

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BIDEDPO: CONDITIONAL IMAGE GENERATION WITH SIMULTANEOUS TEXT AND CONDITION ALIGNMENT

Anonymous authors

Paper under double-blind review

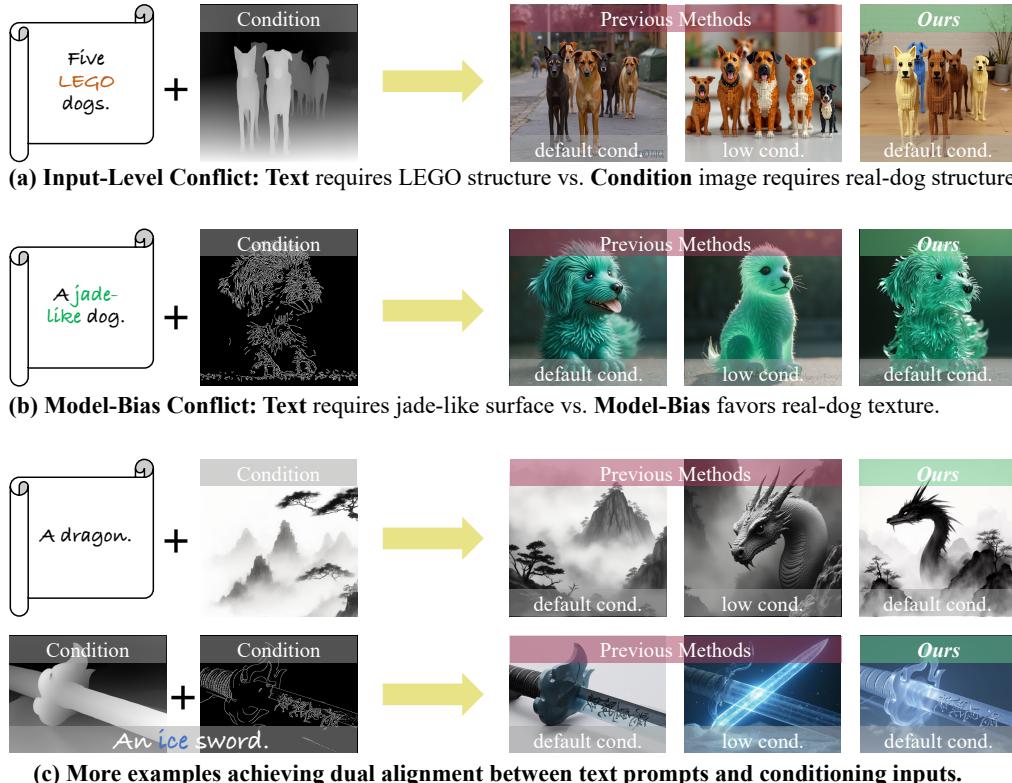


Figure 1: **Qualitative comparison on cases with conflicting text and condition.** We first introduce two conflicts between the text prompt and conditioning input: (a) Input Level Conflict and (b) Model Bias Conflict, which hinder model controllability. We then propose a solution that resolves both, generating images that satisfy both the text and the condition. “default cond.” means using its default condition constraint scale, while “low cond.” means using a lower condition constraint scale. (c) Our method also enhances the alignment between text and abstract conditions such as style condition, and supports generation with multiple conditions combined with text prompts.

ABSTRACT

Conditional image generation augments text-to-image synthesis with structural, spatial, or stylistic priors and is used in many domains. However, current methods struggle to harmonize guidance from both sources when conflicts arise: 1) input-level conflict, where the semantics of the conditioning image contradict the text prompt, and 2) model-bias conflict, where learned generative biases hinder alignment even when the condition and text are compatible. These scenarios demand nuanced, case-by-case trade-offs that standard supervised fine-tuning struggles to deliver. Preference-based optimization techniques, such as Direct Preference Optimization (DPO), offer a promising solution but remain limited: naive DPO suffers from gradient entanglement between text and condition signals and lacks disentangled, conflict-aware training data for multi-constraint tasks. To overcome

054 these issues, we propose a self-driven, bidirectionally decoupled DPO framework
 055 (BideDPO). At its core, our method constructs two disentangled preference pairs
 056 for each sample—one for the condition and one for the text—to mitigate gradient
 057 entanglement. The influence of these pairs is then managed by an Adaptive Loss
 058 Balancing strategy for balanced optimization. To generate these pairs, we intro-
 059 duce an automated data pipeline that iteratively samples from the model and uses
 060 vision-language model checks to create disentangled, conflict-aware data. Finally,
 061 this entire process is embedded within an iterative optimization strategy that pro-
 062 gressively refines both the model and the data. We construct a DualAlign bench-
 063 mark to evaluate a model’s ability to resolve conflicts between text and condition,
 064 and experiments on commonly used modalities show that BideDPO delivers sub-
 065 stantial gains in both text success rate (e.g., +35%) and condition adherence. We
 066 also validated the robustness of our approach on the widely used COCO dataset.
 067 All models, code, and benchmarks will be released to support future work.
 068
 069

070 1 INTRODUCTION

071 Conditional image generation (Zhang et al., 2023; Li et al., 2024; Liu et al., 2024; Zavadski et al.,
 072 2024) augments text-to-image synthesis with auxiliary constraints (e.g., structural or spatial priors)
 073 and is now widely used in digital art, design, and related workflows. However, real-world use with
 074 complex prompt–condition pairs reveals a fundamental yet underexplored challenge: reconciling
 075 guidance from the text prompt with the conditioning input. **In this work, we are the first to ex-**
 076 **plicitly identify this problem and propose a solution.** Specifically, we highlight two recurrent
 077 conflicts that undermine model controllability: **1) Input-Level Conflict.** When the condition image
 078 contains strong semantics that contradict the user prompt, current models often fail to balance these
 079 competing sources of guidance. As shown in Fig. 1(a), under the official default setting, models typ-
 080 ically prioritize the condition image, resulting in outputs that closely replicate its semantics while
 081 neglecting the prompt. Conversely, weakening the influence of the condition allows the model to
 082 better follow the text, but often at the expense of spatial or structural consistency. **2) Model-Bias**
 083 **Conflict.** Modern conditional generation models possess strong generative bias—that is, given a
 084 particular condition input, the model tends to produce outputs consistent with its learned biases. As
 085 illustrated in Fig. 1(b), even when the condition and text are theoretically compatible, a mismatch
 086 between the model’s prior and the prompt can lead to poor adherence to the textual guidance.
 087

088 Addressing the above conflicts requires the model to effectively navigate trade-offs between the
 089 condition input and the text prompt, for which no universally optimal solution exists. In this context,
 090 rather than directly providing the model with fixed “correct” outputs through supervised learning, a
 091 more flexible and effective alternative is to guide the model using preference data—examples that
 092 reflect human judgments over competing outputs. Motivated by this, we adopt the Direct Preference
 093 Optimization (DPO) (Rafailov et al., 2023) approach, which has been shown to effectively align
 094 model outputs with human preferences in both large language models and standard text-to-image
 095 generation, and apply it to train our model to better resolve conflicts between condition inputs and
 096 text prompts based on preference data.

097 However, introducing DPO into the image-conditioned generation task proves to be highly non-
 098 trivial, presenting two major challenges. **1) Naive DPO fails to achieve balanced alignment of**
 099 **both constraints.** In naive DPO, a single preference pair is used for each example. To jointly im-
 100 prove both condition and text alignment for each case, it is necessary to set the positive sample to
 101 satisfy both constraints and the negative sample to satisfy neither (Fig. 2(a)). However, we observe
 102 that the model often prioritizes the condition input while neglecting the text, especially when these
 103 guidance signals conflict (see Fig. 5). This limitation stems from gradient entanglement, as the cou-
 104 pled learning signals obscure the optimization direction for the weaker constraint, making it difficult
 105 for the model to balance and improve both constraints simultaneously. **2) Lack of Disentangled,**
 106 **Conflict-Aware Preference DPO Data:** To the best of our knowledge, there are no established DPO
 107 datasets tailored for conditional image generation, especially for scenarios where the condition input
 108 and text prompt provide conflicting or competing guidance. This data gap significantly limits the
 109 exploration and benchmarking of preference-based optimization in multi-constraint settings.

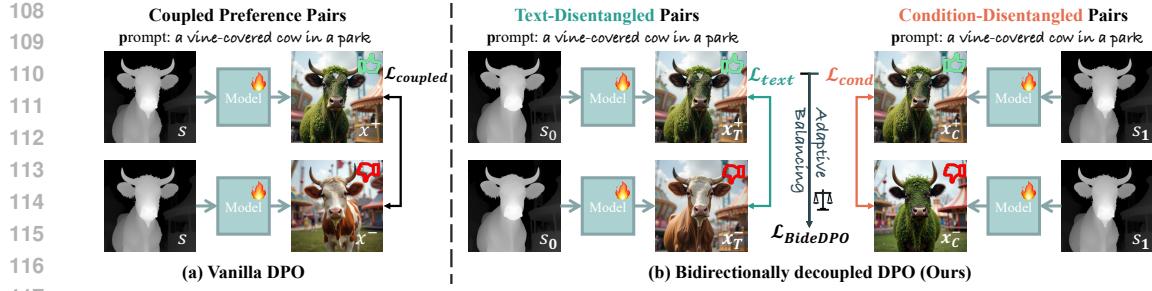


Figure 2: **Comparison between vanilla DPO and our bidirectionally decoupled DPO for conditional image generation.** a) Vanilla DPO uses coupled preference pairs, so its gradients can become ambiguous or even vanish when text and condition are not aligned together. b) BideDPO separates the learning signals for text and condition and adaptively balance them. This provides clear, adaptive gradients for each requirement, allowing the model to achieve better multi-constraint alignment.

To overcome these challenges, we propose a **self-driven, bidirectionally decoupled DPO framework** tailored for image-conditioned generation. Our framework consists of three key components: **1) Bidirectionally decoupled DPO algorithm (BideDPO):** As shown in Fig 2(b), unlike naive DPO, our method constructs two decoupled preference pairs per example—one for condition fidelity and one for text adherence—used simultaneously during optimization. An adaptive loss balancing strategy further ensures balanced progress on both objectives, preventing the model from collapsing toward a single constraint. This decoupling, combined with dynamic loss adjustment, enables the model to better handle conflicts between the two constraints and achieve a more effective trade-off. **2) Automated Construction of Disentangled and Conflict-Aware DPO Preference Data:** As shown in Fig. 3, we address the lack of suitable DPO data by introducing an automated pipeline that iteratively samples from the current model and uses vision-language model (VLM) checks to construct high-quality positive and negative samples for both text and condition branches. These datasets include numerous instances where the text and the condition are in conflict. **3) An iterative optimization strategy:** Our framework naturally supports iterative refinement because the generator itself produces the preference data used for training. As shown in Fig. 4, we alternate between generating preference pairs with the current model and optimizing it with BideDPO. Each round leverages the improved generator to produce higher-quality data, creating a self-reinforcing loop that progressively enhances both model performance and data quality.

We construct a DualAlign benchmark to evaluate how state-of-the-art conditional image generation methods handle conflicts between the conditioning input and the text prompt. Experiments are conducted across standard conditioning modalities. Results show that our method markedly improves the text success rate (SR) and adherence to the conditioning signal over strong baselines—for example, on FLUX-Depth it boosts text SR by **15%** and reduces the conditional MSE by **87.7** points. We also validate robustness on the standard COCO benchmark (Lin et al., 2015; Zhang et al., 2025): even with standard prompts, our approach delivers substantial gains over the original model, e.g., a **15%** improvement for canny-conditioned generation. Furthermore, our iterative optimization strategy proves effective: as the number of iterations increases, the model consistently achieves better trade-offs between conditioning and text, yielding steady performance gains.

We summarize our contributions as follows:

- To the best of our knowledge, this work is the first to formally formulate and systematically analyze the text-condition adherence conflict in conditional image generation. We propose BideDPO, an effective DPO algorithm that reconciles conflicts between condition inputs and text prompts.
- We propose an automated pipeline that produces disentangled condition–text preference pairs. It easily extends to other tasks and supports iterative optimization, improving both model and data.
- We construct a DualAlign Benchmark for evaluating a model’s ability to handle conflicts between condition inputs and text prompts, and the results highlight the effectiveness of our approach.

2 RELATED WORK

Conditional Image Generation. With the rapid advancement of image generation technology (Rombach et al., 2022; Podell et al., 2023; Rombach et al., 2023; Esser et al., 2024), current

models are now capable of producing highly realistic images. As a result, a key research focus has shifted toward enabling more conditional image generation (Li et al., 2024; Bhat et al., 2024; Lin et al., 2024; Peng et al., 2024; Wang et al., 2024; Ye et al., 2023; Zhang et al., 2025), aiming to make text-to-image technologies applicable in a broader range of real-world scenarios. For example, models of the ControlNet (Zhang et al., 2023; Xu et al., 2024; Zhao et al., 2023) family, such as FLUX.1-dev-UnionPro2 (Shakker Labs, 2025), introduce an auxiliary network to inject user-provided spatial constraints or reference image information into the generation process. Other variants, including FLUX-Depth and FLUX-Canny (BlackForest, 2024), concatenate the encoded condition image with the generated image features at the input channel, training the entire network end-to-end to achieve conditional image generation.

Aligning Image Generation with Human Preferences. Reinforcement learning (RL) methods are widely used for post-training large language models (LLMs) to align outputs with human preferences, and has recently been applied to image generation for improved controllability and preference alignment. Most approaches rely on explicit reward models, such as ImageReward (Xu et al., 2023), combined with policy rollouts like PPO (Liu et al., 2025; Xue et al., 2025) or direct gradient methods (Clark et al., 2024; Prabhudesai et al., 2023). A more efficient alternative is Direct Preference Optimization (DPO) (Rafailov et al., 2023), adapted to diffusion models by Diffusion-DPO (Wallace et al., 2023), and further extended for richer feedback (RankDPO (Karthik et al., 2024)) and timestep inconsistencies (SPO (Liang et al., 2024), TailorPO (Ren et al., 2025)). Given its efficiency and effectiveness, we build on the DPO framework. However, existing DPO-based methods still struggle with conditional image generation involving multiple, potentially conflicting constraints. To address this, we propose a novel **Bidirectionally Decoupled DPO** algorithm that enables clearer optimization directions and better handles complex conditional scenarios.

3 METHOD

Our method has three components: (1) a Bidirectionally Decoupled DPO algorithm (BideDPO, §3.1) that enforces simultaneous text-condition adherence; (2) an automatic pipeline for constructing Disentangled and Conflict-Aware Preference Data (§3.2) for BideDPO training; and (3) an iterative optimization strategy (§3.3) that jointly improves model performance and data quality. **Preliminary background on Diffusion Models and DPO is provided in Appendix §A.**

3.1 BIDIRECTIONALLY DECOUPLED DPO

Limitations of Vanilla DPO. In conditional image generation, models are often tasked with satisfying both a text prompt p and an extra structural condition s . For notational simplicity, we encapsulate both inputs into a single composite context variable $c = (p, s)$. To analyze the optimization dynamics of DPO (Rafailov et al., 2023) in this multi-objective setting, we can conceptualize the model’s preference score as being composed of a text alignment component, $f_{\text{text}}(x, c; \theta)$ (which primarily depends on p), and a condition alignment component, $f_{\text{cond}}(x, c; \theta)$ (which primarily depends on s).

For simplicity, let us assume the overall score $f(x, c; \theta)$ can be modeled as a weighted linear combination of these components, while acknowledging that the true relationship is far more complex:

$$f(x, c; \theta) = \lambda_{\text{text}} f_{\text{text}}(x, c; \theta) + \lambda_{\text{cond}} f_{\text{cond}}(x, c; \theta), \quad (1)$$

where λ_{text} and λ_{cond} are scalar weights. For a preference triplet (x^+, x^-, c) , where both the preferred and dispreferred samples are evaluated under the same shared composite context c , the vanilla DPO loss is:

$$\mathcal{L}_{\text{coupled}} = -\log \sigma(f(x^+, c; \theta) - f(x^-, c; \theta)). \quad (2)$$

The partial derivative of this loss with respect to the model parameters θ is given by:

$$\frac{\partial \mathcal{L}_{\text{coupled}}}{\partial \theta} = -(1 - \sigma(\Delta(c; \theta))) \frac{\partial \Delta(c; \theta)}{\partial \theta}, \quad (3)$$

$$\Delta(c; \theta) = \underbrace{\lambda_{\text{text}} (f_{\text{text}}(x^+, c; \theta) - f_{\text{text}}(x^-, c; \theta))}_{\Delta_{\text{text}}(c; \theta)} + \underbrace{\lambda_{\text{cond}} (f_{\text{cond}}(x^+, c; \theta) - f_{\text{cond}}(x^-, c; \theta))}_{\Delta_{\text{cond}}(c; \theta)}. \quad (4)$$

The update gradient in Eq. 3 is influenced simultaneously by both objectives, but when one objective’s gradient is significantly stronger, it can dominate the update. Consequently, the weaker objective may be masked—or, in cases of conflict, the update may even move in a direction that opposes the weaker objective, making its optimization more difficult.

Decoupled Preference Pairs. To address this limitation, we construct two decoupled preference pairs for each case, targeting condition and text alignment separately (Fig. 2(b)). For text alignment, we use a pair (x_T^+, x_T^-, c_0) , and for condition alignment, we use (x_C^+, x_C^-, c_1) . Here, $c_0 = (p, s_0)$ and $c_1 = (p, s_1)$, where p is the same target prompt in both cases. In the text alignment pair, x_T^+ and x_T^- have similar adherence to s_0 , but x_T^+ follows the prompt p , while x_T^- does not. In the condition alignment pair, both x_C^+ and x_C^- follow p , but x_C^+ matches s_1 much better than x_C^- . Two independent loss terms are then calculated separately for each objective:

$$\mathcal{L}_{\text{text}} = -\log \sigma \underbrace{\left(f_{\text{text}}(x_T^+, c_0; \theta) - f_{\text{text}}(x_T^-, c_0; \theta) \right)}_{\Delta_{\text{text}}(c_0; \theta)}, \quad (5)$$

$$\mathcal{L}_{\text{cond}} = -\log \sigma \underbrace{\left(f_{\text{cond}}(x_C^+, c_1; \theta) - f_{\text{cond}}(x_C^-, c_1; \theta) \right)}_{\Delta_{\text{cond}}(c_1; \theta)} \quad (6)$$

Adaptive Loss Balancing. To prevent the optimization from being dominated by one objective, we introduce an adaptive loss balancing strategy. To ensure stable training, the weights for each loss component are computed based on their current magnitudes but are treated as detached constants during backpropagation. This is achieved by applying a stop-gradient operator, denoted as $\text{sg}(\cdot)$:

$$w_{\text{text}} = \text{sg} \left(\frac{\mathcal{L}_{\text{text}}}{\mathcal{L}_{\text{text}} + \mathcal{L}_{\text{cond}}} \right), \quad \text{and} \quad w_{\text{cond}} = \text{sg} (1 - w_{\text{text}}). \quad (7)$$

The total loss is thus a dynamically weighted sum:

$$\mathcal{L}_{\text{decoupled}} = w_{\text{text}} \mathcal{L}_{\text{text}} + w_{\text{cond}} \mathcal{L}_{\text{cond}}. \quad (8)$$

Decoupled gradient. The gradient can be formulated as:

$$\begin{aligned} \frac{\partial \mathcal{L}_{\text{decoupled}}}{\partial \theta} &= w_{\text{text}} \frac{\partial \mathcal{L}_{\text{text}}}{\partial \theta} + w_{\text{cond}} \frac{\partial \mathcal{L}_{\text{cond}}}{\partial \theta} \\ &= -w_{\text{text}} (1 - \sigma(\Delta_{\text{text}}(c_0; \theta))) \frac{\partial \Delta_{\text{text}}(c_0; \theta)}{\partial \theta} - w_{\text{cond}} (1 - \sigma(\Delta_{\text{cond}}(c_1; \theta))) \frac{\partial \Delta_{\text{cond}}(c_1; \theta)}{\partial \theta}. \end{aligned} \quad (9)$$

Crucially, this gradient is a fully decoupled sum. Unlike the coupled gradient in Eq. 3, our approach provides a distinct optimization signal for each objective. This prevents one objective’s gradient from being diminished or “swallowed” when the other’s loss is significantly larger, ensuring both are consistently optimized.

BideDPO Objective for Diffusion Models. Building upon prior work (Wallace et al., 2023), we define the reward $r(x_t, c, \epsilon; \theta)$ in diffusion models as the reduction in denoising error for a noisy sample x_t under a given context c , which is computed as the difference between the denoising error $\|\epsilon - \epsilon_{\text{ref}}(x_t, c)\|^2$ of the frozen reference network and the error $\|\epsilon - \epsilon_{\theta}(x_t, c)\|^2$ of the optimized network, where ϵ represents the noise:

$$r(x_t, c, \epsilon; \theta) = \|\epsilon - \epsilon_{\text{ref}}(x_t, c)\|^2 - \|\epsilon - \epsilon_{\theta}(x_t, c)\|^2. \quad (10)$$

The total reward differences for the text pair under context c_0 (R_T) and the context pair under context c_1 (R_C) are then:

$$R_T = r(x_{t,T}^+, c_0, \epsilon_T^+; \theta) - r(x_{t,T}^-, c_0, \epsilon_T^-; \theta), \quad (11)$$

$$R_C = r(x_{t,C}^+, c_1, \epsilon_C^+; \theta) - r(x_{t,C}^-, c_1, \epsilon_C^-; \theta). \quad (12)$$

The final BideDPO loss adaptively weights the objectives based on these reward differences:

$$\mathcal{L}_{\text{BideDPO}}(\theta) = -\mathbb{E}_{(x_T^+, x_T^-, c_0) \sim \mathcal{D}_T, (x_C^+, x_C^-, c_1) \sim \mathcal{D}_C} \left[w_{\text{text}} \log \sigma(\beta T R_T) + w_{\text{cond}} \log \sigma(\beta T R_C) \right]. \quad (13)$$

By providing a distinct gradient for each objective, our decoupled approach mitigates the interference inherent in the decoupled DPO loss. This leads to more stable and efficient multi-objective optimization. Please see Appendix §G for more details.

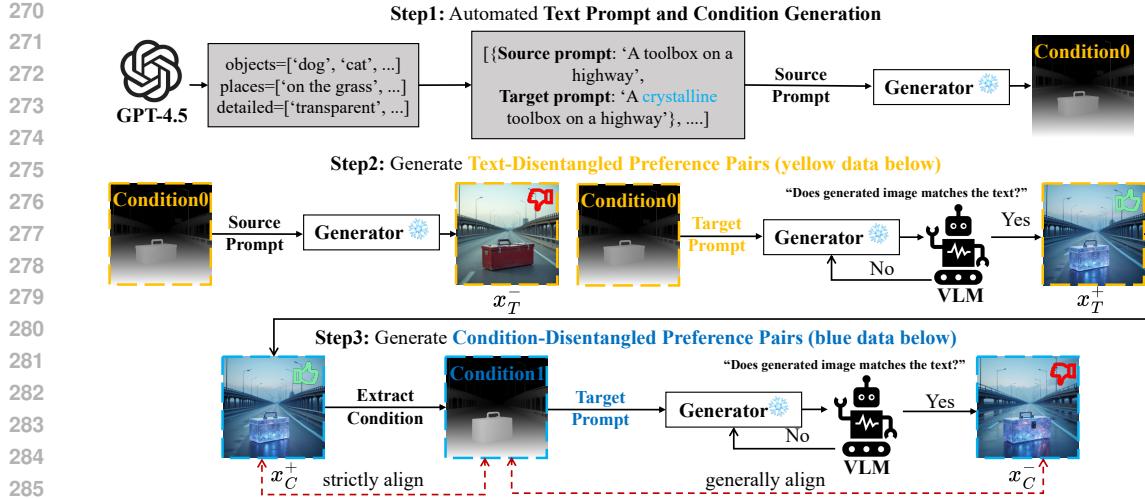
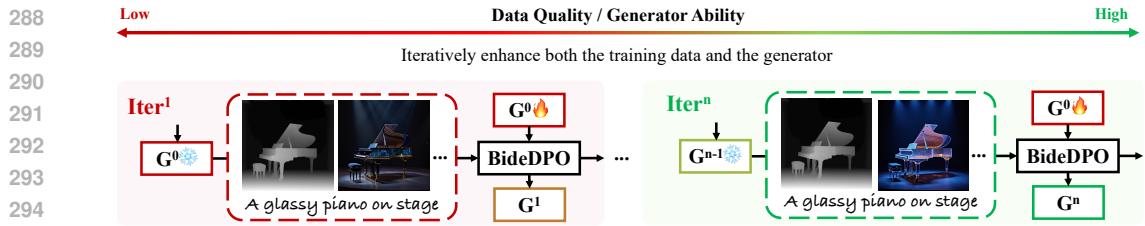


Figure 3: The Automated Disentangled, Conflict-Aware Preference Data Generation Pipeline.

Figure 4: Iterative Optimization Strategy. We start with an initial generator (G^0) that produces training data via our automated pipeline (Fig. 3). Training with BideDPO already improves the model (G^1), while repeating the process with the updated generator yields higher-quality data and further gains, forming a self-reinforcing loop where both data and model improve progressively.

3.2 AUTOMATED CONSTRUCTION OF DISENTANGLED AND CONFLICT-AWARE DPO PREFERENCE DATA

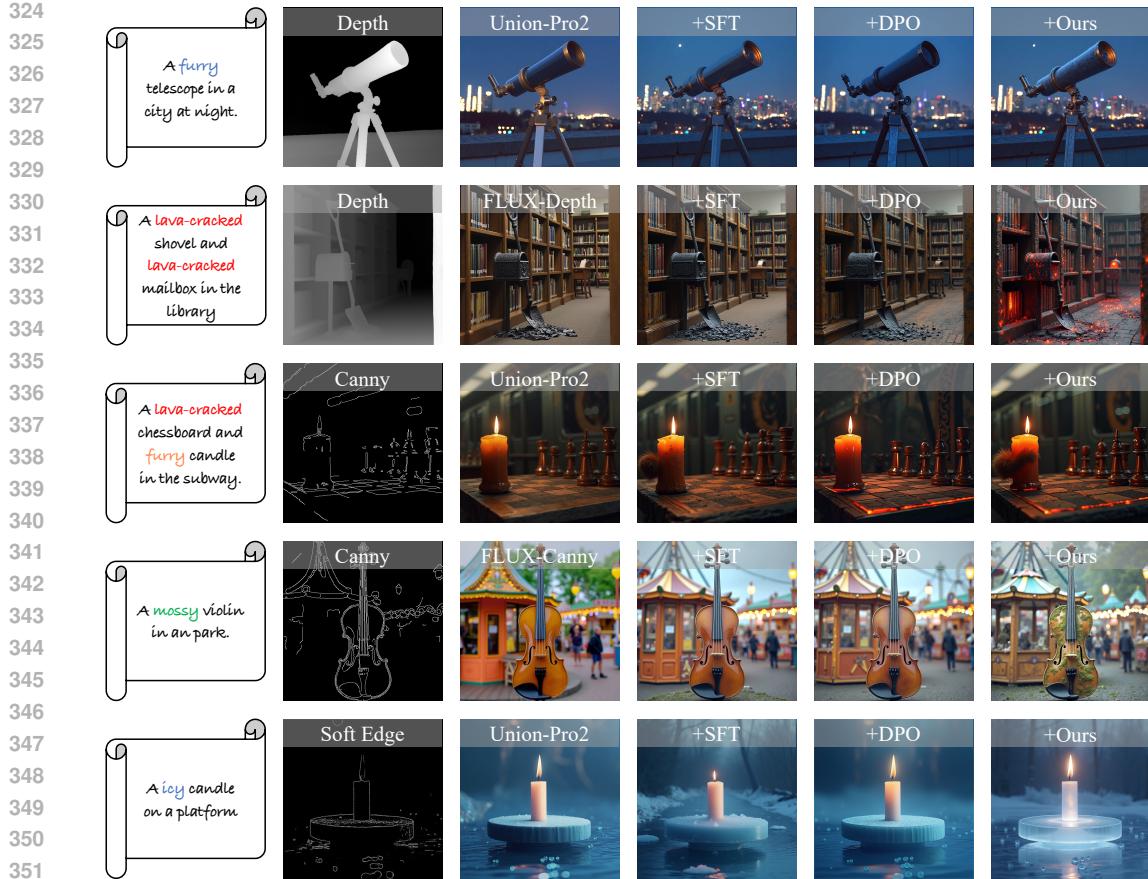
As shown in Fig. 3, we design an automated data construction pipeline that explicitly generates disentangled preference pairs for both text and condition alignment, including cases where the two objectives are in conflict. It consists of three steps:

1. Prompt and Initial Condition Generation. We first use an LLM to generate a basic *Source Prompt* and a more detailed *Target Prompt* p . The source prompt is then used to produce an initial condition map, “Condition 0” (s_0). The generated s_0 and target prompt p often exhibit input-level or model-bias conflicts in Fig. 1.

2. Text-Disentangled Pair (x_T^+, x_T^-, p, s_0). Both samples adhere to “Condition 0” (s_0). The preferred sample x_T^+ is generated from the *Target Prompt*, with its textual alignment verified by a VLM, and serves as our high-quality anchor. The dispreferred sample x_T^- is generated from the *Source Prompt* and thus lacks textual alignment with *Target Prompt*.

3. Condition-Disentangled Pair (x_C^+, x_C^-, p, s_1). Both samples align with the *Target Prompt* p . The anchor x_T^+ serves as the preferred sample x_C^+ , and a new, strictly aligned condition map “Condition 1” (s_1) is extracted from it. The dispreferred sample x_C^- is then generated to adhere less strictly to “Condition 1” while matching the target prompt’s semantics.

This structured process allows us to systematically generate preference data that isolates and targets distinct aspects of text and condition alignment. By repeating this process over a large set of prompts and conditions, we built a comprehensive dataset that enables targeted, disentangled optimization for multi-constraint image generation. **Moreover, this approach can be easily extended to other tasks, such as style-text alignment, as illustrated in Fig. 8.**



352 **Figure 5: Visual comparison for conditional image generation on the DualAlign Benchmark.**
353 We evaluate three common conditioning modalities: depth, Canny, and soft edge. Our method
354 improves adherence to both the text prompt and the spatial conditioning. **Please zoom in for details.**

355 3.3 ITERATIVE OPTIMIZATION STRATEGY

357 For each generator model, BideDPO strengthens adherence to both text and condition, and since
358 our data construction pipeline builds samples directly from the same model, the process naturally
359 supports iterative refinement. As shown in Fig. 4, we alternate between generating preference data
360 with the current model and optimizing it with BideDPO, forming a self-reinforcing loop that pro-
361 gressively improves both the generator and its training data.

363 4 EXPERIMENTS

365 4.1 EXPERIMENTAL SETUP

367 **Baselines.** We conduct experiments on the state-of-the-art text-to-image model FLUX (BlackForest,
368 2024). Specifically, we evaluate our approach on the most widely used conditional image genera-
369 tion variants in the community, including FLUX-Depth, FLUX-Canny, and Union-Pro2 (Shakker
370 Labs, 2025). **We also compare with LooseControl (limited to depth conditioning) (Bhat et al.,**
371 **2024) and ControlNet++ (Li et al., 2024). We evaluate style-conditioned generation on FLUX IP-**
372 **Apdater (Team, 2024).** We primarily compare our method with two common baselines: supervised
373 fine-tuning (SFT) and naive DPO (Wallace et al., 2023).

374 **Implementation Details.** We generate 5,000 samples in each iteration. For SFT, we use the positive
375 samples in Fig. 3. For DPO, we construct coupled preference pairs by combining the condition
376 image and positive sample from the Condition-Disentangled Preference Pairs, together with the
377 negative sample from the Text-Disentangled Preference Pairs. We fine-tune all models using Low-
Rank Adaptation (LoRA (Hu et al., 2022)) method with rank of 256. For the SFT method, we train

378
 379 **Table 1: Results for depth-conditioned image**
 380 **generation on DualAlign Benchmark.** “Ctrl.”
 381 indicates support for conditional generation.

Method	Ctrl.	SR ↑	MSE ↓	SGMSE ↓	CLIP ↑
FLUX	✗	0.79	N/A	N/A	0.2936
LooseControl	✓	0.43	791.1	1280.2	0.2852
ControlNet++	✓	0.49	331.9	480.7	0.2854
Union-Pro2	✓	0.49	177.0	272.4	0.2748
+ SFT	✓	0.70	262.2	332.5	0.2915
+ DPO	✓	0.71	168.3	219.9	0.2860
+ Ours	✓	0.84	164.0	195.7	0.2924
FLUX-Depth	✓	0.76	233.6	282.8	0.2899
+ SFT	✓	0.79	162.2	195.7	0.2926
+ DPO	✓	0.89	171.9	195.0	0.2974
+ Ours	✓	0.91	145.9	164.4	0.2982

391
 392 **Table 2: Results for canny-conditioned image**
 393 **generation on DualAlign Benchmark.** “Ctrl.”
 394 indicates support for conditional generation.

Method	Ctrl.	SR ↑	F1 ↑	SGF1 ↑	CLIP ↑
FLUX	✗	0.71	N/A	N/A	0.2965
ControlNet++	✓	0.40	0.437	0.174	0.2828
Union-Pro2	✓	0.34	0.418	0.143	0.2753
+ SFT	✓	0.58	0.324	0.178	0.2838
+ DPO	✓	0.50	0.607	0.284	0.2840
+ Ours	✓	0.68	0.607	0.393	0.2845
FLUX-Canny	✓	0.33	0.397	0.129	0.2703
+ SFT	✓	0.52	0.357	0.179	0.2842
+ DPO	✓	0.55	0.452	0.248	0.2829
+ Ours	✓	0.73	0.454	0.333	0.2927

395 for 5,000 steps using the Prodigy (Mishchenko & Defazio, 2023) optimizer with a learning rate of
 396 1.0, using all positive samples in Fig. 3; for DPO and BideDPO, starting from the SFT-tuned model,
 397 we optimize for an additional 2,000 steps using the AdamW (Kingma & Ba, 2017) optimizer with a
 398 learning rate of 0.00004 and a weight decay of 0.01.

399 **Evaluation Benchmarks.** 1) *DualAlign benchmark for conflicting text-condition constraints.* Currently,
 400 there is no established benchmark for evaluating conditional image generation in scenarios
 401 where the text prompt and condition image provide partially conflicting guidance. Therefore, we
 402 construct our own test set following a similar pipeline as our training data, generating text-condition
 403 pairs that require the model to make meaningful trade-offs between constraints. To better assess the
 404 generalization ability of our approach, we ensure that the objects, places, and detailed descriptions in
 405 the test set do not overlap with those in the training set. Each modality contains 100 cases. 2) *COCO*
 406 *benchmark for robustness.* To assess robustness on a standard benchmark, we also evaluate various
 407 post-training methods alongside their baseline models on the COCO dataset (Lin et al., 2015; Zhang
 408 et al., 2025), demonstrating that our approach preserves the base model’s original performance. 3)
 409 *DualAlign-Style benchmark for text-style condition constraints (see § E.2 in Appendix).*

410 **Evaluation Metrics.** We evaluate our models using the following metrics: 1) *Success Ratio:* We
 411 use the Qwen2.5-VL-72B (Bai et al., 2023) model to automatically determine whether the generated
 412 image accurately matches the text description, providing a direct measure of text-image consistency.
 413 2) *CLIP Score (Radford et al., 2021):* This metric quantifies the semantic alignment between the
 414 generated image and the input prompt, indicating how well the model captures the intended content
 415 described by the user. 3) *MSE/F1 Score:* These metrics assess the degree to which the generated
 416 image conforms to the input condition (e.g., spatial or structural constraints), thereby measuring con-
 417 ditional fidelity. 4) *Semantic-Guided MSE (SGMSE), Semantic-Guided F1 (SGF1), and Semantic-
 418 Guided SSIM (SGSSIM):* To jointly evaluate textual and conditional alignment, we define SGMSE,
 419 SGF1, and SGSSIM. Each extends its standard counterpart by adding a semantic check. If a gen-
 420 eration fails the text requirement, we apply a penalty: MSE is doubled, and the F1 or SSIM score
 421 is set to zero (otherwise the metrics reduce to the usual MSE, F1, and SSIM). This design penal-
 422 izes outputs that do not satisfy both constraints and provides a more comprehensive assessment of
 423 controllable image generation.

424 4.2 EXPERIMENTAL RESULTS

425 **Qualitative Results.** Fig. 5 presents visual comparisons between our BideDPO and other post-
 426 training methods. Supervised fine-tuning (SFT) reduces the model’s adherence to the input condi-
 427 tion. For example, in the fifth row of Fig. 5, the shape at the top of the candle is noticeably altered.
 428 Naive DPO, due to coupled gradients, biases optimization toward condition adherence while often
 429 neglecting textual alignment, resulting in outputs that frequently fail to match the text description.
 430 In contrast, our bidirectionally decoupled and adaptively balanced approach enables the model to
 431 resolve conflicts between condition and text better, achieving a more effective trade-off and satis-
 432 fying both constraints. Notably, BideDPO and vanilla SFT are trained with exactly the same set of
 433 positive examples; this controlled comparison underscores the superiority of our method.

432 Table 4: **Quantitative results on COCO Benchmark with depth and canny conditioning.**

433 434 435 Method	436 437 438 439 440 Depth-conditioned				441 442 443 444 445 446 447 Canny-conditioned			
	448 449 SR \uparrow	448 449 MSE \downarrow	448 449 SGMSE \downarrow	448 449 CLIP \uparrow	448 449 SR \uparrow	448 449 F1 \uparrow	448 449 SGF1 \uparrow	448 449 CLIP \uparrow
448 449 LooseControl	448 449 0.72	448 449 1334.0	448 449 1706.0	448 449 0.2534	448 449 N/A	448 449 N/A	448 449 N/A	448 449 N/A
448 449 ControlNet++	448 449 0.79	448 449 548.3	448 449 668.9	448 449 0.2557	448 449 0.71	448 449 0.339	448 449 0.245	448 449 0.2622
448 449 Union-Pro2	448 449 0.83	448 449 297.3	448 449 363.5	448 449 0.2546	448 449 0.78	448 449 0.416	448 449 0.332	448 449 0.2539
448 449 + SFT	448 449 0.87	448 449 561.7	448 449 635.6	448 449 0.2575	448 449 0.81	448 449 0.271	448 449 0.271	448 449 0.2602
448 449 + DPO	448 449 0.90	448 449 263.4	448 449 278.2	448 449 0.2586	448 449 0.75	448 449 0.490	448 449 0.373	448 449 0.2554
448 449 + Ours	448 449 0.91	448 449 236.3	448 449 245.3	448 449 0.2633	448 449 0.83	448 449 0.497	448 449 0.392	448 449 0.2629

448 Figure 6: **Visualization of Iterative Optimization.**

450 **Quantitative Results.** Quantitative results in Tabs. 1, 2, and 3 show that our
451 method substantially improves adherence to both text prompts and conditioning inputs.

452 For example, in depth-conditioned generation, we observe a **43%** increase in
453 Success Ratio on Union-Pro2 and a **15%** increase on FLUX-Depth. In canny-
454 conditioned generation, our approach achieves a **34%** higher Success Ratio on
455 Union-Pro2 and a **40%** increase on FLUX-Canny—even surpassing the original T2I
456 FLUX model in terms of text alignment. Moreover, our method also enhances ad-
457 herence to the input condition across var-
458 ious baselines. For instance, on the MSE loss, our approach reduces the error of FLUX-Depth by
459 **148.687**, demonstrating improved conditional fidelity. Finally, Tab. 4 shows that our approach does
460 not compromise the base model’s robustness: on COCO—a dataset not used during training—it still
461 delivers improvements over the original model. Importantly, all results shown here are obtained
462 without iterative optimization.

463 **Iterative optimization strategy.** Since
464 BideDPO simultaneously strengthens the
465 model’s adherence to both text and condi-
466 tion, we can adopt an iterative optimiza-
467 tion algorithm to refine the model and
468 data together. Tab. 5 shows that our it-
469 erative optimization (Fig. 4) progressively
470 improves adherence to both condition and
471 text, reaching optimal performance by the
472 third iteration. This trend is further sup-
473 ported by the qualitative comparisons in
474 Fig. 6, where generated images increas-
475 ingly align with the text while preserving condition
476 fidelity. Importantly, even a single iteration
477 already yields substantial improvements over the baseline. Thus, iterative refinement should be
478 regarded as an optional enhancement that can be adjusted based on available computational resources.

479 **Ablation Study of Adaptive Loss Balancing (ALB).** In Tab. 5, the results for “Iter = 1” demon-
480 strate more balanced improvements than those for “w/o ALB”, with a **6%** increase in success rate and a
481 **9.518** gain in SGMSE, despite only a modest decrease in MSE (**6.239**).

482 **Ablation Study on Preference Pairs.** As shown in Tab. 5, using only text- or condition-
483 disentangled preference pairs (Fig. 3) makes the model focus on a single aspect, yielding marginal

450 Table 3: **Results for soft edge-conditioned image
451 generation on DualAlign Benchmark.** “Ctrl.” indi-
452 cates support for conditional generation.

453 454 Method	455 456 Ctrl.	457 458 SR \uparrow	459 460 SSIM \uparrow	461 462 SGSSIM \uparrow	463 464 CLIP \uparrow
465 466 FLUX	467 468 ×	469 470 0.73	465 466 N/A	465 466 N/A	465 466 0.2907
471 472 Union-Pro2	473 474 ✓	475 476 0.24	471 472 0.610	471 472 0.145	471 472 0.2768
477 478 + SFT	479 480 ✓	481 482 0.48	477 478 0.510	477 478 0.255	477 478 0.2855
483 484 + DPO	485 486 ✓	487 488 0.39	483 484 0.637	483 484 0.250	483 484 0.2783
489 490 + Ours	491 492 ✓	493 494 0.49	489 490 0.643	489 490 0.297	489 490 0.2855

450 Table 5: **Ablation study of our core components.**
451 “w/o ALB” ablates our Adaptive Loss Balancing.
452 “Text. Only” and “Cond. Only” are trained using only
453 the text or condition preference pairs, respectively.

454 455 Method	456 457 SR \uparrow	458 459 MSE \downarrow	460 461 SGMSE \downarrow	462 463 CLIP \uparrow
464 465 Iter = 1	466 467 0.84	468 469 163.968	464 465 195.728	464 465 0.2924
466 467 Iter = 2	468 469 0.85	470 471 158.876	466 467 195.459	466 467 0.2947
468 469 Iter = 3 (Ours)	470 471 0.88	472 473 159.559	468 469 190.263	468 469 0.2957
470 471 Iter = 4	472 473 0.86	474 475 166.274	470 471 202.363	470 471 0.2939
472 473 w/o ALB	474 475 0.78	476 477 157.729	472 473 205.246	472 473 0.2862
474 475 Text. Only	476 477 0.88	478 479 258.954	474 475 287.749	474 475 0.2947
476 477 Cond. Only	478 479 0.59	480 481 153.659	476 477 218.683	476 477 0.2753

Figure 7: **Visual results for style-conditioned image generation on IP-Adapter (Team, 2024).**

or even harmful effects on the other. Only by jointly leveraging both types of preference pairs (ours) can the model achieve balanced improvements across all constraints.

User Study. We conducted a user study to compare our optimized model against the base model, evaluating three aspects: text adherence, condition adherence, and overall alignment. For each trial, we randomly sampled 20 cases and asked 30 participants to evaluate them in a 1-vs.-1 format, yielding a total of 600 comparisons. As shown in Tab. 6, participants favored our model roughly twice as often as the baseline.

Table 6: **User study results.** Values are win rates.

Comparison	Text ↑	Condition ↑	Overall ↑
Ours vs. Base	67.9%	66.8%	64.0%

Universality on style-conditional image generation. Beyond structure- and spatial-conditional generation, we further validate the effectiveness of our method on more abstract conditions, such as style-conditioned image generation. As shown in Fig. 7, prior methods often suffer from excessive reference copying, due to the Model Bias issue discussed in Fig. 1(b). In contrast, our proposed BideDPO algorithm substantially mitigates this problem, achieving a 28% higher success rate (Tab. 7).

Table 7: **Style-conditioned generation on DualAlign-Style benchmark.**

Method	SR ↑	Style Score ↑	SG Style ↑	CLIP ↑
IPA	30%	6.50	1.31	0.1679
+ Ours	58%	6.26	2.97	0.2015

More VLM Selection. To verify robustness beyond a single evaluator, we additionally assessed our method using multiple VLMs—including Qwen2.5-VL-72B, GPT-4o—and human raters. As shown in Tab. 8, all evaluators yield consistent rankings (+Ours > +DPO > +SFT > UnionPro2), confirming that our improvements are not artifacts of a specific VLM but hold universally across models and human judgment.

Table 8: **Success rates from different evaluators.**

Judge	UnionPro2	+SFT	+DPO	+Ours
Qwen2.5	0.49	0.70	0.71	0.84
GPT-4o	0.43	0.65	0.70	0.82
Human	0.42	0.62	0.64	0.84

5 CONCLUSION

In this work, we address the fundamental challenge of achieving simultaneous text and condition alignment in controllable image generation. We identify that existing approaches—including supervised fine-tuning and naive DPO—struggle to balance multiple constraints, especially when the text prompt and condition input are in conflict. To overcome this, we propose a bidirectionally decoupled DPO framework that disentangles the optimization of textual and conditional adherence. Furthermore, adaptive loss balancing ensures stable and effective learning between objectives. Our approach also features an automated pipeline for constructing high-quality, disentangled preference pairs, as well as an iterative optimization strategy that continuously enhances both the data and the model. Extensive experiments demonstrate that our method significantly outperforms strong baselines on both textual and conditional alignment, yielding substantial improvements in Success Ratio and conditional fidelity across a variety of benchmarks. Our framework not only advances the state of controllable image generation, but also provides new insights into preference-based learning with multiple, potentially conflicting objectives.

540 ETHICS STATEMENT
541

542 Our work adheres to the ethical guidelines of the ICLR 2026 conference. This work develops meth-
543 ods for improving conditional image generation. All experiments use publicly available datasets
544 (e.g., COCO) or synthetic benchmarks without personal or sensitive information. Our user study
545 involved voluntary participants with informed consent and no collection of private data. While gen-
546 erative models may be misused, our contributions focus on alignment and controllability to enhance
547 reliability, and are intended solely for academic research.

548
549 REPRODUCIBILITY STATEMENT
550

551 We provide all necessary details to ensure the reproducibility of our results, including: (1) model ar-
552 chitecture and training hyperparameters; (2) complete experimental settings and datasets; (3) evalua-
553 tion metrics; (4) a commitment to release our code and trained models upon acceptance, to promote
554 transparency and reproducibility.

555
556 THE USE OF LARGE LANGUAGE MODELS
557

558 During the preparation of this manuscript, Large Language Models were used as a general-purpose
559 writing assistant tool. Specifically, LLMs were employed to polish the language and refine the
560 clarity of the text. The authors take full responsibility for the content of the paper.

561
562 REFERENCES
563

564 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
565 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

566

567 Shariq Farooq Bhat, Niloy Mitra, and Peter Wonka. Loosecontrol: Lifting controlnet for generalized
568 depth conditioning. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024.

569 BlackForest. Black forest labs; frontier ai lab, 2024. URL <https://blackforestlabs.ai/>.

570

571 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
572 on differentiable rewards. In *ICLR*. OpenReview.net, 2024.

573

574 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
575 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
576 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

577

578 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33:
579 6840–6851, 2020.

580

581 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
582 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

583

584 Shyamgopal Karthik, Huseyin Coskun, Zeynep Akata, Sergey Tulyakov, Jian Ren, and Anil Kag.
585 Scalable ranked preference optimization for text-to-image generation, 2024. URL <https://arxiv.org/abs/2410.18013>.

586

587 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

588

589 Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen
590 Chen. Controlnet++: Improving conditional controls with efficient consistency feedback. *arXiv
591 preprint arXiv:2404.07987*, 2024.

592

593 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng.
Step-aware preference optimization: Aligning preference with denoising performance at each
step. *CoRR*, abs/2406.04314, 2024.

594 Han Lin, Jaemin Cho, Abhay Zala, and Mohit Bansal. Ctrl-adapter: An efficient and versatile
 595 framework for adapting diverse controls to any diffusion model. *arXiv preprint arXiv:2404.09967*,
 596 2024.

597 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 598 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 599 in context, 2015.

600 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 601 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl, 2025.
 602 URL <https://arxiv.org/abs/2505.05470>.

603 Xiaoyu Liu, Yuxiang Wei, Ming Liu, Xianhui Lin, Peiran Ren, Xuansong Xie, and Wangmeng
 604 Zuo. Smartcontrol: Enhancing controlnet for handling rough visual conditions. In *European
 605 Conference on Computer Vision*, pp. 1–17. Springer, 2024.

606 Maneesh Agrawala Lvmin Zhang, Anyi Rao. Adding conditional control to text-to-image diffusion
 607 models, 2023.

608 Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
 609 learner. *arXiv preprint arXiv:2306.06101*, 2023.

610 Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
 611 Powerful and efficient control for image and video generation. *arXiv preprint arXiv:2408.06070*,
 612 2024.

613 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 614 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 615 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

616 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
 617 image diffusion models with reward backpropagation. *CoRR*, abs/2310.03739, 2023.

618 Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 619 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 620 Learning transferable visual models from natural language supervision. In *ICML*, 2021.

621 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 622 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 623 in neural information processing systems*, 36:53728–53741, 2023.

624 Jie Ren, Yuhang Zhang, Dongrui Liu, Xiaopeng Zhang, and Qi Tian. Refining alignment framework
 625 for diffusion models with intermediate-step preference ranking, 2025. URL <https://arxiv.org/abs/2502.01667>.

626 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 627 resolution image synthesis with latent diffusion models, 2022.

628 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Stable
 629 diffusion version 2, 2023. URL <https://stability.ai/news/stable-diffusion-v2-release>.

630 Shakker Labs. Flux.1-dev-controlnet-union-pro-2.0, 2025.

631 InstantX Team. Instantx flux.1-dev ip-adapter page, 2024.

632 Bram Wallace, Meihua Dang, Rafael Raffailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 633 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 634 direct preference optimization, 2023.

635 Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
 636 Omnicontrolnet: Dual-stage integration for conditional image generation. In *Proceedings of the
 637 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7436–7448, 2024.

648 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
649 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
650 In *NeurIPS*, 2023.

651

652 Yifeng Xu, Zhenliang He, Shiguang Shan, and Xilin Chen. Ctrlora: An extensible and efficient
653 framework for controllable image generation. *arXiv preprint arXiv:2410.09400*, 2024.

654 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei Liu,
655 Qishan Guo, Weilin Huang, and Ping Luo. Dancegrpo: Unleashing grpo on visual generation,
656 2025. URL <https://arxiv.org/abs/2505.07818>.

657

658 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
659 Zhao. Depth anything v2. *arXiv preprint arXiv:2406.09414*, 2024.

660 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
661 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

662

663 Denis Zavadski, Johann-Friedrich Feiden, and Carsten Rother. Controlnet-xs: Rethinking the con-
664 trol of text-to-image diffusion models as feedback-control systems. In *European Conference on*
665 *Computer Vision*, pp. 343–362. Springer, 2024.

666 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
667 diffusion models. In *ICCV*, pp. 3836–3847, 2023.

668

669 Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding
670 efficient and flexible control for diffusion transformer. *arXiv preprint arXiv:2503.07027*, 2025.

671 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
672 Yee K Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *Advances in*
673 *Neural Information Processing Systems*, 36:11127–11150, 2023.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

A PRELIMINARY

704 **Denoising Diffusion Models.** Denoising diffusion models Ho et al. (2020) are a class of generative
 705 models that learn to synthesize data by reversing a fixed forward noising process. This process
 706 gradually adds Gaussian noise to a clean sample x_0 over T timesteps, such that $x_t = \sqrt{\bar{\alpha}_t}x_0 +$
 707 $\sqrt{1 - \bar{\alpha}_t}\epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. A neural network ϵ_θ is then trained to predict the added noise ϵ from
 708 the noisy sample x_t timestep t , and context c . The objective is to minimize the L2 error between the
 709 actual and predicted noise:

710 By learning to effectively denoise at every step, the model can generate high-fidelity samples from
 711 pure noise.

$$\mathcal{L}_{\text{simple}} = \mathbb{E}_{\epsilon, t, x_0, x_t} [\|\epsilon - \epsilon_\theta(x_t, t, c)\|_2^2]. \quad (14)$$

713 **Direct Preference Optimization (DPO).** Rafailov et al. (2023) introduced DPO, a method to fine-
 714 tune LLMs with pairs of ranked examples (x^+, x^-, c) , where x^+ is the preferred and x^- the
 715 dispreferred sample. The training objective is formulated using an implicit reward $\hat{r}_\theta(x, c) =$
 716 $\beta \cdot \log \frac{p_\theta(x|c)}{p_{\text{ref}}(x|c)}$, which measures the log-likelihood ratio with respect to a reference model p_{ref} and β
 717 is a hyperparameter. The DPO loss is expressed as:

$$\begin{aligned} \mathcal{L}_{\text{DPO}}(\theta) &= -\mathbb{E}_{x^+, x^-, c} [\log \sigma(\hat{r}_\theta(x^+, c) - \hat{r}_\theta(x^-, c))] \\ &= -\mathbb{E}_{x^+, x^-, c} \left[\log \sigma \left(\beta \left(\log \frac{p_\theta(x^+|c)}{p_{\text{ref}}(x^+|c)} - \log \frac{p_\theta(x^-|c)}{p_{\text{ref}}(x^-|c)} \right) \right) \right], \end{aligned} \quad (15)$$

723 where σ is the sigmoid function.

724 **Diffusion-DPO.** Wallace et al. (2023) applied DPO to diffusion models by modifying Eq. 15. They
 725 replaced the logarithmic difference by the denoising error:

$$\begin{aligned} \mathcal{L}_{\text{D-DPO}}(\theta) &= -\mathbb{E}_{x_t^+, x_t^-, c} \left[\log \sigma \left(-\beta T \left(\right. \right. \right. \right. \\ &\quad \left. \left. \left. \left. \left. \|\epsilon^+ - \epsilon_\theta^+(x_t^+, t, c)\|_2^2 - \|\epsilon^+ - \epsilon_{\text{ref}}^+(x_t^+, t, c)\|_2^2 - \right. \right. \right. \right. \\ &\quad \left. \left. \left. \left. \left. \|\epsilon^- - \epsilon_\theta^-(x_t^-, t, c)\|_2^2 + \|\epsilon^- - \epsilon_{\text{ref}}^-(x_t^-, t, c)\|_2^2 \right) \right) \right) \right], \end{aligned} \quad (16)$$

731 where x_t^+ and x_t^- are obtained from x_0^+ and x_0^- using the forward process of diffusion models, and
 732 T is a temperature.

734

B IMPLEMENTATION DETAILS

735

B.1 BASELINE MODELS

738 All our experiments are conducted using state-of-the-art conditional text-to-image diffusion models
 739 from the FLUX family (BlackForest, 2024). Specifically, we adopt the following publicly available,
 740 pre-trained models as our baselines:

- 742 • **FLUX-Depth:** A variant specialized for depth-conditioned image generation, implemented
 743 by the FLUX team.
- 744 • **FLUX-Canny:** A variant specialized for Canny-edge-conditioned image generation, im-
 745 plemented by the FLUX team.
- 746 • **Union-Pro2** (Shakker Labs, 2025): A powerful model built on top of FLUX that supports
 747 conditional generation. It incorporates the ControlNet approach by adding an extra side
 748 network to the FLUX architecture, enabling multi-modal conditioning. Union-Pro2 is one
 749 of the most widely downloaded models in the AIGC community.
- 750 • **FLUX.1-dev-IP-Adapter** (Team, 2024): An IP-Adapter implementation for FLUX.1-dev
 751 released by InstantX Team, enabling image-conditioned generation where reference images
 752 provide style conditions for generation.

753 We primarily compare our proposed BideDPO method against two standard baselines: Supervised
 754 Fine-Tuning (SFT) and a naive application of DPO (Wallace et al., 2023), evaluated on the models
 755 listed above.

756 B.2 BASELINE CONFIGURATIONS
757758 To ensure a fair comparison, we configured the Supervised Fine-Tuning (SFT) and naive DPO base-
759 lines as follows, using the preference data generated by our pipeline:760 **SFT.** The SFT baseline was trained with a standard denoising score matching objective. We ex-
761clusively used high-quality positive samples from our generated data—specifically, the preferred
762 samples x_T^+ from the text-disentangled pairs (conditioned on the target prompt p and initial con-
763 dition s_0) and x_C^+ from the condition-disentangled pairs (conditioned on p and the refined condition
764 s_1).765 **Naive DPO.** For the DPO baseline, we constructed text-and-condition preference pairs to simulate
766 a standard DPO setting in which preferences are not disentangled:767

- 768 The preferred sample x^+ is x_C^+ from the condition-disentangled pair, which aligns well
769 with both the target prompt p and the condition s_1 .
- 770 The dispreferred sample x^- is x_T^- from the text-disentangled pair. This sample is generated
771 from the initial condition s_0 and does not align with the target prompt p , making it a poor
772 fit for both the target prompt p and the condition s_1 .

773 In this way, x_C^+ and x_T^- together form a DPO preference pair that jointly enforces adherence to both
774 the target prompt p and the condition s_1 .775 B.3 TRAINING HYPERPARAMETERS
776777 All models were fine-tuned on a cluster of 4 NVIDIA A100 GPUs with a batch size of 4. We
778 employed the Low-Rank Adaptation (LoRA) (Hu et al., 2022) method with a rank of 256 for fine-
779 tuning all models. For the SFT method, we trained for 5,000 steps using the Prodigy (Mishchenko
780 & Defazio, 2023) optimizer with a learning rate of 1.0. For both DPO and BideDPO, starting from
781 the SFT-tuned model, we further optimized for an additional 2,000 steps using the AdamW (Kingma
782 & Ba, 2017) optimizer with a learning rate of 0.00004 and a weight decay of 0.01. We set the β
783 parameter (Wallace et al., 2023) for DPO to 5000. **Each iteration (data generation + fine-tuning)**
784 **uses 8xA800 GPUs (40GB) for 5 hours (data generation) and 4xA100 GPUs (80GB) for 3 hours**
785 **(training).**786 C EVALUATION METRIC DETAILS
787788 In our experiments, we employ a comprehensive set of metrics to evaluate model performance across
789 text alignment, conditional fidelity, and their combination. Below, we provide detailed descriptions
790 of each metric.791 C.1 TEXT ALIGNMENT METRICS
792

793 C.1.1 SUCCESS RATIO

794 To automatically assess whether a generated image accurately reflects the text prompt, we use the
795 powerful Vision-Language Model (VLM) Qwen2.5-VL-72B. For each generated image and its
796 corresponding target prompt, we query the VLM with a carefully designed question: “Does the
797 image successfully depict the following description: “[Prompt]”? Please answer with ‘Yes’ or ‘No’.”
798 The Success Ratio is then calculated as the percentage of “Yes” responses across our entire test set.
799 This provides a direct and automated measure of text-image consistency.800 C.1.2 CLIP SCORE
801802 The CLIP Score measures the semantic similarity between the generated image and the input text
803 prompt. We use the pre-trained ViT-L/14 CLIP model to compute embeddings for both the image
804 and the prompt. The score is the cosine similarity between these two embedding vectors, scaled by
805 100. A higher CLIP score indicates better semantic alignment with the user’s textual description.

810 C.2 CONDITIONAL FIDELITY METRICS
811812 C.2.1 MEAN SQUARED ERROR (MSE) AND F1 SCORE
813

814 To quantify how well a generated image adheres to the input structural condition (*e.g.*, depth map,
815 Canny edges), we first extract the corresponding condition map from the generated image using the
816 same tool employed during data creation (*e.g.*, Depth Anything v2 for depth). We then compute the
817 Mean Squared Error (MSE) or F1 Score between the extracted condition map and the original input
818 condition map.

- 819 • **MSE:** Used for pixel-wise regression tasks like depth map prediction. A lower MSE indi-
820 cates higher fidelity to the ground-truth condition.
- 821 • **F1 Score:** Used for tasks like Canny edge or human pose matching, where we can treat it
822 as a binary segmentation problem. A higher F1 score indicates better structural correspon-
823 dence.

825 C.3 COMBINED TEXT AND CONDITION METRICS
826827 C.3.1 SEMANTIC-GUIDED MSE (SGMSE) AND F1 (SGF1)
828

829 Standard conditional metrics like MSE and F1 only measure structural fidelity and ignore whether
830 the generated image is semantically correct according to the text prompt. To address this, we in-
831 troduce two novel metrics: Semantic-Guided MSE (SGMSE) and Semantic-Guided F1 (SGF1).
832 These metrics integrate a semantic check (using the same VLM as for the Success Ratio) into the
833 calculation:

- 834 • If the generated image is deemed a “Success” (*i.e.*, it matches the text prompt), the SGMSE
835 and SGF1 are the same as the standard MSE and F1 scores.
- 836 • If the generated image is a “Failure” (it does not match the text prompt), we apply a penalty
837 to reflect the semantic mismatch. The SGMSE is doubled (*i.e.*, $2 \times \text{MSE}$), and the SGF1
838 score is set to zero.

839 This penalty mechanism ensures that the model is rewarded only when it satisfies both the textual
840 and conditional constraints simultaneously, providing a more holistic evaluation of conditional gen-
841 eration.

843 D DATA CONSTRUCTION DETAILS
844846 D.1 CONDITION MODALITIES
847

848 Our framework is designed to be agnostic to the specific type of conditional input. For the experi-
849 ments in this paper, we constructed datasets for three different structural modalities:

- 850 • **Depth Maps:** To provide 3D scene geometry, we utilized the widely-used Depth
851 Anything v2 (Yang et al., 2024) model to extract high-quality depth maps from im-
852 ages.
- 853 • **Canny Edges:** For sharp, well-defined object boundaries, we used the standard Canny
854 edge detection algorithm.
- 855 • **Soft Edges:** We employ the *ControlNet-SoftEdge* family of edge detectors, specifically the
856 recent *Mist2Line-SDXL* model (Lvmin Zhang, 2023).

858 This variety of conditions allows us to evaluate the robustness and versatility of our method across
859 different types of structural constraints.

861 D.2 MORE DETAILS OF AUTOMATED DATA CONSTRUCTION PIPELINE
862

863 Our data construction pipeline is designed to automatically generate disentangled preference pairs
for both text and condition alignment. This process is crucial for training our model to handle multi-

864 objective optimization effectively, especially in cases with conflicting constraints. The pipeline, as
 865 illustrated in the main paper, consists of the following three steps:
 866

867 D.2.1 STEP 1: PROMPT AND INITIAL CONDITION GENERATION 868

869 The process begins with the generation of prompts using a large language model (LLM). For each
 870 data point, we generate a basic *Source Prompt* and a more descriptive *Target Prompt* (p). The source
 871 prompt is then used to create an initial, often loose, condition map, which we denote as “Condition
 872 0” (s_0). This initial pairing of the target prompt p and Condition 0 s_0 is intentionally designed to
 873 often contain conflicts, either at the input level or due to model priors, as discussed in the main
 874 paper.
 875

876 D.2.2 STEP 2: TEXT-DISENTANGLLED PAIR GENERATION 877

878 With the prompts and initial condition, we generate the text-disentangled preference pair
 879 (x_T^+, x_T^-, p, s_0). Both samples in this pair are generated to adhere to the same initial “Condition
 880 0” (s_0).
 881

- 882 • **Preferred Sample (x_T^+):** The preferred sample is generated using the detailed *Target*
 883 *Prompt*. Its alignment with the text is verified using a Vision-Language Model (VLM).
 884 This high-quality sample serves as a reference anchor, denoted x_a .
- 885 • **Dispreferred Sample (x_T^-):** The dispreferred sample is generated using the basic *Source*
 886 *Prompt*. As a result, it correctly follows “Condition 0” but lacks the specific textual details
 887 present in the target prompt, making it less preferred from a text-alignment perspective.

888 D.2.3 STEP 3: CONDITION-DISENTANGLLED PAIR GENERATION 889

890 Next, we construct the condition-disentangled preference pair (x_C^+, x_C^-, p, s_1). For this pair, both
 891 samples are generated to align with the same *Target Prompt* p .
 892

- 893 • **Preferred Sample (x_C^+):** The anchor image x_a from the previous step is used as the pre-
 894 ferred sample. A new, strictly aligned condition map, “Condition 1” (s_1), is then extracted
 895 directly from this anchor image.
- 896 • **Dispreferred Sample (x_C^-):** The dispreferred sample is generated to match the semantics
 897 of the target prompt but to adhere less strictly to the new “Condition 1”. This creates a
 898 preference based on conditional fidelity. Because the generator has limited capability, the
 899 generated image x_C^- will inevitably exhibit some loss of fidelity to the precise structural
 900 details of s_1 when compared to the original image x_a from which s_1 was derived.

901 This structured, three-step process allows us to systematically generate a large dataset of preference
 902 pairs that isolate and target distinct aspects of text and condition alignment.
 903

904 E BIDEDPO ON STYLE-CONDITIONED GENERATION

909 E.1 AUTOMATED STYLE-AWARE PREFERENCE PIPELINE

910 To incorporate explicit artistic controls into our preference data, we extend the above pipeline with
 911 the style-aware branch illustrated in Fig. 8. As shown in Step 1, GPT-5.1 enumerates object concepts
 912 together with concise style captions (“Cubist faceted planes,” etc.). The LLM emits a minimalist
 913 *Source Prompt*, a descriptive *Target Prompt*, and the style caption, which is forwarded to a Web-
 914 Search API to retrieve a representative condition image.
 915

916 Step 2 mirrors the step 2 of Fig. 3. Holding the retrieved condition fixed, we render a positive sample
 917 $x_{T,\text{style}}^+$ using the Target Prompt and a high IP-Adapter scale, with VLM verification ensuring that
 918 both the textual semantics and the referenced style are expressed. A negative counterpart $x_{T,\text{style}}^-$

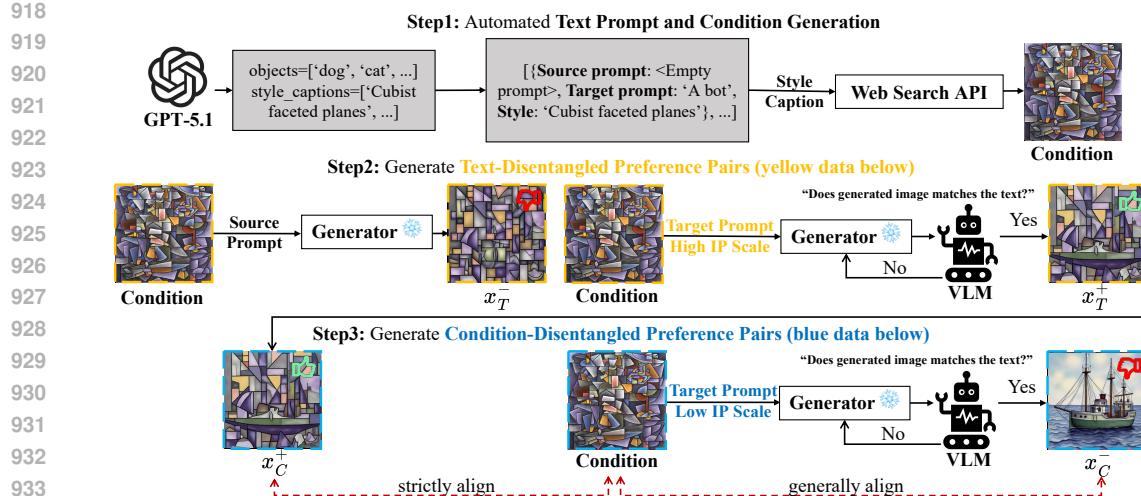


Figure 8: The Automated Style-Aware Preference Data Pipeline.

is produced with the minimalist Source Prompt (empty string) while reusing the same condition, yielding an image that resembles the structure and style but fails to mention the target concept. A VLM adversary inspects each pair, only accepting anchors for which the text truly matches the prompt and the style hint.

Step 3 then isolates conditional fidelity. We keep the Target Prompt and style condition fixed but vary the IP-Adapter scale so that $x_{C,\text{style}}^+$ strictly follows the retrieved condition map while $x_{C,\text{style}}^-$ only coarsely aligns (“strictly align” vs. “generally align” in the figure). Both samples still satisfy the textual description, so their difference arises purely from how faithfully they respect the style-conditioned control input. This yields preference pairs $(x_{C,\text{style}}^+, x_{C,\text{style}}^-, p, s_1)$ that drop seamlessly into the unified BideDPO training mix. Notably, this style-aware pipeline follows almost the same structure as our main data pipeline, highlighting the generality and versatility of our proposed preference data construction framework.

E.2 STYLE BENCHMARK AND DATA.

Using the data generation pipeline defined in the Automated Style-Aware Preference Pipeline above, we construct a style-conditioned benchmark. The training set consists of 100 objects and 20 styles, while the test set contains 10 different objects and 10 different styles.

Metrics. We ask Qwen2.5-VL 72B Bai et al. (2023) to rate each generated image on a 0–10 **Style Score**, and define **SG Style Score** by zeroing the rating whenever the reference style conflicts with the Target Prompt. We also track success rate (SR)—the fraction of samples where the VLM judges both text and style as satisfied—along with CLIP similarity for semantic grounding. These metrics jointly capture textual fidelity, structural accuracy, and adherence to the curated style references.

E.3 EXPERIMENT RESULTS

Quantitative Results. Tab. 7 presents the comprehensive quantitative comparison on the DualAlign-Style benchmark. As shown, BideDPO significantly improves the IP-Adapter (IPA) baseline across all key metrics. Most notably, the success rate (SR) increases from **30% to 58%**, representing a **93% relative improvement**, which demonstrates that our method substantially enhances the model’s ability to simultaneously satisfy both textual semantics and style constraints. While the baseline achieves a slightly higher mean Style Score (6.50 vs. 6.26), this is expected because IPA tends to directly copy the style reference image, which naturally yields high style similarity scores but at the cost of semantic accuracy (only 30% SR). In contrast, the disentangled **SG Style Score** reveals the true capability: BideDPO achieves **2.97** compared to IPA’s **1.31**, representing a **127%**

972 **relative improvement.** This substantial gap demonstrates that BideDPO effectively resolves con-
 973 flicts between style references and text prompts, producing outputs that maintain style fidelity even
 974 when the style condition is semantically incompatible with the target description, while IPA’s high
 975 Style Score primarily reflects its tendency to copy the reference rather than harmonize style with se-
 976 mantics. Additionally, the CLIP score improves from 0.1679 to 0.2015, confirming better semantic
 977 alignment with the text prompts. These results demonstrate that the same bidirectionally decou-
 978 pled objective extends seamlessly to abstract, reference-image style conditions without requiring
 979 architectural modifications, simply by adding another preference head and an adaptive loss balancer
 980 weight.

981 **Qualitative Results.** Fig. 7 presents comprehensive qualitative comparisons on the DualAlign-
 982 Style benchmark, showcasing BideDPO’s superior capability in style-conditioned generation. The
 983 visualization demonstrates four challenging generation tasks, each requiring the model to generate a
 984 specific target object (a lamp, a compass, a telescope, and a windmill) while simultaneously adher-
 985 ing to diverse and complex style conditions. These conditions span a wide range of artistic styles:
 986 green pixelated retro game aesthetics, X-ray transparency effects, traditional Japanese art with gold
 987 leaf accents, and gritty ink-splatter illustrations. As shown in the figure, the IP-Adapter (IPA) base-
 988 line often fails to generate the specified object, instead producing variations of the condition itself or
 989 semantically related but incorrect content. For instance, when asked to generate “A lamp” under a
 990 retro game style condition, IPA produces a green-tinted futuristic UI overlay without the target lamp
 991 object. Similarly, for “A compass” under an X-ray condition, IPA generates a human skeleton in-
 992 stead of the requested compass. In contrast, our BideDPO method successfully integrates the target
 993 object into the given condition’s aesthetic, demonstrating superior capability in harmonizing textual
 994 semantics with stylistic constraints while maintaining both object accuracy and style fidelity. The
 995 generated images not only correctly depict the target objects but also faithfully preserve the distinc-
 996 tive visual characteristics of each style condition, such as the green monochrome digital aesthetic
 997 for the lamp, the transparent wireframe style for the compass, the ornate floral background with gold
 998 accents for the telescope, and the gritty ink-splatter texture for the windmill.

999 F ADDITIONAL VISUALIZATION RESULTS

1000 1001 F.1 ADDITIONAL EXAMPLES OF DISENTANGLING AND CONFLICT-AWARE DPO 1002 PREFERENCE DATA

1003 Fig. 9 presents additional examples of our Disentangled and Conflict-Aware DPO data, using depth
 1004 maps to illustrate our methodology. We construct preference pairs spanning a spectrum of condi-
 1005 tional alignment errors—large, mid-level, and minor—to train the model progressively on structural
 1006 fidelity.

1007 **Large Errors** The top row of Fig. 9 shows pairs where the negative sample (x_C^-) has significant
 1008 structural deviations. For instance, the generated “bejeweled barn” and “vine-covered tower” fail to
 1009 match the fundamental layout of their depth maps. These examples train the model to capture the
 1010 global composition.

1011 **Mid-level Errors** The middle row presents moderate inconsistencies. The negative samples cap-
 1012 ture the main objects but err in key aspects, such as the misplaced window in the “soot-covered
 1013 window” scene or the incorrect shape of the “glowing chisel.” These pairs refine the model’s grasp
 1014 of spatial relationships.

1015 **Minor Errors** The bottom row focuses on fine-grained details. The negative samples are largely
 1016 faithful but contain subtle inaccuracies, such as ignoring background foliage structures in the “neon-
 1017 lit penguin” scene or failing to render surface grains on the “frosted cookie.” These examples hone
 1018 the model’s ability to render precise details, enhancing overall fidelity.

1019 1020 F.2 ADDITIONAL VISUALIZATIONS OF DEPTH, CANNY, AND SOFT-EDGE CONDITIONS

1021 In this section, we present comprehensive qualitative results that further demonstrate the superior ca-
 1022 pabilities of our proposed BideDPO method across diverse conditional image generation scenarios.

1026 **Algorithm 1** Automated Construction of Disentangled Preference Data

1027 1: **Input:** Generator model G , LLM, Condition extractor E , VLM, Num samples to generate N ,
 1028 Max retries K .
 1029 2: **Initialize:** Unified preference set $\mathcal{D} \leftarrow \emptyset$.
 1030 3: *Step 1: Pre-generate prompts and initial conditions*
 1031 4: $P_{\text{pool}} \leftarrow \text{LLM.generate_source_target_pairs}()$
 1032 5: $\text{Context}_{\text{pool}} \leftarrow \emptyset$
 1033 6: **for** $(p_{\text{source}}, p_{\text{target}})$ in P_{pool} **do**
 1034 7: $x_{\text{init}} \leftarrow G(p_{\text{source}})$
 1035 8: $s_0 \leftarrow E(x_{\text{init}})$
 1036 9: $\text{Context}_{\text{pool}} \leftarrow \text{Context}_{\text{pool}} \cup \{(p_{\text{source}}, p_{\text{target}}, s_0)\}$
 1037 10: **end for**
 1038 11: **while** $|\mathcal{D}| < N$ **do**
 1039 12: $p_{\text{source}}, p_{\text{target}}, s_0 \leftarrow \text{RandomSample}(\text{Context}_{\text{pool}})$
 1040 13: — *Step 2: Attempt to generate text-disentangled pair* —
 1041 14: $x_a \leftarrow \text{None}$
 1042 15: $\text{tries} \leftarrow 0$
 1043 16: **while** $\text{tries} < K$ **do**
 1044 17: $\text{candidate} \leftarrow G(p_{\text{target}}, s_0)$
 1045 18: **if** VLM.verify(candidate, p_{target}) **then**
 1046 19: $x_a \leftarrow \text{candidate}$
 1047 20: **break**
 1048 21: **end if**
 1049 22: $\text{tries} \leftarrow \text{tries} + 1$
 1050 23: **end while**
 1051 24: **if** x_a is None **then**
 1052 25: **continue** {Failed to generate a valid anchor}
 1053 26: **end if**
 1054 27: $x_T^+ \leftarrow x_a$
 1055 28: $x_T^- \leftarrow G(p_{\text{source}}, s_0)$
 1056 29: — *Step 3: Attempt to generate condition-disentangled pair* —
 1057 30: $x_C^+ \leftarrow x_a$
 1058 31: $s_1 \leftarrow E(x_a)$
 1059 32: $x_C^- \leftarrow \text{None}$
 1060 33: $\text{tries} \leftarrow 0$
 1061 34: **while** $\text{tries} < K$ **do**
 1062 35: $\text{candidate} \leftarrow G(p_{\text{target}}, s_1)$
 1063 36: **if** VLM.verify(candidate, p_{target}) **then**
 1064 37: $x_C^- \leftarrow \text{candidate}$
 1065 38: **break**
 1066 39: **end if**
 1067 40: $\text{tries} \leftarrow \text{tries} + 1$
 1068 41: **end while**
 1069 42: **if** x_C^- is None **then**
 1070 43: **continue** {Failed to generate a valid counterpart}
 1071 44: **end if**
 1072 45: — *Both pairs successfully generated, add to unified dataset* —
 1073 46: $c_0 \leftarrow (p_{\text{target}}, s_0)$
 1074 47: $c_1 \leftarrow (p_{\text{target}}, s_1)$
 1075 48: $\text{pair}_T \leftarrow (x_T^+, x_T^-, c_0)$
 1076 49: $\text{pair}_C \leftarrow (x_C^+, x_C^-, c_1)$
 1077 50: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\text{pair}_T, \text{pair}_C)\}$
 1078 51: **end while**
 1079 52: **return** \mathcal{D}

Fig. 10 showcases an extensive collection of examples, systematically organized by three distinct

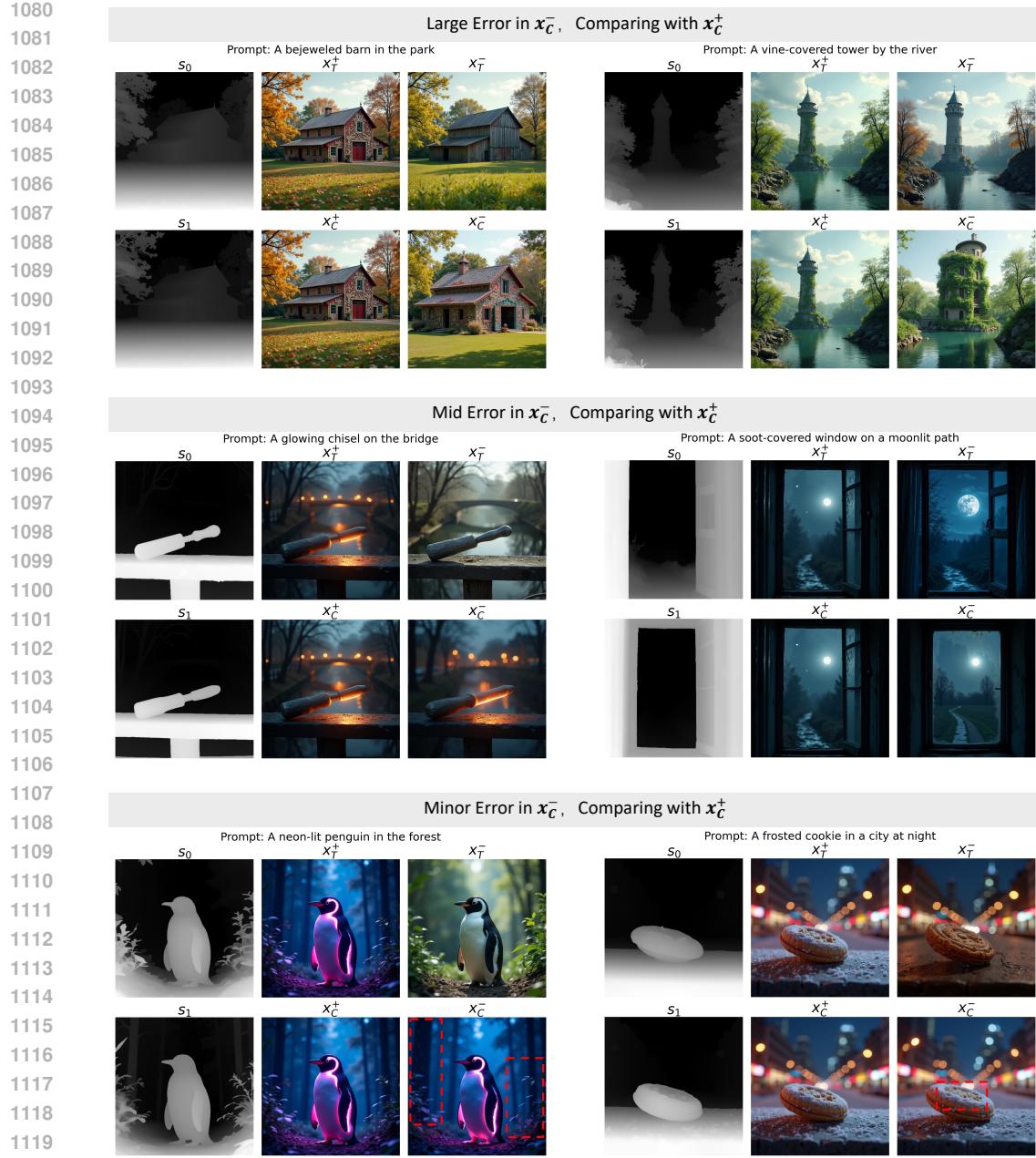


Figure 9: Additional Examples of Disentangled and Conflict-Aware DPO Preference Data.

conditional modalities, illustrating how our model achieves enhanced fidelity and semantic alignment while maintaining structural integrity across various input conditions.

F.2.1 DEPTH CONDITION

Fig. 10 (Top) demonstrates our method’s effectiveness when conditioned on depth maps, where grayscale intensity encodes spatial distance information. The BideDPO model exhibits remarkable proficiency in capturing intricate spatial structures while significantly improving semantic alignment with textual prompts compared to baseline methods. Notable improvements include enhanced textural details, such as the subtle crack patterns on candle surfaces and mossy textures on telescope bodies, demonstrating our model’s ability to faithfully interpret descriptive adjectives while preserving geometric fidelity.

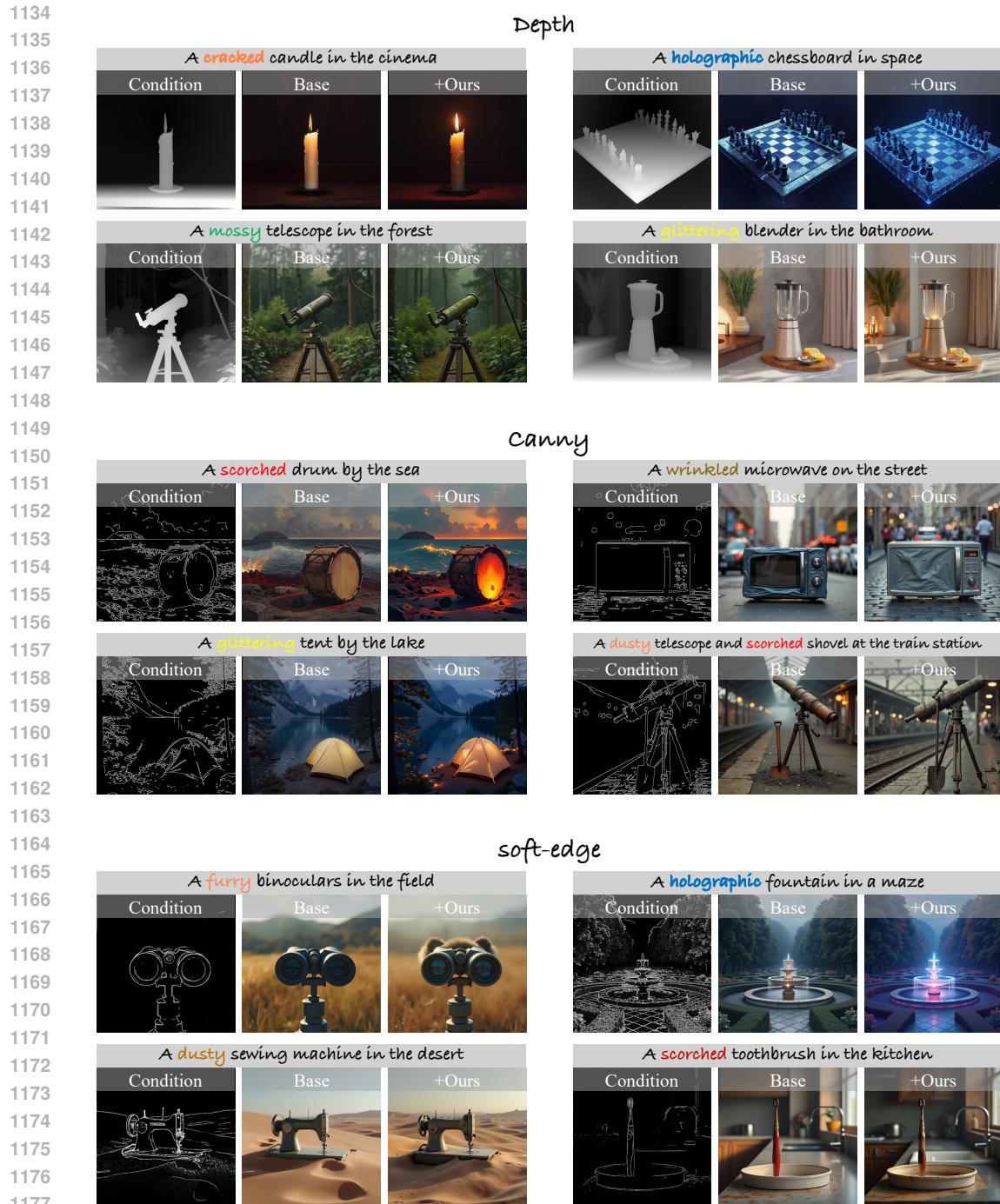


Figure 10: Additional Examples of Enhancing State-of-the-Art Conditional Image Generation Methods Using Our Approach.

F.2.2 CANNY CONDITION

Fig. 10 (Middle) showcases results from Canny edge conditions, which demand strict structural adherence. Our method excels at resolving conflicts between textual descriptions and these constraints, rectifying common failures of the baseline model. For instance, it successfully renders challenging attributes such as “scorched” or “glittering”—which the baseline struggles with—thereby significantly enhancing the control and expressive power of Canny-conditioned generation.

1188
1189

F.2.3 SOFT-EDGE CONDITION

1190
1191
1192
1193
1194
1195
1196
1197

Fig. 10 (Bottom) illustrates our approach under soft-edge conditions, which offer less stringent structural guidance while preserving overall scene composition. BideDPO maintains superior visual quality and semantic relevance even under these more ambiguous constraints, demonstrating the robustness and flexibility of our alignment framework. The results reveal enhanced textural fidelity, such as furry surfaces on binoculars and holographic effects on fountains, showcasing our model’s ability to interpret complex descriptive attributes while working within the constraints of softer structural guidance.

1198
1199

G DETAILED DERIVATION OF BIDIRECTIONALLY DECOUPLED DPO

1200
1201
1202

In this section, we provide a full step-by-step derivation of our Bidirectionally Decoupled DPO (BideDPO) method, as presented in the main paper.

1203
1204
1205

G.1 FOUNDATION: INDEPENDENT LOSS COMPONENTS

1206
1207

Our method begins by addressing the limitation of vanilla DPO, which uses a single preference pair evaluated under a shared condition. Instead, we define two distinct preference triplets for the text and condition objectives, respectively.

1208
1209

For text alignment, we use the triplet (x_T^+, x_T^-, c_0) , where x_T^+ is preferred to x_T^- under an initial condition c_0 . The corresponding text loss is:

1210
1211
1212
1213
1214

$$\mathcal{L}_{\text{text}} = -\log \sigma \left(\underbrace{f_{\text{text}}(x_T^+, c_0; \theta) - f_{\text{text}}(x_T^-, c_0; \theta)}_{\Delta_{\text{text}}(c_0; \theta)} \right) \quad (17)$$

1215
1216
1217
1218
1219
1220
1221

For condition alignment, we use the triplet (x_C^+, x_C^-, c_1) , where x_C^+ is preferred to x_C^- under a different, stricter condition c_1 . The corresponding condition loss is:

$$\mathcal{L}_{\text{cond}} = -\log \sigma \left(\underbrace{f_{\text{cond}}(x_C^+, c_1; \theta) - f_{\text{cond}}(x_C^-, c_1; \theta)}_{\Delta_{\text{cond}}(c_1; \theta)} \right) \quad (18)$$

1222

G.2 GRADIENT DERIVATION

1223
1224
1225
1226
1227
1228
1229
1230

We now derive the partial derivative of the total loss $\mathcal{L}_{\text{decoupled}}$ with respect to the model parameters θ . As noted in the main paper, the adaptive weights are computed with a stop-gradient operator, meaning they are treated as detached constants during the backward pass. Our starting point is the total loss function:

$$\mathcal{L}_{\text{decoupled}} = w_{\text{text}} \mathcal{L}_{\text{text}} + w_{\text{cond}} \mathcal{L}_{\text{cond}}. \quad (19)$$

Because w_{text} and w_{cond} are treated as constants with respect to θ for the gradient calculation, we can apply the sum rule directly:

1231
1232

$$\frac{\partial \mathcal{L}_{\text{decoupled}}}{\partial \theta} = w_{\text{text}} \frac{\partial \mathcal{L}_{\text{text}}}{\partial \theta} + w_{\text{cond}} \frac{\partial \mathcal{L}_{\text{cond}}}{\partial \theta}. \quad (20)$$

1233
1234
1235

Next, we derive the gradients for the individual loss components using the chain rule. For a general loss of the form $L = -\log \sigma(z)$, its derivative is $\frac{\partial L}{\partial \theta} = -(1 - \sigma(z)) \frac{\partial z}{\partial \theta}$.

1236

Applying this to the text loss component from Eq. 17:

1237
1238
1239

$$\frac{\partial \mathcal{L}_{\text{text}}}{\partial \theta} = -(1 - \sigma(\Delta_{\text{text}}(c_0; \theta))) \frac{\partial \Delta_{\text{text}}(c_0; \theta)}{\partial \theta} \quad (21)$$

1240
1241

And similarly for the condition loss component from Eq. 18:

$$\frac{\partial \mathcal{L}_{\text{cond}}}{\partial \theta} = -(1 - \sigma(\Delta_{\text{cond}}(c_1; \theta))) \frac{\partial \Delta_{\text{cond}}(c_1; \theta)}{\partial \theta} \quad (22)$$

Finally, substituting Eqs. 21 and 22 back into Eq. 20 gives us the final gradient for our decoupled objective, as presented in the main paper:

$$\frac{\partial \mathcal{L}_{\text{decoupled}}}{\partial \theta} = -w_{\text{text}} (1 - \sigma(\Delta_{\text{text}}(c_0; \theta))) \frac{\partial \Delta_{\text{text}}(c_0; \theta)}{\partial \theta} - w_{\text{cond}} (1 - \sigma(\Delta_{\text{cond}}(c_1; \theta))) \frac{\partial \Delta_{\text{cond}}(c_1; \theta)}{\partial \theta} \quad (23)$$

G.3 FINAL BIDEDPO OBJECTIVE FOR DIFFUSION MODELS

The general BideDPO framework can be specifically instantiated for diffusion models by defining the preference as a reward based on denoising performance. Our final objective combines the principles of decoupled losses and adaptive balancing, starting from the loss function presented in the main paper:

$$\mathcal{L}_{\text{BideDPO}}(\theta) = -\mathbb{E}_{(x_T^+, x_T^-, c_0) \sim \mathcal{D}_T, (x_C^+, x_C^-, c_1) \sim \mathcal{D}_C} \left[w_{\text{text}} \log \sigma(\beta T \Delta R_T) + w_{\text{cond}} \log \sigma(\beta T \Delta R_C) \right]. \quad (24)$$

Here, ΔR_T and ΔR_C are the total reward differences for the text and condition preference pairs. And $(x_T^+, x_T^-, c_0) \sim \mathcal{D}_T, (x_C^+, x_C^-, c_1) \sim \mathcal{D}_C$ means that the samples are drawn from the text-disentangled and condition-disentangled preference pairs of the same unified preference set $\mathcal{D} = \text{zip}(\mathcal{D}_T, \mathcal{D}_C)$. We first define a per-sample reward $r(x_t, c, \epsilon; \theta)$ as the reduction in denoising error achieved by our model ϵ_θ compared to a reference model ϵ_{ref} :

$$r(x_t, c, \epsilon; \theta) = \|\epsilon - \epsilon_{\text{ref}}(x_t, c)\|^2 - \|\epsilon - \epsilon_\theta(x_t, c)\|^2. \quad (25)$$

The total reward differences are then calculated by comparing the rewards of the preferred and dispreferred samples for both the text-aligned pair (under condition c_0) and the condition-aligned pair (under condition c_1):

$$R_T = r(x_{t,T}^+, c_0, \epsilon_T^+; \theta) - r(x_{t,T}^-, c_0, \epsilon_T^-; \theta), \quad (26)$$

$$R_C = r(x_{t,C}^+, c_1, \epsilon_C^+; \theta) - r(x_{t,C}^-, c_1, \epsilon_C^-; \theta). \quad (27)$$

By substituting the definition of the reward function $r(\cdot)$ into these expressions, we can expand them to show the full formulation. For the text-aligned reward difference R_T :

$$\begin{aligned} R_T &= [\|\epsilon_T^+ - \epsilon_{\text{ref}}(x_{t,T}^+, c_0)\|^2 - \|\epsilon_T^+ - \epsilon_\theta(x_{t,T}^+, c_0)\|^2] - [\|\epsilon_T^- - \epsilon_{\text{ref}}(x_{t,T}^-, c_0)\|^2 - \|\epsilon_T^- - \epsilon_\theta(x_{t,T}^-, c_0)\|^2] \\ &= \|\epsilon_T^+ - \epsilon_{\text{ref}}(x_{t,T}^+, c_0)\|^2 - \|\epsilon_T^+ - \epsilon_\theta(x_{t,T}^+, c_0)\|^2 - \|\epsilon_T^- - \epsilon_{\text{ref}}(x_{t,T}^-, c_0)\|^2 + \|\epsilon_T^- - \epsilon_\theta(x_{t,T}^-, c_0)\|^2. \end{aligned} \quad (28)$$

Similarly, for the condition-aligned reward difference R_C :

$$\begin{aligned} R_C &= [\|\epsilon_C^+ - \epsilon_{\text{ref}}(x_{t,C}^+, c_1)\|^2 - \|\epsilon_C^+ - \epsilon_\theta(x_{t,C}^+, c_1)\|^2] - [\|\epsilon_C^- - \epsilon_{\text{ref}}(x_{t,C}^-, c_1)\|^2 - \|\epsilon_C^- - \epsilon_\theta(x_{t,C}^-, c_1)\|^2] \\ &= \|\epsilon_C^+ - \epsilon_{\text{ref}}(x_{t,C}^+, c_1)\|^2 - \|\epsilon_C^+ - \epsilon_\theta(x_{t,C}^+, c_1)\|^2 - \|\epsilon_C^- - \epsilon_{\text{ref}}(x_{t,C}^-, c_1)\|^2 + \|\epsilon_C^- - \epsilon_\theta(x_{t,C}^-, c_1)\|^2. \end{aligned} \quad (29)$$

Finally, substituting these fully expanded reward differences back into our main objective yields the complete BideDPO loss function used for training:

$$\begin{aligned} \mathcal{L}_{\text{BideDPO}}(\theta) &= -\mathbb{E} \left[w_{\text{text}} \log \sigma \left(\beta T [\|\epsilon_T^+ - \epsilon_{\text{ref}}(x_{t,T}^+, c_0)\|^2 - \|\epsilon_T^+ - \epsilon_\theta(x_{t,T}^+, c_0)\|^2 \right. \right. \\ &\quad \left. \left. - \|\epsilon_T^- - \epsilon_{\text{ref}}(x_{t,T}^-, c_0)\|^2 + \|\epsilon_T^- - \epsilon_\theta(x_{t,T}^-, c_0)\|^2] \right) \right. \\ &\quad \left. + w_{\text{cond}} \log \sigma \left(\beta T [\|\epsilon_C^+ - \epsilon_{\text{ref}}(x_{t,C}^+, c_1)\|^2 - \|\epsilon_C^+ - \epsilon_\theta(x_{t,C}^+, c_1)\|^2 \right. \right. \\ &\quad \left. \left. - \|\epsilon_C^- - \epsilon_{\text{ref}}(x_{t,C}^-, c_1)\|^2 + \|\epsilon_C^- - \epsilon_\theta(x_{t,C}^-, c_1)\|^2] \right) \right]. \end{aligned} \quad (30)$$

H ADDITIONAL DISCUSSIONS

H.1 DISCUSSION ON MORE DPO VARIANTS

In our main experiments, we compare BideDPO against a “naive” application of DPO, as described in the Baseline Configurations section. This Naive DPO baseline uses a single preference pair

format: the positive sample aligns well with both text and condition (T^+, C^+), while the negative sample aligns poorly with both (T^-, C^-). This setup, while straightforward, does not fully capture the complexity of the alignment problem, where conflicts can arise from either text or condition independently.

To provide a more robust comparison, we introduce an additional baseline, “DPO (Mixed)”. In this setting, the negative samples are constructed from a mix of failure cases: poor text and poor condition (T^-, C^-), good text but poor condition (T^+, C^-), and poor text but good condition (T^-, C^+). This creates a more diverse and challenging training signal for the DPO model, forcing it to learn a more nuanced reward function.

The results, presented in Tab. 9, reveal an interesting trade-off. The DPO (Mixed) baseline achieves a higher Success Ratio (0.73 vs. 0.71) and CLIP score (0.2884 vs. 0.2860) compared to the Naive DPO, indicating improved text alignment. However, it performs worse on conditional fidelity, with higher (worse) MSE and SGMSE scores. This suggests that while a mixed-negative strategy helps the model better understand textual nuances, the undifferentiated DPO loss struggles to balance the competing objectives, leading to a degradation in structural adherence.

In contrast, our BideDPO method significantly outperforms both DPO baselines across all metrics. By explicitly decoupling the preference pairs for text and condition alignment, BideDPO provides clear, unambiguous learning signals for each objective. This, combined with our adaptive weighting mechanism, allows the model to simultaneously improve both text-prompt consistency and conditional fidelity, overcoming the trade-offs that limit standard DPO approaches.

Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
Union-Pro2	0.49	176.982	272.400	0.2748
+ DPO (Naive)	0.71	168.284	219.935	0.2860
+ DPO (Mixed)	0.73	186.417	229.857	0.2884
+ Ours	0.84	163.968	195.728	0.2924

Table 9: Comparison of different DPO configurations for depth-conditioned image generation. Our method surpasses both naive and mixed DPO baselines.

H.2 COMPARISON WITH MORE IMAGE CONDITIONAL GENERATION METHODS

To evaluate BideDPO against state-of-the-art approaches for conditional image generation, we compare with LooseControl (Bhat et al., 2024) and ControlNet++ (Li et al., 2024).

H.2.1 RESULTS ON DUALALIGN BENCHMARK

Tab. 10 presents the quantitative comparison on the DualAlign benchmark with depth conditioning. BideDPO achieves significantly superior performance across all metrics, with a success rate (SR) of **0.84**, MSE of **164.0**, SGMSE of **195.7**, and CLIP score of **0.2924**. In contrast, LooseControl and ControlNet++ show limited performance, with SR values of 0.43 and 0.49, respectively, and significantly higher structural errors (MSE: 791.13 and 331.85).

H.2.2 RESULTS ON COCO BENCHMARK

Tab. 11 shows the comparison on the COCO benchmark with depth conditioning. BideDPO again achieves superior performance, with an SR of **0.91**, MSE of **236.3**, SGMSE of **245.3**, and CLIP score of **0.2633**. LooseControl and ControlNet++ show lower success rates (0.72 and 0.79) and significantly higher structural errors.

H.2.3 DISCUSSION

The comparison reveals that existing approaches alone are insufficient to resolve conflicts between text and condition constraints. In contrast, BideDPO’s post-training approach with bidirectionally decoupled objectives enables it to effectively harmonize both constraints without sacrificing either objective.

1350 Table 10: **Comparison with more image conditional generation methods on DualAlign bench-**
1351 **mark.**

Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
LooseControl	0.43	791.13	1280.17	0.2852
ControlNet++	0.49	331.85	480.66	0.2854
BideDPO (ours)	0.84	164.0	195.7	0.2924

1357 Table 11: **Comparison with more image conditional generation methods on COCO benchmark.**

Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
LooseControl	0.72	1334.01	1705.97	0.2534
ControlNet++	0.79	548.26	668.92	0.2557
BideDPO (ours)	0.91	236.3	245.3	0.2633

1364

COMPARISON WITH DPO-BASED POST-TRAINING METHODS

1366 To evaluate BideDPO against state-of-the-art DPO-based post-training methods for conditional im-
1367 age generation, we compare with SPO (Liang et al., 2024) and RankDPO (Karthik et al., 2024).
1368 These methods are based on DPO with some improvements for preference optimization, but differ
1369 from our approach in how they handle the dual objectives of text alignment and conditional fidelity.
1370 Note that RankDPO is not publicly available, so we implement it based on the methodology de-
1371 scribed in the paper. All methods share the same FLUX backbone and evaluation pipeline to ensure
1372 fair comparison.

1374

RESULTS ON DUALALIGN BENCHMARK

1375 Tab. 12 presents the quantitative comparison on the DualAlign benchmark with depth conditioning.
1376 BideDPO achieves the best performance across all metrics, with a success rate (SR) of **0.84**, MSE
1377 of **164.0**, SGMSE of **195.7**, and CLIP score of **0.2924**.

1378 SPO achieves a competitive SR of 0.78 with good structural control (MSE: 166.2, SGMSE: 208.7),
1379 while RankDPO reaches a SR of 0.83 but suffers from higher structural errors (MSE: 188.5,
1380 SGMSE: 235.6). Both methods struggle to fully resolve conflicts between text and condition con-
1381 straints.

1382 In contrast, BideDPO’s bidirectionally decoupled objective effectively balances both text alignment
1383 and structural conditioning by explicitly separating preference pairs along text and condition axes,
1384 enabling the model to simultaneously improve both text-prompt consistency and conditional fidelity.
1385

1386

DISCUSSION

1388 The comparison with DPO-based methods reveals different trade-offs: SPO maintains better struc-
1389 tural control but achieves lower text alignment, while RankDPO improves text alignment but strug-
1390 gles with structural fidelity. This suggests that existing DPO-based methods, while effective, do not
1391 fully address the challenge of simultaneously optimizing both text and condition objectives when
1392 they conflict.

1393 BideDPO’s explicit decoupling of text and condition objectives, combined with adaptive loss bal-
1394 ancing, enables it to outperform both baselines by effectively harmonizing both constraints without
1395 sacrificing either objective. The bidirectionally decoupled approach provides clearer learning sig-
1396 nals for each objective, allowing the model to learn more effectively from preference pairs that may
1397 be ambiguous when both objectives are considered together.

1399

STABLE DIFFUSION 1.5 + BIDEPO

1401 **Stable Diffusion 1.5 + BideDPO.** To demonstrate that BideDPO is not limited to FLUX-based mod-
1402 els but also generalizes to Stable Diffusion-based architectures, we further fine-tune the ControlNet
1403 of Stable Diffusion 1.5 with our bidirectionally decoupled objective. To highlight how BideDPO
improves controllable generation under the DualAlign depth benchmark, we compare our approach

1404
1405 Table 12: **Comparison with DPO-based post-training methods on DualAlign benchmark.** All
1406 methods share the same FLUX backbone and evaluation pipeline.

Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
SPO	0.78	166.2	208.7	0.2881
RankDPO	0.83	188.5	235.6	0.2914
BideDPO (Ours)	0.84	164.0	195.7	0.2924

1407
1408
1409
1410
1411 Table 13: **Stable Diffusion 1.5 depth-conditioned image generation on DualAlign Benchmark.**
1412 “Ctrl.” indicates support for conditional generation; qualitative comparisons appear in Fig. 11.
1413

Method	Ctrl.	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
SD 1.5-ControlNet	✓	0.50	391.80	592.92	0.2824
+ BideDPO (Ours)	✓	0.71	187.44	234.14	0.2853

1414
1415
1416
1417
1418
1419 with the ControlNet baseline. Relative to ControlNet, our model dramatically increases success
1420 rate while simultaneously lowering both MSE and SGMSE, indicating superior adherence to depth
1421 conditioning without sacrificing semantic fidelity. Notably, the CLIP score also rises, underscoring
1422 that the additional control signal does not compromise text alignment. The detailed quantitative
1423 comparison is provided in Tab. 13, while Fig. 11 visualizes the accompanying qualitative gains.
1424

1425
1426
1427 Figure 11: **Stable Diffusion 1.5 depth-conditioned generation on DualAlign.** Qualitative comparison
1428 between the ControlNet baseline and our BideDPO fine-tuned model. BideDPO preserves the
1429 textual semantics while aligning more faithfully with the provided depth controls, yielding sharper
1430 geometry and cleaner spatial layouts.
1431
1432

1433 H.5 MULTI-CONDITION GENERATION: TEXT + DEPTH + CANNY

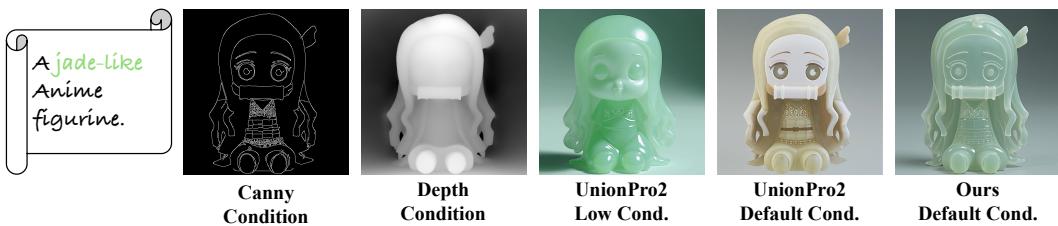
1434
1435
1436
1437
1438
1439
1440 **Scaling to Multiple Simultaneous Conditions.** To demonstrate that BideDPO scales beyond two
1441 conditioning modalities, we showcase a challenging multi-condition generation scenario that simu-
1442 lates text prompts, depth maps, and Canny edge constraints. As illustrated in Fig. 12,
1443 we condition the generation on both depth and Canny edge maps extracted from an original anime
1444 figurine image, while applying the text prompt “A jade-like Anime figurine.” This setup creates a
1445 complex multi-objective optimization problem where the model must harmonize three distinct con-
1446 straints: (1) textual semantics (jade-like material transformation), (2) depth geometry (preserving
1447 3D spatial structure), and (3) edge structure (maintaining fine-grained boundaries and details).
1448

1449
1450
1451
1452
1453
1454
1455
1456
1457 Our BideDPO method successfully balances all three objectives, producing a high-quality jade-
1458 like figurine that preserves both the global spatial layout from the depth map and the fine-grained
1459 details captured by the Canny edges, while faithfully realizing the translucent, polished jade aes-
1460 thetic described in the text prompt. In contrast, UnionPro2 struggles to simultaneously satisfy all
1461 constraints: with low conditioning strength, it loses structural fidelity to the depth and edge maps;
1462 with default conditioning strength, it maintains better structural alignment but fails to fully realize
1463 the style transformation, resulting in a less convincing jade-like appearance. This example demon-
1464 strates that BideDPO’s decoupled objective and adaptive loss balancing mechanism naturally extend
1465 to handle multiple conditioning inputs by treating each conditioning path independently and dyna-
1466 mically adjusting their relative importance during training.

1458 Table 14: **Results for multi-condition generation (depth + canny) on DualAlign Benchmark.**
 1459 The model is simultaneously conditioned on both depth and canny edge maps. Left half shows
 1460 depth-conditioned results, right half shows canny-conditioned results.

	Depth Benchmark				Canny Benchmark			
	Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow	SR \uparrow	F1 \uparrow	SG F1 \uparrow
Union-Pro2	0.49	177.0	272.4	0.2748	0.34	0.418	0.143	0.2753
+ Ours (depth+canny merge)	0.81	159.6	197.5	0.2901	0.68	0.594	0.381	0.2857

1461
 1462
 1463
 1464
 1465
 1466
 1467 Tab. 14 provides quantitative evidence that BideDPO effectively handles simultaneous depth and
 1468 Canny edge conditioning. When evaluated on the DualAlign depth benchmark, our method achieves
 1469 a success rate (SR) of 0.81, significantly outperforming Union-Pro2’s 0.49, while simultaneously
 1470 reducing both MSE (159.6 vs. 177.0) and SGMSE (197.5 vs. 272.4) errors, indicating superior
 1471 structural fidelity. The CLIP score also improves from 0.2748 to 0.2901, demonstrating enhanced
 1472 text alignment. On the Canny benchmark, BideDPO maintains strong performance with SR of 0.68
 1473 (vs. 0.34 for Union-Pro2), F1 score of 0.594 (vs. 0.418), and SG F1 of 0.381 (vs. 0.143), while
 1474 improving CLIP from 0.2753 to 0.2857. These results confirm that BideDPO’s bidirectional decou-
 1475pling mechanism successfully harmonizes multiple conditioning modalities without compromising
 1476 performance on either benchmark, validating the method’s scalability to complex multi-condition
 1477 generation scenarios.



1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486 Figure 12: **Multi-condition generation with text, depth, and Canny edge controls.** Example
 1487 demonstrating BideDPO’s capability to handle multiple simultaneous conditioning inputs. The text
 1488 prompt is “A jade-like Anime figurine.” We condition the generation on both depth maps and Canny
 1489 edges extracted from the original image, while applying the jade-like style transformation. Our
 1490 method (rightmost) successfully harmonizes all three constraints—textual semantics, depth geo-
 1491 metry, and edge structure—producing a high-fidelity jade-like figurine that preserves both spatial layout
 1492 and fine-grained details. In contrast, UnionPro2 struggles to balance these competing objectives, ei-
 1493 ther losing structural fidelity (low cond) or failing to fully realize the style transformation (default
 1494 cond).

1495 1496 1497 H.6 DISCUSSION ON ADAPTIVE LOSS BALANCING (ALB) METHODS

1498 We investigate the robustness of ALB to different weight calculation methods and batch sizes.

1501 H.6.1 INSTANCE MEAN VS. HISTORICAL MEAN

1503 We compare our default instance mean approach with a historical mean (moving average) approach.
 1504 As shown in Tab. 15, both methods achieve similar performance (SR: **0.84**), with minimal differ-
 1505 ences across metrics. This robustness stems from our normalization scheme that prevents unstable
 1506 weight fluctuations, making the simpler instance mean approach a practical choice.

1507 H.6.2 BATCH SIZE SENSITIVITY

1508 We evaluate ALB with batch sizes of 8, 16, and 32. Tab. 15 shows consistent performance across all
 1509 batch sizes (SR: 0.83-0.85), demonstrating that ALB maintains effective loss balancing regardless
 1510 of batch size.

1512
1513
1514 Table 15: Comparison of different ALB methods and batch size sensitivity.
1515
1516
1517
1518
1519

Method	SR \uparrow	MSE \downarrow	SGMSE \downarrow	CLIP \uparrow
ALB instance mean (batch=8)	0.84	164.0	195.7	0.2924
ALB instance mean (batch=16)	0.83	167.4	199.2	0.2940
ALB instance mean (batch=32)	0.85	160.7	195.5	0.2900
ALB historical mean	0.84	166.2	198.8	0.2934

1520
1521 H.7 DISCUSSION ON THE NUMBER OF ITERATIONS
15221523 As shown in the ablation study in the main paper (Tab. 5), the performance of our method improves
1524 steadily from the baseline up to Iteration 3, which we selected as our final model. However, we
1525 observed a slight degradation in performance at Iteration 4. This phenomenon suggests a potential
1526 for overfitting and highlights the trade-offs inherent in our iterative optimization strategy.
15271528 We hypothesize that this performance drop is due to the model beginning to overfit to the biases of
1529 our automated data generation and scoring pipeline. While the iterative process is highly effective
1530 at bootstrapping performance, it creates a feedback loop where the model is trained exclusively on
1531 data it generates itself. After several iterations, the data distribution, while high-quality, may become
1532 narrower and reflect the specific quirks of the generator and the VLM used for scoring.
15331534 At Iteration 4, the model may start to fit to these artifacts rather than learning a more generalizable
1535 representation of text and condition alignment. The preference pairs generated may also become less
1536 informative, as the distinction between “preferred” and “dispreferred” samples becomes increasingly
1537 subtle for an already powerful generator. Iteration 3 appears to represent the optimal balance point,
1538 where the model has reaped the benefits of high-quality, self-generated data without yet succumbing
1539 to the effects of overfitting to its own narrowing data distribution.
15401541 H.8 DETAILED DISCUSSION ON VLM SELECTION
15421543 In our evaluation pipeline, we employ Qwen2.5-VL-72B as the primary VLM for assessing text-
1544 image alignment through the SR metric. This choice warrants careful justification, as the reliability
1545 of our conclusions depends on the quality and consistency of the evaluator.
15461547 **Rationale for Qwen2.5-VL-72B.** We deliberately adopt Qwen2.5-VL-72B as our primary judge
1548 because it is fully open-source and freely usable, and has become a de-facto standard VLM in recent
1549 academic work on text–image evaluation. This makes our pipeline easier to reproduce and our
1550 SR metric easier to compare against future papers—even if Qwen is not always the single most
1551 SOTA model on every benchmark. In addition, Qwen offers strong coverage across diverse object
1552 categories and scene types, which is important for our broad DualAlign setting. Its accessibility and
1553 community acceptance make it a practical, “standard” evaluator that lowers the barrier for future
1554 work to build on our method.
15551556 **Cross-VLM and Human Validation.** To ensure that our conclusions are not artifacts of a specific
1557 VLM, we re-evaluate the same test set with GPT-4o and human raters. The results demonstrate
1558 strong consistency across all evaluators: As shown in Tab. 8, all three evaluators consistently rank
1559 *+Ours* > *+DPO* > *+SFT* > *UnionPro2*, with BideDPO achieving the highest scores across
1560 all judges (0.82–0.84). Notably, Qwen and Human evaluators both assign **0.84** to our method,
1561 demonstrating that Qwen serves as a reliable proxy for human judgment. The consistent relative
1562 rankings across different evaluators validate that our conclusions are robust and not artifacts of a
1563 specific VLM, confirming that using Qwen as a representative VLM evaluator is appropriate.
1564
1565