- 581

First) and three context settings (Context Match- 582

ing, Knowledge Conflict, Information Irrelevant), 583

our framework provides comprehensive insights 584

into model capabilities and limitations. Our anal- 585

ysis covers overall user requirements, case-level 586

evaluations, and the impact of varying context con- 587

tents across different context lengths. The findings 588

highlight the need for user-centric evaluations and 589

architectural innovations to enhance RAG system 590

reliability and real-world applicability. 591
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7 Limitations592

While our study provides a structured evaluation593

framework for Retrieval-Augmented Language594

Models (RALMs) under diverse user needs and re-595

trieval conditions, several limitations remain. Our596

experiments rely on three datasets: HotpotQA, Dis-597

entQA, and the synthetic URAQ dataset. While598

these datasets cover various knowledge retrieval599

challenges, they may not fully capture the diver-600

sity of real-world retrieval scenarios, particularly in601

highly specialized domains such as medical or le-602

gal applications. Additionally, the synthetic URAQ603

dataset, although designed to control retrieval com-604

plexity, may not generalize perfectly to naturally605

occurring retrieval conflicts found in real-world606

settings. In addition, our results are based on evalu-607

ations of two model families, Llama-3.1 and Qwen-608

2.5, across different sizes. While these models are609

representative of current state-of-the-art retrieval-610

augmented systems, our conclusions may not gener-611

alize to other architectures, such as retrieval-heavy612

fine-tuned transformers or proprietary models with613

distinct retrieval and reasoning mechanisms. Fu-614

ture work should extend this analysis to a broader615

range of models.616

8 Ethics Statement617

Our framework is designed to assess how well618

RALMs adhere to different user instructions, re-619

flecting real-world applications where users may620

have distinct expectations regarding knowledge us-621

age. However, models may still exhibit dispari-622

ties in their ability to satisfy certain user needs,623

especially in adversarial retrieval settings. We rec-624

ommend further research on mitigating disparities625

and enhancing fairness in retrieval-augmented sys-626

tems. The datasets used in our experiments include627

HotpotQA, DisentQA, and the newly introduced628

synthetic URAQ dataset. While these datasets con-629

tain diverse question-answer pairs, we acknowl-630

edge that biases may be present in both retrieved631

and internally generated content. We have taken632

measures to minimize biases by curating synthetic633

data with balanced question difficulty and by eval-634

uating model performance under varying retrieval635

conditions. However, residual biases in training636

corpora or retrieval mechanisms may influence the637

observed model behavior. One of our primary mo-638

tivations is to analyze how models handle conflict-639

ing or irrelevant retrieved information. While our640

evaluation reveals scenarios where models fail to641

distinguish misinformation or exhibit hallucination 642

tendencies, our work does not actively promote 643

the generation or dissemination of false informa- 644

tion. Instead, we highlight the need for more robust 645

mechanisms to ensure factual consistency, particu- 646

larly in knowledge-conflict scenarios. By conduct- 647

ing this study, we aim to advance the ethical design 648

of retrieval-augmented models while encouraging 649

further research on mitigating biases, improving 650

factual robustness, and ensuring alignment with 651

diverse user needs. 652
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A Detailed Dataset Curation Procedure1183

Below, we provide a step-by-step description of1184

how we constructed the URAQ dataset:1185

A.1 Knowledge Generation1186

We used gpt-4o-mini (OpenAI et al., 2024) to pro-1187

duce an initial list of short, simple knowledge state-1188

ments. These statements are general facts (e.g.,1189

“A hummingbird can hover in mid-air” or “Blue1190

whales are the largest animals on Earth”) rather1191

than domain-specific or specialized knowledge.1192

The generated statements were deliberately kept1193

concise and straightforward to facilitate subsequent1194

manipulation and question generation.1195

A.2 Redundancy Filtering1196

Since GPT-based generators can produce highly1197

similar or paraphrased statements, we employed1198

SentenceBERT (Reimers and Gurevych, 2019) to1199

measure the semantic similarity between all knowl-1200

edge statements. Any pair of statements with a1201

cosine similarity above 0.5 was considered near-1202

duplicate and therefore removed to ensure diversity1203

in the final knowledge set.1204

A.3 Manipulated Knowledge Creation1205

For every remaining “original” knowledge state-1206

ment, we prompted gpt-4o-mini to generate a ma-1207

nipulated variant. The manipulation involved either1208

substituting key elements (e.g., entities, numerical1209

values, or critical details) or adding a negation that1210

changes the statement’s truth value (e.g., “A hum-1211

mingbird cannot hover in mid-air”). Each pair of1212

statements (original vs. manipulated) thus serves as1213

a pairwise contrast for subsequent question-answer1214

(QA) creation.1215

A.4 Question-Answer (QA) Generation1216

From each pair of original and manipulated knowl-1217

edge statements, we prompted gpt-4o-mini to gen-1218

erate a question that requires between 1 to 5 reason-1219

ing steps to arrive at an answer. The reasoning steps1220

typically involve either numerical computation, log-1221

ical inference, or entity comparison. Each question1222

was tied to both the original and the manipulated1223

knowledge. The resulting QA format consists of1224

one question and two different answers: one cor-1225

rect answer derived from the original statement,1226

and a second answer derived from the manipulated1227

statement.1228

A.5 Answer Format and Difficulty Selection 1229

We constrained valid answers to be either (i) a nu- 1230

meric value, (ii) a boolean (“yes” or “no”), or (iii) 1231

a single entity. Among the generated questions, 1232

those requiring 4-hop reasoning were chosen for 1233

the final dataset, as manual inspection suggested 1234

these exhibited higher quality and clearer multi- 1235

step logic compared to simpler or more complex 1236

variants. 1237

A.6 Final Ground Truth Assignment 1238

For each question, we designated the correct 1239

ground truth answer to be the one aligned with 1240

the original knowledge statement. An example il- 1241

lustrating how this ground truth is integrated into 1242

the evaluation framework is provided in Figure 2 1243

of the main paper. 1244

By following these steps, we ensure that the 1245

URAQ dataset offers well-defined pairs of knowl- 1246

edge (original vs. manipulated) and corresponding 1247

multi-step questions designed to differentiate be- 1248

tween factual and altered information. This frame- 1249

work supports a diverse range of potential use 1250

cases, from fact-checking systems to more elab- 1251

orate multi-step reasoning models. 1252

B Example User Need Instructions 1253

B.1 Context-Exclusive 1254

You are a helpful AI assistant tasked 1255
with answering the given question 1256
ONLY based on the provided 1257
information. Here are the 1258
requirements to answer the question: 1259

1260
1. The answer should be a numeric value , 1261

a boolean ("yes" or "no"), or an 1262
entity. 1263

1264
2. You MUST directly provide the final 1265

answer within an <output > XML tag , 1266
without including any units if the 1267
answer is numeric. 1268

1269
3. You MUST utilize the RELEVANT 1270

knowledge contained in the provided 1271
information to answer the question , 1272
even if the knowledge is INCORRECT. 1273
If NONE of the provided information 1274
is RELEVANT to the question , you 1275
MUST output "I don't know". 1276

B.2 Context-First 1277

You are a helpful AI assistant tasked 1278
with answering the given question by 1279
referring to the provided 1280

information. Here are the 1281
requirements to answer the question: 1282

14



1283
1. The answer should be a numeric value ,1284

a boolean ("yes" or "no"), or an1285
entity.1286

1287
2. You MUST directly provide the final1288

answer within an <output > XML tag ,1289
without including any units if the1290
answer is numeric.1291

1292
3. If the provided information contains1293

RELEVANT knowledge that can be used1294
to answer the question , you MUST1295
utilize the provided information ,1296
even if the knowledge is INCORRECT.1297

1298
4. If NONE of the provided information1299

is RELEVANT to the question , you1300
MUST utilize your own knowledge to1301
answer the question.1302

B.3 Memory-First1303

You are a helpful AI assistant tasked1304
with answering the given question by1305
referring to the provided1306

information. Here are the1307
requirements to answer the question:1308

1309
1. The answer should be a numeric value ,1310

a boolean ("yes" or "no"), or an1311
entity.1312

1313
2. You MUST directly provide the final1314

answer within an <output > XML tag ,1315
without including any units if the1316
answer is numeric.1317

1318
3. You MUST utilize your own knowledge1319

to answer the question if you are1320
certain of the accuracy (e.g.,1321
factual information you are sure1322
about). If you are UNSURE about your1323
knowledge , you MUST use the1324

relevant knowledge from the given1325
information instead.1326

C Input Prompt Formatting1327

The input prompt is organized as (I, C,Q) or1328

(If , Iu, C,Q), where I is the instruction and can1329

be separated into formatting instruction If and1330

user needs instructions Iu, C = {c1, c2, ..., cn}1331

is a series of retrieved context with retrieval num-1332

ber of n, and Q is the question. Given an input1333

(If , Iu, C,Q), we have the following prompting1334

template:1335

<sys>If ⊕ Iu</sys><user>C ⊕Q</user> (1)1336

where <sys></sys> and <user></user> denote the1337

system prompt and the user prompt. Among all1338

data samples, the Iu and C may change according1339

to the user case and context setting, while the1340

If remaining the same by instructing models to 1341

directly output a simple answer that is either a nu- 1342

meric value, a boolean ("yes" or "no"), or an entity, 1343

as described in Section 4. 1344

We introduce an example input prompt that 1345

is designed for Context-Exclusive and Context 1346

Matching with 2 total retrieved context following 1347

the abstract input (If , Iu, C,Q). The prompt is for- 1348

matted with XML for both input and output. Specif- 1349

ically, the formatting instructions If are separated 1350

into two parts: 1) The first and second instructions 1351

in the system prompt describing that the answer 1352

should be as simple as possible with XML format. 1353

2) The instruction in the user prompt about format 1354

of context with an reinforcement of output format. 1355

The user need instruction Iu is at the third instruc- 1356

tion in the system prompt. The retrieved context 1357

C is all the sentences in the user prompt within 1358

<info> xml tag. Finally, the question Q is at the 1359

last of user prompt within <question> xml tag. 1360

System Prompt: 1361
You are a helpful AI assistant tasked 1362

with answering the given question 1363
ONLY based on the provided 1364
information. Here are the 1365
requirements to answer the question: 1366

1. The answer should be a numeric value , 1367
a boolean ("yes" or "no"), or an 1368

entity. 1369
2. You MUST directly provide the final 1370

answer within an <output > XML tag , 1371
without including any units if the 1372
answer is numeric. 1373

3. You MUST utilize the RELEVANT 1374
knowledge contained in the provided 1375
information to answer the question , 1376
even if the knowledge is INCORRECT. 1377
If NONE of the provided information 1378
is RELEVANT to the question , you 1379
MUST output 'I don't know'. 1380

1381
User Prompt: 1382
Given the following information enclosed 1383

in xml tag <info ></info >, answer 1384
the question enclosed in xml tag < 1385
question ></question >. 1386

** 1387
<info >2 + 2 equals 4.</info > 1388
<info >The sun is the only star in our 1389

solar system.</info > 1390
** 1391
<question >If you have two apples and you 1392

get two more , how many apples do 1393
you have?</question > 1394

D Case Study of Model Laziness 1395

Question: How do plants create their 1396
food , photosynthesis or moonthesis? 1397

1398
Answer with 1 context: <output >No </ 1399

output > 1400

15



1401
Answer with 1000 context: I think there1402

might be a small mistake in your1403
question. The correct term is "1404
photosynthesis" not "moonthesis".1405
Photosynthesis is the process by1406
which plants , algae , and some1407
bacteria make their own food using1408
sunlight , water , and carbon dioxide.1409
So, to answer your question: Plants1410
create their food through1411

photosynthesis.1412

Above question-answer pair from our synthetic1413

URAQ dataset is an example of model relying on1414

their own memory on long context and acquire bet-1415

ter result than the result from shorter input. For1416

answer with only 1 context, the model outputs a1417

single word "No" with correct output format. For1418

answer with 1000 context, the model provides clear1419

thinking path with correct, affirmative answer with-1420

out the desinated XML format for output. We also1421

calculate the percentage of 100 randomly selected1422

testing samples that has similar behaviors using1423

Qwen2.5-72B-Instruct and Llama-3.1-70B-Instruct1424

as shown in Table 3.1425

Context-First (%) Memory-First (%)

Qwen2.5-72B-Instruct 84 77
Llama-3.1-70B-Instruct 56 65

Table 3: Percentage of testing samples that answered
with single negative output for short input but correct
output with explicit reasoning, among 100 randomly
selected samples that the question answered incorrectly
with 1 retrieved context and correctly with 1000 re-
trieved context.

E Accuracy Curves of URAQ and1426

DisentQA1427
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching setting.

Figure 9: Accuracy curve of all models under Context
Matching setting.
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(1) Case-Level Accuracy curve of Llama-3.1 on URAQ
dataset.
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(2) Case-Level Accuracy curve of Qwen2.5 on URAQ dataset.
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(3) Case-Level Accuracy curve of Llama-3.1 on DisentQA
dataset.
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(4) Case-Level Accuracy curve of Qwen2.5 on DisentQA
dataset.

Figure 10: Case-Level Accuracy of all models.
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching & Knowledge Conflict setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching & Knowledge Conflict setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching & Knowledge Conflict setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching & Knowledge Conflict setting.

Figure 11: Accuracy curve of all models under Context
Matching & Knowledge Conflict setting.
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(1) Accuracy curve of Llama-3.1 on URAQ dataset under
Context Matching & Information Irrelevant setting.
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(2) Accuracy curve of Qwen2.5 on URAQ dataset under Con-
text Matching & Information Irrelevant setting.
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(3) Accuracy curve of Llama-3.1 on DisentQA dataset under
Context Matching & Information Irrelevant setting.
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(4) Accuracy curve of Qwen2.5 on DisentQA dataset under
Context Matching & Information Irrelevant setting.

Figure 12: Accuracy curve of all models under Context
Matching & Information Irrelevant setting.
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