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OursCondition

Five 
LEGO
dogs.

default cond. low cond.

Previous Methods

OursCondition

A jade-
like dog.

default cond. low cond.

Previous Methods

default cond.

default cond.

(a) Input-Level Conflict: Text requires LEGO structure vs. Condition image requires real-dog structure.

(b) Model-Bias Conflict: Text requires jade-like surface vs. Model-Bias favors real-dog texture.

Ours

default cond. low cond.

Previous Methods

(c) More examples achieving dual alignment between text prompts and conditioning inputs.

Condition Condition

Condition

A dragon.

An ice sword.

Previous Methods Ours

default cond. low cond. default cond.

default cond.

Figure 1: Qualitative comparison on cases with conflicting text and condition. We first introduce
two conflicts between the text prompt and conditioning input: (a) Input Level Conflict and (b) Model
Bias Conflict, which hinder model controllability. We then propose a solution that resolves both,
generating images that satisfy both the text and the condition. “default cond.” means using its
default condition constraint scale, while “low cond.” means using a lower condition constraint
scale. (c) Our method also enhances the alignment between text and abstract conditions such as
style condition, and supports generation with multiple conditions combined with text prompts.

ABSTRACT

Conditional image generation augments text-to-image synthesis with structural,
spatial, or stylistic priors and is used in many domains. However, current methods
struggle to harmonize guidance from both sources when conflicts arise: 1) input-
level conflict, where the semantics of the conditioning image contradict the text
prompt, and 2) model-bias conflict, where learned generative biases hinder align-
ment even when the condition and text are compatible. These scenarios demand
nuanced, case-by-case trade-offs that standard supervised fine-tuning struggles
to deliver. Preference-based optimization techniques, such as Direct Preference
Optimization (DPO), offer a promising solution but remain limited: naive DPO
suffers from gradient entanglement between text and condition signals and lacks
disentangled, conflict-aware training data for multi-constraint tasks. To overcome
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these issues, we propose a self-driven, bidirectionally decoupled DPO framework
(BideDPO). At its core, our method constructs two disentangled preference pairs
for each sample—one for the condition and one for the text—to mitigate gradient
entanglement. The influence of these pairs is then managed by an Adaptive Loss
Balancing strategy for balanced optimization. To generate these pairs, we intro-
duce an automated data pipeline that iteratively samples from the model and uses
vision-language model checks to create disentangled, conflict-aware data. Finally,
this entire process is embedded within an iterative optimization strategy that pro-
gressively refines both the model and the data. We construct a DualAlign bench-
mark to evaluate a model’s ability to resolve conflicts between text and condition,
and experiments on commonly used modalities show that BideDPO delivers sub-
stantial gains in both text success rate (e.g., +35%) and condition adherence. We
also validated the robustness of our approach on the widely used COCO dataset.
All models, code, and benchmarks will be released to support future work.

1 INTRODUCTION

Conditional image generation (Zhang et al., 2023; Li et al., 2024; Liu et al., 2024; Zavadski et al.,
2024) augments text-to-image synthesis with auxiliary constraints (e.g., structural or spatial priors)
and is now widely used in digital art, design, and related workflows. However, real-world use with
complex prompt–condition pairs reveals a fundamental yet underexplored challenge: reconciling
guidance from the text prompt with the conditioning input. In this work, we are the first to ex-
plicitly identify this problem and propose a solution. Specifically, we highlight two recurrent
conflicts that undermine model controllability: 1) Input-Level Conflict. When the condition image
contains strong semantics that contradict the user prompt, current models often fail to balance these
competing sources of guidance. As shown in Fig. 1(a), under the official default setting, models typ-
ically prioritize the condition image, resulting in outputs that closely replicate its semantics while
neglecting the prompt. Conversely, weakening the influence of the condition allows the model to
better follow the text, but often at the expense of spatial or structural consistency. 2) Model-Bias
Conflict. Modern conditional generation models possess strong generative bias—that is, given a
particular condition input, the model tends to produce outputs consistent with its learned biases. As
illustrated in Fig. 1(b), even when the condition and text are theoretically compatible, a mismatch
between the model’s prior and the prompt can lead to poor adherence to the textual guidance.

Addressing the above conflicts requires the model to effectively navigate trade-offs between the
condition input and the text prompt, for which no universally optimal solution exists. In this context,
rather than directly providing the model with fixed “correct” outputs through supervised learning, a
more flexible and effective alternative is to guide the model using preference data—examples that
reflect human judgments over competing outputs. Motivated by this, we adopt the Direct Preference
Optimization (DPO) (Rafailov et al., 2023) approach, which has been shown to effectively align
model outputs with human preferences in both large language models and standard text-to-image
generation, and apply it to train our model to better resolve conflicts between condition inputs and
text prompts based on preference data.

However, introducing DPO into the image-conditioned generation task proves to be highly non-
trivial, presenting two major challenges. 1) Naive DPO fails to achieve balanced alignment of
both constraints. In naive DPO, a single preference pair is used for each example. To jointly im-
prove both condition and text alignment for each case, it is necessary to set the positive sample to
satisfy both constraints and the negative sample to satisfy neither (Fig. 2(a)). However, we observe
that the model often prioritizes the condition input while neglecting the text, especially when these
guidance signals conflict (see Fig. 5). This limitation stems from gradient entanglement, as the cou-
pled learning signals obscure the optimization direction for the weaker constrain, making it difficult
for the model to balance and improve both constraints simultaneously. 2) Lack of Disentangled,
Conflict-Aware Preference DPO Data: To the best of our knowledge, there are no established DPO
datasets tailored for conditional image generation, especially for scenarios where the condition input
and text prompt provide conflicting or competing guidance. This data gap significantly limits the
exploration and benchmarking of preference-based optimization in multi-constraint settings.
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Figure 2: Comparison between vanilla DPO and our bidirectionally decoupled DPO for condi-
tional image generation. a) Vanilla DPO uses coupled preference pairs, so its gradients can become
ambiguous or even vanish when text and condition are not aligned together. b) BideDPO separates
the learning signals for text and condition and adaptively balance them. This provides clear, adaptive
gradients for each requirement, allowing the model to achieve better multi-constraint alignment.
To overcome these challenges, we propose a self-driven, bidirectionally decoupled DPO frame-
work tailored for image-conditioned generation. Our framework consists of three key components:
1) Bidirectionally decoupled DPO algorithm (BideDPO): As shown in Fig 2(b), unlike naive
DPO, our method constructs two decoupled preference pairs per example—one for condition fidelity
and one for text adherence—used simultaneously during optimization. An adaptive loss balancing
strategy further ensures balanced progress on both objectives, preventing the model from collapsing
toward a single constraint. This decoupling, combined with dynamic loss adjustment, enables the
model to better handle conflicts between the two constraints and achieve a more effective trade-
off. 2) Automated Construction of Disentangled and Conflict-Aware DPO Preference Data: As
shown in Fig. 3, we address the lack of suitable DPO data by introducing an automated pipeline
that iteratively samples from the current model and uses vision-language model (VLM) checks to
construct high-quality positive and negative samples for both text and condition branches. These
datasets include numerous instances where the text and the condition are in conflict. 3) An iterative
optimization strategy: Our framework naturally supports iterative refinement because the genera-
tor itself produces the preference data used for training. As shown in Fig. 4, we alternate between
generating preference pairs with the current model and optimizing it with BideDPO. Each round
leverages the improved generator to produce higher-quality data, creating a self-reinforcing loop
that progressively enhances both model performance and data quality.

We construct a DualAlign benchmark to evaluate how state-of-the-art conditional image generation
methods handle conflicts between the conditioning input and the text prompt. Experiments are con-
ducted across standard conditioning modalities. Results show that our method markedly improves
the text success rate (SR) and adherence to the conditioning signal over strong baselines—for ex-
ample, on FLUX-Depth it boosts text SR by 15% and reduces the conditional MSE by 87.7 points.
We also validate robustness on the standard COCO benchmark (Lin et al., 2015; Zhang et al., 2025):
even with standard prompts, our approach delivers substantial gains over the original model, e.g., a
15% improvement for canny-conditioned generation. Furthermore, our iterative optimization strat-
egy proves effective: as the number of iterations increases, the model consistently achieves better
trade-offs between conditioning and text, yielding steady performance gains.

We summarize our contributions as follows:

• To the best of our knowledge, this work is the first to formally formulate and systematically ana-
lyze the text–condition adherence conflict in conditional image generation. We propose BideDPO,
an effective DPO algorithm that reconciles conflicts between condition inputs and text prompts.

• We propose an automated pipeline that produces disentangled condition–text preference pairs. It
easily extends to other tasks and supports iterative optimization, improving both model and data.

• We construct a DualAlign Benchmark for evaluating a model’s ability to handle conflicts between
condition inputs and text prompts, and the results highlight the effectiveness of our approach.

2 RELATED WORK

Conditional Image Generation. With the rapid advancement of image generation technol-
ogy (Rombach et al., 2022; Podell et al., 2023; Rombach et al., 2023; Esser et al., 2024), current
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models are now capable of producing highly realistic images. As a result, a key research focus
has shifted toward enabling more conditional image generation (Li et al., 2024; Bhat et al., 2024;
Lin et al., 2024; Peng et al., 2024; Wang et al., 2024; Ye et al., 2023; Zhang et al., 2025), aim-
ing to make text-to-image technologies applicable in a broader range of real-world scenarios. For
example, models of the ControlNet (Zhang et al., 2023; Xu et al., 2024; Zhao et al., 2023) fam-
ily, such as FLUX.1-dev-UnionPro2 (Shakker Labs, 2025), introduce an auxiliary network to inject
user-provided spatial constraints or reference image information into the generation process. Other
variants, including FLUX-Depth and FLUX-Canny (BlackForest, 2024), concatenate the encoded
condition image with the generated image features at the input channel, training the entire network
end-to-end to achieve conditional image generation.

Aligning Image Generation with Human Preferences. Reinforcement learning (RL) methods
are widely used for post-training large language models (LLMs) to align outputs with human prefer-
ences, and has recently been applied to image generation for improved controllability and preference
alignment. Most approaches rely on explicit reward models, such as ImageReward (Xu et al., 2023),
combined with policy rollouts like PPO (Liu et al., 2025; Xue et al., 2025) or direct gradient meth-
ods (Clark et al., 2024; Prabhudesai et al., 2023). A more efficient alternative is Direct Preference
Optimization (DPO) (Rafailov et al., 2023), adapted to diffusion models by Diffusion-DPO (Wal-
lace et al., 2023), and further extended for richer feedback (RankDPO (Karthik et al., 2024)) and
timestep inconsistencies (SPO (Liang et al., 2024), TailorPO (Ren et al., 2025)). Given its efficiency
and effectiveness, we build on the DPO framework. However, existing DPO-based methods still
struggle with conditional image generation involving multiple, potentially conflicting constraints.
To address this, we propose a novel Bidirectionally Decoupled DPO algorithm that enables clearer
optimization directions and better handles complex conditional scenarios.

3 METHOD

Our method has three components: (1) a Bidirectionally Decoupled DPO algorithm (BideDPO,
§3.1) that enforces simultaneous text–condition adherence; (2) an automatic pipeline for construct-
ing Disentangled and Conflict-Aware Preference Data (§3.2) for BideDPO training; and (3) an itera-
tive optimization strategy (§3.3) that jointly improves model performance and data quality. Prelim-
inary background on Diffusion Models and DPO is provided in Appendix §A.

3.1 BIDIRECTIONALLY DECOUPLED DPO

Limitations of Vanilla DPO. In conditional image generation, models are often tasked with satisfy-
ing both a text prompt p and an extra structural condition s. For notational simplicity, we encapsulate
both inputs into a single composite context variable c = (p, s). To analyze the optimization dynam-
ics of DPO (Rafailov et al., 2023) in this multi-objective setting, we can conceptualize the model’s
preference score as being composed of a text alignment component, ftext(x, c; θ) (which primarily
depends on p), and a condition alignment component, fcond(x, c; θ) (which primarily depends on s).

For simplicity, let us assume the overall score f(x, c; θ) can be modeled as a weighted linear com-
bination of these components, while acknowledging that the true relationship is far more complex:

f(x, c; θ) = λtextftext(x, c; θ) + λcondfcond(x, c; θ), (1)

where λtext and λcond are scalar weights. For a preference triplet (x+, x−, c), where both the pre-
ferred and dispreferred samples are evaluated under the same shared composite context c, the vanilla
DPO loss is:

Lcoupled = − log σ(f(x+, c; θ)− f(x−, c; θ)). (2)

The partial derivative of this loss with respect to the model parameters θ is given by:

∂Lcoupled

∂θ
= − (1− σ(∆(c; θ))

∂∆(c; θ)

∂θ
, (3)

∆(c; θ) = λtext
(
ftext(x

+, c; θ)− ftext(x
−, c; θ)

)︸ ︷︷ ︸
∆text(c;θ)

+λcond
(
fcond(x

+, c; θ)− fcond(x
−, c; θ)

)︸ ︷︷ ︸
∆cond(c;θ)

. (4)
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The update gradient in Eq. 3 is influenced simultaneously by both objectives, but when one ob-
jective’s gradient is significantly stronger, it can dominate the update. Consequently, the weaker
objective may be masked—or, in cases of conflict, the update may even move in a direction that
opposes the weaker objective, making its optimization more difficult.

Decoupled Preference Pairs. To address this limitation, we construct two decoupled preference
pairs for each case, targeting condition and text alignment separately (Fig. 2(b)). For text alignment,
we use a pair (x+

T , x
−
T , c0), and for condition alignment, we use (x+

C , x
−
C , c1). Here, c0 = (p, s0)

and c1 = (p, s1), where p is the same target prompt in both cases. In the text alignment pair, x+
T and

x−
T have similar adherence to s0, but x+

T follows the prompt p, while x−
T does not. In the condition

alignment pair, both x+
C and x−

C follow p, but x+
C matches s1 much better than x−

C . Two independent
loss terms are then calculated separately for each objective:

Ltext = − log σ
(
ftext(x

+
T , c0; θ)− ftext(x

−
T , c0; θ)

)︸ ︷︷ ︸
∆text(c0;θ)

, (5)

Lcond = − log σ
(
fcond(x

+
C , c1; θ)− fcond(x

−
C , c1; θ)

)︸ ︷︷ ︸
∆cond(c1;θ)

(6)

Adaptive Loss Balancing. To prevent the optimization from being dominated by one objective, we
introduce an adaptive loss balancing strategy. To ensure stable training, the weights for each loss
component are computed based on their current magnitudes but are treated as detached constants
during backpropagation. This is achieved by applying a stop-gradient operator, denoted as sg(·):

wtext = sg
(

Ltext

Ltext + Lcond

)
, and wcond = sg (1− wtext) . (7)

The total loss is thus a dynamically weighted sum:

Ldecoupled = wtextLtext + wcondLcond. (8)

Decoupled gradient. The gradient can be formulated as:

∂Ldecoupled

∂θ
= wtext

∂Ltext

∂θ
+ wcond

∂Lcond

∂θ

= −wtext
(
1− σ

(
∆text(c0; θ)

)) ∂∆text(c0; θ)

∂θ
− wcond

(
1− σ

(
∆cond(c1; θ)

)) ∂∆cond(c1; θ)

∂θ
.

(9)

Crucially, this gradient is a fully decoupled sum. Unlike the coupled gradient in Eq. 3, our approach
provides a distinct optimization signal for each objective. This prevents one objective’s gradient
from being diminished or “swallowed” when the other’s loss is significantly larger, ensuring both
are consistently optimized.

BideDPO Objective for Diffusion Models. Building upon prior work (Wallace et al., 2023), we
define the reward r(xt, c, ϵ; θ) in diffusion models as the reduction in denoising error for a noisy
sample xt under a given context c, which is computed as the difference between the denoising error
∥ϵ − ϵref(xt, c)∥2 of the frozen reference network and the error ∥ϵ − ϵθ(xt, c)∥2 of the optimized
network, where ϵ represents the noise:

r(xt, c, ϵ; θ) = ∥ϵ− ϵref(xt, c)∥2 − ∥ϵ− ϵθ(xt, c)∥2. (10)

The total reward differences for the text pair under context c0 (RT ) and the context pair under
context c1 (RC) are then:

RT = r(x+
t,T , c0, ϵ

+
T ; θ)− r(x−

t,T , c0, ϵ
−
T ; θ), (11)

RC = r(x+
t,C , c1, ϵ

+
C ; θ)− r(x−

t,C , c1, ϵ
−
C ; θ). (12)

The final BideDPO loss adaptively weights the objectives based on these reward differences:

LBideDPO(θ) = −E(x+
T ,x−

T ,c0)∼DT ,(x+
C ,x−

C ,c1)∼DC

[
wtext log σ(βTRT ) + wcond log σ(βTRC)

]
. (13)

By providing a distinct gradient for each objective, our decoupled approach mitigates the interfer-
ence inherent in the decoupled DPO loss. This leads to more stable and efficient multi-objective
optimization. Please see Appendix §G for more details.
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Step1: Automated Text Prompt and Condition Generation

objects=[‘dog’, ‘cat’, ...] 
places=[‘on the grass’, ...] 
detailed=[‘transparent’, ...]

[{Source prompt: ‘A toolbox on a
highway’,

Target prompt: ‘A crystalline
toolbox on a highway’}, ....]

Source
Prompt

Condition0

Step2: Generate Text-Disentangled Preference Pairs (yellow data below)

Generator ❄

“Does generated image matches the text?”

Source
Prompt

Condition0
Generator ❄

No

YesTarget
Prompt

Condition0

Generator ❄

VLM

Target
Prompt

Extract
Condition

Yes

No

Condition1

Step3: Generate Condition-Disentangled Preference Pairs (blue data below)

VLMstrictly align generally align

Generator❄

“Does generated image matches the text?”

GPT-4.5

Figure 3: The Automated Disentangled, Conflict-Aware Preference Data Generation Pipeline.

...

Data Quality / Generator AbilityLow High

Iteratively enhance both the training data and the generator

Iter1

A glassy piano on stage

BideDPO

G1

G0🔥

G0❄ ...

Itern

A glassy piano on stage

BideDPO

Gn

G0🔥

Gn-1❄ ...

Figure 4: Iterative Optimization Strategy. We start with an initial generator (G0) that produces
training data via our automated pipeline (Fig. 3). Training with BideDPO already improves the
model (G1), while repeating the process with the updated generator yields higher-quality data and
further gains, forming a self-reinforcing loop where both data and model improve progressively.

3.2 AUTOMATED CONSTRUCTION OF DISENTANGLED AND CONFLICT-AWARE DPO
PREFERENCE DATA

As shown in Fig. 3, we design an automated data construction pipeline that explicitly generates
disentangled preference pairs for both text and condition alignment, including cases where the two
objectives are in conflict. It consists of three steps:

1. Prompt and Initial Condition Generation. We first use an LLM to generate a basic Source
Prompt and a more detailed Target Prompt p. The source prompt is then used to produce an initial
condition map, “Condition 0” (s0). The generated s0 and target prompt p often exhibit input-level
or model-bias conflicts in Fig. 1.

2. Text-Disentangled Pair (x+
T , x

−
T , p, s0). Both samples adhere to “Condition 0” (s0). The pre-

ferred sample x+
T is generated from the Target Prompt, with its textual alignment verified by a

VLM, and serves as our high-quality anchor. The dispreferred sample x−
T is generated from the

Source Prompt and thus lacks textual alignment with Target Prompt.

3. Condition-Disentangled Pair (x+
C , x

−
C , p, s1). Both samples align with the Target Prompt p. The

anchor x+
T serves as the preferred sample x+

C , and a new, strictly aligned condition map “Condition
1” (s1) is extracted from it. The dispreferred sample x−

C is then generated to adhere less strictly to
“Condition 1” while matching the target prompt’s semantics.

This structured process allows us to systematically generate preference data that isolates and targets
distinct aspects of text and condition alignment. By repeating this process over a large set of prompts
and conditions, we built a comprehensive dataset that enables targeted, disentangled optimization for
multi-constraint image generation. Moreover, this approach can be easily extended to other tasks,
such as style-text alignment, as illustrated in Fig. 8.
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+SFT

+SFT

FLUX-Depth

Union-Pro2Depth +DPO +Ours

Depth +DPO +Ours

A furry
telescope in a 

city at night.

A lava-cracked

shovel and 
lava-cracked 

mailbox in the 
library

Canny Union-Pro2 +SFT +DPO +Ours

Canny FLUX-Canny +SFT +DPO +Ours

A lava-cracked

chessboard and 
furry candle 

in the subway.

A mossy violin 
in an park.

Soft Edge Union-Pro2 +SFT +DPO +Ours

A icy candle 

on a platform

Figure 5: Visual comparison for conditional image generation on the DualAlign Benchmark.
We evaluate three common conditioning modalities: depth, Canny, and soft edge. Our method
improves adherence to both the text prompt and the spatial conditioning. Please zoom in for details.

3.3 ITERATIVE OPTIMIZATION STRATEGY

For each generator model, BideDPO strengthens adherence to both text and condition, and since
our data construction pipeline builds samples directly from the same model, the process naturally
supports iterative refinement. As shown in Fig. 4, we alternate between generating preference data
with the current model and optimizing it with BideDPO, forming a self-reinforcing loop that pro-
gressively improves both the generator and its training data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We conduct experiments on the state-of-the-art text-to-image model FLUX (BlackForest,
2024). Specifically, we evaluate our approach on the most widely used conditional image genera-
tion variants in the community, including FLUX-Depth, FLUX-Canny, and Union-Pro2 (Shakker
Labs, 2025). We also compare with LooseControl (limited to depth conditioning) (Bhat et al.,
2024) and ControlNet++ (Li et al., 2024). We evaluate style-conditioned generation on FLUX IP-
Apdater (Team, 2024). We primarily compare our method with two common baselines: supervised
fine-tuning (SFT) and naive DPO (Wallace et al., 2023).

Implementation Details. We generate 5,000 samples in each iteration. For SFT, we use the positive
samples in Fig. 3. For DPO, we construct coupled preference pairs by combining the condition
image and positive sample from the Condition-Disentangled Preference Pairs, together with the
negative sample from the Text-Disentangled Preference Pairs. We fine-tune all models using Low-
Rank Adaptation (LoRA (Hu et al., 2022)) method with rank of 256. For the SFT method, we train

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results for depth-conditioned image
generation on DualAlign Benchmark. “Ctrl.”
indicates support for conditional generation.

Method Ctrl. SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
FLUX × 0.79 N/A N/A 0.2936

LooseControl ✓ 0.43 791.1 1280.2 0.2852
ControlNet++ ✓ 0.49 331.9 480.7 0.2854

Union-Pro2 ✓ 0.49 177.0 272.4 0.2748
+ SFT ✓ 0.70 262.2 332.5 0.2915

+ DPO ✓ 0.71 168.3 219.9 0.2860
+ Ours ✓ 0.84 164.0 195.7 0.2924

FLUX-Depth ✓ 0.76 233.6 282.8 0.2899
+ SFT ✓ 0.79 162.2 195.7 0.2926

+ DPO ✓ 0.89 171.9 195.0 0.2974
+ Ours ✓ 0.91 145.9 164.4 0.2982

Table 2: Results for canny-conditioned image
generation on DualAlign Benchmark. “Ctrl.”
indicates support for conditional generation.

Method Ctrl. SR ↑ F1 ↑ SGF1 ↑ CLIP ↑
FLUX × 0.71 N/A N/A 0.2965

ControlNet++ ✓ 0.40 0.437 0.174 0.2828
Union-Pro2 ✓ 0.34 0.418 0.143 0.2753

+ SFT ✓ 0.58 0.324 0.178 0.2838
+ DPO ✓ 0.50 0.607 0.284 0.2840
+ Ours ✓ 0.68 0.607 0.393 0.2845

FLUX-Canny ✓ 0.33 0.397 0.129 0.2703
+ SFT ✓ 0.52 0.357 0.179 0.2842

+ DPO ✓ 0.55 0.452 0.248 0.2829
+ Ours ✓ 0.73 0.454 0.333 0.2927

for 5,000 steps using the Prodigy (Mishchenko & Defazio, 2023) optimizer with a learning rate of
1.0, using all positive samples in Fig. 3; for DPO and BideDPO, starting from the SFT-tuned model,
we optimize for an additional 2,000 steps using the AdamW (Kingma & Ba, 2017) optimizer with a
learning rate of 0.00004 and a weight decay of 0.01.

Evaluation Benchmarks. 1) DualAlign benchmark for conflicting text–condition constraints. Cur-
rently, there is no established benchmark for evaluating conditional image generation in scenarios
where the text prompt and condition image provide partially conflicting guidance. Therefore, we
construct our own test set following a similar pipeline as our training data, generating text-condition
pairs that require the model to make meaningful trade-offs between constraints. To better assess the
generalization ability of our approach, we ensure that the objects, places, and detailed descriptions in
the test set do not overlap with those in the training set. Each modality contains 100 cases. 2) COCO
benchmark for robustness. To assess robustness on a standard benchmark, we also evaluate various
post-training methods alongside their baseline models on the COCO dataset (Lin et al., 2015; Zhang
et al., 2025), demonstrating that our approach preserves the base model’s original performance. 3)
DualAlign-Style benchmark for text–style condition constraints (see § E.2 in Appendix).

Evaluation Metrics. We evaluate our models using the following metrics: 1) Success Ratio: We
use the Qwen2.5-VL-72B (Bai et al., 2023) model to automatically determine whether the generated
image accurately matches the text description, providing a direct measure of text-image consistency.
2) CLIP Score (Radford et al., 2021): This metric quantifies the semantic alignment between the
generated image and the input prompt, indicating how well the model captures the intended content
described by the user. 3) MSE/F1 Score: These metrics assess the degree to which the generated
image conforms to the input condition (e.g., spatial or structural constraints), thereby measuring con-
ditional fidelity. 4) Semantic-Guided MSE (SGMSE), Semantic-Guided F1 (SGF1), and Semantic-
Guided SSIM (SGSSIM): To jointly evaluate textual and conditional alignment, we define SGMSE,
SGF1, and SGSSIM. Each extends its standard counterpart by adding a semantic check. If a gen-
eration fails the text requirement, we apply a penalty: MSE is doubled, and the F1 or SSIM score
is set to zero (otherwise the metrics reduce to the usual MSE, F1, and SSIM). This design penal-
izes outputs that do not satisfy both constraints and provides a more comprehensive assessment of
controllable image generation.

4.2 EXPERIMENTAL RESULTS

Qualitative Results. Fig. 5 presents visual comparisons between our BideDPO and other post-
training methods. Supervised fine-tuning (SFT) reduces the model’s adherence to the input condi-
tion. For example, in the fifth row of Fig. 5, the shape at the top of the candle is noticeably altered.
Naive DPO, due to coupled gradients, biases optimization toward condition adherence while often
neglecting textual alignment, resulting in outputs that frequently fail to match the text description.
In contrast, our bidirectionally decoupled and adaptively balanced approach enables the model to
resolve conflicts between condition and text better, achieving a more effective trade-off and satis-
fying both constraints. Notably, BideDPO and vanilla SFT are trained with exactly the same set of
positive examples; this controlled comparison underscores the superiority of our method.
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Table 4: Quantitative results on COCO Benchmark with depth and canny conditioning.
Depth-conditioned Canny-conditioned

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑ SR ↑ F1 ↑ SGF1 ↑ CLIP ↑
LooseControl 0.72 1334.0 1706.0 0.2534 N/A N/A N/A N/A
ControlNet++ 0.79 548.3 668.9 0.2557 0.71 0.339 0.245 0.2622
Union-Pro2 0.83 297.3 363.5 0.2546 0.78 0.416 0.332 0.2539
+ SFT 0.87 561.7 635.6 0.2575 0.81 0.271 0.271 0.2602
+ DPO 0.90 263.4 278.2 0.2586 0.75 0.490 0.373 0.2554
+ Ours 0.91 236.3 245.3 0.2633 0.83 0.497 0.392 0.2629

Condition Iter0 Iter1 Iter2 Iter3

A flaming
dog.

Figure 6: Visualization of Iterative Optimization.

Quantitative Results. Quantitative results in Tabs. 1, 2, and 3 show that our
method substantially improves adherence to both text prompts and conditioning inputs.

Table 3: Results for soft edge-conditioned image
generation on DualAlign Benchmark. “Ctrl.” indi-
cates support for conditional generation.

Method Ctrl. SR ↑ SSIM ↑ SGSSIM ↑ CLIP ↑
FLUX × 0.73 N/A N/A 0.2907

Union-Pro2 ✓ 0.24 0.610 0.145 0.2768
+ SFT ✓ 0.48 0.510 0.255 0.2855

+ DPO ✓ 0.39 0.637 0.250 0.2783
+ Ours ✓ 0.49 0.643 0.297 0.2855

For example, in depth-conditioned gen-
eration, we observe a 43% increase in
Success Ratio on Union-Pro2 and a 15%
increase on FLUX-Depth. In canny-
conditioned generation, our approach
achieves a 34% higher Success Ratio on
Union-Pro2 and a 40% increase on FLUX-
Canny—even surpassing the original T2I
FLUX model in terms of text alignment.
Moreover, our method also enhances ad-
herence to the input condition across var-
ious baselines. For instance, on the MSE loss, our approach reduces the error of FLUX-Depth by
148.687, demonstrating improved conditional fidelity. Finally, Tab. 4 shows that our approach does
not compromise the base model’s robustness: on COCO—a dataset not used during training—it still
delivers improvements over the original model. Importantly, all results shown here are obtained
without iterative optimization.

Table 5: Ablation study of our core components.
“w/o ALB” ablates our Adaptive Loss Balancing.
“Text. Only” and “Cond. Only” are trained using only
the text or condition preference pairs, respectively.

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
Iter = 1 0.84 163.968 195.728 0.2924
Iter = 2 0.85 158.876 195.459 0.2947
Iter = 3 (Ours) 0.88 159.559 190.263 0.2957
Iter = 4 0.86 166.274 202.363 0.2939
w/o ALB 0.78 157.729 205.246 0.2862
Text. Only 0.88 258.954 287.749 0.2947
Cond. Only 0.59 153.659 218.683 0.2753

Iterative optimization strategy. Since
BideDPO simultaneously strengthens the
model’s adherence to both text and condi-
tion, we can adopt an iterative optimiza-
tion algorithm to refine the model and
data together. Tab. 5 shows that our it-
erative optimization (Fig. 4) progressively
improves adherence to both condition and
text, reaching optimal performance by the
third iteration. This trend is further sup-
ported by the qualitative comparisons in
Fig. 6, where generated images increas-
ingly align with the text while preserving condition fidelity. Importantly, even a single iteration
already yields substantial improvements over the baseline. Thus, iterative refinement should be re-
garded as an optional enhancement that can be adjusted based on available computational resources.

Ablation Study of Adaptive Loss Balancing (ALB). In Tab. 5, the results for “Iter = 1” demonstrate
more balanced improvements than those for “w/o ALB”, with a 6% increase in success rate and a
9.518 gain in SGMSE, despite only a modest decrease in MSE (6.239).

Ablation Study on Preference Pairs. As shown in Tab. 5, using only text- or condition-
disentangled preference pairs (Fig. 3) makes the model focus on a single aspect, yielding marginal

9
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IPA + BideDPO实验

A compass

A windmill

Bradley Hand

A lamp

Condition IPA + Ours

A telescope

Condition IPA + Ours

Condition

Condition

IPA + Ours

IPA + Ours

Figure 7: Visual results for style-conditioned image generation on IP-Adapter (Team, 2024).

or even harmful effects on the other. Only by jointly leveraging both types of preference pairs (ours)
can the model achieve balanced improvements across all constraints.

User Study. We conducted a user study to compare our optimized model against the base
model, evaluating three aspects: text adherence, condition adherence, and overall alignment.

Table 6: User study results. Values are win rates.

Comparison Text ↑ Condition ↑ Overall ↑
Ours vs. Base 67.9% 66.8% 64.0%

For each trial, we randomly sampled 20 cases
and asked 30 participants to evaluate them in a
1-vs.-1 format, yielding a total of 600 compar-
isons. As shown in Tab. 6, participants favored
our model roughly twice as often as the baseline.

Table 7: Style-conditioned generation on
DualAlign-Style benchmark.
Method SR ↑ Style Score ↑ SG Style ↑ CLIP ↑

IPA 30% 6.50 1.31 0.1679
+ Ours 58% 6.26 2.97 0.2015

Universality on style-conditional image
generation. Beyond structure- and spatial-
conditional generation, we further validate
the effectiveness of our method on more ab-
stract conditions, such as style-conditioned
image generation. As shown in Fig. 7, prior
methods often suffer from excessive refer-
ence copying, due to the Model Bias issue discussed in Fig. 1(b). In contrast, our proposed BideDPO
algorithm substantially mitigates this problem, achieving a 28% higher success rate (Tab. 7).

Table 8: Success rates from different evaluators.
Judge UnionPro2 +SFT +DPO +Ours

Qwen2.5 0.49 0.70 0.71 0.84
GPT-4o 0.43 0.65 0.70 0.82
Human 0.42 0.62 0.64 0.84

More VLM Selection. To verify robustness
beyond a single evaluator, we additionally as-
sessed our method using multiple VLMs—
including Qwen2.5-VL-72B, GPT-4o—and
human raters. As shown in Tab. 8, all eval-
uators yield consistent rankings (+Ours >
+DPO > +SFT > UnionPro2), confirming that our improvements are not artifacts of a specific
VLM but hold universally across models and human judgment.

5 CONCLUSION

In this work, we address the fundamental challenge of achieving simultaneous text and condition
alignment in controllable image generation. We identify that existing approaches—including su-
pervised fine-tuning and naive DPO—struggle to balance multiple constraints, especially when the
text prompt and condition input are in conflict. To overcome this, we propose a bidirectionally de-
coupled DPO framework that disentangles the optimization of textual and conditional adherence.
Furthermore, adaptive loss balancing ensures stable and effective learning between objectives. Our
approach also features an automated pipeline for constructing high-quality, disentangled preference
pairs, as well as an iterative optimization strategy that continuously enhances both the data and the
model. Extensive experiments demonstrate that our method significantly outperforms strong base-
lines on both textual and conditional alignment, yielding substantial improvements in Success Ratio
and conditional fidelity across a variety of benchmarks. Our framework not only advances the state
of controllable image generation, but also provides new insights into preference-based learning with
multiple, potentially conflicting objectives.
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ETHICS STATEMENT

Our work adheres to the ethical guidelines of the ICLR 2026 conference. This work develops meth-
ods for improving conditional image generation. All experiments use publicly available datasets
(e.g., COCO) or synthetic benchmarks without personal or sensitive information. Our user study
involved voluntary participants with informed consent and no collection of private data. While gen-
erative models may be misused, our contributions focus on alignment and controllability to enhance
reliability, and are intended solely for academic research.

REPRODUCIBILITY STATEMENT

We provide all necessary details to ensure the reproducibility of our results, including: (1) model ar-
chitecture and training hyperparameters; (2) complete experimental settings and datasets; (3) evalu-
ation metrics; (4) a commitment to release our code and trained models upon acceptance, to promote
transparency and reproducibility.

THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, Large Language Models were used as a general-purpose
writing assistant tool. Specifically, LLMs were employed to polish the language and refine the
clarity of the text. The authors take full responsibility for the content of the paper.
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A PRELIMINARY

Denoising Diffusion Models. Denoising diffusion models Ho et al. (2020) are a class of generative
models that learn to synthesize data by reversing a fixed forward noising process. This process
gradually adds Gaussian noise to a clean sample x0 over T timesteps, such that xt =

√
ᾱtx0 +√

1− ᾱtϵ, where ϵ ∼ N (0, I). A neural network ϵθ is then trained to predict the added noise ϵ from
the noisy sample xt timestep t, and context c. The objective is to minimize the L2 error between the
actual and predicted noise:

By learning to effectively denoise at every step, the model can generate high-fidelity samples from
pure noise.

Lsimple = Eϵ,t,x0,xt

[
∥ϵ− ϵθ(xt, t, c)∥22

]
. (14)

Direct Preference Optimization (DPO). Rafailov et al. (2023) introduced DPO, a method to fine-
tune LLMs with pairs of ranked examples (x+, x−, c), where x+ is the preferred and x− the
dispreferred sample. The training objective is formulated using an implicit reward r̂θ(x, c) =

β · log pθ(x|c)
pref(x|c)

, which measures the log-likelihood ratio with respect to a reference model pref and β

is a hyperparameter. The DPO loss is expressed as:

LDPO(θ) = −Ex+,x−,c

[
log σ

(
r̂θ(x

+, c)− r̂θ(x
−, c)

)]
= −Ex+,x−,c

[
logσ

(
β

(
log

pθ(x
+|c)

pref(x+|c)
−log pθ(x

−|c)
pref(x−|c)

))]
,

(15)

where σ is the sigmoid function.

Diffusion-DPO. Wallace et al. (2023) applied DPO to diffusion models by modifying Eq. 15. They
replaced the logarithmic difference by the denoising error:

LD-DPO(θ)=−Ex+
t ,x−

t ,c

[
log σ

(
−βT

(
∥ϵ+−ϵ+θ (x

+
t , t, c)∥22−∥ϵ+−ϵ+ref(x

+
t , t, c)∥22−

∥ϵ−−ϵ−θ (x
−
t , t, c)∥22+∥ϵ−−ϵ−ref(x

−
t , t, c)∥22

))]
,

(16)

where x+
t and x−

t are obtained from x+
0 and x−

0 using the forward process of diffusion models, and
T is a temperature.

B IMPLEMENTATION DETAILS

B.1 BASELINE MODELS

All our experiments are conducted using state-of-the-art conditional text-to-image diffusion models
from the FLUX family (BlackForest, 2024). Specifically, we adopt the following publicly available,
pre-trained models as our baselines:

• FLUX-Depth: A variant specialized for depth-conditioned image generation, implemented
by the FLUX team.

• FLUX-Canny: A variant specialized for Canny-edge-conditioned image generation, im-
plemented by the FLUX team.

• Union-Pro2 (Shakker Labs, 2025): A powerful model built on top of FLUX that supports
conditional generation. It incorporates the ControlNet approach by adding an extra side
network to the FLUX architecture, enabling multi-modal conditioning. Union-Pro2 is one
of the most widely downloaded models in the AIGC community.

• FLUX.1-dev-IP-Adapter (Team, 2024): An IP-Adapter implementation for FLUX.1-dev
released by InstantX Team, enabling image-conditioned generation where reference images
provide style conditions for generation.

We primarily compare our proposed BideDPO method against two standard baselines: Supervised
Fine-Tuning (SFT) and a naive application of DPO (Wallace et al., 2023), evaluated on the models
listed above.
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B.2 BASELINE CONFIGURATIONS

To ensure a fair comparison, we configured the Supervised Fine-Tuning (SFT) and naive DPO base-
lines as follows, using the preference data generated by our pipeline:

SFT. The SFT baseline was trained with a standard denoising score matching objective. We ex-
clusively used high-quality positive samples from our generated data—specifically, the preferred
samples x+

T from the text-disentangled pairs (conditioned on the target prompt p and initial condi-
tion s0) and x+

C from the condition-disentangled pairs (conditioned on p and the refined condition
s1).

Naive DPO. For the DPO baseline, we constructed text-and-condition preference pairs to simulate
a standard DPO setting in which preferences are not disentangled:

• The preferred sample x+ is x+
C from the condition-disentangled pair, which aligns well

with both the target prompt p and the condition s1.

• The dispreferred sample x− is x−
T from the text-disentangled pair. This sample is generated

from the initial condition s0 and does not align with the target prompt p, making it a poor
fit for both the target prompt p and the condition s1.

In this way, x+
C and x−

T together form a DPO preference pair that jointly enforces adherence to both
the target prompt p and the condition s1.

B.3 TRAINING HYPERPARAMETERS

All models were fine-tuned on a cluster of 4 NVIDIA A100 GPUs with a batch size of 4. We
employed the Low-Rank Adaptation (LoRA) (Hu et al., 2022) method with a rank of 256 for fine-
tuning all models. For the SFT method, we trained for 5,000 steps using the Prodigy (Mishchenko
& Defazio, 2023) optimizer with a learning rate of 1.0. For both DPO and BideDPO, starting from
the SFT-tuned model, we further optimized for an additional 2,000 steps using the AdamW (Kingma
& Ba, 2017) optimizer with a learning rate of 0.00004 and a weight decay of 0.01. We set the β
parameter (Wallace et al., 2023) for DPO to 5000. Each iteration (data generation + fine-tuning)
uses 8×A800 GPUs (40GB) for 5 hours (data generation) and 4×A100 GPUs (80GB) for 3 hours
(training).

C EVALUATION METRIC DETAILS

In our experiments, we employ a comprehensive set of metrics to evaluate model performance across
text alignment, conditional fidelity, and their combination. Below, we provide detailed descriptions
of each metric.

C.1 TEXT ALIGNMENT METRICS

C.1.1 SUCCESS RATIO

To automatically assess whether a generated image accurately reflects the text prompt, we use the
powerful Vision-Language Model (VLM) Qwen2.5-VL-72B. For each generated image and its
corresponding target prompt, we query the VLM with a carefully designed question: “Does the
image successfully depict the following description: ‘[Prompt]’? Please answer with ‘Yes’ or ‘No’.”
The Success Ratio is then calculated as the percentage of “Yes” responses across our entire test set.
This provides a direct and automated measure of text-image consistency.

C.1.2 CLIP SCORE

The CLIP Score measures the semantic similarity between the generated image and the input text
prompt. We use the pre-trained ViT-L/14 CLIP model to compute embeddings for both the image
and the prompt. The score is the cosine similarity between these two embedding vectors, scaled by
100. A higher CLIP score indicates better semantic alignment with the user’s textual description.
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C.2 CONDITIONAL FIDELITY METRICS

C.2.1 MEAN SQUARED ERROR (MSE) AND F1 SCORE

To quantify how well a generated image adheres to the input structural condition (e.g., depth map,
Canny edges), we first extract the corresponding condition map from the generated image using the
same tool employed during data creation (e.g., Depth Anything v2 for depth). We then compute the
Mean Squared Error (MSE) or F1 Score between the extracted condition map and the original input
condition map.

• MSE: Used for pixel-wise regression tasks like depth map prediction. A lower MSE indi-
cates higher fidelity to the ground-truth condition.

• F1 Score: Used for tasks like Canny edge or human pose matching, where we can treat it
as a binary segmentation problem. A higher F1 score indicates better structural correspon-
dence.

C.3 COMBINED TEXT AND CONDITION METRICS

C.3.1 SEMANTIC-GUIDED MSE (SGMSE) AND F1 (SGF1)

Standard conditional metrics like MSE and F1 only measure structural fidelity and ignore whether
the generated image is semantically correct according to the text prompt. To address this, we in-
troduce two novel metrics: Semantic-Guided MSE (SGMSE) and Semantic-Guided F1 (SGF1).
These metrics integrate a semantic check (using the same VLM as for the Success Ratio) into the
calculation:

• If the generated image is deemed a “Success” (i.e., it matches the text prompt), the SGMSE
and SGF1 are the same as the standard MSE and F1 scores.

• If the generated image is a “Failure” (it does not match the text prompt), we apply a penalty
to reflect the semantic mismatch. The SGMSE is doubled (i.e., 2 ×MSE), and the SGF1
score is set to zero.

This penalty mechanism ensures that the model is rewarded only when it satisfies both the textual
and conditional constraints simultaneously, providing a more holistic evaluation of conditional gen-
eration.

D DATA CONSTRUCTION DETAILS

D.1 CONDITION MODALITIES

Our framework is designed to be agnostic to the specific type of conditional input. For the experi-
ments in this paper, we constructed datasets for three different structural modalities:

• Depth Maps: To provide 3D scene geometry, we utilized the widely-used Depth
Anything v2 (Yang et al., 2024) model to extract high-quality depth maps from im-
ages.

• Canny Edges: For sharp, well-defined object boundaries, we used the standard Canny
edge detection algorithm.

• Soft Edges: We employ the ControlNet-SoftEdge family of edge detectors, specifically the
recent MistoLine-SDXL model (Lvmin Zhang, 2023).

This variety of conditions allows us to evaluate the robustness and versatility of our method across
different types of structural constraints.

D.2 MORE DETAILS OF AUTOMATED DATA CONSTRUCTION PIPELINE

Our data construction pipeline is designed to automatically generate disentangled preference pairs
for both text and condition alignment. This process is crucial for training our model to handle multi-
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objective optimization effectively, especially in cases with conflicting constraints. The pipeline, as
illustrated in the main paper, consists of the following three steps:

D.2.1 STEP 1: PROMPT AND INITIAL CONDITION GENERATION

The process begins with the generation of prompts using a large language model (LLM). For each
data point, we generate a basic Source Prompt and a more descriptive Target Prompt (p). The source
prompt is then used to create an initial, often loose, condition map, which we denote as “Condition
0” (s0). This initial pairing of the target prompt p and Condition 0 s0 is intentionally designed to
often contain conflicts, either at the input level or due to model priors, as discussed in the main
paper.

D.2.2 STEP 2: TEXT-DISENTANGLED PAIR GENERATION

With the prompts and initial condition, we generate the text-disentangled preference pair
(x+

T , x
−
T , p, s0). Both samples in this pair are generated to adhere to the same initial “Condition

0” (s0).

• Preferred Sample (x+
T ): The preferred sample is generated using the detailed Target

Prompt. Its alignment with the text is verified using a Vision-Language Model (VLM).
This high-quality sample serves as a reference anchor, denoted xa.

• Dispreferred Sample (x−
T ): The dispreferred sample is generated using the basic Source

Prompt. As a result, it correctly follows “Condition 0” but lacks the specific textual details
present in the target prompt, making it less preferred from a text-alignment perspective.

D.2.3 STEP 3: CONDITION-DISENTANGLED PAIR GENERATION

Next, we construct the condition-disentangled preference pair (x+
C , x

−
C , p, s1). For this pair, both

samples are generated to align with the same Target Prompt p.

• Preferred Sample (x+
C): The anchor image xa from the previous step is used as the pre-

ferred sample. A new, strictly aligned condition map, “Condition 1” (s1), is then extracted
directly from this anchor image.

• Dispreferred Sample (x−
C ): The dispreferred sample is generated to match the semantics

of the target prompt but to adhere less strictly to the new “Condition 1”. This creates a
preference based on conditional fidelity. Because the generator has limited capability, the
generated image x−

C will inevitably exhibit some loss of fidelity to the precise structural
details of s1 when compared to the original image xa from which s1 was derived.

This structured, three-step process allows us to systematically generate a large dataset of preference
pairs that isolate and target distinct aspects of text and condition alignment.

E BIDEDPO ON STYLE-CONDITIONED GENERATION

E.1 AUTOMATED STYLE-AWARE PREFERENCE PIPELINE

To incorporate explicit artistic controls into our preference data, we extend the above pipeline with
the style-aware branch illustrated in Fig. 8. As shown in Step 1, GPT-5.1 enumerates object concepts
together with concise style captions (“Cubist faceted planes,” etc.). The LLM emits a minimalist
Source Prompt, a descriptive Target Prompt, and the style caption, which is forwarded to a Web-
Search API to retrieve a representative condition image.

Step 2 mirrors the step 2 of Fig. 3. Holding the retrieved condition fixed, we render a positive sample
x+
T,style using the Target Prompt and a high IP-Adapter scale, with VLM verification ensuring that

both the textual semantics and the referenced style are expressed. A negative counterpart x−
T,style
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Step1: Automated Text Prompt and Condition Generation

objects=[‘dog’, ‘cat’, ...] 
style_captions=[‘Cubist 

faceted planes’, ...]

[{Source prompt: <Empty 
prompt>, Target prompt: ‘A bot’, 
Style: ‘Cubist faceted planes’}, ...]

Style
Caption

ConditionStep2: Generate Text-Disentangled Preference Pairs (yellow data below)

Web Search API

“Does generated image matches the text?”

Source
Prompt Generator ❄

No

YesTarget Prompt
High IP Scale Generator ❄

VLM

Target Prompt
Low IP Scale

Step3: Generate Condition-Disentangled Preference Pairs (blue data below)

strictly align generally align

GPT-5.1

Condition Condition

Condition

“Does generated image matches the text?”

No

Yes
Generator ❄

VLM

Figure 8: The Automated Style-Aware Preference Data Pipeline.

is produced with the minimalist Source Prompt (empty string) while reusing the same condition,
yielding an image that resembles the structure and style but fails to mention the target concept.
A VLM adversary inspects each pair, only accepting anchors for which the text truly matches the
prompt and the style hint.

Step 3 then isolates conditional fidelity. We keep the Target Prompt and style condition fixed but
vary the IP-Adapter scale so that x+

C,style strictly follows the retrieved condition map while x−
C,style

only coarsely aligns (“strictly align” vs. “generally align” in the figure). Both samples still sat-
isfy the textual description, so their difference arises purely from how faithfully they respect the
style-conditioned control input. This yields preference pairs (x+

C,style, x
−
C,style, p, s1) that drop seam-

lessly into the unified BideDPO training mix. Notably, this style-aware pipeline follows almost the
same structure as our main data pipeline, highlighting the generality and versatility of our proposed
preference data construction framework.

E.2 STYLE BENCHMARK AND DATA.

Using the data generation pipeline defined in the Automated Style-Aware Preference Pipeline above,
we construct a style-conditioned benchmark. The training set consists of 100 objects and 20 styles,
while the test set contains 10 different objects and 10 different styles.

Metrics. We ask Qwen2.5-VL 72B Bai et al. (2023) to rate each generated image on a 0–10 Style
Score, and define SG Style Score by zeroing the rating whenever the reference style conflicts with
the Target Prompt. We also track success rate (SR)—the fraction of samples where the VLM judges
both text and style as satisfied—along with CLIP similarity for semantic grounding. These metrics
jointly capture textual fidelity, structural accuracy, and adherence to the curated style references.

E.3 EXPERIMENT RESULTS

Quantitative Results. Tab. 7 presents the comprehensive quantitative comparison on the
DualAlign-Style benchmark. As shown, BideDPO significantly improves the IP-Adapter (IPA)
baseline across all key metrics. Most notably, the success rate (SR) increases from 30% to 58%, rep-
resenting a 93% relative improvement, which demonstrates that our method substantially enhances
the model’s ability to simultaneously satisfy both textual semantics and style constraints. While the
baseline achieves a slightly higher mean Style Score (6.50 vs. 6.26), this is expected because IPA
tends to directly copy the style reference image, which naturally yields high style similarity scores
but at the cost of semantic accuracy (only 30% SR). In contrast, the disentangled SG Style Score
reveals the true capability: BideDPO achieves 2.97 compared to IPA’s 1.31, representing a 127%

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

relative improvement. This substantial gap demonstrates that BideDPO effectively resolves con-
flicts between style references and text prompts, producing outputs that maintain style fidelity even
when the style condition is semantically incompatible with the target description, while IPA’s high
Style Score primarily reflects its tendency to copy the reference rather than harmonize style with se-
mantics. Additionally, the CLIP score improves from 0.1679 to 0.2015, confirming better semantic
alignment with the text prompts. These results demonstrate that the same bidirectionally decou-
pled objective extends seamlessly to abstract, reference-image style conditions without requiring
architectural modifications, simply by adding another preference head and an adaptive loss balancer
weight.

Qualitative Results. Fig. 7 presents comprehensive qualitative comparisons on the DualAlign-
Style benchmark, showcasing BideDPO’s superior capability in style-conditioned generation. The
visualization demonstrates four challenging generation tasks, each requiring the model to generate a
specific target object (a lamp, a compass, a telescope, and a windmill) while simultaneously adher-
ing to diverse and complex style conditions. These conditions span a wide range of artistic styles:
green pixelated retro game aesthetics, X-ray transparency effects, traditional Japanese art with gold
leaf accents, and gritty ink-splatter illustrations. As shown in the figure, the IP-Adapter (IPA) base-
line often fails to generate the specified object, instead producing variations of the condition itself or
semantically related but incorrect content. For instance, when asked to generate “A lamp” under a
retro game style condition, IPA produces a green-tinted futuristic UI overlay without the target lamp
object. Similarly, for “A compass” under an X-ray condition, IPA generates a human skeleton in-
stead of the requested compass. In contrast, our BideDPO method successfully integrates the target
object into the given condition’s aesthetic, demonstrating superior capability in harmonizing textual
semantics with stylistic constraints while maintaining both object accuracy and style fidelity. The
generated images not only correctly depict the target objects but also faithfully preserve the distinc-
tive visual characteristics of each style condition, such as the green monochrome digital aesthetic
for the lamp, the transparent wireframe style for the compass, the ornate floral background with gold
accents for the telescope, and the gritty ink-splatter texture for the windmill.

F ADDITIONAL VISUALIZATION RESULTS

F.1 ADDITIONAL EXAMPLES OF DISENTANGLED AND CONFLICT-AWARE DPO
PREFERENCE DATA

Fig. 9 presents additional examples of our Disentangled and Conflict-Aware DPO data, using depth
maps to illustrate our methodology. We construct preference pairs spanning a spectrum of condi-
tional alignment errors—large, mid-level, and minor—to train the model progressively on structural
fidelity.

Large Errors The top row of Fig. 9 shows pairs where the negative sample (x−
C ) has significant

structural deviations. For instance, the generated “bejeweled barn” and “vine-covered tower” fail to
match the fundamental layout of their depth maps. These examples train the model to capture the
global composition.

Mid-level Errors The middle row presents moderate inconsistencies. The negative samples cap-
ture the main objects but err in key aspects, such as the misplaced window in the “soot-covered
window” scene or the incorrect shape of the “glowing chisel.” These pairs refine the model’s grasp
of spatial relationships.

Minor Errors The bottom row focuses on fine-grained details. The negative samples are largely
faithful but contain subtle inaccuracies, such as ignoring background foliage structures in the “neon-
lit penguin” scene or failing to render surface grains on the “frosted cookie.” These examples hone
the model’s ability to render precise details, enhancing overall fidelity.

F.2 ADDITIONAL VISUALIZATIONS OF DEPTH, CANNY, AND SOFT-EDGE CONDITIONS

In this section, we present comprehensive qualitative results that further demonstrate the superior ca-
pabilities of our proposed BideDPO method across diverse conditional image generation scenarios.
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Algorithm 1 Automated Construction of Disentangled Preference Data

1: Input: Generator model G, LLM, Condition extractor E, VLM, Num samples to generate N ,
Max retries K.

2: Initialize: Unified preference set D ← ∅.
3: Step 1: Pre-generate prompts and initial conditions
4: Ppool ← LLM.generate source target pairs()
5: Contextpool ← ∅
6: for (psource, ptarget) in Ppool do
7: xinit ← G(psource)
8: s0 ← E(xinit)
9: Contextpool ← Contextpool ∪ {(psource, ptarget, s0)}

10: end for
11: while |D| < N do
12: psource, ptarget, s0 ← RandomSample(Contextpool)
13: — Step 2: Attempt to generate text-disentangled pair —
14: xa ← None
15: tries← 0
16: while tries < K do
17: candidate← G(ptarget, s0)
18: if VLM.verify(candidate, ptarget) then
19: xa ← candidate
20: break
21: end if
22: tries← tries+ 1
23: end while
24: if xa is None then
25: continue {Failed to generate a valid anchor}
26: end if
27: x+

T ← xa

28: x−
T ← G(psource, s0)

29: — Step 3: Attempt to generate condition-disentangled pair —
30: x+

C ← xa

31: s1 ← E(xa)
32: x−

C ← None
33: tries← 0
34: while tries < K do
35: candidate← G(ptarget, s1)
36: if VLM.verify(candidate, ptarget) then
37: x−

C ← candidate
38: break
39: end if
40: tries← tries+ 1
41: end while
42: if x−

C is None then
43: continue {Failed to generate a valid counterpart}
44: end if
45: — Both pairs successfully generated, add to unified dataset —
46: c0 ← (ptarget, s0)
47: c1 ← (ptarget, s1)

48: pairT ← (x+
T , x

−
T , c0)

49: pairC ← (x+
C , x

−
C , c1)

50: D ← D ∪ {(pairT , pairC)}
51: end while
52: return D

Fig. 10 showcases an extensive collection of examples, systematically organized by three distinct
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Minor Error in 𝒙𝑪−，Comparing with 𝒙𝑪#

Mid Error in 𝒙𝑪−，Comparing with 𝒙𝑪#

Large Error in 𝒙𝑪−，Comparing with 𝒙𝑪#

Figure 9: Additional Examples of Disentangled and Conflict-Aware DPO Preference Data.

conditional modalities, illustrating how our model achieves enhanced fidelity and semantic align-
ment while maintaining structural integrity across various input conditions.

F.2.1 DEPTH CONDITION

Fig. 10 (Top) demonstrates our method’s effectiveness when conditioned on depth maps, where
grayscale intensity encodes spatial distance information. The BideDPO model exhibits remarkable
proficiency in capturing intricate spatial structures while significantly improving semantic align-
ment with textual prompts compared to baseline methods. Notable improvements include enhanced
textural details, such as the subtle crack patterns on candle surfaces and mossy textures on tele-
scope bodies, demonstrating our model’s ability to faithfully interpret descriptive adjectives while
preserving geometric fidelity.
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A cracked candle in the cinema

Condition Base +Ours
A holographic chessboard in space

Condition Base +Ours

A mossy telescope in the forest

Condition Base +Ours
A glittering blender in the bathroom

Condition Base +Ours

A scorched drum by the sea

Condition Base +Ours
A wrinkled microwave on the street

Condition Base +Ours

A glittering tent by the lake

Condition Base +Ours
A dusty telescope and scorched shovel at the train station

Condition Base +Ours

A furry binoculars in the field

Condition Base +Ours
A holographic fountain in a maze

Condition Base +Ours

A dusty sewing machine in the desert

Condition Base +Ours
A scorched toothbrush in the kitchen

Condition Base +Ours

Depth

Canny

soft-edge

Figure 10: Additional Examples of Enhancing State-of-the-Art Conditional Image Generation
Methods Using Our Approach.

F.2.2 CANNY CONDITION

Fig. 10 (Middle) showcases results from Canny edge conditions, which demand strict structural ad-
herence. Our method excels at resolving conflicts between textual descriptions and these constraints,
rectifying common failures of the baseline model. For instance, it successfully renders challenging
attributes such as “scorched” or “glittering”—which the baseline struggles with—thereby signifi-
cantly enhancing the control and expressive power of Canny-conditioned generation.
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F.2.3 SOFT-EDGE CONDITION

Fig. 10 (Bottom) illustrates our approach under soft-edge conditions, which offer less stringent
structural guidance while preserving overall scene composition. BideDPO maintains superior visual
quality and semantic relevance even under these more ambiguous constraints, demonstrating the
robustness and flexibility of our alignment framework. The results reveal enhanced textural fidelity,
such as furry surfaces on binoculars and holographic effects on fountains, showcasing our model’s
ability to interpret complex descriptive attributes while working within the constraints of softer
structural guidance.

G DETAILED DERIVATION OF BIDIRECTIONALLY DECOUPLED DPO

In this section, we provide a full step-by-step derivation of our Bidirectionally Decoupled DPO
(BideDPO) method, as presented in the main paper.

G.1 FOUNDATION: INDEPENDENT LOSS COMPONENTS

Our method begins by addressing the limitation of vanilla DPO, which uses a single preference pair
evaluated under a shared condition. Instead, we define two distinct preference triplets for the text
and condition objectives, respectively.

For text alignment, we use the triplet (x+
T , x

−
T , c0), where x+

T is preferred to x−
T under an initial

condition c0. The corresponding text loss is:

Ltext = − log σ

ftext(x
+
T , c0; θ)− ftext(x

−
T , c0; θ)︸ ︷︷ ︸

∆text(c0;θ)

 (17)

For condition alignment, we use the triplet (x+
C , x

−
C , c1), where x+

C is preferred to x−
C under a dif-

ferent, stricter condition c1. The corresponding condition loss is:

Lcond = − log σ

fcond(x
+
C , c1; θ)− fcond(x

−
C , c1; θ)︸ ︷︷ ︸

∆cond(c1;θ)

 (18)

G.2 GRADIENT DERIVATION

We now derive the partial derivative of the total loss Ldecoupled with respect to the model parameters
θ. As noted in the main paper, the adaptive weights are computed with a stop-gradient operator,
meaning they are treated as detached constants during the backward pass. Our starting point is the
total loss function:

Ldecoupled = wtextLtext + wcondLcond. (19)

Because wtext and wcond are treated as constants with respect to θ for the gradient calculation, we can
apply the sum rule directly:

∂Ldecoupled

∂θ
= wtext

∂Ltext

∂θ
+ wcond

∂Lcond

∂θ
. (20)

Next, we derive the gradients for the individual loss components using the chain rule. For a general
loss of the form L = − log σ(z), its derivative is ∂L

∂θ = −(1− σ(z))∂z∂θ .

Applying this to the text loss component from Eq. 17:

∂Ltext

∂θ
= − (1− σ(∆text(c0; θ)))

∂∆text(c0; θ)

∂θ
(21)

And similarly for the condition loss component from Eq. 18:

∂Lcond

∂θ
= − (1− σ(∆cond(c1; θ)))

∂∆cond(c1; θ)

∂θ
(22)
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Finally, substituting Eqs. 21 and 22 back into Eq. 20 gives us the final gradient for our decoupled
objective, as presented in the main paper:
∂Ldecoupled

∂θ
= −wtext

(
1− σ

(
∆text(c0; θ)

)) ∂∆text(c0; θ)

∂θ
−wcond

(
1− σ

(
∆cond(c1; θ)

)) ∂∆cond(c1; θ)

∂θ
(23)

G.3 FINAL BIDEDPO OBJECTIVE FOR DIFFUSION MODELS

The general BideDPO framework can be specifically instantiated for diffusion models by defining
the preference as a reward based on denoising performance. Our final objective combines the prin-
ciples of decoupled losses and adaptive balancing, starting from the loss function presented in the
main paper:

LBideDPO(θ) = −E(x+
T ,x−

T ,c0)∼DT ,(x+
C ,x−

C ,c1)∼DC

[
wtext log σ(βT∆RT ) + wcond log σ(βT∆RC)

]
.

(24)

Here, ∆RT and ∆RC are the total reward differences for the text and condition preference pairs.
And (x+

T , x
−
T , c0) ∼ DT , (x

+
C , x

−
C , c1) ∼ DC means that the samples are drawn from the text-

disentangled and condition-disentangled preference pairs of the same unified preference set D =
zip(DT ,DC). We first define a per-sample reward r(xt, c, ϵ; θ) as the reduction in denoising error
achieved by our model ϵθ compared to a reference model ϵref:

r(xt, c, ϵ; θ) = ∥ϵ− ϵref(xt, c)∥2 − ∥ϵ− ϵθ(xt, c)∥2. (25)

The total reward differences are then calculated by comparing the rewards of the preferred and
dispreferred samples for both the text-aligned pair (under condition c0) and the condition-aligned
pair (under condition c1):

RT = r(x+
t,T , c0, ϵ

+
T ; θ)− r(x−

t,T , c0, ϵ
−
T ; θ), (26)

RC = r(x+
t,C , c1, ϵ

+
C ; θ)− r(x−

t,C , c1, ϵ
−
C ; θ). (27)

By substituting the definition of the reward function r(·) into these expressions, we can expand them
to show the full formulation. For the text-aligned reward difference RT :

RT =
[
∥ϵ+T − ϵref(x

+
t,T , c0)∥

2 − ∥ϵ+T − ϵθ(x
+
t,T , c0)∥

2
]
−

[
∥ϵ−T − ϵref(x

−
t,T , c0)∥

2 − ∥ϵ−T − ϵθ(x
−
t,T , c0)∥

2
]

= ∥ϵ+T − ϵref(x
+
t,T , c0)∥

2 − ∥ϵ+T − ϵθ(x
+
t,T , c0)∥

2 − ∥ϵ−T − ϵref(x
−
t,T , c0)∥

2 + ∥ϵ−T − ϵθ(x
−
t,T , c0)∥

2.

(28)

Similarly, for the condition-aligned reward difference RC :

RC =
[
∥ϵ+C − ϵref(x

+
t,C , c1)∥

2 − ∥ϵ+C − ϵθ(x
+
t,C , c1)∥

2
]
−

[
∥ϵ−C − ϵref(x

−
t,C , c1)∥

2 − ∥ϵ−C − ϵθ(x
−
t,C , c1)∥

2
]

= ∥ϵ+C − ϵref(x
+
t,C , c1)∥

2 − ∥ϵ+C − ϵθ(x
+
t,C , c1)∥

2 − ∥ϵ−C − ϵref(x
−
t,C , c1)∥

2 + ∥ϵ−C − ϵθ(x
−
t,C , c1)∥

2.

(29)

Finally, substituting these fully expanded reward differences back into our main objective yields the
complete BideDPO loss function used for training:

LBideDPO(θ) = −E
[
wtext log σ

(
βT

[
∥ϵ+T − ϵref(x

+
t,T , c0)∥

2 − ∥ϵ+T − ϵθ(x
+
t,T , c0)∥

2

− ∥ϵ−T − ϵref(x
−
t,T , c0)∥

2 + ∥ϵ−T − ϵθ(x
−
t,T , c0)∥

2
])

+ wcond log σ
(
βT

[
∥ϵ+C − ϵref(x

+
t,C , c1)∥

2 − ∥ϵ+C − ϵθ(x
+
t,C , c1)∥

2

− ∥ϵ−C − ϵref(x
−
t,C , c1)∥

2 + ∥ϵ−C − ϵθ(x
−
t,C , c1)∥

2
])]

.

(30)

H ADDITIONAL DISCUSSIONS

H.1 DISCUSSION ON MORE DPO VARIANTS

In our main experiments, we compare BideDPO against a “naive” application of DPO, as described
in the Baseline Configurations section. This Naive DPO baseline uses a single preference pair
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format: the positive sample aligns well with both text and condition (T+, C+), while the negative
sample aligns poorly with both (T−, C−). This setup, while straightforward, does not fully capture
the complexity of the alignment problem, where conflicts can arise from either text or condition
independently.

To provide a more robust comparison, we introduce an additional baseline, “DPO (Mixed)”. In this
setting, the negative samples are constructed from a mix of failure cases: poor text and poor condi-
tion (T−, C−), good text but poor condition (T+, C−), and poor text but good condition (T−, C+).
This creates a more diverse and challenging training signal for the DPO model, forcing it to learn a
more nuanced reward function.

The results, presented in Tab. 9, reveal an interesting trade-off. The DPO (Mixed) baseline achieves
a higher Success Ratio (0.73 vs. 0.71) and CLIP score (0.2884 vs. 0.2860) compared to the Naive
DPO, indicating improved text alignment. However, it performs worse on conditional fidelity, with
higher (worse) MSE and SGMSE scores. This suggests that while a mixed-negative strategy helps
the model better understand textual nuances, the undifferentiated DPO loss struggles to balance the
competing objectives, leading to a degradation in structural adherence.

In contrast, our BideDPO method significantly outperforms both DPO baselines across all metrics.
By explicitly decoupling the preference pairs for text and condition alignment, BideDPO provides
clear, unambiguous learning signals for each objective. This, combined with our adaptive weighting
mechanism, allows the model to simultaneously improve both text-prompt consistency and condi-
tional fidelity, overcoming the trade-offs that limit standard DPO approaches.

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
Union-Pro2 0.49 176.982 272.400 0.2748

+ DPO (Naive) 0.71 168.284 219.935 0.2860
+ DPO (Mixed) 0.73 186.417 229.857 0.2884

+ Ours 0.84 163.968 195.728 0.2924

Table 9: Comparison of different DPO configurations for depth-conditioned image generation. Our
method surpasses both naive and mixed DPO baselines.

H.2 COMPARISON WITH MORE IMAGE CONDITIONAL GENERATION METHODS

To evaluate BideDPO against state-of-the-art approaches for conditional image generation, we com-
pare with LooseControl (Bhat et al., 2024) and ControlNet++ (Li et al., 2024).

H.2.1 RESULTS ON DUALALIGN BENCHMARK

Tab. 10 presents the quantitative comparison on the DualAlign benchmark with depth conditioning.
BideDPO achieves significantly superior performance across all metrics, with a success rate (SR)
of 0.84, MSE of 164.0, SGMSE of 195.7, and CLIP score of 0.2924. In contrast, LooseControl
and ControlNet++ show limited performance, with SR values of 0.43 and 0.49, respectively, and
significantly higher structural errors (MSE: 791.13 and 331.85).

H.2.2 RESULTS ON COCO BENCHMARK

Tab. 11 shows the comparison on the COCO benchmark with depth conditioning. BideDPO again
achieves superior performance, with an SR of 0.91, MSE of 236.3, SGMSE of 245.3, and CLIP
score of 0.2633. LooseControl and ControlNet++ show lower success rates (0.72 and 0.79) and
significantly higher structural errors.

H.2.3 DISCUSSION

The comparison reveals that existing approaches alone are insufficient to resolve conflicts between
text and condition constraints. In contrast, BideDPO’s post-training approach with bidirectionally
decoupled objectives enables it to effectively harmonize both constraints without sacrificing either
objective.
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Table 10: Comparison with more image conditional generation methods on DualAlign bench-
mark.

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
LooseControl 0.43 791.13 1280.17 0.2852
ControlNet++ 0.49 331.85 480.66 0.2854
BideDPO (ours) 0.84 164.0 195.7 0.2924

Table 11: Comparison with more image conditional generation methods on COCO benchmark.
Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
LooseControl 0.72 1334.01 1705.97 0.2534
ControlNet++ 0.79 548.26 668.92 0.2557
BideDPO (ours) 0.91 236.3 245.3 0.2633

H.3 COMPARISON WITH DPO-BASED POST-TRAINING METHODS

To evaluate BideDPO against state-of-the-art DPO-based post-training methods for conditional im-
age generation, we compare with SPO (Liang et al., 2024) and RankDPO (Karthik et al., 2024).
These methods are based on DPO with some improvements for preference optimization, but differ
from our approach in how they handle the dual objectives of text alignment and conditional fidelity.
Note that RankDPO is not publicly available, so we implement it based on the methodology de-
scribed in the paper. All methods share the same FLUX backbone and evaluation pipeline to ensure
fair comparison.

H.3.1 RESULTS ON DUALALIGN BENCHMARK

Tab. 12 presents the quantitative comparison on the DualAlign benchmark with depth conditioning.
BideDPO achieves the best performance across all metrics, with a success rate (SR) of 0.84, MSE
of 164.0, SGMSE of 195.7, and CLIP score of 0.2924.

SPO achieves a competitive SR of 0.78 with good structural control (MSE: 166.2, SGMSE: 208.7),
while RankDPO reaches a SR of 0.83 but suffers from higher structural errors (MSE: 188.5,
SGMSE: 235.6). Both methods struggle to fully resolve conflicts between text and condition con-
straints.

In contrast, BideDPO’s bidirectionally decoupled objective effectively balances both text alignment
and structural conditioning by explicitly separating preference pairs along text and condition axes,
enabling the model to simultaneously improve both text-prompt consistency and conditional fidelity.

H.3.2 DISCUSSION

The comparison with DPO-based methods reveals different trade-offs: SPO maintains better struc-
tural control but achieves lower text alignment, while RankDPO improves text alignment but strug-
gles with structural fidelity. This suggests that existing DPO-based methods, while effective, do not
fully address the challenge of simultaneously optimizing both text and condition objectives when
they conflict.

BideDPO’s explicit decoupling of text and condition objectives, combined with adaptive loss bal-
ancing, enables it to outperform both baselines by effectively harmonizing both constraints without
sacrificing either objective. The bidirectionally decoupled approach provides clearer learning sig-
nals for each objective, allowing the model to learn more effectively from preference pairs that may
be ambiguous when both objectives are considered together.

H.4 STABLE DIFFUSION 1.5 + BIDEDPO

Stable Diffusion 1.5 + BideDPO. To demonstrate that BideDPO is not limited to FLUX-based mod-
els but also generalizes to Stable Diffusion-based architectures, we further fine-tune the ControlNet
of Stable Diffusion 1.5 with our bidirectionally decoupled objective. To highlight how BideDPO
improves controllable generation under the DualAlign depth benchmark, we compare our approach
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Table 12: Comparison with DPO-based post-training methods on DualAlign benchmark. All
methods share the same FLUX backbone and evaluation pipeline.

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
SPO 0.78 166.2 208.7 0.2881
RankDPO 0.83 188.5 235.6 0.2914
BideDPO (Ours) 0.84 164.0 195.7 0.2924

Table 13: Stable Diffusion 1.5 depth-conditioned image generation on DualAlign Benchmark.
“Ctrl.” indicates support for conditional generation; qualitative comparisons appear in Fig. 11.

Method Ctrl. SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
SD 1.5-ControlNet ✓ 0.50 391.80 592.92 0.2824
+ BideDPO (Ours) ✓ 0.71 187.44 234.14 0.2853

with the ControlNet baseline. Relative to ControlNet, our model dramatically increases success
rate while simultaneously lowering both MSE and SGMSE, indicating superior adherence to depth
conditioning without sacrificing semantic fidelity. Notably, the CLIP score also rises, underscoring
that the additional control signal does not compromise text alignment. The detailed quantitative
comparison is provided in Tab. 13, while Fig. 11 visualizes the accompanying qualitative gains.

A cracked suitcase at school

Condition Base +Ours
A scorched drum inside a bubble

Condition Base +Ours

Stable Diffusion Depth

Figure 11: Stable Diffusion 1.5 depth-conditioned generation on DualAlign. Qualitative compar-
ison between the ControlNet baseline and our BideDPO fine-tuned model. BideDPO preserves the
textual semantics while aligning more faithfully with the provided depth controls, yielding sharper
geometry and cleaner spatial layouts.

H.5 MULTI-CONDITION GENERATION: TEXT + DEPTH + CANNY

Scaling to Multiple Simultaneous Conditions. To demonstrate that BideDPO scales beyond two
conditioning modalities, we showcase a challenging multi-condition generation scenario that simul-
taneously enforces text prompts, depth maps, and Canny edge constraints. As illustrated in Fig. 12,
we condition the generation on both depth and Canny edge maps extracted from an original anime
figurine image, while applying the text prompt “A jade-like Anime figurine.” This setup creates a
complex multi-objective optimization problem where the model must harmonize three distinct con-
straints: (1) textual semantics (jade-like material transformation), (2) depth geometry (preserving
3D spatial structure), and (3) edge structure (maintaining fine-grained boundaries and details).

Our BideDPO method successfully balances all three objectives, producing a high-quality jade-
like figurine that preserves both the global spatial layout from the depth map and the fine-grained
details captured by the Canny edges, while faithfully realizing the translucent, polished jade aes-
thetic described in the text prompt. In contrast, UnionPro2 struggles to simultaneously satisfy all
constraints: with low conditioning strength, it loses structural fidelity to the depth and edge maps;
with default conditioning strength, it maintains better structural alignment but fails to fully realize
the style transformation, resulting in a less convincing jade-like appearance. This example demon-
strates that BideDPO’s decoupled objective and adaptive loss balancing mechanism naturally extend
to handle multiple conditioning inputs by treating each conditioning path independently and dynam-
ically adjusting their relative importance during training.
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Table 14: Results for multi-condition generation (depth + canny) on DualAlign Benchmark.
The model is simultaneously conditioned on both depth and canny edge maps. Left half shows
depth-conditioned results, right half shows canny-conditioned results.

Depth Benchmark Canny Benchmark

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑ SR ↑ F1 ↑ SG F1 ↑ CLIP ↑
Union-Pro2 0.49 177.0 272.4 0.2748 0.34 0.418 0.143 0.2753

+ Ours (depth+canny merge) 0.81 159.6 197.5 0.2901 0.68 0.594 0.381 0.2857

Tab. 14 provides quantitative evidence that BideDPO effectively handles simultaneous depth and
Canny edge conditioning. When evaluated on the DualAlign depth benchmark, our method achieves
a success rate (SR) of 0.81, significantly outperforming Union-Pro2’s 0.49, while simultaneously
reducing both MSE (159.6 vs. 177.0) and SGMSE (197.5 vs. 272.4) errors, indicating superior
structural fidelity. The CLIP score also improves from 0.2748 to 0.2901, demonstrating enhanced
text alignment. On the Canny benchmark, BideDPO maintains strong performance with SR of 0.68
(vs. 0.34 for Union-Pro2), F1 score of 0.594 (vs. 0.418), and SG F1 of 0.381 (vs. 0.143), while
improving CLIP from 0.2753 to 0.2857. These results confirm that BideDPO’s bidirectional decou-
pling mechanism successfully harmonizes multiple conditioning modalities without compromising
performance on either benchmark, validating the method’s scalability to complex multi-condition
generation scenarios.

UnionPro2
Low Cond.

UnionPro2
Default Cond.

Ours
Default Cond.

Canny
Condition

Depth
Condition

A jade-like 
Anime 
figurine.

Figure 12: Multi-condition generation with text, depth, and Canny edge controls. Example
demonstrating BideDPO’s capability to handle multiple simultaneous conditioning inputs. The text
prompt is “A jade-like Anime figurine.” We condition the generation on both depth maps and Canny
edges extracted from the original image, while applying the jade-like style transformation. Our
method (rightmost) successfully harmonizes all three constraints—textual semantics, depth geome-
try, and edge structure—producing a high-fidelity jade-like figurine that preserves both spatial layout
and fine-grained details. In contrast, UnionPro2 struggles to balance these competing objectives, ei-
ther losing structural fidelity (low cond) or failing to fully realize the style transformation (default
cond).

H.6 DISCUSSION ON ADAPTIVE LOSS BALANCING (ALB) METHODS

We investigate the robustness of ALB to different weight calculation methods and batch sizes.

H.6.1 INSTANCE MEAN VS. HISTORICAL MEAN

We compare our default instance mean approach with a historical mean (moving average) approach.
As shown in Tab. 15, both methods achieve similar performance (SR: 0.84), with minimal differ-
ences across metrics. This robustness stems from our normalization scheme that prevents unstable
weight fluctuations, making the simpler instance mean approach a practical choice.

H.6.2 BATCH SIZE SENSITIVITY

We evaluate ALB with batch sizes of 8, 16, and 32. Tab. 15 shows consistent performance across all
batch sizes (SR: 0.83-0.85), demonstrating that ALB maintains effective loss balancing regardless
of batch size.
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Table 15: Comparison of different ALB methods and batch size sensitivity.

Method SR ↑ MSE ↓ SGMSE ↓ CLIP ↑
ALB instance mean (batch=8) 0.84 164.0 195.7 0.2924
ALB instance mean (batch=16) 0.83 167.4 199.2 0.2940
ALB instance mean (batch=32) 0.85 160.7 195.5 0.2900

ALB historical mean 0.84 166.2 198.8 0.2934

H.7 DISCUSSION ON THE NUMBER OF ITERATIONS

As shown in the ablation study in the main paper (Tab. 5), the performance of our method improves
steadily from the baseline up to Iteration 3, which we selected as our final model. However, we
observed a slight degradation in performance at Iteration 4. This phenomenon suggests a potential
for overfitting and highlights the trade-offs inherent in our iterative optimization strategy.

We hypothesize that this performance drop is due to the model beginning to overfit to the biases of
our automated data generation and scoring pipeline. While the iterative process is highly effective
at bootstrapping performance, it creates a feedback loop where the model is trained exclusively on
data it generates itself. After several iterations, the data distribution, while high-quality, may become
narrower and reflect the specific quirks of the generator and the VLM used for scoring.

At Iteration 4, the model may start to fit to these artifacts rather than learning a more generalizable
representation of text and condition alignment. The preference pairs generated may also become less
informative, as the distinction between “preferred” and “dispreferred” samples becomes increasingly
subtle for an already powerful generator. Iteration 3 appears to represent the optimal balance point,
where the model has reaped the benefits of high-quality, self-generated data without yet succumbing
to the effects of overfitting to its own narrowing data distribution.

H.8 DETAILED DISCUSSION ON VLM SELECTION

In our evaluation pipeline, we employ Qwen2.5-VL-72B as the primary VLM for assessing text-
image alignment through the SR metric. This choice warrants careful justification, as the reliability
of our conclusions depends on the quality and consistency of the evaluator.

Rationale for Qwen2.5-VL-72B. We deliberately adopt Qwen2.5-VL-72B as our primary judge
because it is fully open-source and freely usable, and has become a de-facto standard VLM in recent
academic work on text–image evaluation. This makes our pipeline easier to reproduce and our
SR metric easier to compare against future papers—even if Qwen is not always the single most
SOTA model on every benchmark. In addition, Qwen offers strong coverage across diverse object
categories and scene types, which is important for our broad DualAlign setting. Its accessibility and
community acceptance make it a practical, “standard” evaluator that lowers the barrier for future
work to build on our method.

Cross-VLM and Human Validation. To ensure that our conclusions are not artifacts of a specific
VLM, we re-evaluate the same test set with GPT-4o and human raters. The results demonstrate
strong consistency across all evaluators: As shown in Tab. 8, all three evaluators consistently rank
+Ours > +DPO > +SFT > UnionPro2, with BideDPO achieving the highest scores across
all judges (0.82–0.84). Notably, Qwen and Human evaluators both assign 0.84 to our method,
demonstrating that Qwen serves as a reliable proxy for human judgment. The consistent relative
rankings across different evaluators validate that our conclusions are robust and not artifacts of a
specific VLM, confirming that using Qwen as a representative VLM evaluator is appropriate.
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