
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TYPE-AWARE CONSTRAINING FOR CODE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved notable success in code gener-
ation. However, they still frequently produce invalid code, as they do not pre-
cisely model formal aspects of programming languages. Constrained decoding is
a promising approach to alleviate this issue and has been successfully applied to
domain-specific languages and syntactic features, but is not able to enforce more
semantic features, such as well-typedness. To address this issue, we introduce
type-aware constrained decoding. We develop a novel prefix automata formalism
and introduce a sound approach to guarantee existence of a type-safe completion
of a partial program based on type inference and a search over inhabitable types.
We implement type-aware constraining first for a foundational simply-typed lan-
guage, then extend it to TypeScript. In our evaluation across state-of-the-art open-
weight LLMs of up to 34B parameters and various model families, type-aware
constraining reduces compilation errors by on average 70.9% and increases func-
tional correctness by 16.2% in code synthesis, translation, and repair tasks.

1 INTRODUCTION

Large language models (LLMs) are increasingly utilized in everyday coding tasks (GitHub, 2025;
Vella, 2024; Rozière et al., 2023; Gemma Team, 2024). They excel at generating code from natural
language descriptions (Rozière et al., 2023; Lozhkov et al., 2024), translating between programming
languages (Rozière et al., 2023), and repairing programs (Muennighoff et al., 2024; Zhang et al.,
2024). Despite these achievements, LLMs often produce incorrect code, leading to compilation
errors, logic flaws, and security vulnerabilities (Pan et al., 2024; Dou et al., 2024; Pearce et al., 2022).
This issue arises from the underlying probabilistic nature of LLM-based code generation, which is
derived solely from training data, without leveraging the strict rules of programming languages.

A promising solution to this challenge is constrained decoding, which enforces hard constraints
during generation. Prior work employed this to enforce syntactic rules of programming languages
on LLM generations (Beurer-Kellner et al., 2024; Ugare et al., 2024; Poesia et al., 2022).

LLMs Struggle to Generate Type-Safe Code However, we observe that LLMs struggle to gener-
ate well-typed code (Dou et al., 2024; Tambon et al., 2024), as type systems significantly complicate
the generation of valid code (Szabo et al., 2024). In our evaluation on average over 90% of com-
pilation errors result from failing type checks. Meanwhile, type systems are crucial for detecting
and rejecting bugs at compile time (Mitchell, 1990; Matsakis and Klock, 2014) and are therefore
employed in many popular programming languages (Bierman et al., 2014; Donovan and Kernighan,
2015; Arnold et al., 2000). A natural path forward is to leverage type systems for constrained code
generation. This is challenging, because type systems, even in simply typed lambda calculus, can-
not be described by context-free grammars (Mitchell, 1990), inhibiting the application of existing
constraining methods (Ugare et al., 2024; Beurer-Kellner et al., 2024). In addition to deriving and
maintaining type information, partially generated expressions need to be accurately assessed. This
task extends beyond traditional type inference, which determines inhabitation of a desired type (Ap-
pel, 1998), to a generalized version of the PSPACE-complete Type Inhabitation Problem, which
seeks to determine whether any expression can inhabit a desired type (Urzyczyn, 1997).

Syntactic Constraining is Insufficient However the challenge is worth tackling. Consider the
example in Fig. 1, in which an LLM generates TypeScript code. Based on syntax alone, completions
such as non-arithmetic characters and line termination are rejected (1), however, the suggested,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 function is_int(text: string): boolean {

2 const num = Number(text);

3 return !isNaN(num) &&

4 parseInt(num <completion>

Standard Syntax Types Rejection Reason{
; − ⊘ ⊘ (1) Syntactically invalid

ber − − ⊘ (2) Undeclared identifier
[0] − − ⊘ (3) Disallowed operator

, 10) − − ⊘ (4) Invalid argument type
.toString() − − − (5) −

Figure 1: A partial solution by CodeLlama 34B (Rozière et al., 2023). The completion ", 10)" is
accepted (−) by standard and syntax-only constraining, but correctly rejected (⊘) by type-aware
constraining, since it violates the type signature of parseInt. Instead .toString() is accepted.

invalid completion does not violate syntactic rules. More meaningful constraints can be derived from
the type system. For instance, no other identifier beginning with num is defined, leading to a rejection
of, e.g., number (2). Also, num is of type number , which disallows computed member access (3).
Critically, we recognize that num is not a valid first argument for parseInt due to mismatching
types (4). Consequently, the prediction ", 10)" is correctly rejected by type-aware constraints.
Meanwhile, a valid completion for the given code exists, since, e.g., the completion .toString()
yields type string , satisfying parseInt (5). Our approach correctly detects this admissible output,
guiding CodeLlama (Rozière et al., 2023) to complete the program correctly.

Type-Aware Constrained Decoding In this work, we address the challenge of constrained gen-
eration of type-safe code, referred to as type-aware constrained decoding. We develop a sound
algorithm based on a novel prefix automaton formalism, to determine if a partial output can be
completed into a well-typed program. This non-deterministic automaton incrementally constructs
potential abstract syntax trees described by the partial input, annotated with type-relevant context,
such as inhabited types, declared identifiers, and expected return types, and maintains a prefix prop-
erty to ensure that only valid language prefixes result in a non-empty set of states. To guarantee this
property when parsing expressions, we design a sound type search algorithm to determine whether a
partially written expression can inhabit a desired type. We carefully analyze the search graph to re-
strict the search to a finite subgraph covering sufficiently complex types. We develop the automaton
for a generic, simply-typed Turing-complete language. For our evaluation, we adapt the automaton
to support a comprehensive subset of TypeScript (Bierman et al., 2014; Gao et al., 2017), a typed
superset of JavaScript, which is currently one of the most actively used languages in open-source
projects on GitHub (Madnight, 2024; GitHub, 2022).

We evaluate the resulting system code on code synthesis, translation, and repair of a TypeScript
version of HumanEval (Chen et al., 2021; Cassano et al., 2023). Our results show that type-aware
constrained decoding significantly enhances LLMs of 2B to 34B parameters and various model fam-
ilies in across all tasks, reducing compilation errors by on average 70.9% and increasing functional
correctness by 3.3%, 6.9% and 38.7% respectively.

Main Contributions Our main contributions are: (i) We design a prefix automaton for type-aware
constrained decoding based on a generic, simply-typed Turing-complete language. (ii) We extend
the automaton to the popular and widely used programming language TypeScript. (iii) We conduct
an extensive evaluation of the impact of type-aware constraining on model performance, demon-
strating both reductions in compilation errors and increases in functional correctness.

2 BACKGROUND: CONSTRAINING LLMS

LLMs struggle to infer rules for programming languages (Ebrahimi et al., 2020; Bhattamishra et al.,
2020; Angluin et al., 2023), may only derive incomplete grammars for less common languages (Cas-
sano et al., 2023; Orlanski et al., 2023), and do not consistently follow grammatical rules during the
decoding process, due to the probabilistic nature of code generation. For instance, in our evaluation,
Gemma 2 9B (Rozière et al., 2023) achieves a notable pass@1 accuracy of 70.8% translating Python
solutions to TypeScript in HumanEval (Cassano et al., 2023; Chen et al., 2021), yet over half of the
non-passing samples do not even pass syntax and type checks, and thus are invalid programs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 Constrained Decoding

Input: Prompt x, LLM M , Comple-
tion Engine CEL

Output: o, such that x+ o ∈ L
1: o := []
2: loop
3: v := logits(M,x+ o)
4: do t := sample(v)
5: while not CEL(x+ o+ t)
6: if t = EOS and o ∈ L then
7: return o
8: o.append(t)

To address this issue, constrained decoding ensures gen-
erated outputs are valid according to a language L’s rules.
It works by forcing partial outputs to remain valid prefixes
of language L (Poesia et al., 2022). This requires a com-
pletion engine CEL, which verifies whether a string x is a
prefix of some word in L, i.e., CEL(x) = ∃y : x+y ∈ L.
Shown in Algorithm 1, constrained decoding starts with
an initial string or prompt, prefix to some word in L (e.g.,
ϵ), and appends tokens sampled from the LLM, rejecting
tokens that would not result in a prefix of any word in L.
Upon rejection, another token is sampled from the LLM
until a valid token is returned. Since x is a prefix of some
word in L, such a token must exist.

It is thus guaranteed that all sampled strings are valid prefixes of L. This process continues until,
while the current output is in L, the LLM predicts the "end of sequence" token (EOS), signaling the
completion of the generation. The only invalid outcome is due to non-termination.

Crucially, constrained decoding steers the model towards correct completions when it attempts to
generate invalid completions. Recent work has explored the use of programming languages’ syn-
tactic rules for constraining outputs; however, the benefits of such approaches are limited (Poesia
et al., 2022; Ugare et al., 2024; Beurer-Kellner et al., 2024) as syntactic correctness is insufficient to
guarantee compilability and executability in the presence of type systems.

3 TYPE-AWARE CONSTRAINED DECODING

3.1 A SIMPLY TYPED LANGUAGE

We define a simply typed, Turing-complete language, LB The syntax of expressions, types, and
statements match standard definitions and are a subset of TypeScript (Bierman et al., 2014). It
includes expressions, typed declaration statements, type-annotated functions, and flow control. Its
complete syntax is shown in Fig. 2 in Extended Backus Naur Form. In the spirit of Bierman et al.
(2014), we use a bar to denote Kleene-Plus over repeated elements, i.e., X+ = X .

The type system of LB matches the type system of TypeScript and other conventional programming
languages. Specifically, expressions are typed based on a propagated type environment Γ, which is
a map from identifiers to types, updated by assignments. We write Γ ⊢ e : T if the expression e has
type T in the type environment Γ. Statements propagate the type environment.

A word is in LB if it (i) is syntactically valid, (ii) permits the derivation of type environments for
statements and types for expressions, and (iii) ensures a value of the indicated return type is returned
on every execution path. Detailed syntax and type inference rules are presented in App. B.

3.2 PREFIX AUTOMATA

We define an automaton A(Σ,S, f, I,Q) as a five-tuple of (i) Σ: An alphabet of input symbols. (ii)
S: A potentially infinite set of states. (iii) f : S × Σ 7→ P(S): A computable transition function
that maps a state and an input symbol to a finite set of next states. (iv) I ⊆ S: A finite set of initial
states. (v) Q ⊆ S: A potentially infinite, decidable set of accepting states.

l ::= \d+ | "\w*" | true | false
x ::= \w+

p ::= x : T
T ::= string | number | boolean | (p) => T
e ::= l | x | (p) => e | (e) | e ◦ e | e (e) | e . n

s ::= { s }
let x : T ;
e ;
if (e) s else s
function x (p) : T { s }
return e ;

M ::= s

Figure 2: The grammar for identifiers x, literals l, expressions e, types T (left), statements s and the
complete program M (right) in LB . x and l are based on regular expressions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In the following, we assume the parameters are clear from context, and denote the automaton as A.
The transition function f maps a given state to all possible subsequent states. When the first argu-
ment of f is a set, we implicitly take the union of the results, with f(S, t) :=

⋃
{f(S, t) | S ∈ S}.

The transition function defines a directed graph G over S. The language parsed by A comprises all
strings s ∈ Σ∗ such that traversing G from any state in I according to f results in states S of which
at least one is in Q. Formally, we define a reachability function r for states S and input symbol
t recursively as r(S, s + t) := f(r(S, s), t) and r(S, ϵ) := S. The language described by A is
equivalently formulated as L(A) := {s ∈ Σ∗ | r(I, s) ∩Q ̸= ∅}.

The reachability function has intuitive and useful properties concerning graph reachability. We use
x ≤ y to notate that x is a prefix of y, i.e., ∃s ∈ Σ∗ : x+ s = y.

(P1) An empty string does not alter the state, i.e., r(S, ϵ) = S.

(P2) A path along the graph can be split arbitrarily, i.e., r(S, s+ s′) = r(r(S, s), s′).

(P3) For a reachable state, all prefixes are valid, i.e., r(S, s) ̸= ∅ =⇒ ∀p ≤ s : r(S, p) ̸= ∅.

(P4) The reachable states from some states equals the union of reachable states from each state,
i.e. r(

⋃
X, s) =

⋃
X′∈X r(X ′, s).

Property (P1) follows directly from the definition of the transition function, while properties (P2),
(P3), (P4) can be shown inductively. Further, to parse the prefix language efficiently, we need to
ensure that a path exists from every reachable state to an accepting state, the prefix property.

Definition 1. A is a prefix automaton iff ∀p ∈ Σ∗,∀S ∈ r(I, p),∃s ∈ Σ∗ s.t. r(S, s) ∩Q ̸= ∅.

For such automata, reaching any state through string p implies p is a prefix to some word in L. The
reachable language of A, all strings that result in any state, is Lr(A) := {p ∈ Σ∗ | r(I, p) ̸= ∅}.
The set of all prefixes of a language is Lp := {p ∈ Σ∗ | ∃w ∈ L : p ≤ w}.

Lemma 1. If A is a prefix automaton, then L(A)p = Lr(A).

Proof. From (P3) follows that L(A)p ⊆ Lr(A) since s ∈ L(A) =⇒ r(I, s) ̸= ∅. If A is a prefix
automaton, the reverse also holds, i.e., Lr(A) ⊆ L(A)p, since s ∈ Lr(A) =⇒ ∃S ∈ r(I, s) =⇒
∃s′ ∈ Σ∗ : s′ ≤ s∧ r(I, s)∩Q ̸= ∅, which by definition means that s is a prefix of s′ ∈ L(A).

We use the reachability function of A as completion engine CEA(s) := r(I, s) ̸= ∅. It now suffices
to show that L = L(A) and that A is a prefix automaton, such that CEA(p) ⇐⇒ ∃w ∈ L : p ≤ w.

We further introduce some base automata in Fig. 3. Their precise definitions are presented in App. C.

3.3 AUTOMATA FOR IDENTIFIERS, LITERALS, AND TYPES

We define several automata X to parse expressions of LB as well as their type-restricted versions
X ↓ T , which only accept if the parsed expression has type T .

Literals The automata Lstring, Lboolean, and Lnumber accept strings, booleans, and numbers. They are
defined by regular expressions and implemented using corresponding deterministic finite automata.
To ensure the prefix property, states that have no paths to accepting states are pruned. The restricted
version Lx ↓ T is A∅ if the literal’s type does not match T . Alit := Lstring ∪ Lboolean ∪ Lnumber.

Automaton Accepted Language Prefix Automaton when. . .

AX ∪AY {w | w ∈ L(AX) ∪ L(AY)} AX , AY are prefix automata
AX ⊕AY or AXY {w + v | w ∈ L(AX), v ∈ L(AY)} AX , AY are prefix automata, L(AY) ̸= ∅
A+

X or AX {wk|k ∈ N, w ∈ L(AX)} AX is a prefix automaton
θx {x} x ̸= ϵ
A∅ ∅ Always

Figure 3: Base prefix automata

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Identifiers During parsing, we maintain the current type environment by passing it to the next
state via the f . The identifier automaton Aident is the union of terminal automata accepting defined
identifiers, i.e., Aident :=

⋃
(x:T)∈Γ θx. For Aident ↓ T , we only include identifiers of type T .

Types The type automaton AT accepts type expressions T . Its co-recursive definition is AT :=
Atype-lit ∪ Afun-type with type literal automaton Atype-lit := θstring ∪ θnumber ∪ θboolean and function
type automaton Afun-type := C(p)⇒T , using parameter automaton Ap := Cx:T . This definition
preserves the prefix property since we maintain a finite initial state set and a decidable accepting set.

3.4 EXPRESSION AUTOMATON

The expression automaton Ae is defined co-recursively as Aident ∪ Alit ∪ A(e), and A(p)⇒e, with
extensions via operator automata A◦e, A.n, and A(e). These automata are constructed by concate-
nating the respective terminal automata and (recursively) Ae, detailed in App. C.3. To implement
extensions, fe is adjusted to add outgoing edges from accepting states to initial states of extending
automata.

∀X,Y : fe(S
X
Y , t) :=

{
fY (S

X
Y , t) ∪ fe(I

XY
(e) , t) ∪ fe(I

XY
◦e , t) ∪ fe(I

XY
.n , t) if S ∈ Qe

fY (S
X
Y , t) otherwise

Accepting states of extending automata are considered accepting states of Ae, and previously parsed
expressions are passed to the extending automaton, indicated by the superscripts X and Y . Infor-
mation about preceding expressions is used to impose restrictions on operands; e.g., to ensure that
parameters match the respective argument types in a parsed function’s signature.

For Ae ↓ T , we determine whether any completion of input p can inhabit T . Notably, repeated
application of extensions can alter the result type entirely. To address this issue, we first iden-
tify the inhabitable types DERIVABLE(p) of p without extensions, then perform a type-level search
REACHABLE(DERIVABLE(p), T) to determine if type T can be inhabited by applying admissible
operators. For negative results, we prune transitions from fe, since they violate the prefix property.

e DERIVABLE(e)

x {T | x ≤ n, (n : T) ∈ Γ}
l {L | pmatch(l, L), L ∈ {number, string, boolean}}
(e {T | REACHABLE(DERIVABLE(e), T)}
e ◦ {T | Γ ⊢ e : S ∧ ∃S′.S ◦ S′ : T}
e ({R | Γ ⊢ e : (p) ⇒ R}
e . p {T | p ≤ n,Γ ⊢ e : T, lookup(e, n) = T}
(p) => e {(p) ⇒ T | REACHABLE(DERIVABLE(e), T)}

Figure 4: Definition of DERIVABLE(x) when ex-
tending expressions introduced in Fig. 2.

Derivable Types The derivable types of state
S ∈ r(Ie, p) are types p can inhabit without
operators. If S is accepting, DERIVABLE(S) :=
T , where Γ ⊢ p : T . Different expressions im-
pose different rules on derivability, as shown in
Fig. 4, using pmatch(p, L) if prefix p matches
the regular expression of literal L partially.

For group expressions, function literals, and ar-
ray expressions, we need to enumerate poten-
tially infinitely types subexpressions could in-
habit. To address this, we integrate enumeration with the type reachability search in App. C.6.
Lemma 2. For state S ∈ r(Ie, p) of partial expression p, DERIVABLE(S) returns all T such that
there exists some suffix s with Γ ⊢ ps : T and s does not involve an extension.

Type Reachability To determine all reachable types of some expression of type T , we analyze se-
quences of operators with compatible signatures. These implicitly define a search graph, illustrated
in Fig. 5. Specifically, there is an edge from T to S for operator ◦ with signature T ◦ X : S. We
treat function calls and member accesses as operators with T () p : R and T . n : LOOKUP(T, n),
respectively, where LOOKUP returns the type of member n of T .

We observe a pattern: From type T , we reach (i) itself, (ii) result types of arithmetic operators, (iii)
return types, and (iv) member types. Thus, exploring higher-order type () ⇒ T does not yield other
types than T , when () ⇒ T has no members with new types. Consequently, we avoid exploring
higher-order types unless necessary for soundness, soundly restricting the search to a finite subgraph
by limiting the maximum depth of explored types that do not provide new root types. The validity of
this observation hinges on the definition of the LOOKUP function and operators introduced in §3.1,
particularly that no new root types can be reached through the same type of a higher order.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

.toString

operator ==

operator +

.valueOf

call ()

.toString

.length

call ()

number () ⇒ string

() ⇒ number boolean

string

Figure 5: Example type reachability search, starting from t = number with the goal string , result-
ing from, e.g., x = "let x : string; x = 1". States and edges along the final path are green,
explored nodes blue. Note how () ⇒ number is not explored because of its depth and providing no
additional root types, while () ⇒ string is explored as it provides access to new root type string .

We define the depth DEPTH of a type T as an integer that represents the function’s order, and don’t
explore S on the search for G when DEPTH(S) > max(DEPTH(G), DEPTH(T)). This addresses
the fact that we may need to explore up to higher order, if the target type is of higher order itself.
Further, if a new type is reachable through a higher-depth function, we also need to explore it. Shown
in Fig. 5, type number has the member toString of type () ⇒ string , which is only accessible by
traversing through the higher-depth node. We define the root types of some type T as the types of
depth 0 (e.g., string , number , boolean) that it comprises. All such types are potentially reachable
through T . The described search is sound.

Lemma 3. For any expression e with Γ ⊢ e : T , if REACHABLE(T,G) holds, then there exists an
extension y such that Γ ⊢ ey : G.

We defer the proof for Lemma 3 to App. D.1 and present the resulting search algorithm, REACH-
ABLE, and the formal definitions of depth and root types in App. C.3. Combined with the DERIV-
ABLE results, we derive the search algorithm to determine most types a partial input can inhabit.

Corollary 1. For states S = r(Ie, p) of a partial expression p, if REACHABLE(DERIVABLE(S), G)
holds, then there exists a suffix y such that Γ ⊢ py : G.

Proof. Follows directly from Lemma 3 and Lemma 2.

We apply the reachability and derivability algorithms to prune transitions of operator ◦ if T can not
be inhabited after applying ◦ to e. Importantly, however, in any case L(Ae ↓ T) ̸= ∅, as any type is
expressable using literals and anonymous functions.

Lemma 4. L(Ae ↓ T) ⊆ {w | Γ ⊢ w : T} and Ae is a prefix automaton.

3.5 STATEMENT AUTOMATON

We define the remaining automata to capture the complete language from §3.1. The single statement
automaton As is Ae;∪Adecl∪Ablock∪AITE∪Afun∪Aret. The declaration automaton Adecl := Clet x:T ;

captures undefined variable names x, by accepting on all strings, except if it matches an existing
identifier. The return statement automaton is A∅ when outside a function and restricts the parsed
expression to the declared return type otherwise. The remaining automata are detailed in App. C.5.

Guaranteeing Return Types When parsing the function body, the transition function maintains
state to track the expected return type and enforce return in all execution paths. Whether all ex-
ecution paths return can be determined based on previously parsed statements, i.e., for any multi-
statement automaton As, if it is inside a function and must return, and the most recently parsed
statement did not return in all execution paths, it can not accept. Instead, it forces the generation of
another statement. Since we can always express the requested type through literals and generate a
return statement, the prefix automaton property is not violated.

Tracking Type Environments Identifiers are passed through all state transitions. However, in the
cases of BLOCK, ITE and FUN, the local type environment is discarded after parsing. In FUN, the
function signature and parameters are added to the environment of the function body automaton.

Lemma 5. With ALB
:= As it holds that L(ALB

) ⊆ LB and ALB
is a prefix automaton.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Instances with compiler errors in Standard, Syntax, and our Types constraining. Type-
aware constraining on average reduces errors by 74.8% in the Synthesis of HumanEval, compared
to only 3.3% through ideal syntax-only constraining. For Translation and Repair, we observe similar
improvements with 76.0% and 62.0% respectively.

Synthesis Translation Repair
Model Standard Syntax Types Standard Syntax Types Standard Syntax Types

Gemma 2 2B 100 97↓3.0% 40↓60.0% 195 184↓5.6% 80↓59.0% 200 189↓5.5% 105↓47.5%
Gemma 2 9B 44 43↓2.3% 12↓72.7% 97 90↓7.2% 15↓84.5% 121 114↓5.8% 46↓62.0%
Gemma 2 27B 15 15↓0.0% 1↓93.3% 28 28↓0.0% 2↓92.9% 71 44↓38.0% 29↓57.7%
DeepSeek C. 33B 25 25↓0.0% 7↓72.0% 20 20↓0.0% 6↓70.0% 48 48↓0.0% 14↓68.8%
CodeLlama 34B 82 70↓14.6% 30↓63.4% 190 150↓21.1% 66↓65.3% 155 145↓6.5% 54↓65.2%
Qwen2.5 32B 32 32↓0.0% 4↓87.5% 32 27↓15.6% 5↓84.4% 41 38↓7.3% 12↓70.7%

Table 2: Functional correctness of outputs, measured in pass@1 (in %) of unconstrained (Standard)
and type-aware constrained (Types) generated code for the tasks Synthesis, Repair, and Translation.

Synthesis Translation Repair
Model Standard Types Standard Types Standard Types

Gemma 2 2B 29.4 30.3 48.6 53.5 10.1 19.1
Gemma 2 9B 56.9 58.6 70.8 78.1 22.1 32.9
Gemma 2 27B 69.5 71.4 85.1 87.3 33.9 38.9
DeepSeek Coder 33B 68.7 70.6 88.7 90.4 44.3 48.3
CodeLlama 34B 41.4 43.2 54.7 62.1 16.8 26.8
Qwen2.5 32B 77.5 80.3 91.0 93.9 62.8 69.5

4 EXPERIMENTAL EVALUATION

We adapt our method presented in §3 for language-specific features of TypeScript, described in
App. D, and present extensive evaluation results in this section.

Tasks and Datasets We evaluate three relevant tasks, in which the model completes a function,
given its header. (i) Synthesis: Synthesize a program that solves a task in natural language. (ii)
Translation: Translate a Python function into TypeScript. (iii) Repair: Resolve the compilation
error of a buggy solution. The full prompts to all tasks are in App. H. The tasks are based on
TypeScript-translated HumanEval instances in MultiPL-E (Cassano et al., 2023; Chen et al., 2021).
For Synthesis and Translate, we use the original prompts and the original Python version from the
HumanEval dataset (Chen et al., 2021) and run evaluations 4 times. For Repair, we collect all non-
compiling programs from unconstrained Synthesis for all models, resulting in 298 non-compiling
programs and run evaluation once. We report aggregated instances with TypeScript compiler errors
(Microsoft, 2024) and the overall percentage passing all functional tests (pass@1).

Models and Sampling We evaluate six open-weight code LLMs of different sizes and model
families: instruction-tuned Gemma 2 2B, 9B, and 27B (Gemma Team, 2024), DeepSeek Coder
33B Instruct (Guo et al., 2024), CodeLlama 34B Instruct (Rozière et al., 2023), and Qwen2.5 32B
Instruct (Hui et al., 2024). We report unconstrained sampling as Standard, the ideal achievable
improvement using syntactic constraining, i.e., assuming syntactic constraining always resolves the
respective instance, including potential typing errors, as Syntax, and the result of our type-aware
constrained sampling method as Types. Further settings and hyperparameters are detailed in App. E.

4.1 EXPERIMENTAL RESULTS

Reduction of Compilation Errors In Synthesis, shown in Table 1, on average only 3.3% of com-
piler errors are due to syntactic errors (Syntax), with Gemma 2 27B, DeepSeek Coder 33B and
Qwen2.5 32B even making no syntactic errors at all. Using type-aware constraining drastically re-
duces compilation errors, on average by 74.8%. We observe that models of all sizes and model
families benefit similarly from the constraining, with a minimum reduction of 60.0%, even though
the total amount of compiler errors varies strongly, e.g., between 1 (Gemma 2 27B) and 40 (Gemma

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Standard Types

(a)
// use crypto to calculate MD5 of text

const hash = crypto

.createHash("md5").update(text);

// use crypto to calculate MD5 of text

const hash = require("crypto")

.createHash("md5").update(text);

(b)

function fibfib(n: number): number {
// initialize helpers

let result ;

// calculate fibfib value
return result;

}

function fibfib(n: number): number {
// initialize helpers

let result = 1;

// calculate fibfib value
return result;

}

(c)
// check if numStr contains even digit

return !numStr. .some (

digit => parseInt(digit) % 2 === 0);

// check if numStr contains even digit

return !numStr .split("").some (

digit => parseInt(digit) % 2 === 0);

Figure 6: Three example impacts of type-aware constrained sampling. Left are unconstrained gen-
erations with errors highlighted in red , right constrained results with corrected tokens highlighted
in green , adapted for clarity.

2 2B) compiler errors. For Translation, a similar pattern can be observed, with a reduction of 76.0%
of compiler errors as opposed to only 8.25% ideal syntax-only improvement. We notice that this
often results from the model incorrectly transferring builtins and methods of the source language
into the target language, which our constraining prevents.

In Repair, we find that many models struggle to correctly localize and resolve compilation errors,
with Gemma 2 2B for example repairing only 35.7% of instances, increased to 66.2% through type-
aware constraining. On average, 62.0% of the errors unresolved by compiler feedback alone are
solved through type-aware constrained sampling.

Improving Functional Correctness We compute the pass@1 performance of the generated code
on the test cases provided in the translated datasets of MultiPL-E (Cassano et al., 2023) and present
the results in Table 2. We find that our constraining impressively increases success rate by 3.25%,
6.9%, and 38.6% in the Synthesis, Translation, and Repair tasks respectively. Especially weaker
models benefit in Repair, with Gemma 2 2B increasing functional correctness by 89%.

MBPP in Appendix We further run the same experiment on MBPP (Austin et al., 2021), observe
similar results to HumanEval and present them in more detail in App. F.

4.2 CASE STUDY

To evaluate the performance of our approach qualitatively, we manually inspect successfully cor-
rected, originally failing instances. We find that our technique effectively amends various types of
compilation errors, shown adapted for clarity in Fig. 6. The complete outputs are in App. G.

Missing Import In Fig. 6a (HumanEval #162, TypeScript Translation, 2023), model is tasked to
compute an MD5 hash. During the generation of Gemma 2 2B, a library called crypto is invoked.
However, the library has not been imported yet. With type-aware constraints, the generation first
invokes require to import the crypto library, correctly gaining access to the library API methods.

Type Mismatch In Fig. 6b, the task is to write code for a specialized Fibonacci sequence. During
the generation of DeepSeek Coder 33B,variable result is declared to store the final result value.
However, the variable result is not initialized, resulting in type number | undefined , causing a
mismatch with the function return type number . Using type-aware constraints, the model is forced
to either annotate declared variables or initialize them, resulting in a correct initialization.

Hallucinated Method In Fig. 6c the task is to filter out numbers with even digits. In the code
generated by Qwen2.5 32B Instruct the member method some on the string representation of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

number numStr is called. However, some only exists for lists. Type-aware constraints restrict the
completion to only valid members of the string type, resulting in split(""), correctly decomposing
the string into a list of digits.

5 RELATED WORK

Type Systems for Code Synthesis Prior work has shown that leveraging type systems for code
completion (Gvero et al., 2013; Agrawal et al., 2023; Wei et al., 2023) and SQL query generation
(Poesia et al., 2022) is effective. Notably, Gvero et al. (2013) employed a search on the type graph,
using constraints from succinct types to address the type inhabitation problem. However, unlike
our approach, prior work is confined to specific scenarios (e.g., function call completion, identifier
completion) and did not encompass entire type systems or generate entire programs. Specifically,
they do not tackle the challenge of determining types that can be extended from partial expressions.

Code LLMs LLMs achieve outstanding results on tasks such as code synthesis, repair, or transla-
tion (Jiang et al., 2024). Specialized models have been trained on code-specific datasets, contribut-
ing to improved performance in code-related benchmarks (Rozière et al., 2023; Gemma Team, 2024;
Guo et al., 2024; Mündler et al., 2024). Meanwhile LLMs are well known to frequently make mis-
takes (Rawte et al., 2023; Huang et al., 2023; Mündler et al., 2023), and, as we show in this work,
even cutting-edge open-weight models with over 30 billion parameters frequently make errors in
code generation.

Improving LLM Accuracy Three primary approaches have been proposed to enhance the accu-
racy of LLMs on code tasks: fine-tuning (Tsai et al., 2024; Weyssow et al., 2024), retrieval aug-
mentation (Bassamzadeh and Methani, 2024), and compiler- or execution feedback (Jana et al.,
2024; Deligiannis et al., 2023; Polikarpova et al., 2016). Such methods are complementary to our
approach, e.g. type-aware constraining can be integrated with additional context from compiler
feedback (as demonstrated in §4).

Constrained Decoding Context-free constrained decoding has been explored extensively in recent
work (Beurer-Kellner et al., 2024; Poesia et al., 2022; Beurer-Kellner et al., 2023; Willard and Louf,
2023). Simple context-sensitive syntactic features, such as the space indentation in Python and
the scope markers in Go, have been implemented (Melcer et al., 2024; Ugare et al., 2024). As
demonstrated in §4, syntax errors account for on average 5.8% of compilation errors. Meanwhile,
our work presents an implementation of constrained decoding for TypeScript, including its type
system, that reduces compilation errors by 70.9% and significantly increases functional correctness.

6 CONCLUSION

In this work, we explored how the type system of programming languages can be used to guide
LLMs during decoding. Concretely, we design and implement prefix automata to perform type-
aware constraining for a foundational simply typed language and then extend it to the popular lan-
guage TypeScript. We extensively evaluate the impact of using such constraints for code synthesis,
translation, and repair and observe that we almost halve compilation errors on a diverse set of mod-
els and consistently increase functional correctness. We further explore qualitatively with concrete
examples, how the constraining positively impacts code generation. We conclude that such type-
aware constraining should be implemented for more programming languages, and has the potential
to generally improve code generation in many domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Lakshya A. Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, and Sriram K. Raja-
mani. 2023. Guiding Language Models of Code with Global Context using Monitors. CoRR
abs/2306.10763 (2023). https://doi.org/10.48550/arXiv.2306.10763

Dana Angluin, David Chiang, and Andy Yang. 2023. Masked Hard-Attention Transformers and
Boolean RASP Recognize Exactly the Star-Free Languages. CoRR (2023).

Andrew W. Appel. 1998. Modern Compiler Implementation in C.

Ken Arnold, James Gosling, and David Holmes. 2000. The Java programming language. Vol. 2.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021. Program Synthesis
with Large Language Models. https://arxiv.org/abs/2108.07732

Nastaran Bassamzadeh and Chhaya Methani. 2024. A Comparative Study of DSL Code Generation:
Fine-Tuning vs. Optimized Retrieval Augmentation. https://arxiv.org/abs/2407.02742

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting Is Programming: A Query
Language for Large Language Models. Proc. ACM Program. Lang. 7, PLDI, Article 186 (June
2023), 24 pages. https://doi.org/10.1145/3591300

Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. 2024. Guiding LLMs The Right Way:
Fast, Non-Invasive Constrained Generation. CoRR abs/2403.06988 (2024). https://doi.org/
10.48550/arXiv.2403.06988

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. 2020. On the Ability and Limitations of
Transformers to Recognize Formal Languages. In EMNLP (1).

Gavin M. Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In
ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden,
July 28 - August 1, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8586). 257–281.
https://doi.org/10.1007/978-3-662-44202-9_11

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. 2023. MultiPL-E: A Scalable and Polyglot Approach
to Benchmarking Neural Code Generation. IEEE Trans. Software Eng. 49, 7 (2023), 3675–3691.
https://doi.org/10.1109/TSE.2023.3267446

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
https://arxiv.org/abs/2107.03374

Pantazis Deligiannis, Akash Lal, Nikita Mehrotra, and Aseem Rastogi. 2023. Fixing Rust Compila-
tion Errors using LLMs. https://arxiv.org/abs/2308.05177

Alan AA Donovan and Brian W Kernighan. 2015. The Go programming language.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu Chai,
Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao Zhou,
Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao Gui,
Xipeng Qiu, Qi Zhang, and Xuanjing Huang. 2024. What’s Wrong with Your Code Generated by
Large Language Models? An Extensive Study. https://arxiv.org/abs/2407.06153

10

https://doi.org/10.48550/arXiv.2306.10763
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2407.02742
https://doi.org/10.1145/3591300
https://doi.org/10.48550/arXiv.2403.06988
https://doi.org/10.48550/arXiv.2403.06988
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.05177
https://arxiv.org/abs/2407.06153

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. 2020. How Can Self-Attention Networks Recognize
Dyck-n Languages?. In EMNLP (Findings).

Ecma International. 2016. ECMAScript 2016 Language Specification. Ecma
International. https://262.ecma-international.org/7.0/index.html#
sec-rules-of-automatic-semicolon-insertion Section: Rules of Automatic Semicolon
Insertion.

Shimon Even. 2011. Graph algorithms.

Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantifying detectable
bugs in JavaScript. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 758–769.

Gemma Team. 2024. Gemma. (2024). https://www.kaggle.com/m/3301

GitHub. 2022. The top programming languages. https://octoverse.github.com/2022/
top-programming-languages

GitHub. 2025. GitHub Copilot - Your AI pair programmer. https://github.com/features/
copilot. https://github.com/features/copilot Accessed on February 07, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. 2024. DeepSeek-Coder:
When the Large Language Model Meets Programming - The Rise of Code Intelligence. CoRR
abs/2401.14196 (2024). https://doi.org/10.48550/arXiv.2401.14196

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete completion using
types and weights. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 27–38. https://doi.org/10.1145/
2491956.2462192

Chris Hokamp and Qun Liu. 2017. Lexically Constrained Decoding for Sequence Generation Using
Grid Beam Search. In Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Regina Barzilay and Min-Yen Kan (Eds.). Asso-
ciation for Computational Linguistics, Vancouver, Canada, 1535–1546. https://doi.org/10.
18653/v1/P17-1141

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qiang-
long Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint
arXiv:2311.05232 (2023).

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-Coder Technical Report. CoRR abs/2409.12186 (2024).
https://doi.org/10.48550/arXiv.2409.12186

HumanEval #104, TypeScript Translation 2023. https://huggingface.co/datasets/nuprl/
MultiPL-E/viewer/humaneval-ts/test?p=1&row=101

HumanEval #162, TypeScript Translation 2023. https://huggingface.co/datasets/nuprl/
MultiPL-E/viewer/humaneval-ts/test?p=1&row=157

HumanEval #63, TypeScript Translation 2023. https://huggingface.co/datasets/nuprl/
MultiPL-E/viewer/humaneval-ts/test?row=60

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh.
2024. CoTran: An LLM-Based Code Translator Using Reinforcement Learning with Feedback
from Compiler and Symbolic Execution. http://dx.doi.org/10.3233/FAIA240968

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A Survey on Large
Language Models for Code Generation. https://arxiv.org/abs/2406.00515

11

https://262.ecma-international.org/7.0/index.html#sec-rules-of-automatic-semicolon-insertion
https://262.ecma-international.org/7.0/index.html#sec-rules-of-automatic-semicolon-insertion
https://www.kaggle.com/m/3301
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.48550/arXiv.2409.12186
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?p=1&row=101
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?p=1&row=101
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?p=1&row=157
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?p=1&row=157
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?row=60
https://huggingface.co/datasets/nuprl/MultiPL-E/viewer/humaneval-ts/test?row=60
http://dx.doi.org/10.3233/FAIA240968
https://arxiv.org/abs/2406.00515

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii
Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan
Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han
Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-
pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2024.
StarCoder 2 and The Stack v2: The Next Generation. https://arxiv.org/abs/2402.19173

Madnight. 2024. GitHut 2.0. https://madnight.github.io/githut/#/pull_requests/2024/1

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda Ada Letters 34, 3
(2014), 103–104.

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. 2024. Constrained De-
coding for Fill-in-the-Middle Code Language Models via Efficient Left and Right Quotienting of
Context-Sensitive Grammars. https://arxiv.org/abs/2402.17988

Microsoft. 2024. TypeScript. https://github.com/microsoft/TypeScript. Accessed on Novem-
ber 9, 2024, commit #ef802b1.

John C. Mitchell. 1990. CHAPTER 8 - Type Systems for Programming Languages. In Formal
Models and Semantics. Amsterdam, 365–458. https://www.sciencedirect.com/science/
article/pii/B9780444880741500135

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. 2024. OctoPack: In-
struction Tuning Code Large Language Models. https://arxiv.org/abs/2308.07124

Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. 2023. Self-contradictory hal-
lucinations of large language models: Evaluation, detection and mitigation. arXiv preprint
arXiv:2305.15852 (2023).

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. 2024. Code Agents are State
of the Art Software Testers. arXiv preprint arXiv:2406.12952 (2024).

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey Hui, Joshua Howland, Jonathan Malmaud,
Jacob Austin, Rishabh Singh, and Michele Catasta. 2023. Measuring the Impact of Programming
Language Distribution. In Proceedings of the 40th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 202). 26619–26645. https://proceedings.
mlr.press/v202/orlanski23a.html

oxc project. 2024. oxc - The Javascript Oxidation Compiler. https://github.com/oxc-project/
oxc.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024.
Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating
Code. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineer-
ing, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. 82:1–82:13. https://doi.org/10.1145/
3597503.3639226

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. 2022.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 754–768.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable Code Generation from Pre-trained Language Models. In
ICLR.

12

https://arxiv.org/abs/2402.19173
https://madnight.github.io/githut/#/pull_requests/2024/1
https://arxiv.org/abs/2402.17988
https://github.com/microsoft/TypeScript
https://www.sciencedirect.com/science/article/pii/B9780444880741500135
https://www.sciencedirect.com/science/article/pii/B9780444880741500135
https://arxiv.org/abs/2308.07124
https://proceedings.mlr.press/v202/orlanski23a.html
https://proceedings.mlr.press/v202/orlanski23a.html
https://github.com/oxc-project/oxc
https://github.com/oxc-project/oxc
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from poly-
morphic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016. 522–538. https://doi.org/10.1145/2908080.2908093

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A survey of hallucination in large foundation
models. arXiv preprint arXiv:2309.05922 (2023).

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. CoRR abs/2308.12950
(2023). https://doi.org/10.48550/arXiv.2308.12950

Vince Szabo, Dominik Winterer, and Zhendong Su. 2024. Compilation Quotient (CQ): A Metric for
the Compilation Hardness of Programming Languages. https://arxiv.org/abs/2406.04778

Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Desmarais,
and Giuliano Antoniol. 2024. Bugs in large language models generated code. arXiv preprint
arXiv:2403.08937 (2024).

Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. 2024. Code Less, Align More: Efficient LLM Fine-
tuning for Code Generation with Data Pruning. https://arxiv.org/abs/2407.05040

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. 2024. Syn-
Code: LLM Generation with Grammar Augmentation.

Pawel Urzyczyn. 1997. Inhabitation in typed lambda-calculi (a syntactic approach). In Typed
Lambda Calculi and Applications. Berlin, Heidelberg, 373–389.

Heidi Vella. 2024. Google turns to AI to write new code; Workforce reduced. https:
//aibusiness.com/data/google-turns-to-ai-to-write-new-code-workforce-reduced

Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the Copilots: Fusing
Large Language Models with Completion Engines for Automated Program Repair. In Proceed-
ings of the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9,
2023. 172–184. https://doi.org/10.1145/3611643.3616271

Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 2024. Exploring
Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models.
https://arxiv.org/abs/2308.10462

Brandon T. Willard and Rémi Louf. 2023. Efficient Guided Generation for Large Language Models.
https://arxiv.org/abs/2307.09702

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. 2024. SWE-agent: Agent-Computer Interfaces Enable Automated Software En-
gineering. In The Thirty-eighth Annual Conference on Neural Information Processing Systems.
https://openreview.net/forum?id=mXpq6ut8J3

Quanjun Zhang, Chunrong Fang, Yang Xie, Yuxiang Ma, Weisong Sun, Yun Yang, and Zhenyu
Chen. 2024. A Systematic Literature Review on Large Language Models for Automated Program
Repair. arXiv preprint arXiv:2405.01466 (2024).

13

https://doi.org/10.1145/2908080.2908093
https://doi.org/10.48550/arXiv.2308.12950
https://arxiv.org/abs/2406.04778
https://arxiv.org/abs/2407.05040
https://aibusiness.com/data/google-turns-to-ai-to-write-new-code-workforce-reduced
https://aibusiness.com/data/google-turns-to-ai-to-write-new-code-workforce-reduced
https://doi.org/10.1145/3611643.3616271
https://arxiv.org/abs/2308.10462
https://arxiv.org/abs/2307.09702
https://openreview.net/forum?id=mXpq6ut8J3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1 function sub_elem(tup1: number[], tup2: number[]
2): number[] {

3 const res = Array(tup1 [0] - tup2[0]).concat(tup1[1] - tup2[1] + 150 - 50 * 100 /
500 * 200000 / 500 / 500 + 4582 * 4599 / 10000 - 9090 / 1000 + 3200 / 2 / 3 / 45890 *
458901 + 458901 / 45890 - 9090 / 2 * 90 - 9090 / 2 / 3 / 45890 * 458901 + 458901 / ...

Figure 7: Compilations errors remain when the model does not terminate after a rejected token, like
in this showcased sample for MBPP #273 by CodeLlama 34B.

A LIMITATIONS AND FUTURE WORK

Some limitations of the presented approach remain, which present opportunities for future work.

Effort of Implementing Type-Aware Constraining Algorithm There is some amount of manual
effort associated with implementing a completion engine as described in this work, and it has to
be done for every language separately. However, we expect many features to transfer from our
implementation to the base language LB , as it did for TypeScript, significantly reducing the effort
involved. Moreover, we believe that due to the impact on code synthesis, the effort may pay off, and
future programming language developers may consider generally writing such incremental language
compiler front-ends to aid code generation.

Remaining Compiler Errors Finally, we observe that while constrained decoding guarantees a
valid result when the generation terminates, a considerable amount of compilation errors remain.
We investigate their source and find that these are caused by the LLM not terminating within the
given token or time limit. We find this to be caused by the model entering loops when forced to
comply with an unexpected constraint. An example is depicted in Fig. 7. One approach to resolve
this is by limiting the complexity of generated code and thus effectively forcing the model to stay
withing given token bounds. A minor amount of errors remain due to timeouts. We hypothesize
that loops are cause by forcing unexpected constraints on the model can be resolved orthogonally
to our work by allowing the model to pursue alternative paths upon encountering constraints, as
implemented by alternative sampling techniques like beam-search (Hokamp and Liu, 2017). Future
work may add additional constraints on, e.g., the complexity of expressions generated by the LLM,
to force stopping such unconstructive loops and steer the model more strictly.

B MORE DETAILS ON THE DEFINED LANGUAGE

In this section, we provide more details on the syntax, expression, statement, and return type infer-
ence rules.

Expression Type Rules The type rules for LB utilize the standard concept of a type environment,
denoted as Γ, which is a collection of pairs (xi : Ti) of identifiers xi and type Ti. The typing rules
for the language are detailed in Figs. 8–10. These rules form a subset of the safe TypeScript rules
outlined by Bierman et al. (2014), allowing us to leverage their soundness results.

An expression e is considered valid in LB if it adheres to the type rules specified in Fig. 8. Type
annotations T represent the syntactically matching type. Literal numbers, strings, and booleans are
evaluated to their respective types (LITx). Identifiers x are evaluated based on the type according to
Γ(IDENT). Anonymous functions are typed according to their annotated parameter types, with the
return type determined by the returned expression (ANON). Grouping preserves the type (GROUP).

Operators have predefined signatures, denoted by S1 ◦S2 : T , such as number +number : number
or T = T : T ; these signatures must be satisfied in well-typed expressions (OP). Function calls
require all parameters to match specified types in the function’s signature (CALL). Expression e of
type T can have named members n, accessible via e.n, with the type determined by lookup(T, n), an
auxiliary partial function that returns either the type of member n if it exists or the type undefined
otherwise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The operators and the lookup function are part of the type system definition. We examine prevalent
languages such as Java, Go, and TypeScript to align their behavior with common patterns. Firstly,
the lookup function may assign default members to every type. For any two types, T and S, the
default members of T mirror those of S, with the exception that occurrences of S within the member
definitions are syntactically replaced by T . For instance, a member function signature () → S would
become () → T . Secondly, for operators ◦ with signature S1 ◦ S2 : T , the result type T must be
either S1 or a primitive type, such as boolean or string .

Statements and Type Environments Type environments are modified by statements as detailed
in Fig. 9. We use the notation Γ1 ⊢ s ↣ Γ2 to indicate that after executing statement s in type
environment Γ1, the new environment is Γ2.

Variable declarations introduce the identifier with declared types into the type environment, provided
the identifier is not already defined (DECL). The type environment defines the context to evaluate ex-
pressions (EXPR) and return statements (RET). Return statements are only well-typed inside function
bodies, which can be formally tracked by duplicating all inference rules with a respective annotation;
however, this duplication is omitted here for brevity. Statement blocks, if-then-else statements, and
functions must maintain valid type environments consistent with the surrounding state without alter-
ing it (BLOCK, ITE, FUN). Lastly, empty statement sequences do not alter Γ(NOP), while sequences
of statements propagate it along the execution (SEQ).

Return Types Function return types necessitate the inference of the correctness of the return state-
ments, which is detailed in Fig. 10. Return statements must contain expressions matching the func-
tion’s declared return type. Additionally, a value must be returned on every execution path. We use
the notation Γ ⊢ s : R to indicate that the sequence of statements s ensures a return value of type
R. The return type of a return statement directly corresponds to the type of the returned expres-
sion (R-RET). In the case of declarations and expression statements, the return type of subsequent
statements is considered (R-DECL, R-EXPR). For if-then-else blocks, both branches must return the
same type (R-ITE-SELF), or the return type is determined by statements following the block (R-ITE-
NEXT). This logic also applies to statement blocks (R-BLOCK-SELF, R-BLOCK-NEXT). In function
definitions, the return type is determined by the type of the subsequent return statements, akin to
expression statements. However, it is additionally required that the function body has a guaranteed
return type, matching the function’s declared return type.

C DETAILED PREFIX AUTOMATON DEFINITIONS

In this section, we provide more detailed definitions and analysis of the automaton for LB . We
further assume the existence of type assignment compatibility between types, T ≤ G, if a value of
type T may be (type) safely stored in a variable of type G.

C.1 BASIC COMBINATION AUTOMATA

In this section, we introduce basic automata for concatenation and union of automaton-accepted
languages.

Union The union AX ∪ AY for two automata on distinct SX and SY is defined as follows. We
define I = IX ∪ IY , Q = QX ∪QY .

f(S, t) :=

{
fX(S, t) if S ∈ SX

fY (S, t) if S ∈ SY

Since the states are distinct, and we merely combine the transition functions of both automata, using
(P4), that L(AX ∪AY) = L(AX)∪L(AY). If both AX and AY are prefix automata, this also holds
for AX ∪AY .

Concatenation For the concatenation automaton AX ⊕ AY of states SX and SY , we define I =
IX , Q = QY .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

[LITnum]
Γ ⊢ \d+ : number

[LITstr]
Γ ⊢ "\w ∗ " : string

[LITbool]
Γ ⊢ true, false : boolean

[IDENT]
(x : T) ∈ Γ

Γ ⊢ x : T
[ANON] Γ ⊢ e : T

Γ ⊢ (p) => e : (p) ⇒ T

[GROUP] Γ ⊢ e : T
Γ ⊢ (e) : T

[OP]
Γ ⊢ e1 : S1 Γ ⊢ e2 : S2 S1 ◦ S2 : T

Γ ⊢ e1 ◦ e2 : T

[CALL]
Γ ⊢ f : (p) ⇒ T Γ ⊢ e : p

Γ ⊢ f(e) : T
[MEMBER]

Γ ⊢ e : S lookup(S, n) = T

Γ ⊢ e.n : T

Figure 8: Expressions type inference rules in LB .

[DECL]
x /∈ dom(Γ)

Γ ⊢ let x : T ↣ Γ ∪ (x : T)
[EXPR] Γ ⊢ e : T

Γ ⊢ e ↣ Γ
[BLOCK]

Γ ⊢ sB ↣ ΓB

Γ ⊢ { sB } ↣ Γ

[RET]
inside function body Γ ⊢ e : T

Γ ⊢ return e;↣ Γ
[FUN]

x, p /∈ dom(Γ) Γ ∪ (x : (p) ⇒ T) ∪ (p) ⊢ sx ↣ Γx

Γ1 ⊢ function x (p) : T { sx } ↣ Γ ∪ (x : (p) ⇒ T)

[ITE]
Γ ⊢ sif ↣ Γif Γ ⊢ selse ↣ Γelse

Γ ⊢ if (e) sif else selse ↣ Γ
[NOP]

Γ ⊢ • ↣ Γ
[SEQ]

Γ1 ⊢ s ↣ Γ2 Γ2 ⊢ s ↣ Γ3

Γ1 ⊢ s s ↣ Γ3

Figure 9: Type environment extension rules for sequences of statements in LB .

[R-RET] Γ ⊢ e : R
Γ ⊢ return e; s : R

[R-DECL] Γ ⊢ s : R
Γ ⊢ let x : T ; s : R

[R-EXPR] Γ ⊢ s : R
Γ ⊢ e; s : R

[R-ITE-SELF]
Γ ⊢ sif : R Γ ⊢ selse : R

Γ ⊢ if (e) sif else selse s : R
[R-ITE-NEXT] Γ ⊢ s : R

Γ ⊢ if (e) sif else selse s : R

[R-BLOCK-SELF]
Γ ⊢ sB : R Γ ⊢ s

Γ ⊢ { sB } s : R
[R-BLOCK-NEXT]

Γ ⊢ sB Γ ⊢ s : R

Γ ⊢ { sB } s : R

[R-FUN]
Γ ∪ (x : (p ⇒ R)) ⊢ s : R′ Γ ∪ (x : (p) ⇒ R) ∪ (p) ⊢ sx : R

Γ ⊢ function x (p) : R { sx } s : R′

Figure 10: Statement return type inference rules of LB .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

f(S, t) :=


fX(S, t) if S ∈ SX\QX

fX(S, t) ∪ fY (IY , t) if S ∈ QX

fY (S, t) if S ∈ SY

Informally, concatenation preserves the parsing behavior of both AX and AY on their respective
states. When AX is in an accepting state, f allows both the first, "active" automaton AX to continue
parsing tokens from the alphabet and allows transitioning to AY . This maintains outgoing edges
from accepting states in AX while adding edges from accepting states of AX to initial states of AY ,
similar to how PDAs and DFAs are concatenated.

It follows from a similar argument that L(AX ⊕ AY) = L(AX) ⊕ L(AY). More formally, we
can see L(AX ⊕ AY) ⊆ L(AX) ⊕ L(AY) because of (P2) we can always split any s into a word
wX that extends from IX in QX and the suffix wY . Then wX ∈ L(AX) and wY ∈ L(AY). For
L(AX)⊕ L(AY) ⊆ L(AX ⊕ AY) we pick any take word wXwY from L(AX)⊕ L(AY) and feed
into AX⊕AY , observing that it will first traverse from IX to QX consuming wX and from transition
through IY to QY by consuming wY .

Moreover, L(AX ⊕ AY) is a prefix automaton, if AX and AY are prefix automaton. For any state
in SX we know we can reach QX . At QX we may transition further as though starting at IY , from
where we can always reach QY . This construction is only a prefix automaton when IY ̸= ∅, which,
due to the prefix property, is equivalent to L(AY) ̸= ∅.

Kleene-Plus We finally define the Kleene-Plus automaton A+ that parses indefinite repetitions of
words from a language.

f+(S, t) :=

{
f(S, t) if S /∈ Q

f(S, t) ∪ f(I, t) if S ∈ Q

We can quickly see that L(A+) = L(A)+, with basically the same argument as the concatenation
case. We similarly see that this is a prefix automaton if A is a prefix automaton.

C.2 TERMINALS AND NOTATION

Terminals Terminal automatons θx parse exactly the terminal x. They accept the usual alphabet
Σ and feature the states S = {Ss | s ≤ x}, Q = {Sϵ}, I = {Sx}. f is defined as follows.

f(Sx, t) :=

{
{Sy} if t+ y = x

∅ otherwise

In the following we will implicitly assume that f(X, t) = ∅ if not explicitly defined otherwise,
making notation more concise. Clearly, θx is a prefix automaton. We can show inductively that for
any x: r(θx, s) = {θϵ} ⇐⇒ s = x, and thus L(θx) = {x}.

With a simple modification we introduce θWx , where f(θWx , w) := {θWx } (W denoting whitespace
characters, w ∈ W) and f(θWt+s, t) := {θs}, which allows arbitrary whitespace before parsing x i.e.
parses r/\s∗x/p. This is how we implement syntactic indifference to whitespace between tokens.

Empty Automaton The empty automaton A∅ is the only valid prefix automaton that accepts no
word. Due to the prefix condition, it has no states.

Notational Details For any state, we access the following information through dot notation or
the special notation on the state, which we assume is passed onto subsequent states through the
transition function (unless otherwise stated). This information is alternatively passed through to
entire automata i.e. in concatenated automata.

1. X ↓ T : The type to which the automaton is constrained (introduced in more detail later)

2. X ∈ QY : Whether the state is an accepting state of the automaton AY

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

3. X.Γ: The currently valid identifiers/type environment according to the expression being
currently parsed.

4. X.lhs: The left-hand side of an extending expression (introduced in more detail with the
expression and type annotation automaton)

5. X.typ: The described type of the last coherent expression that this state belongs to. Only
defined for accepting states. Generally, we ensure that when some expression e was parsed,
the corresponding state Se has attribute Se.typ such that Se.Γ ⊢ e : Se.typ.

Further, to correctly handle function return types, we pass on related information when entering
function bodies:

1. X.R: The currently expected return type

2. X.returned: Whether the currently parsed program block has returned in all branches

3. X.mustReturn: Whether the currently parsed program block must return (i.e. "ITE"
branches do not need to contain return statements even if a return type is expected of the
surrounding code block)

Further, we write concatenations of existing automata by the shorthand of CX...Y = AX⊕ . . .⊕AY .
Where clear from context, these parameters may also refer to terminals, i.e. for C{X} = θ{⊕AX ⊕
θ}. We use the overline as shorthand for Kleene-star automata, i.e. As = A+

s . This is especially
useful in combination with the above concatenation shorthand.

We assume that knowledge about previously parsed states in the concatenation automaton is pre-
served in states. We access relevant final states of concatenated automata by using their shorthand
in the concatenation automaton, i.e. we can access the last accepting state SY ∈ QY of automaton
AY , when the active state S ∈ SCXY

was originally part of SY .

The following automata are implemented as subclasses to classes implementing concatenation,
union and Kleene-Star, which each store the respectively relevant information.

C.3 EXPRESSIONS

Expressions are parsed using co-recursive automatons. For this, we define the extension automaton
Ae and co-recursively the automata A(e), A[e], A◦e, A[e], A.n and A(e) which are mainly defined
by the concatenation of the respective terminal automata and (recursively) Ae, with some variation
described in more detail below. Assuming we have automata Ax and Alit for identifiers and literals.
Ie = Ilit ∪ Ix ∪ I(e) ∪ I[e]. Note this set is finite because I(e) = {S(} and I[e] = {S[} . The
transition function is defined for all states Sx ∈ SX (X ∈ {(e), [e], ◦e, [e], .n, (e))}, where we
denote via superscript how the lhs parameter is passed on.

fe(SX , t) :=

{
fX(SX , t) ∪ fe(I

X
(e), t) ∪ fe(I

X
◦e, t) ∪ fe(I

X
[e], t) ∪ fe(I

X
.n , t) if S ∈ Qe

fX(SX , t) otherwise

Similarly to extendable types, we accommodate for expressions extending other expressions. For
example, 123 allows as next tokens not only digits, like 4 to form 1234 (as Al would), but also,
because 123 is an accepted literal, would allow ◦ as next token, initiating an arithmetic expression
like 123 + 4. The language accepted by this automaton is the language described by the syntactic
rules in Fig. 2. In expression states, the lhs attribute is crucial to accurately evaluate the typ attribute,
which again is required to define the remaining recursive automata. In the case of expressions, the
typ attribute expresses the type of the parsed expression.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

SLstring
.typ := string

SLnumber
.typ := number

SLboolean
.typ := boolean

Sx.typ := T where S.Γ ⊢ x : T

S(e).typ := e.typ

S[e].typ := e[0].typ[]

S[e].typ := M for lhs.typ = M []

S(e).typ := R for lhs.typ = (P) ⇒ R

Now we have most of the required tools to define the recursive automata. The grouped expression
is just concatenation, A(e) := C(e). The main functionality of the array expression is based on C[e],
however, the automaton is actually a union of three distinct automata:

Aarray :=
⋃

C[]

C[e]

C[e ⊕ Ce ↓ T ⊕ C] for e.typ = T

This way, the automaton can constrain the type of subsequent expressions in the same array. The
prefix property is not violated: The first two cases are always valid, in the third case, type T can
clearly be expressed (as demonstrated in the first parsed expression), hence further occurrences are
possible (the type environment can not be modified within expressions).

The arithmetic operator type constrains its states to those with valid operators, i.e.

A◦e :=
⋃

∃T. lhs.typ◦S=T

θ◦ ⊕Ae ↓ S

The computed member access also depends on the parsed lhs:

A[e] :=

{
θ[⊕Ae ↓ number ⊕ θ] if ∃M.lhs.typ = M []

A∅ otherwise
.

For function call, the automaton is only valid if the left-hand side is a function, and accepts only the
valid signature.

A(e) :=

{
θ(⊕Ae ↓ P .typ⊕ θ) if lhs.typ = (P) ⇒ •
A∅ otherwise

Finally, member access depends on the attributes of the types in the lhs, A.n = A
Γ(lhs.typ)
x , where

Γ(Y) is the type-environment induced by all attributes of type Y . These definitions use several
concepts that need to be properly introduced, and are so in the following paragraphs.

Tracking Type Environments We introduce AΓ
x , the automaton for parsing identifiers, where

Γ : V 7→ T (V and T are the set of valid variable names and types respectively, need to define them
somewhere). It is defined as AΓ

x =
⋃
{θv | v ∈ D(Γ)}, i.e. the union of all terminal automata for

the respective variables in the type environment. The definition set D(Γ) is finite. To enforce that
only defined identifiers are used, we use the attribute Γ that is passed down to all recursively invoked
automata unless otherwise denoted (and has no effect if the automata is not Ax). This introduces the
first non-syntactic language feature that our automaton can correctly parse in an incremental fashion.
Note that we need not ensure that D(Γ) ̸= ∅ as we would for normal concatenation automata,
because IE ̸= ∅ - we can always express a type as a literal expression.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Restricting Types We can further restrict an expression to a specific type, for example when we
want to describe an expression that has number type for computed member access. Similarly to
passing down the type environment, we pass the restricting type T by generating the automata A ↓
T . Generally, this process needs to be performed carefully so as not to violate the prefix automaton
property. Concretely, restricting types may turn accepting states into non-accepting states when the
respectively represented expression does not match the expected type. To prevent thus accidentally
constructing a non-prefix automaton we need to determine whether an automaton has any accepting
states ahead of time. For this we define ¬∅(A, T), which determines whether L(A ↓ T) ̸= ∅.

For variables, we adjust to track the type of terminals by passing it as a parameter to the terminal
itself, which has no effect on the terminal automaton per se: AΓ

x :=
⋃
{θTx | Γ ⊢ x : T}. For the

base automata and operations ¬∅ is further defined:

¬∅(Lnumber , T) := number ≤ T

¬∅(Lstring , T) := string ≤ T

¬∅(Lboolean , T) := boolean ≤ T

¬∅(θx, T) := true

¬∅(θGx , T) := G ≤ T

¬∅(A⊕B, T) := ¬∅(A, T) ∧ ¬∅(B, T)

¬∅(A ∪B, T) := ¬∅(A, T) ∨ ¬∅(B, T)

We can further automatically derive A ↓ T for these cases (where A∅ is an automaton with no states,
accepting the empty language):

Lnumber ↓ T := Lnumber if number ≤ T else A∅

Lstring ↓ T := Lstring if string ≤ T else A∅

Lboolean ↓ T := Lboolean if boolean ≤ T else A∅

θx ↓ T := θx

θGx ↓ T := θGx if G ≤ T else A∅

A⊕B ↓ T := A ↓ T ⊕B ↓ T if ¬∅(A, T) ∧ ¬∅(B, T) else A∅

A ∪B ↓ T := A ↓ T ∪B ↓ T if ¬∅(A, T) ∨ ¬∅(B, T) else A∅

Effectively, this propagates the type requirement down to the base cases and makes the whole au-
tomaton reject pre-emptively if it can be determined that no completion will be possible, thus pre-
serving the prefix automata property.

However, for expressions, it is more difficult - even if the intermediate expression is not of the
desired type, we need to take into account types reachable by extension. For this, we use the type
reachability algorithm.

We define ¬∅(Ae ↓ T), i.e. whether the currently parsed expression has a valid completion that will
fit into type T . Generally, the rule is to use DERIVABLE and the type reachability algorithm to deter-
mine whether a suitable type can be reached, i.e. ¬∅(Ae ↓ T) = REACHABLE(DERIVABLE(e), T)
for expression (sub) automaton Ae. The parameters for each expression depend on specifics to the
operation, i.e. for arithmetic operations, they define which operators are applicable to the current
type.

C.4 COMPLETE REACHABILITY ALGORITHM

The formal definitions for depth and root types can be found below:

DEPTH(T) :=

{
DEPTH(X) + 1 if T = (p) ⇒ X

0 otherwise

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 Type Reachability Algorithm
Input: Current Type T , Goal Type G, Maximum depth d, Root types r
Output: Whether G can be reached by adding tokens to T
1: function REACHABLE(T , G, d, r)
2: if T in progress then return false
3: elif T = G then return true
4: mark T in progress
5: next := {}
6: for operator □ from OP, CALL, MEMBER do
7: next := next ∪ TYPES(T,□) ▷ Collect types reachable through extension
8: for T ′ in next do
9: if DEPTH(T ′) > d ∧ ROOT-TYPES(T ′)− r = ∅ then ▷ Prevent recursing too deeply

10: continue
11: if REACHABLE(T ′, G,max(d, DEPTH(T ′)), r ∪ ROOT-TYPES(T ′), N) then ▷ Recurse
12: return true
13: return false ▷ No suitable extension was found

ROOT-TYPES(T) :=

{
ROOT-TYPES(X) if S = (p) ⇒ X

{T} otherwise

The search algorithm described in §3.4, REACHABLE, is presented in Algorithm 2. The maxi-
mum depth d is initialized by default to max(DEPTH(T), DEPTH(G)), and root types r are initial-
ized to ROOT-TYPES(T). All applicable operators for a given type include member access, com-
puted member access, and function calls. When invoking the reachability algorithm with a set
of types T , it returns whether any type T within the set reaches G, i.e., REACHABLE(T , G) =∨

T∈T REACHABLE(T,G).

C.5 STATEMENTS

We define the remaining automata to capture the complete language from §3.1.

The single statement automaton is another co-recursive definition, since substatements (i.e. ITE) can
themselves contain statements. As := Ae; ∪Adecl ∪Ablock ∪AITE ∪Afun ∪Aret. The expression
statement automaton and block automaton are simply defined as Ae; := Ce; and Ablock := C{s}.
The declaration automaton Adecl := Cletx:T ; captures variable names x using an automaton for non-
existing identifiers, which works the same way as Ax except that it rejects terminals that match an
existing variable. This automaton is a prefix automaton as well, since indefinite additional characters
can be added to the variable name and there are only finitely many defined variables.

The If-Then-Else automaton is defined using standard concatenation: AITE := Cif(e) s else s.

The statements automaton As := A+
s , is based on the star automaton definition and the single

statement automaton.

Return statements are only non-empty when the expected return type is set, i.e. when parsing inside
a function:

Aret =

{
Creturn e↓T if Aret.R = T

A∅ otherwise

For functions, the automaton is based on the standard concatenation Afun = Cfunction x(p):T{s}.
However, the transition function updates the states of the statement automata inside the function:

1. X.R = T , i.e. the return type of these statements is set to the return type of the function.
This value is propagated recursively to all sub-automata.

2. X.mustReturn = true, for the outermost statement block automaton. It is set to false for
deeper nested statement blocks and as soon as a parsed statement has X.returned set to true
- i.e. one of the main body statements returned in every branch.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

() => string

.toString

operator ==

.toString

.length

instantiate T ↦ T[]

number

boolean

call () call ()

string string() => string

.toString

.toString

.toString

.lengt
h.length

.length

member access []

number[]

number string[]

N = [T ↦ T[]] N = []

instantiate T ↦ T[]

.valueOf

() ⇒ number

Figure 11: A longer example search through the graph for type reachability, starting from t =
number with the goal string and N = [T 7→ T []]. This search could be the result of parsing, e.g.,
let x : string; x = [1. Nodes and paths along the final path are marked green, explored nodes
marked blue. Note how the string node on the left is not a valid reached node, since N ̸= []. Node
() ⇒ string is explored even though it has larger depth ((1, 0) > (0, 0)) because it provides access
to a new root type string .

3. X.returned = false, per default in every statement, except a) in return automata, b) inside
a multi-statement automaton where the previous statement has returned = true and c) in
ITE-automata where both branching statements have returned = true

As long as a multi-statement automaton X has X.returned = false and X.mustReturn = true,
it can not accept but instead forces the generation of another statement. Since we can always express
the requested type (i.e. through literals) and can always simply generate a return statement to fulfill
this requirement, the prefix automaton property is not violated.

Handling identifiers Generally, identifiers are passed on through all state transitions, matching
the implicit inference rules for statement concatenation in Fig. 9, where the type environment of
consecutive statements needs to be compatible. For example, the transition function for As is an
instantiation of the standard plus-rule as follows:

fs(S
Γ, t) :=

{
fs(S

Γ, t) if SΓ /∈ Q

fs(S
Γ, t) ∪ fs(I

Γ, t) if SΓ ∈ Q

However, matching the type rules of statement block automaton AΓ
block initialized in a context with

environment Γ and which discards any updates to Γ inside the block, the rules for blocks deviate
from standard automaton C{s}. Informally, the original type environment is copied into the sub-
expression and restored when closing the braces of the block statement in automaton θ}, formally
IΓblock = {SΓ | S ∈ IΓB} and

fΓ
block(S

Γb , t) :=

{
fB(S

Γb , t) if SΓb ∈ SB\S}
{SΓ

next | Snext ∈ fB(S
Γb , t)} if SΓb ∈ S}

Similarly, the types after exiting the function body are initialized with the function type and param-
eters added, and the surrounding type environment restored after exiting the body.

C.6 ARRAYS

Array types require modification to the reachability algorithm. Concretely, they require tracking
both nestedness in terms of higher-order-function-ness and array-nestedness, because we can always
map any array type to a deeper nested array type using map. The depth of an expression is then a
tuple of two integers and we can skip exploring some type if its depth is larger in either dimension.

The root types of array types are defined as ROOT-TYPES(T []) = ROOT-TYPES(T).

Moreover, array types require the introduction of the nesting parameter to the reachability function
The design of the reachability algorithm as search, in general, improves performance as opposed

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

to an exhaustive enumeration of reachable types, however makes it a bit more involved to consider,
e.g., array expressions [e What types can be reached from such an expression? Intuitively,
for any type T reachable from e, we can reach T [] from [e] - and then again all types reachable
from T []. In the search, we implement this by adding the nested parameter to the search, which acts
as a layer in the search graph. From any type that can be reached, we can move one layer up, or
equivalently remove the first element f from the nested parameter by instantiating the pattern f(T)
with the currently reached type T . We start in the deepest layer based on the current expression and
can not return true without traversing through all layers. Such a search is visualized in Fig. 11. The
addition to Algorithm 2 consists of a single line after Line 2, dubbed Line 2.5, "elif f, . . . N ′ := N
then return REACHABLE(f(T), G, d, r,N ′)". This line ensures that the goal type is not considered
found as long as the nested parameter is not empty.

Table 3: Extension to the derivability function for
array expressions.

x DERIVABLE(x)

[e {T [] | REACHABLE(DERIVABLE(e), T) }
[e, e {T [] | Γ ⊢ e : T}
e [{E | Γ ⊢ e : E[]}

The nested parameter for the invocation in re-
stricted expressions is implicitly defined by
the recursive use of REACHABLE inside the
DERIVABLE function. We add cases for partial
array expressions and array member access as
shown in Table 3. For started array expressions,
e.g. [e, the derivability algorithm becomes im-
practical to compute since it would require enu-
merating all reachable types of the subexpres-
sion. We circumvent this issue by adding an
element in front of the nested parameter N .

Lemma 6. For some type transformation f : T 7→ T , start type S, goal type G, and
nested list N the following holds: REACHABLE({f(T) | REACHABLE(S, T) }, G,N) =
REACHABLE(S,G,N = [f] +N)

Proof. As we can see in Algorithm 2 it is not possible for the reachability to terminate until the first
element of N is removed and its instantiation executed: After adding the additional line 2.5, Line 3
can not be reached without removing the head element of N and recursing into it, and the recursion
in Line 12 carries over the current value of N . Moreover, once line 2.5 is executed, the current type
T is by definition reachable from S and thus reachable(S, T). In the recursive call, the same process
is performed as though starting the reachability from f(T).

Lemma 6 can be used for transformations such as the array wrapping T 7→ T [] and type parameter
instantiation for polymorphic types in the TypeScript standard library such as map. In the case of [e
(pictured in Fig. 11), we instantiate as usual and then use Lemma 6 to simplify the computation.

REACHABLE(DERIVABLE([e),G, d, r,N)

= reachable(DERIVABLE([e), G, d, r,N)

= REACHABLE({T [] | REACHABLE(DERIVABLE(e), T)}, G, d, r,N)

= REACHABLE(DERIVABLE(e), G, d, r, [T 7→ T []] +N)

D EXTENSION TO TYPESCRIPT

To enable type-aware constraining for the TypeScript language, we now introduce and shortly dis-
cuss the implementation of additional features beyond LB .

Union Types Union types naturally arise in the return types of i) if-then-else blocks, ii) logical
operators, and iii) the ternary operator. For instance, the expression x ? 0 : "" yields a return
type of number | string. To handle them in the reachability algorithm, we define the root types
of union types as ROOT-TYPES(T | S) := ROOT-TYPES(T) ∪ ROOT-TYPES(S), and consider the
maximum depth of each element. Union types also allow type expressions to be extensible, i.e.,
allowing to append | T to some declared type. We adapt the type expression automaton as was done
for Ae. However, since there are no type restrictions on type annotations, no reachability algorithm
is required.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Furthermore, the ability to declare variables with union types necessitates the introduction of as-
signment compatibility, which differs from type equality. Specifically, when restricting to a type
T | S, expressions of either type T or S are valid to inhabit. To formalize this relationship, we
define compatibility between type assignments using the operator ≥, following the rules established
by Bierman et al. (2014). Consequently, we adjust the mechanisms of type reachability and type
constraints in automata to use compatibility rather than strict equality.

Array Types To accommodate array types, the DEPTH function is extended to a two-tuple, which
includes the function order and the dimensionality of the array. The root types of an array are the
root types of its elements. The search does not explore when either element of this tuple exceeds the
current depth. Additionally, DERIVABLE is expanded to handle partial expressions. The complete
extension of the reachability and derivability algorithms is detailed in App. C.6.

Loops TypeScript supports various loop constructs, including for, while, do-while, and for..in
loops. They have standard implementations, with restricted variable scopes of body and head. The
for..in loops uniquely constrain the right-hand side of the ..in operator to any array type. To
accommodate this, we introduce the generic array •[], which is assignment-compatible with any
array type and restricts the expression to the right-hand side of in.

Operator Precedence Determining the admissibility of operators depends heavily on the opera-
tor precedence. For instance, writing "abc" + 1 .length is invalid because operator precedence
dictates that 1.length is evaluated first due to the stronger binding of the member access operator
.. Similarly, 1 + true ? 1 : 2 is invalid, since the ternary ? operator has a weaker binding than
the + operator, causing 1 + true to be evaluated first. In terms of the syntax tree, the resulting re-
strictions are best visualized as preventing operators from "escaping" the current node, ensuring they
bind only within the current node in the tree. This is enforced by setting upper and lower bounds on
the operator precedence for admissible operators.

Global Variables and Imports In TypeScript, many variables are initialized in the global scope.
These are incorporated by modifying the type environment of the main language automaton. Vari-
ables such as Math introduce additional types, which we handle individually and consider as root
types. We also model the import of the Crypto library using require.

Returning Void Functions may be annotated with a return type of void, the default if no return
type is specified. Void functions are not required to return, and may include return; statements
without expressions. However, return statements with values are forbidden.

Type Casts If a type is a union type with a falsy type, which always evaluates to false, it is typecast
by comparisons. For instance, in the code if(x) A else B, if x is of type number | undefined , Γis
updated such that in A, x is of type number , and in B, it is of type undefined . We recursively extract
such type casts from comparative statements and update the type environment for in corresponding
control flow.

Polymorphic Standard Library Functions TypeScript code makes frequent use of polymorphic
types in members of built-in types. For example, the member function map of array types T[] has
the type ((T) ⇒ P) ⇒ P [] where P is a type parameter. We support such polymorphisms by the
DERIVABLE function to the instantiated version. In the map example, deriving type (T) ⇒ P in the
parameter will result in overall derivable type P [], i.e. the reached type has to match the pattern of
the first parameter of the map function and will allow deriving an array of its return type.

Array Type Inference TypeScript allows empty-array initialization, deriving the element type
through parameters to polymorphic operations such as push, which appends an element to the array.
The corresponding expression changes the type of the receiver array, even inside statement blocks.
We carefully trace such cases and propagate respective type-environment influences correctly.

Automatic Semicolon Insertion We implement a close approximation to automatic semicolon
insertion in the parsing algorithm, following the rules defined in the ECMA Script (Ecma Interna-
tional, 2016). Concretely we implement rules 1 and 3 in the parser by (i) after reaching any rejected

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

state by encountering a closing brace or a newline, re-trying parsing by injecting a semicolon and
(ii) before processing a newline after the last word in the input is continue, return, break or throw.
Rule 2 requires no additional implementation.

Other features introduced for extensive support of TypeScript are optional function parameters,
rest parameters and tuple types, which similarly require simple adaptions to the automatons and
derivability function.

D.1 PROOF OF SOUNDNESS OF THE TYPE SEARCH ALGORITHM

It follows the proof of Lemma 3. The core idea is to show a) if expression e inhabits type T , the
types discovered by search over operator signatures are exactly the inhabitable types by syntactically
and semantically valid extensions to e and b) the restricted graph search of the reachability algorithm
discovers only types reachable from T via search over operator signatures.

Concretely our type graph is spanned by edges from type T to type R, if it is valid to apply operator
◦ to T with signature T ◦ S : R. Note that we use this to model all operations on expressions, i.e.,
OP, CALL and MEMBER, where the respective signature for calls is T ()P : R and members is T. : R
with more or 0 operands respectively.

For a), the search over operator signatures is an overestimation, and thus whenever an extension ◦e′
exists with Γ ⊢ e′ : S and return type Γ ⊢ e ◦ e′ ⊢ R, we discover R by taking the edge from T to
R spanned through T ◦ S : R. For the reverse direction, we observe that we can express every type
of LB as a literal. Therefore can express all additionally required operands for every operator. For
every operator ◦ with signature T ◦ S : R, we can extend e using by ◦e′ where e′ is a literal of type
S to express R.

For b) we prove REACHABLE(T,G) =⇒ there exists a path on the type graph between T and
G. The reachability algorithm implements a depth-first search over the type graph (Even, 2011), by
taking edges according to the admissible operators as described before. The only modification is a
restriction, on which edges are taken based on computed depth and root types. Therefore the search
is sound, returning only true if there is a sequence of edges in the type graph between T and G.

E MORE EXPERIMENTAL DETAILS

In this section, we detail how executable code is extracted from the model responses and a slight
modification to the decoding algorithm used, that increases throughput heuristically.

E.1 HYPERPARAMETERS AND COMPUTE

We run all models and evaluations on NVIDIA A100 GPUs. We use temperature sampling to in-
crementally generate completions with inference temperature for all runs set to 1. To ensure repro-
ducibility, the four runs of §4 are executed with fixed seeds (0, 1, 2, and 3).

E.2 DETAILS FOR METHODS

To compute Syntax, we determine the subset of programs that are syntactically incorrect using the
Oxidation toolchain (oxc project, 2024). We compute an upper bound on the performance of syntac-
tic constraining and assume that every instance with syntax error would compile successfully under
syntactic constraining. Due to the massive size and complexity of the TypeScript compiler, featuring
over 427,105 lines of code in 698 files (Microsoft, 2024), it is improbable that our extension covers
all features of TypeScript. To provide a realistic evaluation in Types, we emulate a type-aware con-
straining that supports the entire TypeScript feature set. We sample constrained and unconstrained
in parallel, using the same seed, and report the unconstrained output if it successfully compiles and
otherwise the constrained version.

E.3 EXCLUDED MBPP INSTANCES

We exclude the following MBPP instances as the auto-translation of MultiPL-E produced misleading
type annotation for the function arguments:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• mbpp_143_find_lists

• mbpp_222_check_type

• mbpp_240_replace_list

• mbpp_262_split_two_parts

• mbpp_265_list_split

• mbpp_284_check_element

• mbpp_390_add_string

• mbpp_398_sum_of_digits

• mbpp_405_check_tuplex

• mbpp_418_Find_Max

• mbpp_425_count_element_in_list

• mbpp_431_common_element

• mbpp_446_count_Occurrence

• mbpp_457_Find_Min

• mbpp_563_extract_values

• mbpp_580_extract_even

• mbpp_612_merge

• mbpp_725_extract_quotation

• mbpp_730_consecutive_duplicates

• mbpp_744_check_none

• mbpp_778_pack_consecutive_duplicates

• mbpp_791_remove_nested

E.4 EXTRACTING EXECUTABLE CODE

We found that unconstrained models frequently generate non-compiling code caused by generated
unsolicited demonstrations and additional test cases. In order to remove them and decrease such
irrelevant compilation errors for unconstrained generation, we try to detect and extract the relevant
code snippet.

We first try to extract the corresponding fenced typescript code block (```typescript...```). If
the block is not closed, we consider all code until the end of the generation as part of the code
block. Inside the code block, we cut off after the closing curly brace of the last balanced pair of
curly braces, if it is followed by a newline or semicolon. This determines the last statement block
generated and avoids cutting off, e.g., inside a template literal. Again, if no such case is found, we
do not prune the output. We demonstrate the operation of this cutoff algorithm in Fig. 12.

E.5 SPEEDING UP DECODING

Constrained decoding, sketched in Algorithm 1, is usually defined by computing a complete mask
for the model vocabulary at every step and using it to mask out invalid tokens (Poesia et al., 2022).
For non-zero temperatures, this approach is equivalent to sampling repeatedly and rejecting invalid
tokens. We choose this alternative implementation as a default, as token masks have to be computed
during sampling, and can not be deferred to pre-inference computation as done in previous work
(Ugare et al., 2024; Beurer-Kellner et al., 2024).

However, for the case that the constraints are very tight and the model suggested token is not among
the first k sampled tokens, we utilize the speed up that can be obtained by computing the mask in
bulk for the entire vocabulary, using the trie data structure, as described by Poesia et al. (2022). The
resulting refined algorithm is presented in Algorithm 3 Since the computation of the mask and the
computation of logits are independent, even further optimization can run them in parallel and run
the individual checking loop between Lines 6 and 9 until the mask has finished computing.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 ```typescript
2 function next_smallest_palindrome(num: number): number {
3 const numStr = num.toString();
4 const reversedNumStr = numStr.split('').reverse().join('');
5 let min = Math.min(Number(numStr), Number(reversedNumStr));
6

7 if (min === Number(numStr)) {
8 return Number(numStr);
9 } else {

10 return parseInt(min.toString() + 1);
11 }

12 }

13

14 const findNextSmallestPalindrome = next_smallest_palindrome(12321);
15 console.log(findNextSmallestPalindrome); // Output: 12322

16 ```
17

18 **Explanation**
19

20 1. **Input:** The function takes a number as input (`num`) in the given criteria.
21 ...

Figure 12: The code generated by Gemma 2 2B for MBPP #0. The cutoff algorithm first extracts
the fenced code, last line marked in blue . To avoid the usage of the console object from the
browser extension of TypeScript in the generated examples, we further cut off after the last code
block, marked in red

Algorithm 3 Fast Constrained Decoding

Input: Completion Engine CEL, LLM M , Prompt x, k
Output: Completion o such that o ∈ L

1: o := []
2: CEL.init(M.vocabulary, x)
3: loop
4: v := M(x+ o) ▷ compute logits
5: valid := false
6: for k times do
7: t := sample(v) ▷ e.g., argmax or sample with temperature
8: valid := CEL.check(t)
9: if valid then break

10: if not valid then
11: m := CEL.mask() ▷ compute mask
12: v′ := v ⊙m ▷ apply mask
13: t := sample(v) ▷ e.g., argmax or sample with temperature
14: if t = EOS then break
15: o.append(t)
16: CEL.update(t)

17: return o

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 4: Instances with compiler errors in Standard, Syntax, and our Types constraining on MBPP.
Type-aware constraining reduces errors by 62.4% in Synthesis of MBPP, compared to only 5.7%
through ideal syntax-only constraining. For Translation and Repair we observe 59.6% and 57.8%
improvement due to type-aware constraining respectively.

Synthesis Translation Repair
Model Standard Syntax Types Standard Syntax Types Standard Syntax Types

Gemma 2 2B 69 67↓2.9% 25↓63.8% 132 114↓13.6% 77↓41.7% 230 219↓4.8% 109↓52.6%
Gemma 2 9B 32 30↓6.2% 9↓71.9% 70 64↓8.6% 28↓60.0% 179 171↓4.5% 66↓63.1%
Gemma 2 27B 23 22↓4.3% 5↓78.3% 43 42↓2.3% 18↓58.1% 126 109↓13.5% 48↓61.9%
DeepSeek C. 33B 32 31↓3.1% 17↓46.9% 38 35↓7.9% 12↓68.4% 156 152↓2.5% 69↓56.1%
CodeLlama 34B 85 76↓10.6% 42↓50.6% 132 115↓12.9% 51↓60.6% 193 180↓6.7% 89↓53.9%
Qwen2.5 32B 70 65↓7.1% 25↓62.9% 35 31↓11.4% 11↓68.6% 133 124↓6.8% 54↓59.4%

Table 5: Pass@1 (in %) of unconstrained (Standard) and type-aware constrained (Types) generated
code for the tasks Synthesis, Repair, and Translation on MBPP.

Synthesis Translation Repair
Model Standard Types Standard Types Standard Types

Gemma 2 2B 39.4 41.8 51.4 57.3 14.1 29.3
Gemma 2 9B 64.9 67.7 71.7 78.3 22.8 37.3
Gemma 2 27B 70.1 72.3 80.7 84.8 33.1 46.3
DeepSeek Coder 33B 65.8 68.2 83.4 88.3 25.7 43.4
CodeLlama 34B 40.8 44.6 54.1 64.1 19.3 32.5
Qwen2.5 32B 65.5 74.5 84.5 89.4 35.0 52.7

F EXPERIMENTAL EVALUATION ON MBPP

We run the same experiment described in §4 on the TypeScript translation of the dataset MBPP,
provided in MultiPL-E Austin et al. (2021); Cassano et al. (2023). Due to the larger size of MBPP,
we run the experiment only once with seed 0 and report the aggregated results in Table 4. For Repair,
we collect all non-compiling programs from unconstrained synthesis for all models, resulting in 311
non-compiling programs.

F.1 EXPERIMENTAL RESULTS

Reduction of Compilation Errors In our evaluation on MBPP, shown in Table 4, on average only
7.2% of compiler errors in MBPP are due to syntactic errors (Syntax). Contrasting this, type-aware
constraining more than halves compilation errors, reducing them by 59.9%. We observe that models
of all sizes and model families benefit similarly from the constraining, with a minimum reduction of
41.7%, even though the total amount of compiler errors varies strongly, e.g., between 5 (Gemma 2
27B) and 42 (CodeLlama 34B) compiler errors in Synthesis.

Improving Functional Correctness We compute the pass@1 performance of the generated code
on the test cases provided in the translated datasets of MultiPL-E (Cassano et al., 2023) and present
the results in Table 2. We find that our constraining impressively increases success rate by 6.7%,
9.3%, and 66.5% in the synthesis, translation, and repair tasks respectively. The impressive perfor-
mance on repair tasks on MBPP and HumanEval is likely due to the propensity of LLMs to repeat
compiler errors in presented solutions, already observed by prior work (Yang et al., 2024; Mündler
et al., 2024), which is resolved by the effective guidance of type-aware constraining.

G CASE STUDY FULL OUTPUTS

In this section, we provide the full outputs of the examples shown in the case study in Figs. 13–15.
Details about the functionality for each instance are provided in the respective captions.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H COMPLETE PROMPTS

In this section, we provide the complete prompts to the LLMs for the settings Synthesis, Translation,
and Repair. The prompts are templates that were instantiated with the prompt field from the Multipl-
E dataset (Cassano et al., 2023). Since the models were instruction tuned, there were various formats
for the chat template, we therefore provide the prompts on a high level. These prompts were then
formatted using the chat template. The system prompt has been prepended to the first user prompt
where no system prompts were available. The user prompt is the comment in front of the problem,
with the comment // removed. Sample test cases are preserved when present. The model was
prompted to complete the last assistant response, i.e., the beginning of the prompt was fixed for the
model. The prompts for synthesis and translation are presented in Figs. 16 and 17

In the repair setting, we add the model output, annotated with line numbers, as assistant output and
use a second turn to pass back compiler outputs as demonstrated in Fig. 18. Compiler errors contain
line numbers for localization, which is why we annotate the output with line numbers.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1 function string_to_md5(text: string): string | undefined {
2 if (text.length === 0) {
3 return undefined;
4 }

5 const hash = crypto .createHash("md5")

6 .update(text).digest("hex");
7 return hash;
8 }

(a) The code generated by the unconstrained Gemma 2 2B. The model tries to calculate the MD5 checksum of
the input string using the library crypto. However, it does not import it and uses the symbol crypto directly,
which does not exist yet.

1 function string_to_md5(text: string): string | undefined {

2 if (text.length === 0) {

3 return undefined;

4 }

5 const hash = require(’crypto’) .createHash('md5');

6 hash.update(text);

7 return hash.digest('hex');

8 }

(b) The code generated by Gemma 2 2B with type-aware constraints. The constraint guides the model and help
it generate the correct require statement that imports the library before use.

Figure 13: Comparison between the function generated by unconstrained Gemma 2 2B (Gemma
Team, 2024) and the code generated with the guidance of type-aware constraints on the problem
string_to_md5 (HumanEval #162, TypeScript Translation, 2023). This problem requires a function
that calculates the MD5 value of a given string.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

1 function fibfib(n: number): number {
2 if (n === 0) return 0;
3 if (n === 1) return 0;
4 if (n === 2) return 1;
5

6 let fibfibNMinus3 = 0;
7 let fibfibNMinus2 = 0;
8 let fibfibNMinus1 = 1;

9 let fibfibN ;

10

11 for (let i = 3; i <= n; i++) {
12 fibfibN = fibfibNMinus1 + fibfibNMinus2 + fibfibNMinus3;
13 fibfibNMinus3 = fibfibNMinus2;
14 fibfibNMinus2 = fibfibNMinus1;
15 fibfibNMinus1 = fibfibN;
16 }
17

18 return fibfibN;
19 }

(a) The code generated by the unconstrained Deepseek Coder 33B Instruct. The model uses an uninitialized
fibfibN to save the n-th of the fibfib sequence along with the three variables fibfibNMinus1, fibfibNMinus2,
fibfibNMinus3 to store an−1, an−2, an−3 in the sequence. The code is functionally correct. However, since
the program does not initialize fibfibN, the compiler infers it to be of type number | undefined, which is
inconsistent with the return type number.

1 function fibfib(n: number): number {
2 if (n === 0) return 0;
3 if (n === 1) return 0;
4 if (n === 2) return 1;
5

6 let fibfibNMinus3 = 0;
7 let fibfibNMinus2 = 0;
8 let fibfibNMinus1 = 1;

9 let fibfibN = fibfibMinus1 + fibfibMinus2 + fibfibMinus3 ;

10

11 for (let i = 3; i <= n; i++) {
12 fibfibN = fibfibNMinus1 + fibfibNMinus2 + fibfibNMinus3;
13 fibfibNMinus3 = fibfibNMinus2;
14 fibfibNMinus2 = fibfibNMinus1;
15 fibfibNMinus1 = fibfibN;
16 }
17

18 return fibfibN;
19 }

(b) The code generated by Deepseek Coder 33B Instruct with type-aware constraints. The constraint rules out
the possibility of any variable that lacks both type annotation and initilization. Thus, the model generates a
correct initialization that helps the compiler to deduce that fibfibN is indeed of the type number, which aligns
with the return type of the function.

Figure 14: Comparison between the function generated by the unconstrained DeepSeek Coder 33B
Instruct (Guo et al., 2024) and the code generated with the guidance of type-aware constraints on
the problem fibfib (HumanEval #63, TypeScript Translation, 2023). The problem asks to calculate
a variant of the Fibonacci sequence called fibfib such that it satisfies an = an−1 + an−2 + an−3

rather than the an = an−1 + an−2 for Fibonacci sequence.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

1 function unique_digits(x: number[]): number[] {
2 return x.filter(num => {
3 const numStr = String(num);

4 return !numStr .some (digit => parseInt(digit) % 2 === 0);

5 }).sort((a, b) => a - b);
6 }

(a) The code generated by the unconstrained Qwen2.5 32B Instruct. The code first filters out the digits con-
taining even digits and then sorts the remaining array. The idea of the code is correct. However, the model
hallucinates that the string numStr can already be viewed as a list and uses the method some directly, which the
TypeScript compiler does not recognize. Thus, the code fails compilation with an undefined method.

1 function unique_digits(x: number[]): number[] {
2 return x.filter(num => {
3 const numStr = String(num);

4 return !numStr .split(‘’) .some(digit => parseInt(digit) % 2 === 0);

5 }).sort((a, b) => a - b);
6 }

(b) The code generated by Qwen2.5 32B Instruct with type-aware constraints. With the constraint, the model
recognizes that some does not exist for string and uses split to convert the string into a list of characters first,
solving the problem.

Figure 15: Comparison between the function generated by the unconstrained Qwen2.5 32B Instruct
(Hui et al., 2024) and the code generated with the guidance of type-aware constraints on the problem
unique_digits (HumanEval #104, TypeScript Translation, 2023). The problem asks to calculate a
sorted array from a given array that only contains the numbers in the original array without any even
digits.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

System:

You are an expert in TypeScript programming. Solve the given problem by writing solution code in TypeScript.

When answering, insert the solution code in a ```typescript...``` block.

User:

Check if in given array of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

false

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

true function

Assistant:

```typescript
function has_close_elements(numbers: number[], threshold: number): boolean {

Figure 16: The full prompt for the synthesis setting. Text in green is based on the problem instance,
in this case HumanEval #0.

System:

You are a helpful and expert programmer in Python and TypeScript. You will be given an input program in Python and your task is

to translate this program into TypeScript. You may assume that the input program is correct and that the translation should be

semantically equivalent.

When answering, insert the solution code in a ```typescript...``` block.

User:

The following is the source program in Python:

```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

```

Please translate the source program to TypeScript.

Assistant:

```typescript
function has_close_elements(numbers: number[], threshold: number): boolean {

Figure 17: The full prompt for the translation setting. Text in green is based on the problem instance,
blue is the original Python canonical solution, in this case HumanEval #0.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

System:

You are an expert in TypeScript programming. Solve the given problem by writing solution code in TypeScript.

When answering, insert the solution code in a ```typescript...``` block.

User:

Given an array of positive integers x. return a sorted array of all

elements that hasn’t any even digit.

Note: Returned array should be sorted in increasing order.

For example:

»> unique_digits([15, 33, 1422, 1])

[1, 15, 33]

»> unique_digits([152, 323, 1422, 10])

[]

Assistant:

```
001: function unique_digits(x: number[]): number[] {

002: const filteredArray: number[] = []; // initialize empty array

003: for (let i = 0; i < x.length; i++) {

004: let strx = "" + x[i];

005: let filteredStr = strx

006: .toString()

007: .split("")

008: .filter((digit) => parseInt(digit) % 2 !== 0);

009: if (filteredStr.length > 0) {

010: filteredArray.push(...filteredStr);

011: }

012: }

013: return filteredArray.sort((a, b) => a - b);

014: }

```

User:

This output produced an error:

../../../../../tmp/tmpaewlckfv.ts(10,26): error TS2345: Argument of type ’string’ is not assignable to parameter of type

’number’.

Write the program again, and make sure to fix the error this time.

Assistant:

```typescript
function unique_digits(x: number[]): number[] {

Figure 18: The full prompt for the repair setting. Text in green is based on the problem instance, red
is model output from the synthesis step, blue is compiler output. In this case HumanEval #104 and
Gemma 2 2B on its own previous output. Generations from the synthesis step are annotated with
line numbers to aid localizing the compiler error.

34


	Introduction
	Background: Constraining LLMs
	Type-Aware Constrained Decoding
	A Simply Typed Language
	Prefix Automata
	Automata for Identifiers, Literals, and Types
	Expression Automaton
	Statement Automaton

	Experimental Evaluation
	Experimental Results
	Case Study

	Related Work
	Conclusion
	Limitations and Future Work
	More details on the defined language
	Detailed Prefix Automaton Definitions
	Basic Combination Automata
	Terminals and Notation
	Expressions
	Complete reachability algorithm
	Statements
	Arrays

	Extension to TypeScript
	Proof of Soundness of the Type Search Algorithm

	More experimental details
	Hyperparameters and Compute
	Details for Methods
	Excluded MBPP Instances
	Extracting Executable Code
	Speeding Up Decoding

	Experimental Evaluation on MBPP
	Experimental Results

	Case Study Full Outputs
	Complete Prompts

