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Abstract

Understanding the relationships among multiple entities through Granger causality graphs
within multivariate time series data is crucial across various domains, including economics,
finance, neurosciences, and genetics. Despite its broad utility, accurately estimating Granger
causality graphs in high-dimensional scenarios with few samples remains a persistent chal-
lenge. In response, this study introduces a novel model that leverages prior knowledge in
the form of a noisy undirected graph to facilitate the learning of Granger causality graphs,
while assuming sparsity. In this study we introduce an optimization problem, we propose
to solve it with an alternative minimization approach and we proved the convergence of
our fitting algorithm, highlighting its effectiveness. Furthermore, we present experimental
results derived from both synthetic and real-world datasets. These results clearly illustrate
the advantages of our proposed method over existing alternatives, particularly in situations
where few samples are available. By incorporating prior knowledge and emphasizing spar-
sity, our approach offers a promising solution to the complex problem of estimating Granger
causality graphs in high-dimensional, data-scarce environments.

1 Introduction

Multivariate time series analysis plays a crucial role in understanding and forecasting real-world phenomena
involving multiple interdependent variables. Within such complex systems, Granger causality (Granger,
1969) graph has emerged as a powerful tool to uncover directional relationships and causal influences. It
has therefore been the basis for a wide range of applications in fields such as economics (Stock & Watson,
2016), neuroscience (Seth et al., 2015), gene regulation (Yao et al., 2013), protein-protein interactions (Zou
et al., 2010) etc. Granger causality assesses whether the past values of one variable can help predict the
future values of another variable. For instance, we say that a random variable X Granger-causes a variable
Y if the past values of X contain information that enhances our ability to predict Y beyond what we
could achieve using only the historical values of Y itself. While Granger causality is a powerful tool for
studying relationships between two variables, many real-world phenomena involve multiple interconnected
variables. Network Granger causality extends the basic Granger causality concept by assuming linear causal
relationships between p variables. Hence, it allows to capture the complex causal relationships within multiple
variables. In this context, the aim is not to identify whether one variable influences another but to unravel
the intricate causal structure that underlies an entire system. Network Granger causality is particularly
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relevant in fields like neuroscience where researchers seek to understand how different regions of the brain
interact and influence each other over time (Seth et al., 2015), in finance to capture market dynamics or
in climatology to investigate complex interactions shaping Earth’s climate system. It is also applicable to
discover cause-and-effect relationships within genetic pathways and protein-protein interactions, shedding
light on the regulatory mechanisms that govern these biological processes (Yao et al., 2013).

A conventional approach to learn Granger causality graphs involves estimating the parameters of a Vec-
tor AutoRegressive model (VAR) based on observed multivariate time series (Lütkepohl, 2005). However,
inferring parameters of a VAR model can be non trivial, particularly when dealing with high-dimensional
data and limited samples. To address this issue, researchers have studied various regularization techniques,
approaching the problem from both frequentist and Bayesian perspectives. From a frequentist standpoint,
Basu et al. (2015) explored the application of a Group Lasso penalty and its consistency properties. Since
then, several sparsity-inducing penalties have been proposed in the works of Kock & Callot (2015), Lin &
Michailidis (2017), and Nicholson et al. (2020). On the Bayesian side, diverse prior distributions governing
the parameters of the VAR model were investigated in the literature. These include the use of Gaussian
priors (Sims, 1993), Gaussian-inverted Wishart priors (Banbura et al., 2010), and hierarchical normal priors,
as explored by Ghosh et al. (2018). However, as underlined by Duan et al. (2023), the resulting Granger
causality graphs from these methods often exhibit undesired characteristics, ranging from excessive density
to pronounced disconnection, potentially conflicting with established scientific knowledge.

To mitigate these issues and enhance the fidelity of Granger causality graphs, researchers have investigated
for the incorporation of supplementary information in the form of network structures. For instance, in
gene network analysis, genes are often grouped into distinct pathways, and it is a common observation that
interactions within a pathway are more frequent than those bridging different pathways (Marlin et al., 2012).
In response, Yao et al. (2013) have introduced penalization terms into the optimization process to ensure
that the derived Granger graph aligns with this a priori knowledge. Another approach involves adopting a
tree-rank prior distribution, enforcing the graph of Granger causalities to be a subgraph within the union of
spanning trees Duan et al. (2023). More recently, Lin et al. (2024) proposed to solve a Structural Equation
Model incorporating constraint to obtain a DAG. Furthermore, in scenarios characterized by signals from
physical processes and recorded by sensors distributed across multiple spatial locations, the Euclidean k-NN
(k-Nearest Neighbors) graph is often leveraged and finds widespread adoption within the domain of Graph
Signal Processing (Ortega et al., 2018), where it serves as a foundational element for tasks such as signal
filtering, denoising, and prediction. For instance, in (Isufi et al., 2019), a VAR(MA) model is fitted as a
polynomial of the Laplacian matrix of the kNN graph. Nonetheless, most of works within the scientific
literature operate under the idealized assumption of possessing a complete and precise prior graph — an
unrealistic supposition in many real applications.

Contributions: In this paper, we propose an optimization problem for learning VAR model parameters by
utilizing prior knowledge about relationships within time series data, represented in the form of an undirected
graph (cf Figure 1). Our approach enables the incorporation of an incomplete and noisy prior undirected
network when learning the Granger causality Network, and we jointly learn VAR parameters while denoising
the initial graph. To do that, we propose a two-block coordinate descent algorithm and we prove that it
converges to a set of stationary points, strengthening the reliability of our approach. Moreover, we show
that the optimization problem corresponds to the computation of a Maximum A Posteriori (MAP) of a
particular statistical model. To validate the effectiveness of our method, we conduct a series of experiments
encompassing synthetic and real-world datasets. Our findings convincingly demonstrate the superiority of
our proposed model over vanilla alternatives for varying noise levels over the prior network, particularly
in scenarios marked by data scarcity. This underscores the potential of our method as a valuable tool for
deriving Granger causality graphs in practical settings across a spectrum of applications.

2 Preliminaries

In this section we present the basics of (Network) Granger causality and its relationships with Vector Au-
toregressive (VAR) models. We also give a brief overview of existing methods for learning VAR parameters.
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Figure 1: Diagram of the proposed method.
Left: Existing methods mainly infer causality graphs from time series only. Right: Our proposed method
leverage both time series and a prior undirected graph (encoding ‘likelihood’ of link presence) to infer the
causal graph.

2.1 Network Granger causality

In order to define the Network Granger causality, we recall the concept of classic Granger causality.
Definition 1 (Granger causality (Granger, 1969)). Let x and y be two stationary time series such that:

y[t] =
d∑

i=1
αiy[t− i] +

d∑
i=1

βix[t− i] + ϵ[t] , (1)

where ϵ[t] ∼ N (0, σ2), d is the order of the model, and the parameters αi, βi are fitted minimizing the least
square error between y and its reconstruction using (1). We say that x Granger-causes y if one of the {βi}i

is non zero.
Remark 2. In Granger (1969), the Granger causality is introduced as a statistical test based on the null
hypothesis : H0 : β1 = β2 = ... = βp = 0. One can use a F-test to know whether the null hypothesis if
rejected or not.
Remark 3 (Link between causality and Granger causality). While Granger causality can effectively capture
causal relationships, its interpretation leans more towards predictive power than a direct expression of true
causality. For instance, if x and y are driven by an unknown z, it is possible that (x, y) rejects the null
hypothesis whereas there is no causality between them.

To generalize the Granger causality to p variables, we introduce Vector Autoregressive (VAR) models. A
VAR model of order d ≥ 1, denoted VAR(d), explains the values of a multivariate time series at time t using
a linear combination of its d previously observed values.
Definition 4 (Vector Autoregressive Model (VAR)). Given d matrices (Cτ )d

τ=1 in Rp×p, a VAR(d) is
defined at each time t = 1, 2, . . . by:

X[t] =
d∑

τ=1
Cτ X[t− τ ] + ε[t] , (2)
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where X[·] = (X1[·], ..., Xp[·]) is a random p-dimensional time series and ε[t] ∼ N (0, σ2Ip), σ > 0, is some
innovation noise.

Traditionally, Granger causality has been based on the assumption of a VAR model Lütkepohl (2005),
primarily conducting tests on the VAR coefficients in a bivariate context. However, in complex real-world
systems with numerous time series, analyzing the relationship between only two series can result in misleading
conclusions due to confounding factors Lütkepohl (2005). In practice, VAR models are often used to analyze
relationships between several variables of interest. Indeed, the matrices {Cτ}d

τ=1 in Equation (2) capture
specific temporal dependencies between the p dimensions and are associated with the notion of Network
Granger causality (NGC), which was then introduced as a generalization of the Granger causality in Basu
et al. (2015) to adjust for possible confounders or jointly consider multiple series.
Definition 5 (Network Granger causality (Basu et al., 2015)). Let X[t] = (X1[t], ..., Xp[t]) ∈ Rp for t =
1, 2, . . ., be a p-dimensional time series following the VAR model defined in Eq. (2). Then, Xj [·] is called a
Granger cause of Xi[·] if at least one matrix entry {Cτ

i,j , τ = 1, ..., d} is non-zero.

The intuition is that if Cτ
i,j ̸= 0 for some τ , like in the bivariate case, it means that past values of Xj are

useful to predict future values of Xi, independently from the other variables.
Indeed, we can reduce the model to a bivariate case for each couple (i, j) writing:

Xi[t] =
d∑

τ=1

∑
1≤k≤p

k ̸=j

Cτ
i,kXk[t− τ ] +

d∑
τ=1

Ci,jXj [t− τ ],

and then use the definition of the classical Granger causality.

Note that, like for the classical Granger causality (p = 2), NGC does not necessarily capture true causal
relationships, but rather indicates the power of prediction of some variables to others. Nevertheless, NGC
remains a powerful tool for understanding interactions between random time series, and its estimation is of
practical interest.

2.2 Estimation of the VAR parameters

Given N samples X(n)[t] ∈ Rp , n = 1, ..., N , at each time t ∈ J1, dK = stored in X[t] ∈ Rp×N , one possibility
to estimate the VAR parameters {Cτ}d

τ=1 is to maximize the likelihood of Model (2). This leads to the
following Least Square problem:

Ĉ1:d = arg min
C1,...,Cd

1
2N

∥∥∥X[t]−
d∑

τ=1
Cτ X[t− τ ]

∥∥∥2

F
. (3)

This minimisation can be divided into p independent sub-problems, which are easier to handle. For j =
1, ..., p, they are given by:

arg min
C1

j:,...,C
d
j:

1
2N

∥∥∥Xj [t]−
d∑

τ=1
Cτ

j:X[t− τ ]
∥∥∥2

2
, (4)

where Cτ
j: refers to the j-th row of Cτ . Each sub-problem (4) is a standard linear problem and can therefore

be solved efficiently.

In high dimensional settings, it can still be challenging to fit VAR(d) models because the model has d× p2

degrees of freedom. Some regularization approaches were developed to overcome this limitation, both from
a frequentist and Bayesian point of view. Several authors suggest adding a penalty term to learn the VAR
parameters. Thus, the optimisation problem becomes:

arg min
C1

j:,...,C
d
j:

1
2N

∥∥∥Xj [t]−
d∑

τ=1
Cτ

j:X[t− τ ]
∥∥∥2

2
+ λPτ (C1

j:, ..., Cτ
j:) , (5)
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Method Penalization term Guarantees Statistical Model
Ridge λ∥u∥2

2 – u ∼ N (0, Ip)
Lasso λ∥u∥1 Selection consistency ui

iid∼ Laplace(0, 1)
Adaptive Lasso λ

∑
k

wk|uk| Selection consistency (Zou, 2006) ui
ind∼ Laplace(0, 1

wi
)

Group Lasso λ
∑
g

wg∥u[g]∥2 Direction consistency (Basu et al., 2015) ug|τ2
g , σ2 ind∼ N

(
µg, τ2

g σ2
gImg

)
,

τ2
g ∼ Gamma

(
mg+1

2 , λ2

2

)
Table 1: Main regularizations for linear regression.

where (Pτ )d
τ=1 are some penalization terms.

The Lasso shrinkage technique (L1 penalization), as introduced by Tibshirani ((Tibshirani, 1996)), has been
integrated into various models to account for specific data properties. In the study by Basu et al. ((Basu
et al., 2015)), for example, the Group Lasso is proposed and explored to leverage knowledge of grouping
structures. Lasso shrinkage proves effective in enhancing lag order selection, as demonstrated in the work of
Shojaie and Michailidis ((Shojaie & Michailidis, 2010)) using a truncated Lasso estimator and in Nicholson
et al.’s ((Nicholson et al., 2020)) hierarchical model.

The Adaptive Lasso (or weighted Lasso), introduced by Zou ((Zou, 2006)), finds applications in improving
variable selection ((Zou, 2006)), addressing non-stationary time series, and proposing online algorithms
((Messner & Pinson, 2019)) by leveraging previous parameters to estimate the next ones. It’s worth noting
that the conventional approach for utilizing Adaptive Lasso involves initially solving the least square problem
(without constraints) to obtain an initial estimator ĈOLS , followed by setting the weights to wi, j = 1

|Ĉi,j |
.

Additionally, Adaptive Lasso has proven to be a relevant method for incorporating prior knowledge about
parameters, as exemplified by the consideration of past values in ((Messner & Pinson, 2019)). Another
commonly used estimator, the Ridge estimator, is also examined in Giovanni’s study ((Ballarin, 2022))
within the context of VAR models, where the authors discuss the implications of anisotropic penalization.
It’s important to note that for some of these models, theoretical guarantees have been established regarding
the selection consistency of Lasso-based methods (refer to Table 1).

As highlighted in the introduction, some Bayesian models have been introduced to learn VAR parameters
by incorporating prior distributions. These priors aim to prioritize certain lags, with lower lags commonly
assumed to be more informative than higher ones, or to impose specific structures on the graph, such as
a spanning trees structure ((Sims, 1993; Banbura et al., 2010; Ghosh et al., 2018; Duan et al., 2023)). A
comprehensive survey of existing Bayesian VAR models and their associated sampling algorithms is presented
in the work of Miranda Agrippino and Ricco ((Miranda Agrippino & Ricco, 2018)).

However, note that in some cases, frequentist penalizations correspond to compute the Maximum Likelihood
Estimator (MLE) of a particular Bayesian model, so it can be useful to consider a model from both point of
view to have a deeper understanding of the solution. We refer to Table 1 for the correspondences between
conventional penalization terms and their associated Bayesian models.

3 Model and Framework

In this section, we present our main contributions. In Section 3.1, we first introduce an optimization
problem allowing to incorporate graph prior knowledge in the estimation of the parameters of a VAR
model. Then, in Section 3.4, we describe an algorithm based on alternating minimization to solve this
problem. In section 3.5, we prove that this algorithm converges to a stationary point and that its time
complexity for a fixed number of iterations is of the same order as a Lasso estimator. Finally, we link this op-
timization problem to a maximum a posteriori of a certain statistical model, which is presented in Section 3.6.

In the following, we make the two classical assumptions:
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Assumption 1. The time series are generated by a VAR(1) model:

X[t] = CX[t− 1] + ε[t] , (6)

so we only need to learn one matrix C. However, note that the assumption d = 1 is not limiting since a
VAR(d) model can always be written as a VAR(1) model (Lütkepohl, 2005). This generalization is detailed
in Section 3.7.
Assumption 2. Hamilton (1994) showed that obtaining reliable estimates for VAR parameters necessitates
stationary of X[·]. Subsequently, in Lütkepohl (2005)’s work, it was established that the model (6) is stable
if and only if ρ(C) < 1, where ρ is the spectral radius. This assumption will be maintained in our analysis.

3.1 Problem formulation

In general, the estimation of the parameters of the VAR model (2), i.e. the matrix C, requires the observation
of a long stationary realization of the p-dimensional time series. However, in many applications, we observe
only short replicas of the time series, and additional information must be incorporated into the model to
obtain accurate estimates.

We propose to leverage prior knowledge on the structure of the matrix C by assuming that it is statistically
related to a given matrix Aprior which is the adjacency matrix of an undirected graph encoding a priori
relationships between the individual dimensions. More specifically, the idea is to encode the following
property: if two nodes (i, j) are not likely to be linked, Aprior

i,j is small and the value of the associated
coefficient Ci,j is more likely to be closed to zero (meaning that there is no Granger causality between the
two time series Xi[·] and Xj [·]). While forbidding certain links in causal discovery is a standard approach
and it used in recent methods like PCMCI Runge et al. (2019), this assumption may be too strong and this
issue will be addressed in the paper (cf Remark 8). In addition, since the prior information is rarely perfectly
accurate for most applications, we assume that Aprior is not necessarily the optimal prior knowledge. So we
want to allow the model to refine this prior through iterations, i.e. computing a matrix A close to Aprior

but not equal. To understand the relationships between these matrices, a statistical point of view is derived
in 3.6 and provides the mathematical relationships between C, Aprior and A.

Formally, let consider N independent wide-sense stationary multivariate time series (Assumption 2) X(1)[1 :
d], ..., X(N)[1 : d]. In addition, suppose that we have access to a matrix Aprior, summarizing our prior
knowledge on the relationships between each pair of variables. To estimate the VAR parameters, we introduce
the following optimization problem:

min
A , C

1
N

N∑
n=1

∥∥∥X(n)[t]−CX(n)[t− 1]
∥∥∥2

2
+ λ

∑
1≤i<j≤p

|Ci,j |+ |Cj,i|
Ai,j

+ 2λ
∑

1≤i<j≤p

log(2Ai,j) + γ
∥∥A−Aprior∥∥2

F
, (7)

subject to Ai,j ≥ 0 , Ai,j = Aj,i , 1 ≤ i < j ≤ p .

Equation (7) contains 3 terms:

(i) 1
N

N∑
n=1

∥∥X(n)[t]−CX(n)[t− 1]
∥∥2

2 corresponds to the Least Square problem objective: this term al-
lows to measure the difference between the original signals and their reconstructions. Recall that
we only consider in this section VAR(1) model, hence t = 2.

(ii)
∑

1≤i<j≤p

|Ci,j |+ |Cj,i|
Ai,j

+ 2
∑

1≤i<j≤p

log(2Ai,j) is the penalization term that takes into account the

graph prior knowledge. This penalization is inspired by the one used in Adaptive Lasso models,
where the terms 1/Ai,j act as weights. The higher the Ai,j , the closer i and j are in the graph, and
the lower the penalty for Ci,j and Cj,i. It should be noted that the additional term composed of
the sum of log is a normalization term linked to the associated statistical model (see Section 3.6).
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(iii) ∥A−Aprior∥2
F is a regularization term to take into account that Aprior is not necessarily the optimal

prior knowledge and could therefore be further refined. Actually, adding this term in the optimization
problem is equivalent to imposing a normal prior distribution to the coefficient of Ai,j (see Section
3.6). In practice, this term allows to increases the robustness to the prior knowledge noise.

The symmetry constraint Ai,j = Aj,i for 1 ≤ i < j ≤ p is applied as A represents the adjacency matrix of
the denoised undirected prior graph knowledge.
Remark 6. This work presents a model leveraging a prior undirected weighted graph. This model choice
is based on the idea that for some applications, we have ideas about which variables are linked together but
we do not know the directions of causality (i 7→ j or j 7→ i?). However, it is possible to slightly modify the
model to leverage a directed graph prior knowledge (the optimization problem remains the same except that
we split the part with Ai,j and that we remove the symmetry constraint).

Finally, the problem (7) depends on two hyper parameters λ and γ. λ controls the sparsity of the learned
graph and γ controls the confidence in the prior graph.

3.1.1 Interpretation of the optimization problem

• Aprior is a p×p symmetric matrix, seen as the adjacency matrix of an undirected graph, corresponding
to the prior knowledge of the Network Granger causality structure.

• C is a p × p matrix corresponding to the VAR(1) parameters and seen as the adjacency matrix of
the directed graph of Granger causality.

• A is a p× p symmetric matrix, seen as the adjacency matrix of an undirected graph, corresponding
to the denoised prior graph Aprior during the optimization process.

• X(i)[t] (t = 1, 2) are the multivariate time series in Rp generated by the VAR(1) model with param-
eters C.

The idea of this optimization problem is to find a sparse matrix C allowing to forecast X using Aprior as a
first estimation of the parameters model. The main advantage here is that the prior network is taking into
account during the learning process and allows to perform a relevant variable selection. Indeed, even though
the variable selection consistency is proved for estimator like Lasso or Adaptive Lasso (cf (Zou, 2006)), this
property holds for an infinite number of samples. Here, by assigning weights to pairwise relationships, our
method allows to guide the variable selection using (noisy) prior knowledge in order to be efficient in settings
with few samples available.

3.2 Motivating examples

Before entering in the details of the solving method, we illustrate here some use cases for which our method
could be used, and how the graph Aprior can be constructed depending on the problem.

Multi-sensor networks: In the context of multi-sensor networks, Aprior can be computed by focusing
on the distances between the sensors. For certain applications, the recordings are associated with physical
processes, suggesting that causal links are more likely to exist between nearby sensors than distant ones: for
instance, temperature data are governed by complex equations but exhibit spatial continuity. Consequently,
in the experiment with the Molene dataset (Sec. 4.5.2), Aprior is computed applying a Gaussian kernel to
the pairwise distances: Aprior

i,j = Kσ(d(xi, xj)) in order to increase the penalization of causal links between
far away sensors (cf Figure 2).

Protein interactions: Expert knowledge from the literature can be used to construct a score that reflects
how likely two proteins interact based on previous experiments. In this case, Aprior

i,j is the score of the couple
(i,j). This can lead to prior knowledge graph about pairwise proteins interaction allowing to lead the causal
discovery process. An interesting example is the one presented in Carlin et al. (2017) by aggregating various
established pathways from Pathway Common Cerami et al. (2010)
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Figure 2: Prior graph for the multisensor network example.

Intracardiac electrocardiograms: In this scenario, we are measuring electrical activities in the heart
using multiple electrodes. While this example falls within the case of multi-sensor networks, and the prior
graph can be constructed as previously explained, Aprior can also be computed by focusing on the similar-
ity between signals recorded by the electrodes, using cross-correlation for example. It allows guiding the
algorithm to find causality links between the most similar signals (cf Figure 3).

Figure 3: Construction of the graph prior for intracardiac signals example.

3.3 Links with existing models

The work of Yao et al. (2013) is the closest one to ours. They propose to leverage prior knowledge Aprior ∈
Rp×p solving:

Ĉ = argmin
C

1
2∥X[t]−CX[t− 1]∥2

F + 1
2λ1N(C− λ2Aprior) , (8)

with N : M 7→ ∥M∥F or N : M 7→ ∥M∥1. However this model works under the assumption that we
have prior knowledge about the exact values of the matrix C, which can be unrealistic in some applications.
Consequently, this framework impose to know the sign of values in C since the optimization problem penalizes
the component wise difference between C and Aprior. The authors propose to address this issue by hand,
computing a Ridge estimator of the VAR model to chose the signs of Aprior. On the contrary, by exploiting
a weighted Lasso, our model does not suffer from these limitations and only require relative prior knowledge
about relationships.
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Our method is also closed to an Adaptive Lasso estimator obtained with:

min
C

1
N

N∑
n=1

∥∥∥X(n)[t]−CX(n)[t− 1]
∥∥∥2

2
+ λ

∑
1≤i<j≤p

|Ci,j |+ |Cj,i|
Aprior

i,j

. (9)

Indeed, considering only the two first terms of our problem, we obtain exactly the Adaptive Lasso one.
However the Adaptive Lasso estimator is not robust to the errors in the weights, since the asymptotic
consistency is achieved taking for weights unbiased estimators of the true solution (Zou, 2006). Thus, the
last term in the optimization problem allows to refine the prior through iterations using information in the
time series resulting in a more robust version of Adaptive Lasso as will be seen in the experiments (Section
4).

3.4 Solving method: A-AdaptiveLasso (AALasso)

The function to minimize in (7) is not convex in (A, C). Indeed, we can show that even with C fixed, the
function in A is not convex (c.f. Appendix A). However, the function is convex in C with A fixed (Adaptive
Lasso problem) and we have a closed form for the roots of the derivative in A (with C fixed). Thus, we use
an alternating minimization algorithm to solve this problem.

3.4.1 C update.

For fixed A, the optimization problem (7) with respect to C is:

min
C

1
N

N∑
n=1

∥∥∥X(n)[t]−CX(n)[t− 1]
∥∥∥2

2
+ λ

∑
1≤i<j≤p

|Ci,j |+ |Cj,i|
Ai,j

. (10)

From Eq. (10), we see that the optimization step in C is an Adaptive Lasso problem with weights equal to
1/Ai,j (Zou, 2006). A common way to solve Adaptive Lasso regression is to remark that it can be written
like a Lasso problem. Indeed, considering C̃i,j = Ci,j

Ai,j
, we can write the problem as a Lasso one transforming

X.
While there is no closed formula to compute the Lasso estimator in the general case, common ways to solve
it are to use: (i) the least-angle regression (LARS) algorithm Efron et al. (2004), (ii) algorithms based on
coordinate descent Wu & Lange (2008), or (iii) the ADMM algorithm Boyd (2010). A recent survey presents
some of these algorithms and provides their convergence rates (Zhao & Huo, 2023). Details of the ADMM
updates to solve Problem 10 are presented below. Let i ∈ J1, pK, we first rewrite (10) as p subproblems:

min
Ci:

1
N
∥Xi[t]−CiX[t− 1]∥2

2 + λ

p∑
j=1

|Ci,j |
Ai,j

, i = 1, ..., p , (11)

with Xi[t] and Xi[t − 1] the vectors containing the N samples of the variable i. Then we rewrite (11) as a
Lasso problem:

min
C̃i:

1
N

∥∥Xi[t]− C̃iX̃[t− 1]
∥∥2

2 + λ

p∑
j=1
|C̃i,j | , i = 1, ..., p (12)

where C̃i,j = Ci,j

Ai,j
and X̃[t− 1] = (Ai,j ×Xi,j)1≤j≤p. In order to use the ADMM algorithm, we rewrite the

problem as follows:

min
C̃i:,U

1
N

∥∥Xi[t]− C̃iX̃[t− 1]
∥∥2

2 + λ∥U∥1 subject to C̃i: − U = 0 .

Finally, the ADMM updates are:

C̃+
i = arg min

C̃i

1
2∥Xi[t]− C̃iX̃[t− 1]∥2

2 + ρ

2∥C̃i − U + W∥2
2

9
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= (X̃[t− 1]X̃[t− 1]T + ρI)−1(Xi[t]X̃[t− 1]T + ρ(U −W ))

U+ = arg min
U

λ∥U∥1 + ρ

2∥C̃
+
i − U + W∥2

2

= Sλ/ρ(C̃+
i + W ) (Soft-thresholding of C̃+

i + W )
W + = W + C̃+

i − U+

where [St(x)]j =


xj − t if x > t

0 if − t ≤ x ≤ t, j = 1, . . . , p

xj + t if x < −t

and W, U are auxiliary variables specific to the ADMM algorithm.

3.4.2 A update.

For fixed C, the optimization problem (7) with respect to A is:

min
A

λ
∑

1≤i<j≤p

|Ci,j |+ |Cj,i|
Ai,j

+ 2λ
∑

1≤i<j≤p

log(2Ai,j) + γ
∥∥A−Aprior∥∥2

F
, (13)

subject to Ai,j ≥ 0 , Ai,j = Aj,i , 1 ≤ i < j ≤ p .

To address the symmetry constraint, a straightforward way is to optimize over the upper diagonal values
and to set Aj,i = Ai,j for i < j. The minimisation can then be carried out by directly calculating the exact
minimum, which is given in the next proposition.
Proposition 7. The roots of the derivative with respect to Al,m of the objective function (13) are:

zk =
Aprior

l,m

3 + e2ikπ/3 3

√√√√1
2

(
−q +

√
∆
27

)
+ e−2ikπ/3 3

√√√√1
2

(
−q −

√
∆
27

)
, k = 0, 1, 2 , (14)

where


p = − (Aprior

l,m
)2

3 + λ
2γ

q = −Aprior
l,m

3

(
8γ(Aprior

l,m
)2

9 − 2λ

)
− λ (|Cl,m|+ |Cm,l|)

∆ = 4p3 + 27q2 .

Furthermore, there exists at least one positive root for the derivative with respect to Al,m, and the global
minimum on the interval ]0, +∞[ is attained at one of these roots.

Proof of 7. Finding the roots of the objective function derivative with respect to Al,m is equivalent to finding
the roots of a 3-degree polynomial, allowing us to apply the Cardan formula. Subsequently, as the objective
function in Al,m diverges towards infinity at the boundaries of ]0, +∞[, there exists at least one positive
root, and the minimum is attained at one of these roots.

3.4.3 Alternating Minimization algorithm.

The final AALasso algorithm is presented in Algorithm 1. AALasso depends on four input parameters:

(i) λ controls the sparsity of the learned graph. The larger λ, the more sparse the solution.

(ii) γ controls the confidence in the prior graph. A large γ will constrain A to stay close to Aprior,
whereas a small value allows A to deviate from Aprior.

(iii) The choice of A(0) has an impact on the solution since we start by solving the problem in C with
fixed A. The straightforward idea is to take A(0) = Aprior, but note that other initializations can
be chosen (c.f. Appendix B.3). For instance, AALasso can be seen as a generalization of Lasso and
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Algorithm 1: Fitting algorithm.
input : Niter, λ, γ, Aprior

output: Ĉ, Â
A(0) ← Aprior

for r ← 1 to Niter do
C(r) ← fC(C, A(r−1)) where fC denotes the update in (3.4.1).
A(r) ← fA(C(r), A) where fA denotes the update in (3.4.2).

return C(Niter), A(Niter).

LS+ALasso since these two estimators correspond to the first iteration of AALasso for particular
choices of A(0). Indeed, taking A(0) equals to the one matrix (1)1≤i,j≤p, the C update corresponds
to the Lasso algorithm, while taking A(0) = (wi,j)1≤i,j≤p where wi,j are the weights computed by
the Least Square Estimator, the first step corresponds to the LS+ALasso estimator.

(iv) The number of iterations Niter of the alternating minimization algorithm impact directly the runtime
and the performances, and in practice we will chose a relatively small number of iterations (around
10), according to synthetic experiments conducted in 4.

Remark 8. Note that if it exists an iteration r0 such that A(r0)
i,j = 0, the coefficients C(r)

i,j and C(r)
j,i will be

zero for r > r0. Next, in order to allow the algorithm to add an edge that is not originally present in the
prior graph, we set the minimum values of the adjacency matrix to ϵ > 0.
Remark 9. As explained in Remark 6, it is possible to leverage a directed prior graph with slights modifi-
cations of the model. Regarding the solving method, the C update remains the same, and for the A update,
we compute the solutions of p2 3-degree polynomial rather than p(p− 1)/2).

3.5 Theoretical properties

In this section, we prove the convergence towards a set of stationary points of our algorithm 1 to solve the
optimization problem (7), and we show that the time complexity is asymptotically in the same order than
the one of Lasso estimator.

3.5.1 Convergence

Classical results of alternating minimization convergence assume that the objective function is differentiable
(c.f. Grippo & Sciandrone (2000)). However it is not applicable to our case since our objective function in
(7) is not differentiable in Ci,j = 0. We now introduce the lower directional derivatives to address this issue.
Definition 10 (Lower directional derivative). For any x ∈ Rp and any v ∈ Rp, we denote the (lower)
directional derivative of f at x in the direction v by f ′(x; v) = lim inf

λ↓0

[
f(x+λv)−f(x)

λ

]
.

Definition 11 (Stationary points). We say that z is a stationary point of f if z ∈ domf and f ′(z; v) ≥
0, ∀v.
We say that z is a coordinate-wise minimum point of f if z ∈ domf and f(z + (0, ..., vk, ..., 0)) ≥ f(z),
∀vk ∈ Rnk , for all k = 1, ..., N .

Using this framework, the following theorem holds.
Theorem 12. (Convergence of AALasso)
The sequence

{
(C(r), A(r))

}
r=1,2,...

generated by the two-blocks alternating minimization is well defined and
bounded. Moreover, every cluster point is a stationary point of the problem 7.

Proof. The proof is given in Appendix A.2.
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3.5.2 Computational complexity

Recall that when fitting a Lasso estimator for learning VAR parameters in p dimension, we fit p independent
Lasso estimators in dimension p. In the following, p denotes the dimension and N the number of samples.
Recall that our algorithm iteratively solves two steps, A and C. First, as detailed in 3.4.1, the C update
is solved by transforming the Adaptive Lasso problem into a Lasso problem in O(p×N) and using ADMM
to fit the Lasso parameters in O(p3 + N × p2) (see A.3 for more details). Thus, the time complexity of
the C update is in O(p3 + N × p2). Then the A update is done computing a closed formula in O(1) for
each value Ai,j , 1 ≤ i < j ≤ p, so this step is in O(p2), which is negligible compared to the C update.
Finally, considering a fixed number of iterations Niter, the AALasso algorithm has a time complexity in
O(Niter×p3 + Niter×N ×p2), which is approximately Niter times the one of the Lasso estimator solved with
the ADMM algorithm.

3.6 Link with Statistical Model

It is interesting to adopt the Bayesian point of view to deeper understand the statistical hypothesis behind
the model and how the algorithm works. Here, it can be shown that the optimization problem (7) presented
in the previous section is equivalent to the Maximum A Posteriori (MAP) of the probabilistic graphical
model presented above in Eq. (15).

X[t]C∗A∗

A

with : 
Ai,j ∼ N (A∗

i,j , σ2) , i, j = 1, ..., p
C∗

i,j ∼ Laplace(0, A∗
i,j) , i, j = 1, ..., p

X[t] ∼ N (C∗X[t− 1], σ2
X)

(15)

Figure 4: Observable variables are in grey and latent variables in white.

Theorem 13. The solutions of Problem (7) correspond to the Maximum A Posteriori (MAP) of the statis-
tical model (15) under the assumption that A∗ follows the improper distribution 1Sp(R).

Proof of 13. The proof is given in Appendix A.1.

Then, the normalization term log(2Ai,j) introduced in (7) corresponds to the normalization of the Laplace
distribution. Intuitively, it allows A to remain meaningful regarding the Laplace distribution and it avoids
parameters to go to infinity.

This probabilistic graphical model allows a good understanding of the model introduced. An unknown graph
G∗ first generates a parameter matrix {C∗

i,j}i,j from Laplace distribution with variances equal to {A∗
i,j}i,j

(note that Laplace distribution encourages sparsity), and C∗ allows to generate the multivariate time series
X following a VAR(1) model. On the other side, we observe a noisy (Gaussian noise) version of A∗. To

12



Published in Transactions on Machine Learning Research (06/2024)

leverage the information provided by A to learn C∗ we propose to jointly infer the two latent variables A∗

and C∗.

3.7 Generalization to VAR(d) models

In the preceding section, we discussed VAR(1) models for simplicity. However, certain applications require
the consideration of VAR(d) models and we detail the generalization of our model in this section. A VAR(d)
model can be expressed as a VAR(1) model as follows. Let X a process defined by a VAR(d) model:

X[t] =
d∑

τ=1
Cτ X[t− τ ] + ε[t] ,

where X[t] = (X1[t], ..., Xp[t]) is a random p-dimensional time series and ε[t] ∼ N (0, σ2
XIp), σX > 0. For

t ≥ d, let X[t] = (X[t], X[t − 1], ..., X[t − d + 1])T and C =


C1 C2 · · · Cd

1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

, then the process X[t]

satisfies the VAR(1) model:
X[t] = C X[t− 1] + (ϵ[t], ..., ϵ[t− d + 1])T .

Note that the stability assumption of the VAR model is now satisfied if ρ(C) < 1 (cf (Lütkepohl, 2005)).
Using this last point, our model is still applicable for some d ∈ N assuming we have a prior matrix defined
by:

Aprior =


Aprior

1 Aprior
2 · · · Aprior

d

1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .

Thus, solving this problem with a number of lags d > 1 is equivalent to solve a problem with 1 lag in
dimension p× d, since we can consider the lags > 1 as new variables.
Note that a straightforward idea is to set Aprior

l = Aprior for l = 1, ..., d but this generalization allows to
leverage prior knowledge about relationships likelihood at each order.

4 Experiments

In this section, a large series of experiments is carried out to assess the effectiveness and applicability of
AALasso to learn Granger causality graphs. Our algorithm is tested using both synthetic and real-world
data sets. To utilize AALasso effectively, the input requirements include a multivariate time series and
the availability of an adjacency matrix representing a prior network structure. By employing synthetic
and real datasets, we evaluate AALasso’s robustness across various scenarios, including limited number of
samples and several levels of noise, and real-world datasets. These experiments provide valuable insights
into the algorithm’s capabilities and its potential applications in diverse domains. The code to reproduce
our experiments with synthetic data will be available.

4.1 Task and evaluation metrics

In these experiments, the objective is to learn a Network Granger causality (NGC) from given multivariate
time series and a prior network. We suppose that these series follow a VAR(1) model, hence, learning the
NGC is equivalent to fit the VAR parameters, i.e., given X ∈ Rp×N and Aprior in Rp×p we want to estimate
the matrix C.
Since VAR models are usually employed for forecasting tasks, a standard metric to evaluate estimators is
the normalized Root Mean Square Error (nRMSE) of the one step predictions. Let X[t] be a multivariate
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time series and X̂[t] be the reconstruction using the fitted VAR model at time t, the nRMSE is defined by:

nRMSE(X̂) :=

√√√√√∑t

∥∥∥X̂[t]−X[t]
∥∥∥2

2∑
t ∥X[t]∥2

2
.

Note that, the main objective of this paper is to learn the underlying NGC, so we are more interested in
learning a relevant graph than allowing a good reconstruction (even though the two tasks are correlated). To
evaluate the quality of the learned graph, we compute the F1-score between Ĉ and C∗ (see e.g. (Pasdeloup
et al., 2016) for more information). This metric is defined as follows:

F1-score := 2 · precision · recall
precision + recall ,

where
precision = True Positives

True Positives + False Positives
and

recall = True Positives
True Positives + False Negatives .

Here, the precision measures the proportion of correctly identified causality links, while recall measures the
ability to capture all causality links. Note that the F1-score is only available for synthetic data as we need
to have access to the true graph (the true VAR model).
Although these two measures are related (a good graph should lead to a good reconstruction), it should
be noted that a good reconstruction can be achieved by a relatively dense graph. Given that sparsity is a
desired property, the F1 score is used to understand whether the learned graph can efficiently reconstruct
time series while avoiding irrelevant edges.

4.2 Methods

The aim of these experiments is to show that AALasso can exploit prior knowledge to improve its performance
compared to existing methods. We compare our estimator to the classical estimators: the Lasso and the
Adaptive Lasso with weights equal to the least squares estimates (noted LS + ALasso, cf (Zou, 2006)).
Moreover, since the first step of our algorithm is equivalent to solve an Adaptive Lasso problem assuming
that the weights are given by Wi,j = 1

Aprior
i,j

, we compare our method with this first step (denoted 1-AALasso)
to demonstrate the usefulness to perform several steps. Note that we do not show the performances of the
Least Squares estimator since the results are poor in settings with only few samples. Finally, note that
the Lasso and LS+ALasso algorithms do not take into account the prior matrix, so the prior noise will not
impact their results.

Implementation details. For all experiments, we used the package asgl (Álvaro Méndez Civieta et al.,
2021) implemented using cvxpy (Diamond & Boyd, 2016) to solve Lasso and Adaptive Lasso regression
problems.

4.3 Datasets

4.3.1 Synthetic Data

Synthetic data are generated with respect to the statistical model (15). To define the matrix A∗, we first
generate p = 40 points in [0, 1]2 uniformly at random. Then, we construct a matrix D ∈ Rp×p

∗ by applying
the Gaussian kernel to the pairwise Euclidean distance between the points (the standard deviation of the
Gaussian kernel is taken equal to the median values of all pairwise distances). A∗ is obtained by randomly
setting to 0 a ratio τm = 0.5 of values of D (mispecified edges) and cutting to 0 values smaller than τ = 0.7
to promote sparsity. Finally, the VAR parameters are drawn from Laplace(0, A∗

i,j) and Aprior = D + E ,
where E is a symmetric matrix whose subdiagonal values are sampled from i.i.d. Gaussian distribution with
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Algorithm 2: Data generation.
input : p, τm, τ, σX , σA

output: Aprior, X
Generate randomly p points in [0, 1]2.
Compute the euclidean distance matrix D.
A∗ is obtained setting to 0 a ratio of τm values of D (mispecified edges).
Generate VAR parameters C∗

i,j ∼ Laplace(0, A∗
i,j).

for 1 ≤ i < j ≤ p do
Randomly set C∗

i,j or C∗
j,i to 0 (directed graph).

Aprior = D + E where E is a symmetric matrix where subdiagonal values are sampled from i.i.d.
gaussian distribution with variance σ2

A.
Sample X[t] ∼ N (C∗X[t− 1], σ2

X)
return Aprior, X

variance σ2
A (varying in {0.02, 0.1, 0.25, 0.35} to test several level of noises). Note that Aprior is computed

from D and not from A∗. Indeed, A∗ is obtained by performing sparse variable selection from D; therefore,
we do not incorporate this variable selection into Aprior and the objective is to assess the effectiveness of
AALasso in accurately retrieving this selection. This data generation is summarized in Algorithm (2). At the
end, for each experiment, we sample N = {80, 200, . . . , 500} different time series X[t] ∼ N (C∗X[t− 1], σ2

X),
σ2

X = 0.1, which we split into training and test sets of equal sizes. We repeat this procedure 20 times for
each value of N .

4.3.2 Breast Cancer Network

Dataset The Heritage Provider Network DREAM 8 Breast Cancer Network Prediction dataset focuses
on predicting causal protein networks using time series data from reverse phase protein array (RPPA)
experiments. The aim is to advance breast cancer understanding by using complex time series data and
computational modeling to uncover causal relationships within protein networks responding to various stimuli
and inhibitors across different cell lines. It involves examining four cell lines (BT549, BT20, MCF7, and
UACC812) under four inhibitor conditions (AKT, AKT + MET, FGFR1 + FGFR3, and DMSO control)
and eight ligand stimuli (Serum, PSB, EGF, Insulin, FGF1, HGF, NRG1, and IGF1) at multiple time points
(t = 0, 5 min, 15 min, 30 min, 1 hr, 2 hr, and 4 hr). Here, the task is to create 32 causality networks, one
for each combination of stimulus ligand and cell line, from protein probe across the time points. Formally,
given a 3-uple (cell line, ligand, inhibitor), we observe a multivariate times series X ∈ Rp×N with N = 6
and p ∈ {41, 45, 48} and we want to learn a graph of Granger causalities G.

Choice of Aprior In (Carlin et al., 2017), the authors successfully utilized a prior network derived from
the Pathway Commons database version 3 Cerami et al. (2010) to enhance their analysis. In essence,
this network prior was developed by aggregating various established pathways from Pathway Commons,
where protein interactions closely aligned with the concept of causal influence. It assumed that interactions
declared in these pathway databases implied that perturbations to upstream regulatory proteins could lead
to either direct or indirect perturbations of downstream target proteins connected via directed paths. The
adjacency matrix was obtained performing a heat diffusion over the initial graph (cf (Carlin et al., 2017) for
more details). Importantly, the network prior was independent of training data and could be reused across
experiments. The utilization of this network prior improved performances, highlighting the importance of
taking into account prior knowledge for the causality inference task. However, in (Carlin et al., 2017) the
authors did not take into account this network in their inference algorithm: they averaged a posteriori the
output of the GENIE3 (Huynh-Thu et al., 2010) algorithm with the adjacency matrix of this prior. We
therefore chose Aprior equals to this adjacency matrix.

Note that the objective of this challenge is to infer causality but not necessarily temporal/Granger causality.
Thus, we do not expect to achieve better results than the challengers but the objective is to demonstrate
that taking into account a prior can be relevant.
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Pre-processing of time series We normalize the time series as a pre-processing step to satisfy the
first-order stationary assumption:

X[1 : T ]← X[1 : T ]−X

σX
(16)

where X is the mean of X and σX its standard deviation.

4.3.3 Molène Dataset

Dataset The Molène datase contains hourly temperatures recorded by sensors at p = 32 locations in
Britany (France) during N = 746 hours. Here the objective is to understand the spatio-temporal dynamics
of the temperature and to assess the extent to which the model can describe complex phenomena (such as
weather) by considering only data and geographical information (sensor positions).

Choice of Aprior The prior adjacency matrix is Aprior
i,j = exp(−dist(i, j)/dist) where dist(i, j) is the

Euclidean distance between the stations i and k and dist is the median of all computed distances. Note
that this case is a good example of what could be a "noisy" prior knowledge, since the euclidean geometry is
isotropic contrarily to the weather dynamics.

Pre-processing of time series We consider the first derivative of the signals rather than original signals
in order to verify as much as possible the wide-sense stationary property.

4.4 Results on synthetic data

4.4.1 Comparison with classical algorithms

In this part, we compare AALasso with standard method to compute Network Granger Causality. Thus
we focus on methods based solving the classic NGC optimization problem with some regularization (Lasso,
Adaptive Lasso). The aim of these experiments is to show that our method is able to leverage prior knowledge
to increase the accuracy of the retrieved NGC.
For all of the 20 experiments, we performed Niter = 10 (see 4.4.4) iterations in the alternating minimization
algorithm (1) using half of the training set. The parameters λ and γ were selected by cross-validation
minimizing the nRMSE over the second half of the training set (the validation set).
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Figure 5: rNMSE and F1-score in function of the number of samples used for training using σA = 0.1. We
plotted the 90% confidence intervals.

The results in Figure 5 exhibit better reconstruction and greater F1-score when utilizing AALasso rather
than vanilla methods when the number of samples is lower than 140. From 40 to 140 samples, AALasso
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Figure 6: F1-score in function of the sparsity of the learned graph s = number of edges
p(p−1) (obtained using several

values for λ) with σA = 0.1 and N = 40. A sparsity of 0 means an empty graph while an sparsity of 1 means
a dense graph. We plotted the 90% confidence intervals.

returns F1-scores from 0.6 to 0.8 while LS+ALasso F1-score ranges from 0.5 and 0.73 (an average gain of
0.1). Thus, our algorithm effectively leverages the additional information in settings with few samples, and
our approach enables fine-tuning of the graph while remaining a good forecasting power. Results presented
in Table 2 provides more details regarding the computation of F1-score (precision and recall). We observe
that the gain in the F1-score is a consequence of a important gain in precision. Indeed, whereas the first
iteration of the algorithm results in relatively good recall and precision, the next iterations lead to important
improvements of precision with limited loss in recall. Moreover, the results shown in Figure 6 indicate that
AALasso outperforms Lasso and LS+ALasso estimators for sparsity levels near to the ground truth one
(with a manual selection of λ). These results confirm that the model allows to increase the performances of
the variable selection and that the gains in Figure 2 are not just a consequence of a better selection of λ.

When the number of samples increases, the LS+ALasso estimator provides better reconstruction than
AALasso. This behavior can be explained by the fact that the prior knowledge given is noisy so the AALasso
estimator is biased. In practice it allows to reduce the variance when few samples are available, but when
the number of samples becomes large enough to perform statistical inference directly from time series data,
this bias lead to slightly less accurate results. Thus, the question is to know whether the time series are
informative to know if adding biased prior knowledge will improve or not the results. However, recall that
we are interested in a graph learning task so the F1-score is more informative than the reconstruction error,
and shows satisfying results even for relatively large number of samples (until a certain threshold, here 250
samples). This can be explained by the fact that the algorithm prefers precision to recall, and will focus on
returning true causal relations, sacrifying reconstruction and recall. Finally, the difference of results between
the first iteration and the complete optimization process of AALasso points out the interest of the alternating
minimization.

N Samples 40 100 180
Metrics P R F1 P R F1 P R F1
Lasso 0.28 (0.04) 0.61 (0.09) 0.38 (0.04) 0.51 (0.1) 0.75 (0.08) 0.6 (0.09) 0.57 (0.08) 0.83 (0.06) 0.68 (0.07)
LS+ALasso 0.54 (0.09) 0.54 (0.11) 0.53 (0.07) 0.69 (0.1) 0.68 (0.1) 0.68 (0.09) 0.64 (0.08) 0.83 (0.06) 0.72 (0.07)
1-AALasso 0.44 (0.06) 0.73 (0.1) 0.55 (0.06) 0.65 (0.06) 0.82 (0.09) 0.72 (0.06) 0.83 (0.06) 0.84 (0.06) 0.83 (0.05)
AALasso 0.55 (0.07) 0.71 (0.11) 0.62 (0.07) 0.76 (0.06) 0.79 (0.1) 0.77 (0.07) 0.87 (0.05) 0.81 (0.07) 0.84 (0.05)

Table 2: Precision, Recall and F1-score in function of the number of samples. We took a noise over the prior
network with σA = 0.1.
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Experiments in higher dimension Finally, to understand whether our method was able to deal with
high-dimensional environment (i.e N << p), we conducted the same experiments taking p ∈ {60, 100, 160}
and N = 40 (still 20 samples for training and 20 for validation).

Dimension 60 100 160
Metrics P R F1 P R F1 P R F1
Lasso 0.31 (0.07) 0.48 (0.09) 0.37 (0.07) 0.26 (0.04) 0.32 (0.06) 0.28 (0.04) 0.26 (0.03) 0.24 (0.04) 0.25 (0.03)
LS+ALasso 0.58 (0.06) 0.38 (0.10) 0.45 (0.08) 0.52 (0.06) 0.20 (0.05) 0.29 (0.05) 0.48 (0.05) 0.13 (0.04) 0.20 (0.05)
1-AALasso 0.45 (0.05) 0.60 (0.10) 0.51 (0.06) 0.40 (0.04) 0.47 (0.06) 0.43 (0.04) 0.39 (0.03) 0.38 (0.05) 0.39 (0.04)
AALasso 0.56 (0.06) 0.60 (0.11) 0.57 (0.08) 0.47 (0.05) 0.45 (0.07) 0.46 (0.05) 0.45 (0.02) 0.37 (0.06) 0.40 (0.04)

Table 3: Precision, Recall and F1-score in function of the dimension. We took a noise over the prior network
with σA = 0.1 and N = 40 samples.

From Table 3, we see that in settings where N << p, AALasso remains better than the other standard
methods regarding the F1 score. More of that, the higher the dimension, the higher the gap between
LS+ALasso and AALasso regarding the F1 score (from less than 1.2 times better in dimension 40 to twice
better in dimension 160). Thus, our method efficiently leverages prior knowledge, and it is of high interest
in this kind of settings.

4.4.2 Influence of the prior network

In this section, we present results for various configurations of prior noises. Similar to the experiments in the
previous section, for each configuration, we conducted 20 experiments, we took Niter = 10, we utilized half
of the training set and the parameters λ and γ were selected via cross-validation, minimizing the normalized
Root Mean Square Error (nRMSE) over the second half. Figure 7 presents the results for Prediciton error
and F1-score with N = 40, 100, 140 samples for varying noise levels. It is important to note that we are
assessing the robustness of our method to prior matrix noise, where the noise specifically corresponds to
Aprior noise and not to the noise of the VAR model. Additionally, since Lasso and LS+ALasso do not
leverage prior knowledge, variations in this noise do not impact the results. The findings demonstrate that
AALasso exhibits robustness to noise, displaying a comparable prediction error than the Lasso or LS+ALasso
one (even better than LS+AALasso in few samples settings) and a consistently better F1-score for all tested
configurations. Furthermore, these results indicate that our model effectively generalizes Adaptive Lasso
(corresponding to the first iteration) and enables refinement of results over subsequent iterations.

Tables 4 and 5 provide further insights into the high F1-score achieved with AALasso for both N = 40 and
N = 140 scenarios. The AALasso’s behavior remains consistent across all tested noise levels. While the
first iteration yields a good recall but limited precision, subsequent iterations lead to a significant increase
in precision (an average gain of 0.15), especially in high noise level settings (gain of 0.2) while maintaining
a good recall (an average loss of 0.05).

4.4.3 Comparison with other Causal Discovery algorithms

While we focused in this paper on learning Network Granger Causality, it is interesting to compare our
method with other causal network discovery models. A recent survey Assaad et al. (2022) presents some
state of the art methods to infer causality from time series. The main ones are based on the conditional
independence framework Spirtes et al. (2000) which consists in running conditional independence tests to
check whether a variable X is a parent of another variable Y conditioned to some other variables Z1, ..., Zn.
Based on the PC algorithm Spirtes & Glymour (1991), in Runge et al. (2019), the authors introduced a
new model (PCMCI) specific to causal discovery from times series, using what they call "the momentary
conditional independence (MCI)" to remove false positive returned by the PC algorithm. Some variants of
PCMCI were then designed, like PCMCI+ Runge (2020) which includes contemporaneous links and improves
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Figure 7: Prediction error and F1-score in function of the noise σA. (Top) N = 40 samples, (Middle)
N = 100 samples, (Bottom) N = 140 samples.

the reliability of CI tests, or LPCMCI Gerhardus & Runge (2020) which is designed to address the issue of
the presence of latent confounders.
Note that it is possible to include some prior knowledge when using methods based on conditional indepen-
dence. These prior information can be expressed as: there is a causal link i 7→ j, there is not any link between
i and j, i is a leaf, i is a root or i is an ancestor of j. This kind of prior knowledge do not exactly match with
the one used in this paper (the information is binary in this framework) but we tested PCMCI leveraging
prior (denoted by Prior PCMCI) by encoding forbidding edges (i, j) or (j, i) when Aprior

i,j < τ (here we tested
τ ∈ {0.2, 0.3}). All of these methods are implemented in https://jakobrunge.github.io/tigramite/
and we used this package to perform the same experiments than the one in Section 4.4.1. We also add the
results obtained with CGC-2SPR Yao et al. (2013), the method presented in Section 3.3 that leverage the
same kind of prior knowledge than our method but using a L2 penalty.
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σA 0.1 0.25 0.35
Metrics P R F1 P R F1 P R F1
Lasso 0.28 (0.04) 0.61 (0.09) 0.38 (0.04) 0.28 (0.04) 0.61 (0.09) 0.38 (0.04) 0.28 (0.04) 0.61 (0.09) 0.38 (0.04)
LS+ALasso 0.54 (0.09) 0.54 (0.11) 0.53 (0.07) 0.54 (0.09) 0.54 (0.11) 0.53 (0.07) 0.54 (0.09) 0.54 (0.11) 0.53 (0.07)
1-AALasso 0.44 (0.06) 0.73 (0.1) 0.55 (0.06) 0.39 (0.06) 0.71 (0.11) 0.49 (0.07) 0.37 (0.08) 0.7 (0.11) 0.47 (0.07)
AALasso 0.58 (0.07) 0.69 (0.11) 0.63 (0.08) 0.5 (0.07) 0.67 (0.12) 0.57 (0.07) 0.45 (0.06) 0.65 (0.12) 0.53 (0.07)

Table 4: Precision, Recall and F1-score in function of σA. We used N = 40 samples for training.

σA 0.1 0.25 0.35
Metrics P R F1 P R F1 P R F1
Lasso 0.54 (0.13) 0.78 (0.08) 0.63 (0.1) 0.54 (0.13) 0.78 (0.08) 0.63 (0.1) 0.54 (0.13) 0.78 (0.08) 0.63 (0.1)
LS+ALasso 0.67 (0.25) 0.77 (0.1) 0.69 (0.14) 0.67 (0.25) 0.77 (0.1) 0.69 (0.14) 0.67 (0.25) 0.77 (0.1) 0.69 (0.14)
1-AALasso 0.75 (0.05) 0.81 (0.08) 0.78 (0.06) 0.71 (0.06) 0.8 (0.08) 0.75 (0.06) 0.66 (0.07) 0.78 (0.1) 0.71 (0.07)
AALasso 0.82 (0.06) 0.79 (0.09) 0.8 (0.07) 0.76 (0.06) 0.76 (0.1) 0.76 (0.07) 0.71 (0.09) 0.74 (0.11) 0.72 (0.09)

Table 5: Precision, Recall and F1-score in function of σA. We used N = 140 samples for training.

N Samples 40 100 180
Metrics P R F1 P R F1 P R F1
Lasso 0.28 (0.04) 0.61 (0.09) 0.38 (0.04) 0.51 (0.1) 0.75 (0.08) 0.6 (0.09) 0.57 (0.08) 0.83 (0.06) 0.68 (0.07)
LS+ALasso 0.54 (0.09) 0.54 (0.11) 0.53 (0.07) 0.69 (0.1) 0.68 (0.1) 0.68 (0.09) 0.64 (0.08) 0.83 (0.06) 0.72 (0.07)
CGC-2SPR 0.45 (0.22) 0.42 (0.16) 0.36 (0.07) 0.66 (0.22) 0.57 (0.11) 0.58 (0.10) 0.84 (0.12) 0.64 (0.10) 0.72 (0.06)
PCMCI+ 0.89 (0.08) 0.38 (0.07) 0.53 (0.07) 0.92 (0.05) 0.56 (0.06) 0.69 (0.05) 0.92 (0.04) 0.67 (0.05) 0.77 (0.04)
LPCMCI 0.64 (0.08) 0.5 (0.06) 0.56 (0.06) 0.64 (0.07) 0.63 (0.06) 0.63 (0.06) 0.64 (0.08) 0.72 (0.06) 0.68 (0.06)
Prior PCMCI+ 0.68 (0.07) 0.5 (0.06) 0.58 (0.05) 0.7 (0.06) 0.64 (0.06) 0.66 (0.05) 0.71 (0.05) 0.74 (0.05) 0.72 (0.04)
1-AALasso 0.44 (0.06) 0.73 (0.1) 0.55 (0.06) 0.65 (0.06) 0.82 (0.09) 0.72 (0.06) 0.83 (0.06) 0.84 (0.06) 0.83 (0.05)
AALasso 0.55 (0.07) 0.71 (0.11) 0.62 (0.07) 0.76 (0.06) 0.79 (0.1) 0.77 (0.07) 0.87 (0.05) 0.81 (0.07) 0.84 (0.05)

Table 6: Precision, Recall and F1-score for all causal discovery methods tested, p = 40, σA = 0.1.

Compared to methods that do not leverage prior knowledge (Lasso, PCMCI and its variants), Table 6 show
that AALasso allows for better network reconstruction, highlighting its ability to efficiently leverage prior
information. Moreover, AALasso remains superior to Prior PCMCI+, showing that the way we introduce
the prior information in our model is relevant and efficient. In details, we remark that PCMCI+ allows for a
very good Precision for the retrieved causal links (from 0.89 to 0.92), but the Recall remains very low (from
0.38 to 0.67). This method achieves the best Precision but the worst Recall, leading to a F1-score lower than
the one of AALasso.

4.4.4 Empirical time complexity

Concerning time complexity, as discussed theoretically in Section 3.5.2, we observed that the runtime of
AALasso is approximately proportional to Niter times that of a Lasso estimator. Therefore, it is useful to
analyze the convergence rate of our method to find a balance between precision and computational efficiency.
Figure 8 shows the behavior of the Prediction error and F1-score averaged on all experiments conducted to
visualize the convergence over the successive iterations. The convergence seems to be achieved for Niter = 10
in average (see Appendix B.1 for more experiments), and that motivated the choice of Niter for comparing
the performances of the algorithms. Then we can compare runtimes of Lasso, LS+ALasso and AALasso
with Niter = 10 iterations. To well understand the gain and the tradeoff between runtime and performances,
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we plot the F1 score in function of the runtimes for Niter ∈ {0, 5, 10, 15} with N = 40 samples and σA = 0.1
in Figure 9 and for other scenarios in Appendix B.5.
We remark that AALasso with 5 iterations is a good trade off to optimize both the runtime and the F1-score.
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Figure 8: Prediction error and F1-score in function of the number of iterations used for training using
synthetic data with σA ∈ {0.02, 0.1, 0.25, 0.35} and N ∈ {40, 100, 140, 180, 250}.
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Figure 9: F1 score in function of runtimes for Lasso, LS+ALasso and AALasso for Niter ∈ {0, 5, 10, 15} with
N = 40 samples, σA = 0.1.

4.5 Experiments on real-world data

4.5.1 HPN DREAM8 Challenge

For this dataset, the choice of Aprior is detailed in Section 4.3.2 and we compare the results with Lasso and
Least Squares methods (note that we replace the LS+ALasso method here because the results were better
when fitting the Least Squares estimator).

The hyperparameters are selected using data for the cells BT549, MCF7, and UACC812 and the test set
contains the data for all pairs (ligand, inhibitor) for the cell BT20. We use two common metrics to compare
the performances of the algorithms : the overall accuracy, measuring the relevance of variable selection, and
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Figure 10: Results obtained on the DREAM8 dataset

the Receiver Operating Characteristic Area Under the Curve (ROCAUC), allowing to design a threshold-
independent score as mentioned in (Bradley, 1997) and measuring the ability of a model to discriminate the
two classes. Formally, let (Ci,j)1≤i,j≤p ∈ Rp×p the parameters computed and (Yi,j)1≤i,j≤p ∈ {0, 1}p×p the
ground truth values (causality or not), then

• The accuracy is computed by : Acc =

∑
1≤i,j≤p

Tτ (Ci,j)Yi,j

p2 , where Tτ : x 7→

{
1 if |x| > τ

0 otherwise
, taking

τ = 0.05. This metrics measures the relevance of variable selection.

• The ROCAUC is computed by ROCAUC =
∫ 1

0 TPR(FPR−1(t)) dt where TPR(t) stands for True
Positive Rate (sensitivity), and FPR(t) stands for False Positive Rate (1 - specificity) with a threshold
t.

As shown in Figure 10 our method AALasso demonstrates better performance when compared to traditional
estimators such as Lasso and Ordinary Least Squares (OLS) regarding both accuracy and ROCAUC. Thus,
by incorporating the adjacency matrix derived from the Pathway Commons database as a prior network,
AALasso effectively harnessed valuable prior knowledge about protein interactions. Our results showcase that
AALasso outperform the baseline methods, emphasizing the significance of considering such prior information
in causality inference tasks. The Figure 11 presents an example of graph learned, and we remark that the
Lasso estimator explain all the variables only with a few number of variables (presence of columns in the
matrix). On the contrary, the AALasso estimates are more homogeneous, following a directed version of the
prior structure.

4.5.2 Molene Dataset

VAR(1) model For this dataset, we train the models with 80 points, still selecting λ and γ by cross-
validation. Figure (12) compares the resulting graphs of Granger causalities using our method AALasso and
Lasso. We observe that the graph resulting of the AALasso is sparse while remaining connected and allows
a good visualization of the physical process. Moreover, contrarily to the Lasso one, it is consistent with the
Euclidean structure, confirming that the algorithm leverages the given prior matrix. This simple example
encourages the using of AALasso to learn Granger causality for dynamic or physic system by taking into
account the physics of the problem.

VAR(3) model For this example, we applied the generalization of our model with the order d = 3. We
computed the same matrix Aprior than for d = 1 (cf Section 4.3.3) and we then considered the generalized
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(a) (b)

(c) (d)

Figure 11: Example of graphs learned. (a) Least Squares method. (b) Lasso method. (c) AALasso. (d)
Prior network.

prior matrix given by

Aprior =


Aprior Aprior · · · Aprior

1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .

The comparison between the LS+ALasso and the AALasso estimates for d = 3 is presented if Figure 13. Like
for the case d = 1, the AALasso graph is sparser than the LS+ALasso one, and allows a better visualization
of the physical process. Moreover, we remark that AALasso explains the main part of the signal only by
using the first order (only 3 and 1 edges for order 2 and 3) which is consistent with a diffusion process.
Finally, the size of the edges for AALasso seems to be proportional to the order (edges for order 2 and 3 are
longer than the ones for order 1) which is again consistent with the physics (information take more time to
travel longer distances).

5 Discussion and conclusion

In conclusion, this paper has introduced a novel method designed to efficiently learn Granger causalities in
settings with limited samples. Our approach stands out by effectively incorporating prior knowledge through
the utilization of a noisy adjacency matrix. We demonstrated the convergence of our algorithm AALasso and
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(a)AALasso (b)Lasso

Figure 12: C Results on the Molène dataset for (a) AALasso and (b) Lasso. Darker colors indicate larger
weight.
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Figure 13: C Results on the Molène dataset with d = 3 for (a) LS + ALasso and (b) AALasso. Darker colors
indicate larger weight.

showed that the time complexity was in the same order of magnitude as that of the Lasso. To empirically
validate our method and demonstrate its efficacy, we conducted a series of experiments. We selected a variety
of datasets, including synthetic data and real-world examples like the Breast Cancer Network and the Molène
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Dataset. In these experiments, we employed rigorous evaluation metrics to assess the performance of our
method across different scenarios, showcasing its versatility and applicability. Thus the incorporation of
prior information has proven instrumental in achieving superior accuracy and robustness when compared to
classical algorithms in this domain.
While our method allows to incorporate prior knowledge in the learning process, it could be interesting to
add structure to the learned graph and go beyond sparsity. Indeed, the framework we have presented here
can be readily extended to learn graphs with specific structural constraints, such as spectral and adjacency
constraints, similar to those outlined in (Kumar et al., 2020). This flexibility arises from the fact that
our model operates with a symmetric matrix containing positive values, making it amenable to a range of
applications that necessitate tailored graph structures.
Finally, it could be interesting to study whether this framework could be used to learn time-varying graphs
of Granger causality (cf (Gao & Yang, 2022)), for example by considering the graph learned at time t as a
prior for the graph at time t + 1.
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A Proofs

A.1 Statistical model

Proof of (13). The MAP of the model (4) is given by:

Â, Ĉ = arg max
A,C

L(A, C | {Xi[1 : t]}N
i=1, Aprior) (17)

subject to A ≥ 0 (18)

where L(·) is the likelihood function. Using Bayes formula, ones have :

L(A∗, C∗| X1:t, Aprior) := P(A∗, C∗ | X1:t, Aprior)
= P(C∗ | X1:t, Aprior)× P(A∗ | C∗, X1:t, Aprior)
= P(C∗ | X1:t, Aprior)× P(A∗ | C∗, Aprior)

= P(X1:t | C∗)× P(C∗ | Aprior)
P(X1:t | Aprior) × P(A∗ | C∗, Aprior)

= P(X1:t | C∗)
P(X1:t | Aprior) ×

(
P(C∗ | Aprior)× P(A∗ | C∗, Aprior)

)
Then:

P(C∗ | Aprior)× P(A∗ | C∗, Aprior) = P(C∗ | A∗, Aprior)× P(A∗ | Aprior)
= P(C∗ | A∗)× P(A∗ | Aprior)

= P(C∗ | A∗)× P(Aprior | A∗) P(A∗)
P(Aprior)

Assuming that A∗ follows the improper distribution 1Sp(R), the MAP is finally given by:

max
A∗,C∗

P(X1:t | C∗)× P(C∗ | A∗)× P(Aprior | A∗)

= max
A∗,C∗

N (Xt; C∗Xt−1, σ2
XId)×

∏
i,j

Laplace(C∗
i,j ; 0, A∗

i,j)×
∏
i,j

N (Aprior
i,j ; A∗

i,j , σ2)

Applying the log function to the previous expression concludes the proof.

A.2 Proof of Theorem 12

Definition 14 (Regular function). We say that f is regular at z ∈ domf if f ′(z; d) ≥ 0, ∀d = (d1, ..., dp),
such that f ′(z; (0, ..., dk, ..., 0)) ≥ 0, k = 1, ..., p.
Remark 15. If f is differentiable then f ′(x; d) = ∇f(x)T d. So, if f ′(z; (0, ..., dk, ..., 0)) ≥ 0 ∀k = 1, ..., p,
we have that:

f ′(z; (d1, ..., dk, ..., dp)) = ∇f(x)T (d1, ..., dk, ..., dp) =
p∑

k=1
∇f(x)T (0, ..., dk, ..., 0) ≥ 0. (19)

Thus a differentiable function is regular.
Definition 16 (Stationary points). We say that z is a stationary point of f if z ∈ domf and f ′(z; d) ≥
0, ∀d.
We say that z is a coordinatewise minimum point of f if z ∈ domf and f(z + (0, ..., dk, ..., 0)) ≥ f(z),
∀dk ∈ Rnk , for all k = 1, ..., N .
Remark 17. If z is a coordinatewise minimum point of f , z is a stationary point of f whenever f is regular
at z.
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Using this framework, the following theorem holds.
Theorem 18 (Theorem 4.1 in (Tseng, 2001)). Assume that the level set LX = {x | f(x) ≤ f(x0)} is compact
(where x0 ∈ R) and that f is continuous on LX . Then, the sequence {xr}r=1,2,... generated by the Block
Coordinate Descent method is defined and bounded. Moreover, the following statements hold:
If f(x1, ..., X(n)) has at most one minimum in xk for k ∈ {2, ..., N − 1}, then every cluster point z of
{xr}r≡N−1 mod N is a coordinatewise minimum point of f . In addition, if f is regular at z, then z is a
stationary point of f .

Actually the case N = 2 is very simple and we do not need any supplementary assumptions that the continuity
of f and the compactness of LX to prove the convergence of the algorithm. Indeed, since {2, ..., N − 1} = for
the case N = 2, the point (3) can be directly applied without satisfying any assumptions about the number
of minimum so ones obtain directly the following corollary.
Corollary 19. Assume that the level set LX is compact, that f is continuous on LX and that N = 2. Then,
the sequence {xr}r=1,2,... generated by the BCD method is defined and bounded. Moreover, every cluster point
z of {xr}r≡N−1 mod N is a coordinatewise minimum point of f . In addition, if f is regular at z, then z is a
stationary point of f .

A simplified version of the proof provided in (Tseng, 2001) for the case N = 2 can be found in Appendix
(A.2).

Now we need to prove that the function f of our model (the MAP) satisfies the conditions of the previous
theorem.
Proposition 20. The function f : Rp2 × R∗

+
p2
→ R defined by :

f(C, A) = 1
N

N∑
n=1
||X(n)[t]−CX(n)[t−1]||22 + λ

∑
i<j

|Ci,j |+ |Cj,i|
Ai,j

+ λ
∑
i<j

log(2Ai,j)+ γ||A−Aprior||2F (20)

is regular.
Proposition 21. The function f defined in (20) but constrained on Rp2 × [ϵ, +∞]p2 with ϵ > 0 satisfies
assumptions in (19).

Finally, using 20 and 21 we show that our objective function in (7) verifies the assumptions in (19), and
applying the Theorem, we obtain the following result.

Proof of 19. Let {xr}r=1,2,... the sequence generated with the BCD algorithm. By definition of the algorithm
ones have that f(xr+1) ≤ f(xr) for all r and xr+1 ∈ LX for all r. Since LX is compact, {xr}r∈R converges
towards z = z1. In the same way, we can assume w.l.o.g that

{
xr+1}

r∈R converges towards z2 (taking a
sub-sequence).
First, {f(xr)}r∈R is decreasing (and bounded) so it converges and ones have that :

f(x0) ≥ lim
r∈R→+∞

f(xr) = f(z) = f(z1) = f(z2).

Now, we assume that for every r ∈ R, xr = argmin
x

f(x, xr−1
2 ), e.g for all r:

f(xr) ≤ f(xr + (d1, 0)), ∀d1

f(xr+1) ≤ f(xr+1 + (0, d1)), ∀d2

xr
1 = xr+1

1 where xr = (xr
1, xr

2)
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Since f is continuous on LX , we get :

f(z1) ≤ f(z1 + (d1, 0)), ∀d1

f(z2) ≤ f(z2 + (0, d2)), ∀d2

z2
1 = z1

1

Then, for all d2 :

f(z1) = f(z2)
≤ f((z2

1 , z2
2) + (0, d2))

= f((z1
1 , z2

2) + (0, d2))
= f((z1

1 , z1
2) + (0, z2

2 − z1
2) + (0, d2))

= f(z1 + (0, d̃2))

Since z1 = z, we proved that for all d1, d2 :

f(z) ≤ f(z + (d1, 0)), ∀d1

f(z) ≤ f(z + (0, d2)), ∀d2

so z is a componentwise minimum of f .

Finally, if f is regular, the previous inequalities become :

f ′(z; (d1, 0)) ≥ 0, ∀d1

f ′(z; (0, d2)) ≥ 0, ∀d2

and by definitions z is a stationary point of f .

Proof of 20. The only points where f is not differentiable are {(C, A) | ∃i, j ; Ci,j = 0} because of the ab-
solute value. Let’s write :

f(C, A) = g(C, A) + λ
∑
i<j

hi,j(C, A) + l(C, A)

where

g(C, A) = 1
N

N∑
n=1
||X(n)[t]−CX(n)[t− 1]||22

hi,j(C, A) = |Ci,j |+ |Cj,i|
Ai,j

l(C, W ) = λ
∑
i<j

log(2Ai,j) + γ||A−Aprior||2F .

g and l are differentiable so we have for all (C, A) ∈ Rp2 × R∗
+

p2
, for all (DC , DA) ∈ Rp2 × Rp2 such that

(C + DC , A + DA) ∈ domf :

g′((C, A); (DC , DA)) =
∑
i,j

g′((C, A); (D(i,j)
C , 0)) + g′((C, A); (0, D

(i,j)
Z ))
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l′((C, A); (DC , DA)) =
∑
i,j

l′((C, A); (D(i,j)
C , 0)) + l′((C, A); (0, D

(i,j)
A ))

where D
(i,j)
C is the matrix with zero values everywhere except the coefficient (i, j) which is equal to D

(
Ci, j).

If Ci,j ̸= 0 and Cj,i ̸= 0, then hi,j is differentiable in (C, A) so we have the same result. Otherwise, we need
to compute the lower directional derivative of hi,j in (C, W ) with Ci,j = 0 or Cj,i = 0.
Ones can compute that:

• h′
i,j((C, A); (DC , DA)) = |D(i,j)

C
|+|DC j,i|

Ai,j
if Ci,j = 0 and Cj,i = 0

• h′
i,j((C, A); (DC , DA)) = |D(i,j)

C
|

Ai,j
+ sign(Cj,i)D

(j,i)
C

Ai,j
− D

(i,j)
A |Cj,i|

A2
i,j

if Ci,j = 0 and Ci,j ̸= 0 and we can do
the same for the last case.

Thus we still have that :

h′
i,j((C, A); (DC , DA)) =

∑
i,j

h′
i,j((C, A); (D(i,j)

C , 0)) + h′
i,j((C, A); (0, D

(i,j)
A )).

Finally, by definition of regular function, ones have that f is regular at all (C, A) ∈ Rp2 × R∗
+

p2
.

Proof of 21. First it is clear that f is continuous on LX .
Let’s consider again the decomposition :

f(C, A) = g(C) + λ
∑
i,j

hi,j(C, A) + l(A)

where

g(C) = 1
N

N∑
n=1
||X(n)[t]−CX(n)[t− 1]||22

hi,j(C, A) = |Ci,j |+ |Cj,i|
Ai,j

l(|Ci,j |, A) = λ
∑
i<j

log(2Ai,j) + γ||A−Aprior||2F .

It is clear that lim
||C||→+∞

g(C) = +∞ and lim
||A||→+∞

l(A) = +∞.

Then, since hi,j(C, A) ≥ 0 for all C, A for all i, j, we have that :

lim
||(C,A)||→+∞

f(C, A) = +∞. (21)

We proved that f was coercive, it follows that LX is bounded.
Moreover, lim

Ai,j→0
l(A) = +∞, for i, j ∈ [|1, p|]. Additionally, f is continuous so f−1(]−∞, f(x(0))]) is closed

and finally LX is compact.

Proposition 22. The function f defined in (20) is not convex.

Proof of 22. The function 20 is a function of (C, (Ai,j)1≤i,j≤p), so it is sufficient to prove that it is not
convex in Ai,j for fixed i and j and for a fixed value of C. The second derivative wrt Ai,j is :

∂2
i,jf(C, A) = − λ

A2
i,j

+ 2 |Ci,j |+ |Cj,i|
A3

i,j

+ 2γ (22)
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so it has the same sign than the degree 3 polynomial:

−λAi,j + 2(|Ci,j |+ |Cj,i|) + 2γA3
i,j (23)

Then, the minimum of this polynomial on [0, +∞] is reached in
√

λ
6γ and take the value − 2λ3/2

3
√

6γ
+ 2(|Ci,j |+

|Cj,i|) which can be negative for small values of |Ci,j |+ |Cj,i|.
Thus the second derivative can reach negative value with certain value of Ci,j and Cj,i.

A.3 Time complexity

Lemma 23 (C update time complexity). Let CLasso(p, N) the time cost for training a Lasso estimator
to fit VAR(1) parameters in dimension p with N samples, then the time complexity of a C update is in
O (p×N + CLasso(p, N)).

Proof of 23. The C update is done solving an Adaptive Lasso problem, so recalling that an Adaptive Lasso
problem can be written as a Lasso problem in p × N multiplications and that we solve p Adaptive Lasso
problems (cf 3.4.1), the time complexity of this step is in O

(
p2 ×N + CLasso(p, N)

)
.

Lemma 24 (A update time complexity). The time complexity of a A update is in O
(
p2).

Proof of 24. The A update is done by computing in O(1) the closed form given in 3.4.2 for each value Ai,j

so this update is in O(p2).

In order to completely express the time complexity, we need to compute CLasso(p, N). Note that when using
gradient descent based methods to solve an optimization problem, whereas a convergence rate analysis can
be conducted (cf (Zhao & Huo, 2023)), the time complexity depends on the stop criterion of the algorithm.
Thus we conduct the time complexity analysis assuming that ADMM is utilized with a fixed number of
iterations NADMM.

Lemma 25 (ADMM complexity for Lasso). The time complexity of the ADMM algorithm (with a fixed
number of steps) to solve one Lasso problem in dimension p is O(p3 + N × p2).

Proof of 25. The updated formula of the ADMM given in 3.4.1 require to multiply a p × N matrix with a
N × p matrix which is in O(N × p2) and to inverse a p× p matrix which is in O(p3).

Theorem 26. Let CAALasso(p, N) the time cost for training a AALasso estimator to fit VAR(1) parameters
in dimension p with N samples, then:

CAALasso(p, N) =
p,N

O(CLasso(p, N)) =
p,N

O
(
p2 ×N + p3) . (24)

Proof of 26. Summing the time complexity of A step 24 and C step 23 gives a complexity in
O
(
p2 + p2 ×N + CLasso(p, N)

)
. Since the matrix inversion need to be performed only one time for the

p Lasso problems at each step, the complexity of CLasso(p, N) using 25 becomes O(p3 + N × p2), finally
resulting in a complexity in O

(
p2 + p2 ×N + p3) = O

(
p2 ×N + p3) = O(CLasso(p, N)).

B Additional experiments

B.1 Number of iterations

For synthetic experiments in Section 4, we motivated the choice of Niter = 10 by Figure 8. While this
parameter allows good results in various scenarios, it can be interesting to understand whether this parameter
is related to the dataset. Convergence analysis results are shown in Figures 14 and 15. A trend seems to
appear : the larger N , the faster the convergence. Moreover, while the noise impacts the performances of
AALasso, the convergence rate seems to remain unchanged for σA = 0.1 or σA = 0.25.
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Figure 14: F1-score and Prediction error through AALasso iterations for N ∈ {40, 100, 140} and σA = 0.1.

B.2 Runtime

B.3 Initialization impact

Let’s recall the algorithm to train AALasso :

The results presented in the previous sections were obtained initializing A(0) with Aprior. However, it can be
interesting to test the algorithm with other initializations. We therefore conducted experiments initializing
A(0) with only 1 values (denoted AALasso-ones), A(0) obtained by solving the Least Squares problem (denotes
AALasso-LS) or with random values (denoted AALasso-random). Our method is proven to converge towards
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(c) N = 100, σA = 0.1

Figure 15: F1-score and Prediction error through AALasso iterations for N ∈ {40, 100, 140} and σA = 0.25.

a stationary point, no matter the initialization of A(0). However, since our objective function is not convex,
better local minimum could be found starting from a 1 vector or a random vector rather than the Aprior.
The results for all the scenarios tested are presented in Figures 16 and 17. Globally, the results are similar
for all initializations tested and it is not clear if one of the initializations is better than the other. However we
remark than in settings with very few samples (N = 40), the random initialization surprisingly outperforms
the other with a gain of 2.5 in the F1-scores compared to AALasso for all noise levels.
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Algorithm 3: Fitting algorithm.
input : Niter, λ, γ, A
output: Ĉ, Ŵ
W (0) ← Subdiagonal values of A
for i← 1 to Niter do

C(i) ← fC(C, W (i−1)) where fC denotes the update in (3.4.1).
W (i) ← fW (C(i), W ) where fW denotes the update in (3.4.2).

return C(Niter), W (Niter).
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Figure 16: Impact of the initialization of A(0) on the F1-scores with σA ∈ {0.02, 0.1, 0.25, 0.35}.

B.4 Comparison with random prior graph

In this last experiment, we compare our results with the AALasso method taking a random Aprior to check
that the prior structure is well leveraged and that a random L2 penalization can not achieve the same
performances. The values Aprior

i,j are sampled independently from a uniform distribution in [0.2, 1]. The
results are presented in Figure 18, and we see that results using a random Aprior are very poor regarding both
F1-score and Prediction error. This reinforces the thesis that AALasso judiciously leverages the information
provided by Aprior.
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Figure 17: Impact of the initialization of A(0) on the F1-scores with N ∈ {40, 100, 180, 250}.
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Figure 18: Comparison of AALasso, Lasso and LS+ALasso with AALasso taking Aprior random, with
σA = 0.1.

B.5 Runtime

Here, several scenarios are tested to complete the Figure 9 and show that the behavior regarding the F1
score in function of the runtime remains similar for some parameters choices.
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Figure 19: F1 score in function of runtimes for Lasso, LS+ALasso and AALasso for Niter ∈ {0, 5, 10, 15}. (a)
N = 40 samples, σA = 0.1. (b) N = 100 samples, σA = 0.1. (c) N = 40 samples, σA = 0.25. (d) N = 100
samples, σA = 0.25.
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