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ABSTRACT

Large language models (LLMs) have achieved notable success in code genera-
tion. However, they still frequently produce uncompilable output because their
next-token inference procedure does not model formal aspects of code. Although
constrained decoding is a promising approach to alleviate this issue, it has only
been applied to handle either domain-specific languages or syntactic language
features. This leaves typing errors, which are beyond the domain of syntax and
generally hard to adequately constrain. To address this challenge, we introduce
a type-constrained decoding approach that leverages type systems to guide code
generation. We develop novel prefix automata for this purpose and introduce a
sound approach to enforce well-typedness based on type inference and a search
over inhabitable types. We formalize our approach on a simply-typed language
and extend it to TypeScript to demonstrate practicality. Our evaluation on Hu-
manEval shows that our approach reduces compilation errors by more than half
and increases functional correctness in code synthesis, translation, and repair tasks
across LLMs of various sizes and model families, including SOTA open-weight
models with more than 30B parameters.

1 INTRODUCTION

Large language models (LLMs) are remarkably successful in diverse fields (OpenAI, 2023; Brown
et al., 2020; Grattafiori et al., 2024) and increasingly used in everyday coding tasks (GitHub, [n. d.];
Vella, 2024). Despite these achievements, LLM-generated code often contains compilation errors,
logic flaws, or security vulnerabilities (Pan et al., 2024a; Dou et al., 2024; Pearce et al., 2022). These
issues arise because LLM-based code generation does not provide any formal guarantees.

Constrained decoding addresses this by enforcing formal rules during LLMs’ generation process,
rejecting invalid completions. Prior work showed that constraining to syntactic rules improves pro-
gram correctness (Beurer-Kellner et al., 2024; Ugare et al., 2024; Poesia et al., 2022). However, the
improvements are limited, as syntax accounts for only a small part of program correctness. Type
systems detect and reject bugs at compile time (Mitchell, 1990; Matsakis and Klock, 2014) and are
enforced in popular programming languages (Bierman et al., 2014; Donovan and Kernighan, 2015;
Arnold and Gosling, 1996). We thus suggest using type systems for constrained decoding.

The advantages of leveraging type systems are illustrated with five completion candidates for a
program in Fig. 1. Based on syntax, completions that contain line termination (;) could be rejected
(1). However, other cases, such as (2)-(4), are syntactic but cause type errors. Candidate (2) accesses
an undeclared identifier. Candidate (3) will fail at execution, as num is a number and can not be called.
Candidate (4) passes a value of unexpected format to parseInt, which expects the first argument
to be a string. In this example, (4) is generated by CodeLlama 34B (Rozière et al., 2023). Syntax-
only constraining accepts this invalid completion, leading to a failing output. However, based on
constraints derived from the type system, all but the valid completion (5) are rejected.

Implementing type-constrained decoding is challenging because type systems cannot be captured by
context-free grammars (Mitchell, 1990), prohibiting the application of prior constrained decoding

*Co-leading authors. Long-format paper available as pre-print at https://arxiv.org/abs/2504.09246.
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function is_int(text: string): boolean {

const num = Number(text);

return !isNaN(num) &&

parseInt(num <completion>

<completion> Vanilla Syntax Types Description

(1) ; accept reject reject Syntactically invalid
(2) ber accept accept reject Undeclared identifier
(3) () accept accept reject Disallowed operator
(4) , 10) accept accept reject Invalid argument type
(5) .toString() accept accept accept Well-formed option

Figure 1: The left part is a partial TypeScript program derived from instance #113 of the MBPP
benchmark (Austin et al., 2021), awaiting completion. On the right is a table listing five completion
options: (1)-(4) are invalid and (5) is well-formed. Our type-constrained decoding is the only ap-
proach capable of correctly rejecting invalid completion candidates and accepting the valid one.

methods for program syntax (Ugare et al., 2024; Beurer-Kellner et al., 2024). Specifically, when
generating expressions, we must address a key question: Can the partial expression be completed to
match the required type? Essentially, this involves solving generalized type inhabitation (Urzyczyn,
1997; Gvero et al., 2013), a challenging problem that is PSPACE-complete even for simply typed
lambda calculus, in the novel context of LLM-based code generation.

In this work, we introduce type-constrained decoding to enforce the formal rules of type systems
on LLM-based code generation. In order to reason about the completability of partial code, we de-
velop prefix-automata, which ensure that every visitable automaton state has a path to an accepting
state. We then present a sound algorithm that determines types expressable through completions
using type-search and an incrementally updated abstract syntax tree, including type annotations.
To demonstrate its practical effectiveness, we instantiate our approach on a non-trivial subset of
TypeScript, currently one of the most actively used languages (Madnight, 2024; GitHub, 2022).
We perform an evaluation on TypeScript-translated HumanEval (Cassano et al., 2023) on synthesis,
translation, and repair. Our experimental results show that type-constrained decoding significantly
enhances code generation for LLMs of various sizes (2B-34B parameters) and families. For synthe-
sis and translation, it reduces compilation errors by more than half and increases functional correct-
ness relatively by 3.5% to 4.5%. Additionally, it enhances relative functional correctness of repaired
code by around 34% on average. Our code implementation is publicly available.1

Algorithm 1 Vanilla and constrained decoding

Input: LLM, prompt x, completion engine CEL

Output: Program s such that s ∈ L
1: initialize s
2: while true do
3: p← LLM(x ◦ s)
4: while true do
5: t ∼ p
6: if CEL(s ◦ t) then break
7: elif s ∈ L and t = EOS then break
8: else p[t]← 0; normalize p
9: if t = EOS then break

10: s← s ◦ t
11: return s

LLM-based Code Generation LLM-based code gen-
eration is incremental, depicted in Alg. 1 (without blue
highlights). User prompt x specifies a task. The output
program s is initialized to an empty string or program
prefix in x (L. 1). In each iteration (L. 3), based on con-
catenation x ◦ s of prompt x and partial program s, the
LLM predicts a probability distribution p over a fixed,
finite vocabulary of tokens, comprised of unicode char-
acters, including common singleton characters (Sennrich
et al., 2016). Next, based on distribution p, token t is
sampled (L. 5) and appended to s (L. 10). This process
repeats until special token EOS is sampled (L. 9).

Constrained Decoding Constrained decoding analyzes intermediate model outputs to enforce
validity of next tokens. It leverages a completion engine CEL, specific to language L. The en-
gine checks whether partial program s can be completed to a well-formed program in L, meaning
whether there exists a (possibly empty) string s′ such that s ◦ s′ ∈ L. Equivalently, CEL(s) deter-
mines whether s belongs to the prefix language Lp of L, i.e., whether s ∈ Lp.

Definition 1. For a given language L, its prefix language is Lp = {s | ∃s′ : s ◦ s′ ∈ L}.

As illustrated with blue highlights in Alg. 1, constrained decoding differs from vanilla LLM-based
code generation by adding an additional sample-and-check loop in the token sampling process L. 4.
A sampled token t is appended only if s ◦ t can be completed to a well-formed program (L. 6) or t
is EOS and s is already well-formed (L. 7). Otherwise, the probability of t is set to zero at L. 8,
and the sample-and-check loop repeats. A token t satisfying L. 6 or L. 7 always exists, as s is in

1GitHub repository: https://github.com/eth-sri/type-constrained-code-generation
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l ::= Literal
\d+ Numeric Literal
"\w ∗ ” String Literal
true | false Boolean Literal

T ::= Type
number Numeric Type
string String Type
boolean Boolean Type
(p) => T Function Type

p ::= x :T Typed Identifier

e ::= e0 | e1 Expression
e0 ::= Base Expression

l Literal
x Identifier
(p) => e Function Expression
(e) Grouped Expression

e1 ::= Extension Expression
e⊙ e Binary Operator
e(e) Function Call
e.n Member Access

x ::= \w+ Identifier

s ::= Statement
let x :T; Variable Declaration
e; Expression Statement
return e; Return Statement
{ s } Statement Block
function x (p) :T { s } Function Definition
if (e) s else s If-Then-Else Statement

M ::= s Program

Figure 2: The syntax of LB . Expressions are categorized into base and extension expressions. The
later extends a given expression with suffix operators to form more complicated expressions.

Lp and LLMs’ vocabulary contains all common characters. Therefore, the iterations of the sample-
and-check loop is bounded by the size of the vocabulary. In practice, only one or a few iterations
are typically needed.

Constrained decoding not only provides token-level guarantees but also ensures the final program’s
validity based on L. This whole-program guarantee can be proved inductively. At L. 1, we start with
a valid prefix in Lp, i.e., either an empty string or a valid prefix provided in the user prompt. The
check at L. 6 ensures that all intermediate model outputs remain prefixes in Lp. Additionally, L. 7
and L. 9 ensure that L. 11 is reached only if s ∈ L. In practice, the only other possible outcome is
that the generation does not terminate within a predefined time or token limit.

2 TYPE CONSTRAINED DECODING

2.1 A SIMPLY TYPED LANGUAGE

We define a simply typed, Turing-complete language, LB . The syntax of expressions, types, and
statements match standard definitions and are a subset of TypeScript (Bierman et al., 2014). It
includes expressions, typed declaration statements, type-annotated functions, and flow control. Its
complete syntax is shown in Fig. 2 in Extended Backus Naur Form. In the spirit of Bierman et al.
(2014), we use a bar to denote Kleene-Plus over repeated elements, i.e., X+ = X .

The type system of LB matches the type system of TypeScript and other conventional programming
languages. Specifically, expressions are typed based on a type environment Γ, a map from identifiers
to types. We write Γ ⊢ e : T if expression e has type T in type environment Γ. The type environment
is propagated through consecutive statements, block-scoped and updated by declarations.

A word is valid in LB if it (i) is syntactically valid, (ii) adheres to derived types for expressions,
and (iii) ensures returning correctly-typed values on every execution path. Detailed syntax and type
inference rules are presented in App. D.

2.2 PREFIX AUTOMATON DEFINITION

Prefix automata are standard automata that ensure a special prefix property2. This property enables
using the prefix automaton as a completion engine CEL to facilitate constrained decoding.

We consider an automaton A := ⟨Σ, Q, δ, I, F ⟩, a tuple of : (i) Σ an alphabet of input symbols;
(ii) Q a set of states; (iii) δ : Q × Σ 7→ P(Q) a computable transition function mapping to finite
sets; (iv) I ⊆ Q a finite set of initial states; and (v) F ⊆ Q a decidable set of accepting states. We
denote a symbol in Σ as c, a string of symbols in Σ∗ as s, and an operator for concatenating symbols
and strings as ◦. The transition function δ maps a state to all possible subsequent states. When δ
is applied on a set q ⊆ Q, we take the union, i.e., δ(q, c) =

⋃
q∈q δ(q, c). The transition function

defines a directed graph G over Q, where every state is a node and there is an edge annotated with c
from q to q′ iff q′ ∈ δ(q, c). The language parsed by A comprises all strings s such that traversing
G from some state in I along the edges annotated c ∈ s, it is possible to reach some state in F .
Formally, we define recursive traversal function γ for states q as γ(q, ε) := q and γ(q, s ◦ c) :=
γ(δ(q, s), c). The language accepted by A is defined as L(A) := {s | γ(I, s) ∩ F ̸= ∅}. The
traversal function has two intuitive properties concerning reachability that can be shown inductively:

2Note that the prefix property defined in our work differs from the one discussed in classical texts, e.g.,
(Hopcroft and Ullman, 1979)

3



Published as a workshop paper at DL4C @ ICLR 2025

(P1) A path along the graph can be split arbitrarily, i.e. γ(q, s ◦ s′) = γ(γ(q, s), s′).
(P2) If s ◦ s′ reaches some state, s reaches some state, i.e., γ(q, s ◦ s′) ̸= ∅ =⇒ γ(q, s) ̸= ∅.

A is a prefix automaton if there is a path from every reachable state to some accepting state:
Definition 2. For an automaton A, the prefix property holds iff ∀q ∈ Q : q ∈ γ(I, s) =⇒ ∃s′ :
γ(q, s′) ∩ F ̸= ∅. The automaton is a prefix automaton if it satisfies the prefix property.

Intuitively, for such A, reaching any state through s implies that s is prefix to some s′ ∈ L(A). The
reachable language of A, all inputs that result in any state, is Lr(A) := {s | γ(I, s) ̸= ∅}. We see
that Lr(A) is equivalent to L(A)p, the prefix language of L(A) as defined in Def. 1.
Lemma 1. If A is a prefix automaton, then L(A)p = Lr(A).

Proof. s ∈ L(A)p implies that there exists s′ such that s ◦ s′ ∈ L(A), by the definition of prefix
languages. This means γ(I, s ◦ s′) ̸= ∅. Then, using (P2), we further derive γ(I, s) ̸= ∅, i.e.,
s ∈ Lr(A). Therefore, L(A)p ⊆ Lr(A) holds. The other direction also holds. We first see that
s ∈ Lr(A) =⇒ γ(I, s) ̸= ∅. Then applying Def. 2 and (P1), we find ∃s′ : γ(I, s ◦ s′) ∩ F ̸= ∅,
implying s ◦ s′ ∈ L(A) and thus s ∈ L(A)p.

From Prefix Automata to Completion Engines With Lem. 1, given a prefix automaton A, we
define a completion engine for L(A): CEL(A)(s) := γ(I, s) ̸= ∅. To use A to constrain generation
to L, we need to establish a relationship between L(A) and L. If L(A) ⊆ L, we are guaranteed that
LLM generations constrained by CEL(A) lie in L. Conversely, if L(A) ⊇ L, we are guaranteed that
every s ∈ L can be expressed under constrained decoding, but not that all generations are valid. For
example, if A permits syntactically correct programs, it guarantees all well-typed programs can be
generated, but permits ill-typed programs. To enforce well-typeness, we thus require L(A) ⊆ L.

Building a Prefix Automaton for LB We choose Σ to be the set of Unicode characters, making
our completion engine agnostic to LLM vocabularies. When our completion engine is called during
constrained decoding at L. 6 of Alg. 1, it processes the sampled token by characters.

Before proceeding, we briefly introduce several base prefix automata below, with their precise defi-
nitions detailed in App. E.1. These automata are later combined, with parts of the transition function
being overwritten, to construct more complex automata.

• Union AX ∪ AY parses the language {s | s ∈ L(AX) ∪ L(AY )}. It is a prefix automaton if
both AX and AY are prefix automata.

• Concatenation AXY = AX ◦AY parses the language {s ◦ s′ | s ∈ L(AX), s′ ∈ L(AY )}. It is
a prefix automaton if AX and AY are both prefix automata, and L(AY ) ̸= ∅.

• Kleene-Star AX parses the language {s | s ∈ L(AX)}, a prefix automaton if AX is a prefix
automaton.

• Terminal AS parses the language {S}, where S is a fixed, non-empty string.
• Empty A∅ parses the empty language ∅ and is always a prefix automaton.

2.3 PREFIX AUTOMATA FOR IDENTIFIERS, LITERALS, AND TYPES

Literals The prefix automaton for literals Al := ANUM ∪ ASTR ∪ ABOOL accepts number, string,
and boolean literals as defined in Fig. 2. The automata ANUM, ASTR, and ABOOL are defined by
the deterministic finite automaton representation of their regular expressions. To ensure the prefix
property, we prune states from which accepting states can not be reached.

Identifiers During parsing, we maintain the current type environment Γ. We define the identifier
automaton Ax as the union of the terminal automata for identifiers defined in Γ, Ax :=

⋃
y∈Γ Ay.

Types The type automaton AT accepts type annotations. It is defined as AT := ATYPE-LIT ∪
ATYPE-FUN, including type literal automaton ATYPE-LIT := Astring∪Anumber∪Aboolean and function type
automaton ATYPE-FUN := A(p) => T . The latter is a concatenation of multiple prefix automata, with
the parameter and return types recursing on AT . This recursive definition is valid, since it ensures a
finite set of initial states, defines a decidable accepting set, and preserves the prefix property.
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2.4 PREFIX AUTOMATON FOR EXPRESSIONS

Unrestricted Expressions We differentiate two kinds as shown in Fig. 2: Base expressions; iden-
tifiers, literals, grouped expressions, and anonymous functions, and extension expressions; operator
applications (binary operator, member access, or function call) that extend a given expression.

The expression automaton Ae is the union of base expression automata Ax, Al, A(e), and A(p) => e,
with potential extensions A⊙e, A.n, and A(e). The base and extension automata are constructed
by concatenating the respective terminal automata and recursively Ae. Additionally, we restrict
the type of the recursive Ae if required by the type system. We provide additional detail on the
implementation in App. E.2. Since an expression can end after base and extensions, accepting states
of both base and extending automata are accepting states of Ae. To implement extensions in the
transition function δe, we start from the base expression automata and adjust δe with outgoing edges
from accepting states to the initial states of the extending automata, formally:

∀X,Y : δe(q
X
Y , c) :=

{
δY (q

X
Y , c) ∪ δe(I

X
(e), c) ∪ δe(I

X
⊙e, c) ∪ δe(I

X
.n, c) if qXY ∈ FY

δY (q
X
Y , c) otherwise,

where the labels X and Y for a state qXY represent that a string X has been parsed, and currently the
active automaton is AY , one of Ax, Al, A⊙e, etc. The superscripts are leveraged to determine the
validity of extensions and transition to type-restricted expressions based on LB’s typing rules. In
general, we set IXY := ∅ when Y is an invalid extension to X . Our definition of Ae is valid, as δe is
computable, Ie is finite and F e is decidable.

Type-Constrained Expressions To implement Ae ↓ T , we must determine whether a partial ex-
pression s can be completed to inhabit type T . Completing s may express different types, and
repeated extensions can alter the result type, but do not guarantee that the desired type can be ex-
pressed. However, extensions can be applied indefinitely, prohibiting an exhaustive enumeration.

Table 1: Definition of DERIVABLE(x) for partial
expressions in Fig. 2. s ≤ s′ means s is a prefix of
s′. pmatch(s, T ) returns whether prefix s partially
matches regular expression of literals of type T .
s DERIVABLE(qs)

l {T | pmatch(l, T ), T ∈ {number, string, boolean}}
x {T | x ≤ n, (n : T ) ∈ Γ}
(p) => e {(p) => T | REACHABLE(DERIVABLE(qe), T )}
(e {T | REACHABLE(DERIVABLE(qe), T )}
e⊙ {T | ∃S′ : Γ ⊢ e : S ∧ S ⊙ S′ : T}
e( {R | Γ ⊢ e : (p) => R}
e.a {S | a ≤ n,Γ ⊢ e : T, LOOKUP(T, n) = S}

We therefore develop a two-tiered algorithm. It
first identifies derivable types DERIVABLE(qs)
of s, inhabitable without extensions, based on
its current state qs. Second, a type reacha-
bility search REACHABLE(DERIVABLE(qe), T )
determines if T can be inhabited by extending
from the derivable types of s. We prune au-
tomaton transitions when this type search re-
turns a negative result.

Derivable Types For DERIVABLE, we enu-
merate all types inhabitable by the currently parsed expression s without extension. For a final
state q of expression e, we define DERIVABLE(q) := T , where Γ ⊢ e : T . We implement the unique
derivability rules of expressions, detailed in Tab. 1. Note that for grouped expressions and function
literals, we need to enumerate reachable types by recursively contained expressions. To avoid ex-
plicitly enumerating all reachable types, we integrate the derivability and reachability algorithms,
discussed in more detail in App. E.4.

Lemma 2. For state q ∈ r(Ie, s) of partial expression s, DERIVABLE(q) returns all T s.t. exists
some suffix s′ with Γ ⊢ s ◦ s′ : T and s′ does not involve an extension.

Type Reachability To determine which types are inhabitable by extending a base expression e of
type T , we analyze sequences of extensions with compatible signatures. This process is concep-
tualized as a search over a graph where types as nodes and extension steps are edges. For binary
operator ⊙ with signature T ⊙X : S, an edge is created from type T to type S. As an example, the
operator for numerical addition + has the signature number+ number : number, thereby forming an
edge from number to itself. Furthermore, for every member n of type T , we create an edge from T to
LOOKUP(T, n). Finally, we connect T and R for each function with type T = (p) => R. Note that
these steps are abstract, i.e., they focus on the expression types, disregarding textual representation.
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Algorithm 2 Type reachability search
Input: Current type T of expression e, goal type G
Output: Whether G can be reached by extending e.
1: function REACHABLE(T , G)
2: if T = G then return true
3: if T is marked then return false else mark T
4: for each valid extension step ♢ from T do
5: S ← the resulting type of applying ♢ on T
6: if PRUNESEARCH(T,G, S) continue
7: if REACHABLE(S,G) return true
8: return false

The type reachability algorithm, Alg. 2, implements a
depth-first search over this type graph. Starting from cur-
rent type T , it succeeds upon finding goal type G (L. 2),
marking visited types to prevent cycles (L. 3). It iterates
over valid extensions (L. 4) and computes result type S
of the extension (L. 5). At L. 7, we proceed to recursively
search G can be reached from S. If all recursive calls are
unsuccessful, the goal type G can not be reached (L. 8).

Some programming languages define self-referential de-
fault members, e.g., clone in Java or valueOf in TypeScript, nullary functions returning the type of
the callee, () ⇒ T for T . By accessing these members, higher-order types can be derived indefi-
nitely. To ensure termination, we therefore restrict the type search to a finite set of types. At L. 6 of
Alg. 2, we use heuristic PRUNESEARCH to restrict the search. We develop simple heuristic based on
Gvero et al. (2013) to prune exploration of types with higher complexity than goal or source type,
if they do not contain yet unexplored primitive types. We detail this heuristic in App. E.3. While
ensuring termination, the heuristic leads to incompleteness and the potential rejection of well-typed
expressions. However, in practical usage, only highly complex (thus less used) types are avoided.
Lemma 3. The type search in Alg. 2 is sound, i.e., for any expression e with Γ ⊢ e : T , if
REACHABLE(T,G) holds, then there exists a sequence of extensions y such that Γ ⊢ e ◦ y : G.

Note that any pruning heuristic at L. 6 of Alg. 2 preserves soundness, which is sufficient to preserve
the prefix property of Ae ↓ T . We conclude from Lems. 2 and 3 that Ae ↓ T and Ae are prefix
automata that parse a subset of well-typed expressions in LB .
Corollary 1. If REACHABLE(DERIVABLE(q), G) holds for any q ∈ γ(Ie, s) of a partial expression
s, then there exists a suffix s′ such that Γ ⊢ s ◦ s′ : G.
Lemma 4. The language parsed by Ae ↓ T is thus a subset of the expressions of LB of type T , i.e.,
L(Ae ↓ T ) ⊆ {s | Γ ⊢ s : T}. Since Ae recursively involves Ae ↓ T , the language parsed by Ae is
also a subset of well-typed expressions of LB , i.e., L(Ae) ⊆ {s | ∃T : Γ ⊢ s : T}.

2.5 PREFIX AUTOMATA FOR STATEMENTS

The statement automaton is defined recursively as As := ADECL∪AEXPR∪ARET∪ABLOCK∪AFUN∪AITE.
The declaration automaton ADECL := Alet x :T ; captures undefined variable names x by accepting
all strings, except for existing identifiers. It is a prefix automaton as an accepting state can be
reached by appending characters. ARET is A∅ when outside a function and otherwise restricts the
parsed expression to the return type of the surrounding function. The remaining automata are mainly
concatenations of previous automata and As, with small variations detailed in App. E.5.

Guaranteeing Return Types When parsing function bodies, the transition function of AFUN main-
tains information about the declared return type and encountered return statements (if any). AFUN

only accepts when all return values match the declared return type, and all execution paths in the
function body return, as in Fig. 8. Otherwise, another statement generation is forced. The prefix
automaton property is preserved as we can always express a correct return statement using literals.

The described rules are implemented without violating the prefix property by deriving restrictions
from already parsed input and ensuring completion is possible. We conclude that As is a prefix
automaton. Moreover, As accepts all valid statements of LB , excluding expressions rejected by Ae.
Lemma 5. With ALB

:= As it holds that ALB
is a prefix automaton and L(ALB

) ⊆ LB

3 EXPERIMENTAL EVALUATION

We outline our evaluation setup, with further details and hyperparameters discussed in App. G.

Tasks and Benchmarks We evaluate on three relevant tasks of code generation: (i) Synthesis:
Given a natural language task, generate a solution from scratch. (ii) Translation: Given a Python
function, generate an equivalent TypeScript function. (iii) Repair: Given a natural language task, a
non-compilable solution and compiler error, restore functionality of the flawed solution.
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Table 2: Number of instances with compiler errors in unconstrained generation (Vanilla), idealized
syntax-only constraining (Syntax), and our proposed type constraining (Types). On average, type
constraining reduces compiler errors by 75.3% in synthesis, compared to only 9.0% through Syntax.

Synthesis Translation Repair

Model Vanilla Syntax Types Vanilla Syntax Types Vanilla Syntax Types

Gemma 2 2B 103 92↓10.7% 44↓57.3% 177 149↓15.8% 80↓54.8% 194 181↓6.7% 103↓46.9%
Gemma 2 9B 45 41↓8.9% 13↓71.1% 75 63↓16.0% 16↓78.7% 113 108↓4.4% 52↓54.0%
Gemma 2 27B 15 13↓13.3% 2↓86.7% 20 20↓0.0% 3↓85.0% 45 40↓11.1% 22↓51.1%
DS Coder 33B 26 25↓3.8% 5↓80.8% 18 17↓5.6% 7↓61.1% 36 36↓0.0% 15↓58.3%
CodeLlama 34B 86 71↓17.4% 28↓67.4% 158 124↓21.5% 59↓62.7% 153 142↓7.2% 48↓68.6%
Qwen2.5 32B 17 17↓0.0% 2↓88.2% 24 21↓12.5% 5↓79.2% 36 34↓5.6% 13↓63.9%

Table 3: pass@1 of unconstrained generation (Vanilla) and type
constraining (Types). The benefit of our type-constraining transfers
from reduced compilation errors to improved functional correctness.

Synthesis Translation Repair

Model Vanilla Types Vanilla Types Vanilla Types

Gemma 2 2B 29.1 30.2 50.2 53.9 11.6 20.9
Gemma 2 9B 56.6 58.3 73.7 78.3 24.0 34.9
Gemma 2 27B 69.5 71.2 86.6 87.7 38.4 41.1
DS Coder 33B 68.9 71.1 88.7 90.1 47.6 50.7
CodeLlama 34B 41.0 43.4 58.6 63.5 17.5 27.4
Qwen2.5 32B 79.6 81.8 92.1 93.9 65.4 71.2

Table 4: Median time per
synthesis instance in seconds
spent by Types and its relative
increase to Vanilla.

Model Overhead

Gemma 2 2B 6.7↑38.3%
Gemma 2 9B 8.3↑29.2%
Gemma 2 27B 11.7↑19.9%
DS Coder 33B 11.5↑36.2%
CodeLlama 34B 7.6↑40.8%
Qwen2.5 32B 7.3↑39.6%

The tasks are sourced from the TypeScript translated HumanEval (Chen et al., 2021) subset of
MultiPL-E (Cassano et al., 2023), containing 159 instances. To obtain more comprehensive re-
sults, we evaluate 4 times with different seeds and aggregate the outcomes. For Repair, we collect
non-compiling programs from unconstrained synthesis for all models, resulting in 292 instances.

Models and Methods We use 6 different open-weight LLMs, covering 3 LLMs of varying param-
eter sizes from the same model family and 4 models of a similar size from different model families:
the Gemma 2 model family with 2B/9B/27B parameters (Team et al., 2024), DeepSeek Coder 33B
(Guo et al., 2024), CodeLlama 34B (Rozière et al., 2023), and Qwen2.5 32B (Yang et al., 2024). We
always choose the instruction-tuned variants to ensure adherence to the natural language task.

Unconstrained LLM sampling is reported as Vanilla. We measure the upper bound improvement of
syntactic constraining (Syntax) where all Syntax errors in Vanilla instances are considered resolved.
We separately sample using type-constrained decoding (Types) based on §2. We emulate type con-
straining with the entire TypeScript feature set. Concretely, if a sample compiles correctly without
any constraining, we report it as-is. Otherwise, we report the result of the constrained sample.

Metrics We compute two main metrics to assess the effectiveness of the compared methods. First,
we determine compiler errors, any case in which the TypeScript compiler (Microsoft, 2024) reports
an issue. To measure functional correctness, we leverage the pass@1 metric (Chen et al., 2021),
measuring the percentage of generations that pass provided unit tests given only one trial.

3.1 RESULTS ON COMPILATION AND FUNCTIONAL CORRECTNESS

Reduction of Compilation Errors In Tab. 5, we present the number of compilation errors. For
synthesis and translation, Syntax could resolve 9.0% and 11.9% of the non-compiling instances. In
contrast, Types reduces compilation errors by 75.3% and 70.2%. We observe that all models and
tasks benefit similarly from our constraining, with a minimum error reduction of 54.8%.

For Repair, we find that many models struggle to correctly localize and resolve compilation errors,
with Gemma 2 2B for example repairing only 33.5% of the non-compiling instances in Vanilla. This
is substantially increased to 56.4% in Types. On average, using type-constrained sampling, 57.1%
more compilation errors are resolved than using vanilla LLM decoding.
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Improving Functional Correctness Programs that do not compile are always considered func-
tionally incorrect. With our type constraining, non-compilable generations can be turned into well-
formed ones. In Tab. 6, we experimentally show that type constraining universally improves func-
tional correctness. Employing type constraining improves LLMs’ pass@1 rate, achieving an in-
crease by 3.5%, 4.5% in synthesis and translation respectively, and 34.1% in repair tasks.

Overhead of Type Constraining For an application of our method in practice, the effective run-
time increase due to constrained decoding is highly relevant. To assess it, we measure the runtime
per synthesis instance. We report the median runtime per instance for Types and its relative increase
to Vanilla in Tab. 7. On average over the evaluated models, we observe a relative increase of 34.0%.
We note our implementation is not optimized or systems-oriented such as Dong et al. (2024).

MBPP, Case Study and Discussion in Appendix We provide results on MBPP (Austin et al.,
2021) in App. A, a case study of our constraints in App. B and a discussion of our work in App. C.

4 RELATED WORK

Code Language Models Recently, LLMs have gained traction for diverse coding tasks (Jiang
et al., 2024). LLMs are typically trained on trillion token datasets and have billions of parameters,
both factors contributing to improved performance in code-related benchmarks (Rozière et al., 2023;
Team et al., 2024; Guo et al., 2024). Meanwhile, even SOTA LLMs are well known to frequently
make mistakes (Rawte et al., 2023; Huang et al., 2023), including code errors, as we showed.

Improving Language Model Accuracy Apart from constrained decoding, three primary ap-
proaches have been proposed to enhance the accuracy of language models on code tasks: fine-tuning,
retrieval augmentation (RAG), and compiler or execution feedback. Fine-tuning adapts the model
weights based on specifically collected training data (Tsai et al., 2024; Weyssow et al., 2023). RAG
provides additional context based on databases or related code snippets (Bassamzadeh and Methani,
2024; Poesia et al., 2022). Feedback is only available after completed generation and requires re-
sampling (Jana et al., 2024; Deligiannis et al., 2025; Wei et al., 2023). Constrained decoding is or-
thogonal to these, and, as indicated by Poesia et al. (2022) and our experimental results, combining
constrained decoding with RAG or compiler feedback additionally improves model performance.

Constrained Decoding Prior work on constrained decoding failed to achieve strong results due
to its limitation to syntactic language features. Constraining to context-free languages has been
explored extensively (Beurer-Kellner et al., 2024; Poesia et al., 2022; Beurer-Kellner et al., 2023;
Willard and Louf, 2023). Simple context-sensitive syntactic features, such as the space indentation
in Python have been implemented (Melcer et al., 2024; Ugare et al., 2024). However, the rarity of
syntax errors significantly reduces the potential of leveraging syntax for code correctness

Type Systems for Code Synthesis Prior work that leveraged type systems for code synthesis was
confined to specialized settings and unable to constrain general, complex program generation. Poe-
sia et al. (2022) used column names to guide SQL query synthesis. Gvero et al. (2013) employed
a search on the type graph for function call completion. Agrawal et al. (2023) leverage language-
server-generated type annotations for object member accesses. Type constraints have also been used
to direct code synthesis in specialized search procedures (Wei et al., 2023; Fiala et al., 2023; Perel-
man et al., 2012). However, these methods are not compatible with LLM-based code generation.

5 CONCLUSION

In this work, we explored how type systems in programming languages can be used to guide lan-
guage models during decoding. We design and implement prefix automata to perform type con-
straining and implement it for TypeScript. We evaluate its impact on code synthesis, translation, and
repair and observe significant reduction of compilation and functional errors.
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Table 5: Number of MBPP instances with compiler errors in unconstrained generation (Vanilla),
idealized syntax-only constraining (Syntax), and our proposed type constraining (Types). Types
constraining reduces compiler errors by 52.1% in synthesis, compared to only 4.9% through Syntax.

Synthesis Translation Repair

Model Vanilla Syntax Types Vanilla Syntax Types Vanilla Syntax Types

Gemma 2 2B 67 64↓4.5% 27↓59.7% 126 111↓11.9% 79↓37.3% 194 184↓5.2% 108↓44.3%
Gemma 2 9B 30 29↓3.3% 10↓66.7% 67 61↓9.0% 33↓50.7% 129 124↓3.9% 63↓51.2%
Gemma 2 27B 20 19↓5.0% 7↓65.0% 37 36↓2.7% 22↓40.5% 71 69↓2.8% 32↓54.9%
DS Coder 33B 32 32↓0.0% 19↓40.6% 29 27↓6.9% 13↓55.2% 90 90↓0.0% 43↓52.2%
CodeLlama 34B 80 71↓11.2% 41↓48.8% 126 114↓9.5% 54↓57.1% 157 148↓5.7% 76↓51.6%
Qwen2.5 32B 19 18↓5.3% 13↓31.6% 22 22↓0.0% 16↓27.3% 55 52↓5.5% 29↓47.3%

Table 6: MBPP pass@1 of unconstrained generation (Vanilla) and
type constraining (Types). We observe a similar transfer of improve-
ments as in HumanEval.

Synthesis Translation Repair

Model Vanilla Types Vanilla Types Vanilla Types

Gemma 2 2B 40.4 42.4 52.3 56.0 12.1 22.6
Gemma 2 9B 65.4 67.4 71.4 75.8 24.2 31.9
Gemma 2 27B 70.6 72.1 83.1 84.4 39.1 45.2
DS Coder 33B 65.4 67.2 85.9 89.1 35.1 43.1
CodeLlama 34B 42.2 45.6 55.7 63.3 15.7 26.6
Qwen2.5 32B 76.3 76.6 89.6 90.4 48.0 54.0

Table 7: Median time per
synthesis instance in seconds
spent by Types and its relative
increase to Vanilla on MBPP.

Model Overhead

Gemma 2 2B 6.3↑35.4%
Gemma 2 9B 9.5↑46.8%
Gemma 2 27B 11.7↑32.8%
DS Coder 33B 9.4↑59.5%
CodeLlama 34B 7.0↑37.6%
Qwen2.5 32B 4.9↑54.8%

A EXPERIMENTAL EVALUATION ON MBPP

We outline our experiment on MBPP (Austin et al., 2021), mirroring the main experiment on Hu-
manEval, with the same tasks, methods, models and metrics as in §3.

Dataset The instances are based on TypeScript-translated MBPP tasks (Austin et al., 2021), con-
tained in the MultiPL-E dataset (Cassano et al., 2023), with 384 instances each. Contrasting our main
experiments, in MBPP, we generate each sample once. For Repair, we collect all non-compiling pro-
grams from the unconstrained synthesis task for all models, resulting in 248 instances.

A.1 RESULTS ON COMPILATION AND FUNCTIONAL CORRECTNESS

Reduction of Compilation Errors In Tab. 5, we present the number of compilation errors. For
synthesis and translation, Syntax could improve 4.9% and 6.7% of the non-compiling instances
respectively. In contrast, Types reduces compilation errors by 52.1% and 44.7%. We observe that
models across all sizes and families benefit similarly from our constraining, with a minimum error
reduction of 27.3%.

For Repair, we again find that many models struggle to correctly localize and resolve compilation
errors, with Gemma 2 2B for example repairing only 31.6% of the non-compiling instances in
Vanilla. This is substantially increased to 58.5% in Types. On average, using type-constrained
sampling, 50.3% more compilation errors are resolved than using vanilla LLM decoding.

Improving Functional Correctness Programs that do not compile are always considered func-
tionally incorrect. With our type constraining, non-compilable generations can be turned into well-
formed ones. In Tab. 6, we experimentally show that type constraining universally improves func-
tional correctness. Employing type constraining improves LLMs’ pass@1 rate, achieving an in-
crease by 3.6%, 5.5% in synthesis and translation respectively, and 39.8% in repair tasks.

Overhead of Type Constraining For an application of our method in practice, the effective run-
time increase due to constrained decoding is highly relevant. To assess it, we measure the runtime
per synthesis instance. We report the median runtime per instance for Types and its relative increase
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to Vanilla in Tab. 7. On average over the evaluated models, we observe a relative increase of 44.5%.
We note our implementation is not optimized or systems-oriented such as Dong et al. (2024).
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Figure 3: Histogram on the number of iterations
consumed by the sample-and-check loop at L. 4
of Alg. 1 to find a valid token, measured with
Gemma 2 2B for MBPP synthesis.

Number of Sample-and-Check Loop Itera-
tions To provide an in-depth analysis of the
overhead of our type constraining method, we
measure the number of iterations spent by the
sample-and-check loop to find an admissible to-
ken. The results are provided in Fig. 3. We ob-
serve that the number of loop iterations follows
a long-tail distribution. For 99.5% of cases,
only one loop iteration is needed. This num-
ber is similar for stronger models, with Gemma
2 9B and 27B requiring one iteration in 99.2%
and 99.7% of cases, respectively. This means
that, in most instances, LLMs can generate a
valid token on the first attempt, which is then
verified by the completion engine. In cases where more than one iteration is needed, the completion
engine intervenes to guide the selection of valid tokens. These interventions help resolve errors in
many instances in our benchmarks, providing significant benefit, as discussed in App. A.1.

Prior work (Ugare et al., 2024; Beurer-Kellner et al., 2024; Poesia et al., 2022) implemented con-
strained decoding differently than Alg. 1. Instead of running the sample-and-check loop, they exe-
cute the completion engine for all tokens in the LLM’s vocabulary, mask out all invalid tokens, and
sample once from the remaining valid tokens based on their normalized likelihoods. This imple-
mentation is less efficient than ours, especially when calling the completion engine is costly. Based
on the long-tail distribution depicted in Fig. 3, our implementation requires only a single invocation
to the completion engine for most cases, whereas their implementation calls it for every token in the
LLM’s vocabulary for all cases. In our experiments, their implementation results in timeouts for all
benchmark instances, with a timeout of 5 minutes per instance. This justifies our choice of using the
sample-and-check loop.

B CASE STUDY

For a qualitative evaluation, we manually inspect instances where unconstrained decoding fails and
our type constraining approach successfully corrects errors. We find that our technique effectively
amends various types of compilation errors. We showcase three such examples in Fig. 4 (shortened
for brevity), with full outputs provided in App. H.

Wrong Parameter Count In Fig. 4a , the task is to find all words in a string that contain a number
of consonants. When Gemma 2 2B attempts to solve this problem, translating from the Python
version to TypeScript, it calls split without arguments. This is allowed in Python, but not in
TypeScript, where a single string argument is required. Type constraining correctly detects this
and guides the generation to sample a space character as parameter.

Missing Return Statement In Fig. 4b, to complete function largest_divisor, the model must
compute a straightforward divisor loop. DeepSeek Coder 33B Instruct (Guo et al., 2024) implements
a correct loop, but does not guarantee returning a value in every execution path. When the return
statement in the loop is never executed, e.g., for negative inputs, the function thus returns undefined,
violating the type rules. Our method detects this issue and forces the generation of another statement
in the function body, resulting in a correct fallback return statement.

Incorrect Type Inference This example is shown in Fig. 4c. The task is to insert a delimiter
between every element in an array. Gemma 2 9B solves this using the reduce function. This generic
function accepts two arguments; the first argument is a callback function that is called consecutively
for every element in the array and accumulates a result, the second argument is an initial value for
the callback function. The type of the accumulator of the callback function is derived implicitly
from the type of the second argument. In the given example, the second argument is an empty array,
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Vanilla Types

(a)
// find all words with consonants
function select_words(s: string): string[] {

for (const word of s. split()

// find all words with consonants
function select_words(s: string): string[] {

for (const word of s. split(' ')

(b)

function largest_divisor(n: number): number {
for(let i = n - 1; i > 0; i--) {

if(n % i === 0) return i;
}

// No return

}

function largest_divisor(n: number): number {
for(let i = n - 1; i > 0; i--) {

if(n % i === 0) return i;
}

return 1;

}

(c)

// insert a delimiter between every element
return numbs.reduce(

( acc , curr, index) => {

acc.push(curr);
return acc;

}, []);

// insert a delimiter between every element
return numbs.reduce(

( acc: number[] , num, index) => {

acc.push(curr);
return acc;

}, []);

Figure 4: Three examples illustrating for the effect of type-constrained sampling. Left are un-
constrained generations with problematic tokens highlighted in red , and right are type-constrained
results with corrected tokens highlighted in green , adapted for clarity. In (a), Gemma 2 2B attempts
to call split, missing required arguments. In (b), DeepSeek Coder 33B attempts to complete a func-
tion without a guaranteed return. The issue is resolved by forcing generation of another statement
after the main loop. In (c), Gemma 2 9B calls reduce with an anonymous function without type
annotation. This leads to an incorrect type inference for the first parameter. The issue is solved by
guiding the model to add type annotation.

which should collect the new outputs. However, TypeScript infers a special type never[] for the
empty array, disallowing pushing the number array elements into the array. As a result, the program
fails to compile. This inference is a well-known problem and a limitation of the TypeScript compiler
that often confuses even expert developers (Various, 2024; nop33, 2024). Our method resolves the
issue by enforcing adequate type annotation on the first argument of the callback function.

C DISCUSSION

Our general type constraining approach, backed by strong experimental results, opens exciting av-
enues for future research, which we discuss below.

Remaining Compiler Errors We observe that, even though constrained decoding guarantees a
valid result upon termination, a considerable amount of compilation errors remain due to non-
termination within the given token or time limit. We find this to be caused by generation loops,
entered when generation is forced to comply with a constraint and the LLM is unable to recover.
An example is depicted in Fig. 5, where CodeLlama 34B tries to access the invalid member sort
on an expression of type number. Future work may add additional constraints to force stopping such
unconstructive loops and steer the model more strictly, e.g., by limiting the complexity of generated
expressions.

Implementation Effort Developing a completion engine for a target programming language cur-
rently requires manual efforts. However, we expect that the involved effort to adopt our method to
other languages will be reduced significantly, as many features transfer from our implementation
for LB and TypeScript. Moreover, we believe that, due to the huge impact of LLMs on code gen-
eration, the effort will pay off. Future programming language developers may consider generally
writing their compilers as an incremental completion engine, which additionally enables automatic
adoption for constrained code generation, besides conventional grammar parsing and type checking.

Broader Application to More Complex Tasks and Stronger LLMs Stronger LLMs, such as
the latest OpenAI models (Jaech et al., 2024), may make fewer typing errors on the HumanEval
and MBPP datasets. Our evaluation results in Tab. 5 also demonstrate that compilation errors de-
crease with increasing model size for the Gemma family. However, recent findings showed that
currently, even the strongest LLMs struggle with generating compilable code for more complex
coding tasks, stricter typing rules, and low-resource languages (e.g., newly invented DSLs). Gu-
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1 function sort_third(l: number[], r: number[]): number[] {
2 for (let i = 0; i < l.length; i++) {

3 r.push(l[i] .toString ().slice(0, 3).concat(l[i].toString().slice(3).split('')

4 .reverse().join('')).split('').reverse().join('').toString() + l[i] ...

Figure 5: Compilations errors remain when the model does not terminate after a corrected token.
In this example for synthesis on the HumanEval task #33, CodeLlama 34B is steered away from
accessing non-existing member .sort and instead accesses .toString .

sanidas ([n. d.]) evaluated various state-of-the-art LLMs on difficult code synthesis tasks in Rust,
reporting compilation error rates of 18% for OpenAI o1-mini (Jaech et al., 2024), 39% for DeepSeek
R1 (DeepSeek-AI et al., 2025) and 27% for Anthropic’s Claude 3.5 Sonnet (Anthropic, [n. d.]). For
OCaml and Haskell, which are sparsely represented in LLMs’ training data, the error rate is even
higher at 40% − 60% for all models, matching a trend of worse performance on low-resource lan-
guages (Joel et al., 2024; Giagnorio et al., 2025). Pan et al. (2024b) compiled a large dataset of code
translation and found 44.3% of GPT-4-generated code to contain compilation errors. Similarly,
Shetty et al. (2024) report around 25% compilation errors for C-to-Rust translation using OpenAI
o1 models. Our type constraining approach is broadly applicable to all these scenarios. Future work
can consider extending our approach to address these challenges.

Constrained decoding in general requires access to the next-token probability distributions produced
by LLMs. Currently, commercially available black-box LLM APIs only return sampled tokens and
do not offer complete next-token distributions. A possible solution is to integrate our method into
the backend of model providers, as was recently implemented for guaranteeing adherence to JSON
Schemas (Anthropic, 2025; OpenAI, 2025).

D A SIMPLY TYPED LANGUAGE

We define a simply typed, Turing-complete language, LB . Its grammar and type system are generic,
resembling the principles found in popular statically typed languages, such as TypeScript, Java, and
Go. However, there may be a slight bias towards TypeScript, as our implementation is based on it.

Syntax The syntax of LB is shown in Fig. 2. The language includes expressions, type-annotated
variable and function definitions, and control flows. Overall, it is based on a core subset of Type-
Script (Bierman et al., 2014) but can be adapted for other statically typed languages. Similar to
Bierman et al. (2014), we represent Kleene-Star repetitions using an overline, e.g., s represents a
sequence of statements s, and adhere to the TypeScript documentation to annotate parameter types
in function signatures with argument names (Developers, [n. d.]). We make a distinction between
base and extension expressions. The latter applies operators to previous expressions, leading to
more complex expressions. This differentiation is useful later in §2.4 for constructing the prefix
automaton for parsing expressions.

Expression Typing Rules The typing rules for LB’s expressions are detailed in Fig. 6. These
rules form a subset of safeFTS, a type-safe portion of TypeScript described by Bierman et al. (2014),
allowing us to leverage their soundness results. The type rules for LB use the standard concept of a
type environment, denoted as Γ, which is a collection of pairs (x : T ) of identifiers x and types T .
We write Γ ⊢ e : T if the expression e has type T in the type environment Γ. An expression e is
considered valid if its type can be derived by applying the given typing rules.

Literals are evaluated to their respective types (LIT − {NUM, STR, BOOL}). Identifiers x are evalu-
ated based on the corresponding type in the type environment (IDENT). Anonymous functions are
typed according to their annotated parameter types, with the return type determined by the returned
expression (ANON). Grouping preserves the type of the inner expression (GROUP).

Binary operators have predefined signatures S1 ⊙ S2 : T , such as number + number : number for
addition and T = T : T for assignments. These signatures must be satisfied in well-typed expressions
(OP). Function calls require parameters to match the function signature (CALL). The type of member
accesses e.n is determined using an auxiliary function LOOKUP(S, n), which fetches the type of
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member n for type S. An instantiation of LOOKUP for TypeScript is provided by Bierman et al.
(2014).

Statements and Type Environments The typing rules for statements are presented in Fig. 7. Type
environments are modified by statements, in particular variable declarations and function definitions.
We use the notation Γ1 ⊢ s ↣ Γ2 to indicate that after executing statement s in type environment
Γ1, the new environment is Γ2.

Variable declarations introduce the identifier with declared type into the type environment, provided
the identifier is not already defined (DECL). The type environment defines the context to evaluate
expressions (EXPR) and return statements (RET). Return statements are only well-typed inside func-
tion bodies. The statements inside statement blocks and if-then-else statements must maintain valid
type environments, though they do not have an external effect (BLOCK, ITE). This also applies to
function definitions; however, the defined function is finally added to the external type environment
(FUN). Lastly, empty statements do not alter the type environment (NOP), while statement sequences
propagate the type environment along the execution (SEQ).

Return Types The rules for checking return types are presented in Fig. 8. Firstly, return statements
must contain expressions matching the function’s declared return type. Secondly, such an expression
must be returned on every execution path. We use the notation Γ ⊢ s : R to indicate the sequence of
statements s ensures a return value of type R.

For variable declarations and expression statements, the return type of the subsequent statements
is considered (R-DECL, R-EXPR). The return type of a return statement directly corresponds to the
type of the returned expression (R-RET). For statement blocks, the return type is decided by ei-
ther the block itself or the subsequent statements (R-BLOCK-SELF, R-BLOCK-NEXT). In function
definitions, the return type is determined by the type of the subsequent statements, similar to ex-
pression statements. It is additionally required that the function body returns a type matching the
declared return type (R-FUN). For if-then-else statements, both branches must return the same type
(R-ITE-SELF), or the return type is determined by the following statements (R-ITE-NEXT).

Language Definition In summary, a program s is in language LB if both (i) s conforms to the
grammar in Fig. 2 and (ii) s is well-typed according to the typing rules in Figs. 6–8.

E DETAILED PREFIX AUTOMATON DEFINITIONS

In this section, we provide more detailed definitions and analysis of the various automata for LB .

E.1 BASE AUTOMATA

We now provide detailed definitions for the base prefix automata introduced at the end of §2.2:
union, concatenation, Kleene-Star, and terminal.

Union For the union AX ∪AY , we define the resulting sets of initial states and accepting states as
I := IX ∪ IY and F := FX ∪ FY , respectively. The transition function is defined as follows:

δ(q, c) :=

{
δX(q, c) if q ∈ QX

δY (q, c) if q ∈ QY

To show that the language parsed by this automaton is indeed the union L(AX ∪ AY ) = L(AX) ∪
L(AY ), we employ a short helper lemma, which can be shown inductively.

Lemma 6. The set of the reachable states from a set of states q is equal to the union of reachable
states from each state in q, i.e. γ(q, s) =

⋃
q∈q γ(q, s).

Since the states are distinct and we merely combine the transition functions of both automata, using
the lemma, we can quickly see that the language parsed is indeed the union. Moreover, if both AX

and AY are prefix automata, this also holds for AX ∪AY .
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[LIT-NUM]
Γ ⊢ \d+ : number

[LIT-STR]
Γ ⊢ "\w*" : string

[LIT-BOOL]
Γ ⊢ true, false : boolean

[IDENT]
(x : T ) ∈ Γ

Γ ⊢ x : T
[ANON]

Γ ∪ p ⊢ e : T

Γ ⊢ (p) => e : (p) => T
[CALL]

Γ ⊢ f : (x : S) => T Γ ⊢ e : S

Γ ⊢ f(e) : T

[GROUP] Γ ⊢ e : T
Γ ⊢ (e) : T

[OP]
Γ ⊢ e1 : S1 Γ ⊢ e2 : S2 S1 ⊙ S2 : T

Γ ⊢ e1 ⊙ e2 : T
[MEM]

Γ ⊢ e : S LOOKUP(S, n) = T

Γ ⊢ e.n : T

Figure 6: Typing rules for LB’s expressions.

[DECL]
x /∈ Γ

Γ ⊢ let x :T; ↣ Γ ∪ (x : T )
[EXPR] Γ ⊢ e : T

Γ ⊢ e; ↣ Γ
[RET]

inside function body Γ ⊢ e : T

Γ ⊢ return e; ↣ Γ

[BLOCK]
Γ ⊢ sB ↣ ΓB

Γ ⊢ { sB } ↣ Γ
[FUN]

x /∈ Γ Γ ∪ (x : (p) => T ) ∪ (p) ⊢ sx ↣ Γx

Γ1 ⊢ function x (p) :T { sx } ↣ Γ ∪ (x : (p) => T )

[ITE]
Γ ⊢ sif ↣ Γif Γ ⊢ selse ↣ Γelse

Γ ⊢ if (e) sif else selse ↣ Γ
[NOP]

Γ ⊢ •↣ Γ
[SEQ]

Γ1 ⊢ s ↣ Γ2 Γ2 ⊢ s ↣ Γ3

Γ1 ⊢ s s ↣ Γ3

Figure 7: Type environment extension rules for sequences of statements in LB .

[R-DECL] Γ ⊢ s : R
Γ ⊢ let x :T;s : R

[R-EXPR] Γ ⊢ s : R
Γ ⊢ e;s : R

[R-RET] Γ ⊢ e : R
Γ ⊢ return e;s : R

[R-BLOCK-SELF]
Γ ⊢ sB : R Γ ⊢ s

Γ ⊢ { sB } s : R
[R-BLOCK-NEXT]

Γ ⊢ sB Γ ⊢ s : R

Γ ⊢ { sB } s : R

[R-FUN]
Γ ∪ (x : (p => R)) ⊢ s : R′ Γ ∪ (x : (p) => R) ∪ (p) ⊢ sx : R

Γ ⊢ function x (p) :R { sx } s : R′

[R-ITE-SELF]
Γ ⊢ sif : R Γ ⊢ selse : R

Γ ⊢ if (e) sif else selse s : R
[R-ITE-NEXT] Γ ⊢ s : R

Γ ⊢ if (e) sif else selse s : R

Figure 8: LB’s typing rules for function returns.
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Concatenation For the concatenation automaton AXY = AX◦AY , we define I := IX , F := FY ,
and the transition function as follows:

δXY (q, c) :=


δX(q, c) if q ∈ QX\FX

δX(q, c) ∪ δY (IY , c) if q ∈ FX

δY (q, c) if q ∈ QY

Informally, concatenation preserves the parsing behaviour of both AX and AY in their respective
states. When AXY reaches an accepting state of AX and receives another input character, it either
remains in AX or transitions to AY , as defined in the second case of δXY . Essentially, this maintains
outgoing edges from accepting states in AX while adding edges from these accepting states to initial
states of AY .

It follows from a similar argument that L(AXY ) = L(AX) ◦ L(AY ), where L(AX) ◦ L(AY ) is
defined as {sX ◦ sY | sX ∈ L(AX), sY ∈ L(AY )}. We first show L(AXY ) ⊆ L(AX) ◦ L(AY ).
Due to (P1), we can always split any s ∈ L(AXY ) into sX that extends from IX to FX and sY that
extends from IY to FY . Then sX ∈ L(AX) and sY ∈ L(AY ). For L(AX)◦L(AY ) ⊆ L(AX◦AY ),
we pick any sX ◦ sY from L(AX) ◦ L(AY ) and parse it using AXY . We observe that it will first
traverse from IX to FX consuming sX , and then transition through IY to FY by consuming sY .

Moreover AXY is a prefix automaton, if AX and AY are prefix automata and L(AY ) ̸= ∅. Since
AX is a prefix automaton, we can reach FX from any state in QX . From FX we additionally reach
IY ⊆ QY . Since AY is a prefix automaton, we can reach FY for any state in QY . This construction
is a prefix automaton only if IY ̸= ∅, which, due to the prefix property, is equivalent to L(AY ) ̸= ∅.

Kleene-Star We define the Kleene-Star automaton AX that parses indefinite repetitions of words
accepted by X . First, we consider all initial states as final states, i.e., we ensure IX ⊆ FX . Then we
add transitions to the transition function δX from the final states FX back to the initial states IX .

δX(qX , c) :=

{
δX(qX , c) if q /∈ FX

δX(qX , c) ∪ δ(IX , c) if qX ∈ FX

We can quickly see that L(AX) = {s | s ∈ L(AX)}, with the same argument as the concatenation
automaton. Additionally, because the initial states are accepting, the empty word (zero repetitions)
is in L(AX). We similarly see that this is prefix automaton if AX is a prefix automaton. Note that
here L(AX) ̸= ∅ is not required. This is because if L(AX) ̸= ∅, then AX = AX = A∅, which is
still a prefix automaton.

Terminals The terminal automaton AS parses exactly the terminal S. They accept the usual alpha-
bet Σ and feature the states Q := {qs | s is a suffix of S}, F := {qε}, I := {qS}. The transition
function δ is defined as follows:

δ(qs, c) :=

{
{qs'} if c ◦ s' = s

∅ otherwise

Clearly AS is a prefix automaton. We can show inductively that for any s: γ(qs, s') = {qε} ⇐⇒
s = s', and thus L(AS) = {S}. With a simple modification, we introduce AW

s , where W denotes
whitespace characters. The transition function is defined as δ(qWs , c) := {AW

s } if c ∈W ; otherwise,
δ(AW

c◦s, t) := {AW
s }. This allows arbitrary whitespaces before parsing s. This is how we implement

syntactic indifference to whitespace between terminals.

Notational Details In the following, we will implicitly assume that δ(q, c) = ∅ if not explicitly
defined otherwise, making notation more concise. For any state, we access the following information
through dot notation or the special notation on the state, which we assume is passed to subsequent
states through the transition function (unless otherwise stated). This information is alternatively
passed through to entire automata in composite automata, e.g., in AXY from AX to AY .

• q ↓ T : Type T to which state q is constrained (introduced in more detail later).

• q ∈ FX : Whether state q is an accepting state of the automaton AX .

• q.Γ: The type environment based on state q currently being parsed.
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• q.LHS: The left-hand side expression of an extending expression represented by state q, i.e.,
when extending X with Y and currently parsing qY , then qY .LHS = X .

• q.TYP: The described type of the last coherent expression that this state belongs to. This is only
defined for accepting states. Generally, we ensure that when some expression e was parsed, the
corresponding state qe has attribute qe.TYP such that qe.Γ ⊢ e : qe.TYP.

When accessing the properties of A, we access the property of the current state of the automaton
q ∈ Q, e.g., A.LHS = q.LHS. For parsed automata, the current state is the final, accepting state.

E.2 EXPRESSIONS

Expressions are parsed using recursive automatons as introduced in §2.4. In this part of the appendix,
we describe in more detail how information is passed between states, using the additional properties
of states introduced in App. E.1.

In the case of expressions, the TYP attribute expresses the type of the expression parsed so far. In
expression states q, we leverage the LHS to accurately determine q.TYP.

qSTR.TYP := string

qNUM.TYP := number

qBOOL.TYP := boolean

qx.TYP := T where qx.Γ ⊢ x : T

q(p)=>e.TYP := (Ap.TYP) => Ae.TYP

q(e).TYP := Ae.TYP

q⊙e.TYP := R, for q⊙e.LHS.TYP = S,Ae.TYP = T and S ⊙ T : R

q(e).TYP := T, for q(e).LHS.TYP = (p) => T

q.n.TYP := T, for LOOKUP(q.n.LHS.TYP, n) = T

Unrestricted Expressions The left-hand side of the currently parsed expression is used in the def-
inition of automata for three extending expressions; arithmetic operators, function call, and member
access. The arithmetic operator automaton constrains its states to those with valid operators, i.e.:

A⊙e :=
⋃

∃R:A⊙e.LHS.TYP⊙T=R

A⊙(◦Ae ↓ T )

For function call, the automaton is only valid if the left-hand side is a function, and accepts only the
valid signature.

A(e) :=

{
A( ◦ (Ae ↓ Ap.TYP) ◦A) if A(e).LHS.TYP = (p) => T

A∅ otherwise

Finally, the member access automaton is a union of the automata that parses the attributes of the
left-hand side expression. Or formally,

A.n :=
⋃

∃T :LOOKUP(A.n.LHS.TYP,m)=T

A.m.

Type-Restricted Expressions The type restricted versions of the automata are all covered by the
definition presented in §2.4. Note that the DERIVABLE function presented in Tab. 1 implicitly lever-
ages access to qs.LHS = e when accessing the expression e in the extension expressions.

E.3 PRUNING THE TYPE SEARCH

In this section, we present our heuristic for pruning the type search recursion from §2.4, i.e., our
implementation of PRUNESEARCH at L. 6 of Alg. 2. The heuristic is based on the complexity and
novelty of candidate types to explore.
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.toString

operator ==

operator +

.valueOf

call ()

.toString

.length

call ()

number () =>
string

() =>
number boolean

string

Figure 9: An example search through the graph for type reachability, starting from T = number with
the goal string, e.g., after parsing let x : string; x = 1. States and edges along the final path are
marked in green and explored nodes in blue . The () => number node is not explored, as complex
types are avoided by our heuristic. The node () => string is explored as it enables reaching new
type string.

Based on the assumptions about the LOOKUP function and operators in §2.1, we observe a restriction
in the reachable types by extensions: From any given type, we reach itself, result types of arithmetic
operators via OP, return types through CALL, and member types through MEMBER. A higher-order
type () => T does not allow access to types not reachable from T . Consequently, we avoid exploring
such higher-order types unless the target type is of higher order, or the higher-order type offers novel,
yet unexplored types. For instance, in Fig. 9, the type () => number is not explored, because it is
more complex than both the initial and goal types, number and string, and does not contain any
unexplored type.

To formalize this understanding, we introduce the concepts about the depth and root types of a
given type, denoted as DEPTH and ROOT, respectively. DEPTH measures the complexity of a type,
specifically the order of a function, while ROOT returns all types of minimal depth (e.g., string,
number, and boolean) that constitute a higher-order type. They are defined as follows:

DEPTH(T ) :=

{
DEPTH(S) + 1 if T = (p) =>S,
0 otherwise.

ROOT(T ) :=

{
ROOT(S) if T = (p) =>S,
{T} otherwise.

We leverage DEPTH and ROOT to implement PRUNESEARCH(T,G, S) for a current type T , a goal
type G, and a type S after an extension is applied on T . In general, if G is not directly accessible
from T , it will also not be accessible from expressions with the same root types but greater depth,
such as () ⇒ T . When G is of higher order, exploring up to the depth of G can be required,
such as when G = () => (() => number). Based on these two ideas, we stop exploring S when
DEPTH(S) > max(DEPTH(G), DEPTH(T )).

Further, if a higher-depth function returns an unexplored type, we need to explore it. Sticking to the
example in Fig. 9, type number has the member toString of type () => string. The type string
can only be reached by exploring the member access at depth 1. On the contrary, we do not explore
a higher-depth function if it does not introduce novel types other than explored. To achieve this, we
adapt Alg. 2 to additionally define a set of root types R, which is initialized to an empty set and is
updated by R = R ∪ ROOT(T ). We do not explore S if ROOT(S) ⊆ R.

Taking the conjunction of the aforementioned two aspects, our pruning heuristic is implemented as
PRUNESEARCH(T,G, S) := DEPTH(S) > max(DEPTH(T ), DEPTH(S)) ∧ ROOT(S) ⊆ R. The
restrictions based on depth and root types are based on the results of the rigorously analyzed search
over succinct types by Gvero et al. (2013). This provides a robust heuristic for exploring as many
relevant inhabitable types as possible. However, due to the additional complexity introduced by the
lookup function, we can not guarantee completeness and instead refer to the strong empirical results
in our evaluation in §3 as evidence of the search’s high coverage.

E.4 IMPLEMENTATION OF DERIVABLE

Recall that in Tab. 1, DERIVABLE for function expressions are defined as: DERIVABLE(q(p) => e) =
{(p) => T | REACHABLE(DERIVABLE(qe), T )}. This involves constructing a type reachability
graph and collecting all T types reachable from DERIVABLE(qe). However, this process is in-
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tractable because T can be of arbitrarily high-order, as such there are infinitely many T to explore.
A similar issue exists for grouped expressions, as their DERIVABLE function is also defined to enu-
merate reachable types. We introduce two optimization heuristics to address this problem.

We first observe that DERIVABLE is always called within the context of an invocation of REACHABLE
with target type G, e.g., REACHABLE(DERIVABLE(q(p) => e), G) for function expressions. To
compute DERIVABLE(q(p) => e), we enumerate all types present on the type graph represented by
REACHABLE(DERIVABLE(qe), G), which is finite with due to application of the pruning heuristics
in App. E.3. In other words, we bound the maximum complexity of considered types T using the
pruning heuristic for reachability of target type G. This leads to a sound but potentially incom-
plete version of DERIVABLE. However, since the final goal is to reach G, this heuristic provides a
practically useful set of all relevant derivable types.

Second, we observe that the resulting two-tiered call REACHABLE(DERIVABLE(q(p) => e), G) can
be integrated into a single call to further reduce the amount of explored types. Concretely, when
discovering some type M in REACHABLE(DERIVABLE(qe), G), as per the previous heuristic, we
allow transitioning directly to REACHABLE((p) => M,G) to allow a depth-prioritizing exploration
of the search graph. This allows us to efficiently discover a path to G if it exists.

E.5 STATEMENTS

We define the remaining automata to capture the complete language from §2.1. To correctly handle
function return types, we pass on related information when entering function bodies:

• q.R: The expected return type of the current state q.
• q.RETURNED: Whether the currently parsed program block has returned in all branches.
• q.MUSTRETURN: Whether the currently parsed program block must return (i.e., If-Then-Else

branches do not need to contain return statements even if a return type is expected of the sur-
rounding code block).

The single statement automaton is another recursive definition, since some statements, e.g., If-Then-
Else, can themselves contain statements. The statement automaton is defined recursively as As :=
ADECL ∪ AEXPR ∪ ARET ∪ ABLOCK ∪ AFUN ∪ AITE. The expression statement automaton and block
automaton are simply defined as AEXPR := Ae; and ABLOCK := A{s}. The declaration automaton
ADECL := Alet x:T ; captures variable names x using an automaton for non-existing identifiers, which
works the same way as Ax except that it rejects terminals that match an existing variable. This
automaton is a prefix automaton as well, since indefinite additional characters can be added to the
variable name and there are only finitely many defined variables. The If-Then-Else automaton is
defined using standard concatenation: AITE := Aif(e) s else s. The statements automaton As, based
on the Kleene-Star automaton definition and the single statement automaton. Return statements are
only non-empty when the expected return type is set, i.e. when parsing inside a function:

ARET :=

{
Areturn ◦Ae ↓ T if ARET.R = T

A∅ otherwise

For functions, the automaton is based on the standard concatenation AFUN = Afunction x (p) : T {s}.
However, the transition function updates the states of the statement automata inside the function:

• q.R = T , i.e., the return type of these statements is set to the return type of the function. This
value is propagated recursively to all sub-automata.

• q.MUSTRETURN = true, for the outermost statement block automaton. It is set to false for
deeper nested statement blocks and as soon as a parsed statement X has qX .RETURNED set to
true - i.e. one of the main body statements returned in every branch.

• q.RETURNED = false, per default in every statement, except a) in return automata, b) inside
a multi-statement automaton where the previous statement has RETURNED = true and c) in
ITE-automata where both branching statements have RETURNED = true.

As long as a state q in a multi-statement automaton has X.RETURNED = false and
q.MUSTRETURN = true, it can not accept but instead forces the generation of another statement.
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Since we can always express the requested type through literals and can always simply generate a
return statement to fulfill this requirement, the prefix automaton property is not violated.

Tracking Type Environments Generally, we follow the typing rules in Fig. 7. Identifiers are
passed on through all state transitions, matching the rule SEQ, where the type environment of con-
secutive statements needs to be compatible. However, in the cases of BLOCK, ITE and FUN, we
discard the local type environment after parsing, matching the respective typing rules. In FUN addi-
tionally, the function signature and parameters are added into the type environment of the function
body automaton.

F EXTENSION TO TYPESCRIPT

We extend our completion engine described in §2 to handle a core subset of modern TypeScript. In
this section, we selectively discuss the implementation of interesting language features. We provide
a complete list of supported features in Tab. 8 of App. G.

Constant Variable Declarations In addition to variable declaration using let, TypeScript sup-
ports constant declarations using const. This defines immutable identifiers. We thus additionally
track mutability of each identifier in the type environment and disallow applying the assignment
operator to immutable identifiers.

Arrays We add support for array type annotation, parsing array expressions, and reading from
and assigning to array fields. In array expressions, we enforce that all array elements have the same
type. Moreover, array types introduce another dimension of type nesting. Therefore we adapt the
type reachability pruning heuristic to handle this additional dimension to ensure termination.

Loops TypeScript supports various loop constructs, including for, while, do-while, and
for...of loops. These are implemented mostly as variations of the statement block parser. The
for...of loop uniquely constrains the right-hand side of the ...of operator to an array of any type.
To adapt the type search, we introduce a generic array type •[], which matches any array type. For
example, both types number[] and string[] match •[] in L. 2 of Alg. 2.

Additional Operators and Types We add several arithmetic and logic operators, such as modulo
%, exact equality ===, logical or ||, and the ternary operator ?:. To handle these operators, we add
additional edges to the type search graph. Moreover, we add support for post- and prefix operators
such as -- and ++, which are only valid extensions to mutable expressions.

Operator Precedence TypeScript defines an operator precedence, which determines the implicit
grouping of expressions. For example 1 + 2.toString() is parsed as 1 + (2.toString()). We
adapt our expression parsing algorithm in two places to handle operator precedences. First, in the
expression automaton, we leverage the knowledge about previously parsed extensions to determine
the implicit grouping and thus where the next operator is applied. For example, for state q1 + 2,
the member access extension .n is applied to 2, as opposed to 1 + 2. Second, we adapt the type
search in Alg. 2. Concretely, we ensure that only extensions that can be validly applied based on
operator precedence are iterated over. For this, we track the operator precedence of previously parsed
extensions and extensions considered during the traversal of the type graph and omit operators in
L. 5 that violate operator precedence.

Global Identifiers and Imports In TypeScript, many identifiers are defined globally and available
in any execution. These global identifiers are incorporated by initializing the type environment of
the program automaton accordingly. Identifiers such as Math introduce additional types, which we
additionally implement. We also model the import of the crypto library using require.

Polymorphic Built-In Members The TypeScript LOOKUP implementation defines a few poly-
morphic members for built-in types. For example, for array x of type T[], x.map(f) takes a callback
function f and returns a new array [f(x[0]), f(x[1]), ...]. If f has type (T) => P, the returned
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array has type P[]. Here P is a type parameter, which is instantiated by matching the type of the
passed function to the type pattern.

We support such polymorphisms by adapting the type search. We track type patterns and enforce that
type parameters are instantiated before the goal type is reached. We then continue the search from
the instantiated version. In the map example, when searching completions of x.map, we first search
for functions that instantiate the type parameter, and then continue the search from the instantiated
type. When anonymous functions are generated as call parameters, we enforce that the function
matches the searched type pattern.

Mandatory Type Annotation TypeScript is designed to be flexible, allowing many type annota-
tions to be omitted when they can be automatically inferred. While this is generally beneficial, such
as inferring types from initial values, it can lead to unexpected types when annotations are omitted,
often confusing even experienced developers (nop33, 2024; Various, 2024). Moreover, in the con-
text of LLM-based code generation, having more type annotations can provide valuable information
for both the model and our type constraining algorithms. We have identified three situations where
generated code often fails to compile without type annotations, prompting us to enforce them. First,
we require annotations for all function parameters and return types. Second, all variable declarations
must either have a type annotation or be initialized with a value. Third, we enforce type annotations
for the first parameter of anonymous functions used as callbacks in the polymorphic built-in member
reduce. These constraints trade-off practical correctness with theoretical language completeness.

G DETAILS ABOUT EXPERIMENTAL EVALUATION

In this section, we detail how executable code is extracted from the model responses and a slight
modification to the decoding algorithm used, that increases throughput heuristically.

Implementation Details Our implementation is written in Python and contains 11249 lines of
code. To ensure robust implementation, we built a large set of around four hundred unit tests and
frequently compared the behaviors of our implementation with the official TypeScript compiler (Mi-
crosoft, 2024).

We have two main external dependencies. To implement the regular-expression-based literal au-
tomata, we leverage the regex library,3 as it allows checking if the current string can be completed
to match a regular expression. To implement LLM inference, we leverage the transformers library.4
We provide an exhaustive list of supported features and unsupported features of the TypeScript lan-
guage in our final implementation in Tab. 8.

Hyperparameters We run the models on A100 NVidia GPUs with 80GB of VRAM. We use
CUDA 12.4 and the Hugging Face library. We set the sampling temperature to 1. We set seeds
to 0 to 4 on the four HumanEval runs and 0 on the one MBPP run respectively. We limit the
completions to 1000 tokens and time out after 300 seconds. We compute syntactic correctness using
the Oxidation toolchain (oxc project, 2024) as the TypeScript Compiler does not clearly distinguish
between syntactic and semantic errors.

Excluded MBPP Instances We discovered that a number of TypeScript translations contained
invalidly generated nested tuples. After reporting them to the developers, they have been resolved in
the latest version of MBPP and we include them in our evaluation. Still, we find that the TypeScript
translation of a number of MBPP instances contains too broad type annotation, annotating elements
as any or array of any. We therefore exclude the following 6 instances from the evaluation:

• mbpp_405_check_tuplex

• mbpp_563_extract_values

• mbpp_580_extract_even

• mbpp_612_merge

3https://pypi.org/project/regex/
4https://huggingface.co/docs/transformers
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Table 8: Supported and Missing TypeScript Features

Supported TypeScript Features Examples

Expressions, Statements, Function Declarations (LB as introduced in §2)
Additional Literals: BigInt, Regex, Template Strings 10n, /\d*/, ‘hello ${user}‘
Additional Types: void, null, undefined void, undefined, null
Index Signature Types and Literals let x: {[y: number]: string} = 1: "hi";
Anonymous Functions function (): bool {return true}
Lambda Functions with and without Function Bodies x => {return y}, x => y
Ternary and LogicOperators ? :, ||, &&
Arithmetic and Boolean Operations +, -, **, &, !
Assigning Pre-and Postfix Operators ++, --
Arrays [1, 2, 3]
Access and Assignment to Computed Members x[10] = y[i];
Constructors and "new" Calls let x = new Number(1);
Calls with Optional and Rest Parameters function foo(x?: number, y...: string)
Sets and Maps Map<string, number>()
Parameterized Constructor Calls new Set<string>()
Tuples let x : [int, string] = [1, "hello"];
Optional Chaining x.get("hi")?.get("world")
Spread Operator [...xs]
Type Assertions "hello" as any
For Loops for(int x = 0; i < 10; i++)
For Of Loops for(x of xs)
For Of Loops with Tuple Destructuring for([x, y] of xys)
Do-While and While Loops while (true) {...}
Typed and Untyped Variable Declarations let x: number = 1; let y = 100;
Comments, Multiline Comments // Comment
Returning without Expressions return;
Try-Catch Statements with a Fixed Exception Type try { ... } catch (e) { ... }
Throw Statements throw new Error("...")
Importing the crypto Library require("crypto")
Global Scope Objects Math, parseInt
Automatic Semicolon Insertion

Missing Features Examples

General Library Imports require("example")
Use of Functions Before Declaration
For In Loops for(x in y)
Type Declaration
User-Defined Classes
Declaration and Parameterized Call of General Parameterized Functions
Destructuring Assignment [x, y] = z
Uninitialized, Unannotated Variable Declarations let x;
Return Type Inference
Literal Types
Enums
Symbols
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• mbpp_725_extract_quotation

• mbpp_791_remove_nested

Complete Prompts We provide the complete prompts to the language models for the settings
synthesis, translation, and repair. The prompts are templates, instantiated with the prompt from
the Multipl-E dataset (Cassano et al., 2023). Since the models were instruction tuned, there are
various formats for the chat template. We therefore provide the prompts on a high level. The system
prompt has been prepended to the first user prompt where no system prompts were available. The
model instruction is the comment preceding the problem in the original benchmark presentation.
To match the chat interaction template, we remove the comment prefix // and insert it as a user
prompt. Sample test cases are preserved when present. The model completion starts from a pre-
filled assistant response. The prompts for synthesis and translation are presented in Figs. 11 and 12.

In the repair setting, we add the model output, annotated with line numbers, as assistant output and
use a second turn to pass back compiler outputs as demonstrated in Fig. 13. Compiler errors contain
line numbers for localization, which is why we annotate the output with line numbers.

We find that Qwen2.5 32B tends to always generate test cases, which lead to errors during compila-
tion. We therefore append the sentence Do not include test cases in the code. to its prompt.

Executable Code Generation and Extraction When generating code, we employ two techniques
to speed up generation and extract the generated code. First, we stop generation after encountering
a closing code-fence (```). This drastically reduces generation time, as the model usually continues
to generate some explanation or additional code that is irrelevant to our evaluation. Then we try to
extract the generated function and all relevant subsequent function definitions.

We found that unconstrained models frequently generate non-compiling code caused by generated
unsolicited demonstrations and additional test cases. In order to remove them and decrease such
irrelevant compilation errors for unconstrained generation, we try to detect and extract the relevant
code snippet.

Concretely, we first extract the corresponding TypeScript code block (i.e., ```typescript...```),
or do not cut off if the block is not closed. Inside the code block, we cut off after the closing curly
brace of the last balanced pair of curly braces, if it is followed by a newline or semicolon. This
determines the last statement block generated, and avoids cutting off, e.g., inside a template literal.
Again, if no such case is found, we do not prune the output. We demonstrate the operation of this
cutoff algorithm in Fig. 10.

H CASE STUDY FULL OUTPUTS

In this section, we provide the full outputs of the examples shown in the case study in Figs. 14, 15a,
15b and 16. Details about the functionality for each instance are provided in the respective captions.
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1 ```typescript
2 function next_smallest_palindrome(num: number): number {
3 const numStr = num.toString();
4 const reversedNumStr = numStr.split('').reverse().join('');
5 let min = Math.min(Number(numStr), Number(reversedNumStr));
6

7 if (min === Number(numStr)) {
8 return Number(numStr);
9 } else {

10 return parseInt(min.toString() + 1);
11 }

12 }

13

14 const findNextSmallestPalindrome = next_smallest_palindrome(12321);
15 console.log(findNextSmallestPalindrome); // Output: 12322

16 ```
17

18 **Explanation**
19

20 1. **Input:** The function takes a number as input (`num`) in the given criteria.
21 ...

Figure 10: The code generated by Gemma 2 2B for MBPP #0. The cutoff algorithm first extracts
the fenced code, last line marked in blue . To avoid the usage of the console object from the
browser extension of TypeScript in the generated examples, we further cut off after the last code
block, marked in red .
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System:

You are an expert in TypeScript programming. Solve the given problem by writing solution code in TypeScript.

When answering, insert the solution code in a ```typescript...``` block.

Do not include test cases in the code.

User:

Check if in given array of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

false

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

true function

Assistant:

```typescript
function has_close_elements(numbers: number[], threshold: number): boolean {

Figure 11: The full prompt for the synthesis setting. Text in green is based on the problem instance,
in this case HumanEval #0. The red sentence is only added for Qwen2.5 32B due to its tendency to
include non-compiling test cases.

System:

You are a helpful and expert programmer in Python and TypeScript. You will be given an input program in Python and your task is

to translate this program into TypeScript. You may assume that the input program is correct and that the translation should be

semantically equivalent.

When answering, insert the solution code in a ```typescript...``` block.

Do not include test cases in the code.

User:

The following is the source program in Python:

```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

```

Please translate the source program to TypeScript.

Assistant:

```typescript
function has_close_elements(numbers: number[], threshold: number): boolean {

Figure 12: The full prompt for the translation setting. Text in green is based on the problem instance,
blue is the original Python canonical solution, in this case HumanEval #0. The red sentence is only
added for Qwen2.5 32B due to its tendency to include non-compiling test cases.
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System:

You are an expert in TypeScript programming. Solve the given problem by writing solution code in TypeScript.

When answering, insert the solution code in a ```typescript...``` block.

User:

Given an array of positive integers x. return a sorted array of all

elements that hasn’t any even digit.

Note: Returned array should be sorted in increasing order.

For example:

»> unique_digits([15, 33, 1422, 1])

[1, 15, 33]

»> unique_digits([152, 323, 1422, 10])

[]

Assistant:

```
001: function unique_digits(x: number[]): number[] {

002: const filteredArray: number[] = []; // initialize empty array

003: for (let i = 0; i < x.length; i++) {

004: let strx = "" + x[i];

005: let filteredStr = strx

006: .toString()

007: .split("")

008: .filter((digit) => parseInt(digit) % 2 !== 0);

009: if (filteredStr.length > 0) {

010: filteredArray.push(...filteredStr);

011: }

012: }

013: return filteredArray.sort((a, b) => a - b);

014: }

```

User:

This output produced an error:

../../../../../tmp/tmpaewlckfv.ts(10,26): error TS2345: Argument of type ’string’ is not assignable to parameter of type

’number’.

Write the program again, and make sure to fix the error this time.

Assistant:

```typescript
function unique_digits(x: number[]): number[] {

Figure 13: The full prompt for the repair setting. Text in green is based on the problem instance, red
is model output from the synthesis step, blue is compiler output. In this case HumanEval #104 and
Gemma 2 2B on its own previous output. Generations from the synthesis step are annotated with
line numbers to aid localizing the compiler error.
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1 function select_words(s: string, n: number): string[] {
2 const result: string[] = [];

3 for (const word of s. split() ) {

4 let nConsonants = 0;
5 for (let i = 0; i < word.length; i++) {
6 const char = word[i].toLowerCase();
7 if (!['a', 'e', 'i', 'o', 'u'].includes(char)) {
8 nConsonants++;
9 }

10 }
11 if (nConsonants === n) {
12 result.push(word);
13 }
14 }
15 return result;
16 }

(a) The code generated by the unconstrained Gemma 2 2B when translating a Python solution. The model tries
to call the split member of a string object without parameters. This is legal in Python but not allowed in
TypeScript.

1 function select_words(s: string, n: number): string[] {

2 const result: string[] = [];

3 for (const word of s. split(' ') ) {

4 let nConsonants = 0;

5 for (let i = 0; i < word.length; i++) {

6 const letter = word[i].toLowerCase();

7 if (!['a', 'e', 'i', 'o', 'u'].includes(letter)) {

8 nConsonants++;

9 }

10 }

11 if (nConsonants === n) {

12 result.push(word);

13 }

14 }

15 return result;

16 }

(b) The code generated by Gemma 2 2B with type constraints. The constraint guides the model and help it
generate the required argument to split, which determines the characters around which to split the string.

Figure 14: Comparison between the function generated by unconstrained Gemma 2 2B (Team et al.,
2024) and the code generated with the guidance of type constraints on the problem select_words
in HumanEval (Chen et al., 2021). This problem requires a function that selects words from a given
list that contain a specified number of consonants.
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1 function largest_divisor(n: number): number {
2 for(let i = n - 1; i > 0; i--) {
3 if(n % i === 0) {
4 return i;
5 }
6 }

7 }

(a) The code generated by the unconstrained Deepseek Coder 33B Instruct. The function loops over all numbers
smaller than n to determine the largest divisor. Even though functionally correct for positive numbers, this
function returns undefined when the return statement in the loop is never called (e.g., for negative inputs),
violating the type system rules.

1 function largest_divisor(n: number): number {
2 for(let i = n - 1; i > 0; i--) {
3 if(n % i === 0) {
4 return i;
5 }
6 }

7 return 1; // Return 1 if no such divisor found

8 }

(b) The code generated by Deepseek Coder 33B Instruct with type constraints. The system ensures that every
path returns a value matching the annotated type. This forces the LLM to generate another line after the loop,
and the model correctly chooses to generate a fallback return statement.

Figure 15: Comparison between the function generated by the unconstrained DeepSeek Coder 33B
Instruct (Guo et al., 2024) and the code generated with the guidance of type constraints on the
problem largest_divisor in HumanEval (Chen et al., 2021). The problem asks to compute the
largest divisor of a given number.
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1 function intersperse(numbers: number[], delimeter: number): number[] {

2 return numbers.reduce(( acc , curr, index) => {

3 acc.push(curr);
4 if (index < numbers.length - 1) {
5 acc.push(delimeter);
6 }
7 return acc;
8 }, []);
9 }

(a) The code generated by the unconstrained Gemma 2 9B. The code uses the reduce member of arrays in
TypeScript. The reduce member is a generic function that accepts a callback as first argument. This callback
has three parameters: An accumulator, a current value and an index. The types of the second and third parameter
are fixed to the element type of the callee array and number. The first argument type of the callback function is
automatically inferred from the type of the second argument to the reduce function, in this case an empty array.
The type of this array is never[], a special type denoting arrays without members. Since we can assign this type
to the callee type number[], the accumulator paramter obtains type never[]. However, calling push on this type
results in a type violation as the pushed value of type number is not compatible with the inferred element type
never. This issue is well known in TypeScript and even human developers frequently stumble upon this issue
(Various, 2024; nop33, 2024)

1 function intersperse(numbers: number[], delimeter: number): number[] {

2 return numbers.reduce(( acc: number[] , num: number, index: number) => {

3 if (index > 0) {
4 acc.push(delimeter);
5 }
6 acc.push(num);
7 return acc;
8 }, []);
9 }

(b) The code generated by Gemma 2 9B (Team et al., 2024) with type constraints. We force the model to
generate type annotations for the callback function in reduce and thus enable the model to generate the correct
type annotation and avoid the issue in the unconstrained code.

Figure 16: Comparison between the function generated by the unconstrained Gemma 2 9B
(Yang et al., 2024) and the code generated with the guidance of type constraints on the problem
intersperse in HumanEval (Chen et al., 2021). The task in this problem is to insert a delimiter
number between consecutive elements of an input list.
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