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ABSTRACT

Under Display Camera (UDC) is an advanced imaging system that places a dig-
ital camera lens underneath a display panel, effectively concealing the camera.
However, the display panel significantly degrades captured images or videos, in-
troducing low transmittance, blur, noise, and flare issues. Tackling such issues
is challenging because of the complex degradation of UDCs, including diverse
flare patterns. Despite extensive research on UDC images and their restoration
models, studies on videos have yet to be significantly explored. While two UDC
video datasets exist, they primarily focus on unrealistic or synthetic UDC degra-
dation rather than real-world UDC degradation. In this paper, we propose a real-
world UDC video dataset called UDC-VIX. Unlike existing datasets, only UDC-
VIX exclusively includes human motions that target facial recognition. We pro-
pose a video-capturing system to simultaneously acquire non-degraded and UDC-
degraded videos of the same scene. Then, we align a pair of captured videos
frame by frame, using discrete Fourier transform (DFT). We compare UDC-VIX
with seven representative UDC still image datasets and two existing UDC video
datasets. Using six deep-learning models, we compare UDC-VIX and an existing
synthetic UDC video dataset. The results indicate the ineffectiveness of models
trained on earlier synthetic UDC video datasets, as they do not reflect the actual
characteristics of UDC-degraded videos. We also demonstrate the importance
of effective UDC restoration by evaluating face recognition accuracy concerning
PSNR, SSIM, and LPIPS scores. UDC-VIX enables further exploration in the
UDC video restoration and offers better insights into the challenge. UDC-VIX is
available at our project site.

1 INTRODUCTION

An under-display camera (UDC) is an imaging system where the camera is positioned beneath
the display (Hinton et al., 2006). Modern smartphones, including the Samsung Galaxy Z-Fold se-
ries (Samsung Electronics Co., Ltd., 2021; 2022; 2023) and the ZTE Axon series (ZTE Corporation,
2020; 2021; 2022) have adopted UDCs. The UDC area, depicted in Figure 1, serves as display space
under normal circumstances and acts as the light’s passage to the camera when capturing pictures or
videos. This design allows for a larger screen-to-body ratio, meeting the common consumer demand
for a full-screen display without a camera hole or notch. However, UDC introduces severe and com-
plex image degradations such as reduced transmittance, noise, blur, and flare in a single image or
video frame. Moreover, motion is also involved in UDC videos.

The degradation in UDC arises from the diffraction of incoming light by the display pixels at a
micrometer scale (Qin et al., 2016). Modern UDC smartphones have lower pixel density in the
UDC area to minimize this diffraction, as described in Figure 1(c). Since a lower pixel density
prevents natural video viewing, improving the video quality captured by the UDC is essential.

Many studies have investigated UDC image datasets. These include synthetic datasets like T-
OLED/P-OLED (Zhou et al., 2021) and SYNTH (Feng et al., 2021). Additionally, there exists a
pseudo-real UDC dataset (Feng et al., 2023) and a real-world UDC dataset such as UDC-SIT (Ahn
et al., 2024).

Ahn et al. (2024) demonstrate the importance of training DNN models using a real-world UDC
dataset because the synthetic UDC datasets do not reflect the actual characteristics of UDC-degraded
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(a)
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Figure 1: Comparison between under-display (UDC) and traditional hole-display cameras. (a) UDC.
(b) Hole display camera. (c) The pixel structure of the UDC area. The UDC area exhibits a reduced
pixel density due to the pixel pattern acting as diffraction slits.

images. However, a real-world UDC video dataset and restoration model have yet to be introduced.
Although several studies address the synthetic UDC video datasets (Chen et al., 2023; Liu et al.,
2024), they have some limitations because they do not completely reflect the properties of actual
UDC videos. There are two main challenges in constructing a real-world UDC video dataset. One is
to find a matching pair of the UDC-distorted and ground-truth videos with high alignment accuracy.
The other is to synchronize the time for all frames when capturing videos.

This paper proposes a new UDC video dataset called UDC-VIX (UDC’s VIdeo by X, where X
represents the anonymous creator). As far as we know, it is the first real-world UDC video dataset
to overcome the problems of the existing UDC video datasets.

Using a non-polarizing cube beam splitter (Thorlabs, 2015), we create a video-capturing system
to minimize discrepancies between paired frames. We cut the UDC area of a smartphone display
(e.g., Samsung Galaxy Z-Fold 5 (Samsung Electronics Co., Ltd., 2023)) and attach it to the beam
splitter. Two Arducam Hawk-Eye (IMX686) camera modules (Arducam, 2022) are placed on both
sides of the beam splitter. These modules, operated by a Raspberry Pi 5 (Arducam, 2023), capture
synchronized video frame pairs using the Message Passing Interface (MPI) barrier.

Figure 2 shows our UDC video capturing system. Despite the meticulous design, inevitable pixel-
position difference occurs. We correct this difference between the two matched frames for the same
scene by using the DFT (Brigham, 1988) following the previous work by Ahn et al. (2024).

The contributions of this paper are summarized as follows:

• We address the limitations of existing datasets, including unrealistic degradations, improb-
able flares, and white artifacts, emphasizing the need for a high-quality, real-world dataset.

• We provide UDC-VIX, a real-world UDC video dataset that accurately reflects actual UDC
degradations, ensuring precise spatial and temporal alignment through our meticulously de-
signed video-capturing system.

• We describe UDC-VIX’s effectiveness through extensive experiments, comparing it with
an existing synthetic dataset using six deep-learning models. High-quality datasets and
benchmarks are crucial for advancing representation learning.

• We highlight the importance of restoring UDC degradation for practical applications like
Face ID by measuring face recognition accuracy at different restoration levels. Our dataset
uniquely includes real-world face images, making it highly relevant for real-world tasks.

2 RELATED WORK

Existing UDC image datasets. There has been extensive research on UDC still image datasets.
Zhou et al. (2021) propose the T-OLED/P-OLED datasets. Images are displayed on a monitor, and
paired images are captured with and without a T-OLED/P-OLED display in front of the camera.
However, due to the limited dynamic range of the monitor, flares are almost absent in their datasets.
Feng et al. (2021) propose the SYNTH dataset. They convolve the measured point spread function
(PSF) of ZTE Axon 20 (ZTE Corporation, 2020) with clean images (Haven, 2020), exhibiting flares.
However, it has limitations such as the absence of noise and spatially variant flares. Notably, UDC
distortion gradually increases from the center of the camera lens to outwards, leading to spatially
distorted flares (Yoo et al., 2022). Feng et al. (2023) propose a pseudo-real dataset by capturing
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paired images of similar scenes using two cameras (e.g., ZTE Axon 20 UDC (ZTE Corporation,
2020) and iPhone 13 Pro camera (Apple Inc., 2021)). However, they use two cameras, leading to
geometric misalignment. They improve the geometric misalignment using AlignFormer (Feng et al.,
2023). Nonetheless, they encounter challenges with alignment accuracy. Ahn et al. (2024) propose
a real-world dataset called UDC-SIT and an image-capturing system. They attach Samsung Galaxy
Z-Fold 3 (Samsung Electronics Co., Ltd., 2021)’s UDC area to a lid. Paired images are acquired
by opening and closing the lid onto the Samsung Galaxy Note 10’s standard camera (Samsung
Electronics Co., Ltd., 2019). They use DFT to align the misalignment between the paired images
that occurs during the opening and closing of the lid. The images in the UDC-SIT dataset contain
the actual UDC degradation (e.g., spatially variant flares). Finally, Wang et al. (2024) and Tan et al.
(2023) propose still image datasets for face recognition. However, these datasets are synthesized
using a GAN-based model trained on the T/P-OLED dataset (Zhou et al., 2021), which lacks realistic
UDC degradation, particularly flares. Moreover, the datasets are not publicly available.

Existing UDC video datasets. Research has been conducted on synthetic UDC video datasets.
Chen et al. (2023) propose the PexelsUDC-T/P dataset. They train a GAN-based UDC video gen-
eration model using T-OLED/P-OLED datasets (Zhou et al., 2021), which do not show flares. They
generate UDC-degraded videos using clean videos (Pexels, 2014). Moreover, the datasets are not
publicly available. Liu et al. (2024) propose the VidUDC33K dataset. They convolve the measured
PSF on the clean video frames (Haven, 2020) to show flares. They simulate the dynamic change of
the PSF (Kwon et al., 2021) between consecutive frames following the previous work (Babbar &
Bajaj, 2022; Liu et al., 2022a; Ye et al., 2021). However, flares in their dataset are unrealistic.

UDC image restoration. There has been active research on UDC image restoration. DISC-
Net (Feng et al., 2021) incorporates the domain knowledge of the UDC image formation model.
UDC-UNet, a second performer of MIPI challenge (Feng et al., 2022), introduces kernel branches
to incorporate prior knowledge and condition branches for spatially variant manipulation.

Video restoration. Many studies have focused on video restoration models for general tasks, such
as denoising (Tassano et al., 2020), deblurring (Wang et al., 2019; Zhong et al., 2020), and super-
resolution (Wang et al., 2019). Unlike image restoration, which only focuses on a spatial dimen-
sion, video restoration leverages temporal information. FastDVDNet (Tassano et al., 2020) uses a
two-step denoising process in a multi-scale architecture to leverage temporal information without
explicit motion estimation. EDVR (Wang et al., 2019) aligns features using deformable convolu-
tions (Dai et al., 2017) and applies both temporal and spatial attention to highlight essential features.
ESTRNN (Zhong et al., 2020) integrates residual dense blocks into RNN cells for spatial feature
extraction and employs a spatiotemporal attention module for feature fusion. However, studies on
UDC video restoration are still rare. DDRNet (Liu et al., 2024), the pioneering work to address
UDC video degradation, adopts a recurrent architecture that merges multi-scale feature learning and
bi-directional propagation.

3 DATASET ACQUISITION

Since obtaining well-synchronized and precisely aligned paired videos for the same scene is chal-
lenging, we carefully design both hardware and software for capturing videos.

3.1 THE VIDEO CAPTURING SYSTEM

As shown in Figure 2, we present a UDC video capturing system consisting of two camera modules,
a display panel for the UDC area, a beam splitter, two 6-axis stages, and a single-board computer. In
this setup, one of the two camera modules is under low light conditions caused by the display panel,
making synchronization between paired frames more challenging than in previous beam splitter se-
tups (Hwang et al., 2015; Joze et al., 2020; Li et al., 2023; Rim et al., 2020). To capture synchronized
videos for the same scene, we propose a UDC video-capturing system that ensures precise camera
synchronization and accurate frame alignment.

The camera module. We use the Hawk-Eye (IMX686) (Arducam, 2022) to ensure that UDC-VIX
exhibits a similar UDC degradation as Samsung Galaxy Z-Fold 5’s UDC. Both devices use Quad
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Figure 2: The UDC video-capturing system. (a) The optical layout of the dual camera combiner.
The UDC area is enlarged for a better view. (b) The proposed video-capturing system.
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Figure 3: Quad Bayer Coding (QBC).

Bayer Coding (QBC), a technique designed to mitigate the reduced sensor luminance sensitivity of-
ten associated with higher camera resolutions or smaller sensor pixel sizes (Sony, 2014; Wikipedia,
2014). As shown in Figure 3, four adjacent pixels share the same color filter in the quad Bayer
structure. These pixels are grouped to increase sensitivity and reduce noise in low-light conditions
(e.g., in the UDC setting). Conversely, in bright conditions, the sensor reverts the pixels to the Bayer
structure through the remosaicing process, maintaining the Bayer sensor’s high resolution.

The beam splitter. We use a non-polarizing cube-shaped beam splitter (e.g., Thorlabs CCM1-
BS013 (Thorlabs, 2015)) to enable the two camera modules to capture the same scene. The beam
splitter divides the incident light into two directions with a beam deviation of 0 ± 5 arcminutes at
a 50:50 ratio. The unused optical path of the combiner is black-coated to minimize image contrast
loss caused by scattering. They can capture the same scene by aligning the two cameras to the beam
splitter’s split fields of view (FOV). Figure 2(a) illustrates the optomechanical layout of the dual
camera and beam splitter.

Kinematic optical mount. Despite many studies using beam splitters for paired image dataset
collection (Hwang et al., 2015; Joze et al., 2020; Li et al., 2023; Rim et al., 2020), this paper is the
first to apply them in UDC research to the best of our knowledge. It presents challenges to align the
optical paths of the display panel’s UDC area, a beam splitter, and two camera modules. To ensure
alignment between the cameras’ optical axes and the beam splitter, we employ Thorlabs K6XS 6-
axis kinematic optical mounts (Thorlabs, 2013). Each camera module is mounted on a K6XS mount,
allowing for shifts, rotations, and tilts across the six axes to align their FOV.

The controller. We use a Raspberry Pi 5 (Arducam, 2023) that has two four-lane MIPI interface
connections for high bandwidth to synchronize the two high-resolution cameras. It ensures stable
high-resolution video recording. To synchronize the cameras, we use independent streamers man-
aged by MPI barriers (Message Passing Interface Forum, 2023), achieving synchronization with an
accuracy margin of up to 8 msec. Consistent frame rates for both cameras are ensured using the
uncompressed binary dump method (e.g., YUV420 format). Despite these settings resulting in less
than a 0.5 fps (8 msec) difference between paired frames, rapid movements may still cause the cam-
eras to capture different scenes. Thus, videos capturing fast-moving objects (e.g., speeding cars) are
excluded from the dataset.

3.2 OBTAINING ALIGNED VIDEO PAIRS

This section illustrates how we align the optical axis and FOV, the criteria for determining FOV
alignment, and the test cases. We use a real-time monitor viewing system for the two cameras. We
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roughly align the view, fine-tuning using the K6XS, DFT alignment, the accuracy evaluation (e.g.,
PCK), video recording, and final selection by humans. The specific algorithm for the alignment is
described in Algorithm 1. Please see Section 4 for detailed information on the PCK.

Algorithm 1 Aligned video capturing process for UDC-VIX.
Ensure: The alignment accuracy of the paired frames is greater than 90%.

while The average PCK (α = 0.005) < 90% do
Initial setup. Adjust the camera positions and the beam splitter, ensuring that the views of the two

cameras are roughly similar.
Fine-tuning. The rotation, tilt, and horizontal/vertical positions of the K6XS are finely adjusted by

observing a 12× 9 checkerboard and everyday scenes in the live view system.
DFT alignment and PCK evaluation. Align paired frames using DFT and calculate the average PCK.

end while
Video recording. Capture paired videos for the same scene.
Final selection. Only the videos all authors assessed aligned and synchronized are retained.

DFT alignment. Despite the careful design of our video-capturing system, unavoidable misalign-
ments, such as shifts, rotations, and tilts, still occur between paired frames. Previous methods, such
as SIFT (Lowe, 2004), RANSAC (Fischler & Bolles, 1981), and deep learning approaches (Feng
et al., 2023), struggle to perform well in the existence of severe degradation introduced by the UDC.
Thus, we use DFT to align the paired frames, following Ahn et al. (2024)’s alignment technique to
achieve degradation-resilient alignment.

The alignment process is summarized as shift, rotate, and crop paired frames using DFT. Captured
videos have an original frame size of (1920, 1080, 3). The ground-truth frame is center-cropped
to (1900, 1060, 3), and the degraded frame undergoes a cropping around the center. To align the
cropped degraded frame D with the cropped ground-truth frame G, we iteratively shift the (x, y)
coordinates and rotate the frames to find the point of minimum loss. Our focus is on addressing
shifts and rotations while excluding tilts. Handling tilts is challenging because of the need for
perspective transforms optimized for objects in the same plane within a single image. Despite not
considering tilts, our video-capturing system minimizes all shifts, rotations, and tilts so that they do
not significantly affect alignment, as confirmed by our experiment (the PCK values in Table 2). The
loss function L for the alignment between D and G is defined as below:

L = λ1

M−1∑
x=0

N−1∑
y=0

(D(x, y)− G(x, y))2 + λ2

M−1∑
u=0

N−1∑
v=0

∆Famp(u, v) + λ3

M−1∑
u=0

N−1∑
v=0

∆ϕ(u, v), (1)

where the first term is the mean squared error, ∆Famp(u, v) and ∆ϕ(u, v) represent the L1 dis-
tance for the amplitude and phase, respectively. They are defined as ∆Famp(u, v) = |FD(u, v) −
FG(u, v)| and ∆ϕ(u, v) = |ϕD(u, v) − ϕG(u, v)|. Note that F(u, v) is the frequency value at the
point (u, v) in the frequency domain. Following Ahn et al.’s setting, we use λ1 = λ3 = 1, λ2 = 0.
The detailed alignment algorithm is described in the supplementary material.

4 COMPARISON WITH THE EXISTING UDC DATASETS

Many synthetic UDC datasets, including VidUDC33K (Liu et al., 2024), formulate the UDC degra-
dation as follows:

IDt = f(γ · IGt ∗ kt + n), (2)

where IDt and IGt denote the UDC-degraded and ground-truth frames, respectively. γ is the intensity
scaling factor, kt refers to the diffraction kernel (i.e., PSF), n is the noise, and f denotes the clamp
function for the pixel value saturation.

Ideally, we would like to compare UDC-VIX with two existing UDC video datasets, Pexel-
sUDC (Chen et al., 2023) and VidUDC33K (Liu et al., 2024). However, since PexelsUDC is not
publicly available, we use the P-OLED dataset (Zhou et al., 2021) used to create it. Table 1 gives a
summary of the nine previous UDC datasets. The resolution and frame per second (fps) of UDC-
VIX are FHD and 60 fps, respectively, following the Samsung Galaxy Z-Fold 5’s specification.
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Table 1: Comparison of the UDC datasets. The dataset size refers to the number of images in
the image dataset or the total number of frames in the video dataset, calculated as the product of
the number of video clips and the number of frames per clip. For example, the UDC-VIX dataset
consists of 647 video clips with 180 frames per clip, so the total number of frames is 116,460.

Dataset Type Scene Dataset size Resolution fps
Flare Face Publicly Publicationpresence recognition available

T/P-OLED (Zhou et al., 2021) Image Synthetic 300 1024× 2048× 3 - ✔ CVPR ’21

SYNTH (Feng et al., 2021) Image Synthetic 2,376 800× 800× 3 - ✔ ✔ CVPR ’21

Yoo et al. (Yoo et al., 2022) Image Synthetic - - - ✔ SID ’22

Pseudo-real (Feng et al., 2023) Image Real 6,747 512× 512× 3 - ✔ ✔ CVPR ’23

UDC-SIT (Ahn et al., 2024) Image Real 2,340 1792× 1280× 4 - ✔ ✔ NeurIPS ’23

Tan et al. (2023) Image Synthetic 73,000 - - ✔ TCSVT ’23

Wang et al. (2024) Image Synthetic 56,126 - - ✔ arXiv ’24

PexelsUDC-T/P (Chen et al., 2023) Video Synthetic 160× 100
1280× 720× 3 25-50 arXiv ’23(16, 000)

VidUDC33K (Liu et al., 2024) Video Synthetic 677× 50
1920× 1080× 3 - ✔ ✔ AAAI ’24(33, 850)

UDC-VIX Video Real 647× 180
1900× 1060× 3 60 ✔ ✔ ✔(116, 460)

Noise and transmittance decrease. The camera sensor amplifies the desired signal and unwanted
noise in low-light conditions. In the UDC setting, where the sensor is beneath the display panel,
the transmittance decreases, leading to amplified noise. The camera sensors with QBC, used in
the Samsung Galaxy Z-Fold series (related to UDC-VIX) (Samsung Electronics Co., Ltd., 2021;
2022; 2023) and ZTE Axon series (related to VidUDC33K) (ZTE Corporation, 2020; 2021; 2022),
can influence the noise pattern and pixel intensity (Sony, 2014). Thus, adding noise and adjusting
intensity scaling values in Equation 2 may not accurately depict real-world noise and transmittance
reduction. For example, in the VidUDC33K dataset, the degraded frame’s noise level is somewhat
lower than the ground truth, as shown in Figure 4(b). Similarly, the P-OLED dataset, captured in
a controlled setting, exhibits unrealistic noise and excessive transmittance decrease, as depicted in
Figure 4(a). In contrast, UDC-VIX in Figure 4(c) accurately shows actual transmittance decrease
and digital noise resulting from quantizing digital image signals.

Flares. Conventional lens flares stem from intense light scattering or reflection within an optical
system (Dai et al., 2022; 2023). In contrast, UDC flares arise from light diffraction as it passes
through the display panel above the digital camera lens. Thus, it is crucial for each frame in the
UDC video dataset to precisely depict the its unique flare characteristics, including spatially variant
flares, light source variant flares, and temporally variant flares. The P-OLED dataset rarely exhibits
flares as it captures images displayed on a monitor in a controlled environment (Figure 5(a) and (d)).

Since UDC distortion increases outward from the camera lens center, spatially variant flares man-
ifest within an image (Yoo et al., 2022). Distorted PSFs must be convolved across different image
regions to depict this flare distortion accurately. However, VidUDC33K applies the same PSF con-
volution across all areas using Equation 2, failing to represent spatially variant flares, as illustrated in
Figure 5(b) and (e). Conversely, UDC-VIX effectively captures spatially variant flares (Figure 5(c)).

(a) P-OLED (b) VidUDC33K (c) UDC-VIX
GT Degraded GT Degraded GT Degraded

Reduced noise

Increased noise

Noise rarely exists

Figure 4: Comparison of the decrease in transmittance and digital noise by the UDC. (a) P-OLED
dataset rarely depicts noise. (b) In the VidUDC33K dataset, the degraded frame decreases digital
noise compared to the ground truth (GT) frame. (c) UDC-VIX dataset illustrates an increase in
digital noise in the degraded frame. The brightness has been adjusted to improve visibility.
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(a) P-OLED (b) VidUDC33K (c) UDC-VIX
GT Degraded GT Degraded GT Degraded

Spatially variant flares
(d) P-OLED (e) VidUDC33K (f) UDC-VIX

GT Degraded GT Degraded GT Degraded

Overly regular flares
No flares

No flares
Different shape to (c)

Similar shape to (b)

Figure 5: Comparison of flares. P-OLED shows no flares ((a) and (d)). VidUDC33K displays overly
regular flares and light source invariant flares ((b) and (e)). In contrast, UDC-VIX uniquely presents
spatially variant flares and light source variant flares ((c) and (f)).

(a)

G (1/50) G (25/50) G (40/50)

D (1/50) D (25/50) D (40/50)

Flare shape remains consistent across frames
G (1/180) G (75/180)

(b)
D (1/180) D (75/180) D (120/180)

Flare shape changes across frames

G (120/180)

Figure 6: Temporally variant flares. Unlike (a) VidUDC33K, (b) UDC-VIX shows temporally vari-
ant flares. G and D are the ground truth and degraded frames, respectively. The numbers in parenthe-
ses represent (the current frame number / the total number of frames).

Various light sources, such as artificial (e.g., LED and halogen) and natural light, can alter the
spectra, affecting UDC flares’ shapes. However, VidUDC33K fails to depict light source variant
flares. As seen in Figure 5(b) and (e), flare shapes remain similar despite different light sources.
Conversely, UDC-VIX exhibits diverse flare shapes, as shown in Figure 5(c) and (f) and Figure 6(b).

A notable characteristic of UDC videos is temporally variant flares caused by the camera’s motion
when capturing light sources. The motion results in changes in PSFs (Kwon et al., 2021). However,
in the VidUDC33K dataset, attempts to simulate PSF changes through inter-frame homography
matrix computations using the method proposed by the previous studies (Babbar & Bajaj, 2022;
Liu et al., 2022a; Ye et al., 2021) yield rare temporally variant flares, as shown in Figure 6(a).
Moreover, the shape of typical lens flares in ground-truth frames remains unchanged in degraded
frames, indicating the failure of PSF convolution to replicate natural sunlight flares. Conversely,
UDC-VIX effectively captures temporally varying flares (Figure 6(b)).

Face recognition. UDC-VIX stands out from other datasets in Table 1 by featuring videos tailored
for face recognition (FR). Some datasets, such as T-OLED/P-OLED, SYNTH, and VidUDC33K,
only include limited human representations, often too small or from unrecognizable angles for FR
(Figure 7(f)). Wang et al. (2024) introduce still image datasets for FR. However, these datasets are
generated using a GAN-based model trained on the P-OLED dataset (Zhou et al., 2021), which does
not adequately simulate realistic UDC degradation, notably the lack of flare (Figure 7(e)). Addition-
ally, these datasets are not publicly available. Conversely, UDC-VIX prominently features humans
in 64.6% of its videos (approved by the Institutional Review Board (IRB)), featuring various mo-
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(a) (b) (c) (d) (e) (f)
G
T
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Figure 7: UDC-VIX features human motions, including (a) walking, (b) thumbs-up, (c) hand wav-
ing, and (d) body swaying. In contrast, Wang et al. (2024)’s synthetic still image datasets for FR
do not show the actual UDC degradations, as shown in (e). Moreover, it is not publicly available.
VidUDC33K dataset includes humans but is limited to rear views, as shown in (f).
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(g)

Lens flare

Not 
UDC flare

Figure 8: Less meaningful and strange videos in VidUDC33K (Liu et al., 2024). (a) Only lens flare
is present, excluding UDC flare. (b) Flare in the seawater and on the cigarette. (c) Flare in the stars
of the sky. (d) Flare on the bricks. (e) Flare on the car’s side. (f) Flare on the splashing water
droplets. (g) Meaningless abstract image.

tions (e.g., hand waving, thumbs-up, body-swaying, and walking) by 22 carefully selected subjects
from different angles (Figure 7(a)-(d)).

Less meaningful and strange scenes. The VidUDC33K dataset often presents unrealistic sce-
narios. As depicted in Figure 8(a), degraded frames lack UDC flares, displaying flares resembling
typical lens flares seen in the ground truth frame. Additionally, flares appear in improbable situations
in Figure 8(b), (c), (d), (e), and (f). Moreover, some videos in VidUDC33K may not significantly
contribute to research, prompting consideration for their relevance, as shown in Figure 8(g). Please
see Appendix B.1 for detailed illustration.

Alignment quality. To assess the alignment quality of paired videos, we use LoFTR (Sun et al.,
2021) as a keypoint matcher, following the convention of the previous studies (Ahn et al., 2024;
Feng et al., 2023). We compare the Percentage of Correct Keypoints (PCK), representing the ratio
of correctly aligned keypoints to the total number. A keypoint pair is correctly aligned if d <
α×max(H,W ), where d is the positional difference between a pair of matched keypoints, α is the
threshold, and H and W are the frame or image dimensions. We set max(H,W ) = 1024 for fair
comparison across datasets with varying resolutions.

Table 2 compares alignment accuracy across datasets. The synthetic datasets (e.g., T-OLED/P-
OLED, SYNTH, and VidUDC33K) do not require an additional alignment process, leading to PCK
values near 100%. In contrast, the Pseudo-real dataset using AlignFormer (Feng et al., 2023), attains
a PCK value of 58.75% for α = 0.01. Unlike Pseudo-real, UDC-VIX maintains PCK values near
100%, demonstrating performance comparable to UDC-SIT, which previously led benchmarks.

5 EXPERIMENTS

This section compares the UDC video restoration performance and face recognition accuracy of the
existing deep learning models trained by UDC-VIX and the existing synthetic video dataset.

5.1 EFFECTS ON LEARNABLE RESTORATION MODELS

In this section, we evaluate the effectiveness of the UDC-VIX dataset by comparing the video
restoration performance of six deep learning models on UDC-VIX and VidUDC33K dataset (Liu
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Table 2: The comparison of PCK values between the datasets. The UDC-VIX dataset showcases the
best alignment quality. It has PCK values close to 100% for all values of α.

Dataset Type Need PCK
alignment (α = 0.01) (α = 0.03) (α = 0.10)

T-OLED/P-OLED (Zhou et al., 2021) Image 98.11 98.45 99.08
SYNTH (Feng et al., 2021) Image 99.95 99.96 99.99
Pseudo-real (Feng et al., 2023) Image ✔ 58.75 95.08 99.93
UDC-SIT (Ahn et al., 2024) Image ✔ 97.26 98.56 99.35
VidUDC33K (Liu et al., 2024) Video 99.82 99.84 99.90
UDC-VIX Video ✔ 98.95 99.32 99.69

Table 3: Restoration performance for synthetic and real UDC video datasets. The term Input refers
to the PSNR, SSIM, and LPIPS values between the degraded and ground-truth video pairs.

Runtime Param VidUDC33K (Liu et al., 2024) UDC-VIX
(sec) (M) PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Input - - 26.22 0.8524 0.2642 16.31 0.7318 0.4165
DISCNet (Feng et al., 2021) 0.73 3.80 28.89 0.8405 0.2432 24.53 0.8351 0.2702
UDC-UNet (Liu et al., 2023) 0.37 5.70 28.37 0.8361 0.2561 27.74 0.8852 0.1814
FastDVDNet (Tassano et al., 2020) 0.45 2.48 28.95 0.8638 0.2203 23.76 0.8388 0.2696
EDVR (Wang et al., 2019) 1.17 23.6 28.71 0.8531 0.2416 23.40 0.8280 0.2700
ESTRNN (Zhong et al., 2020) 0.20 2.47 29.54 0.8744 0.2170 25.18 0.8599 0.2251
DDRNet (Liu et al., 2024) 0.44 5.76 31.91 0.9313 0.1306 24.49 0.8484 0.2255

et al., 2024). The comparison is performed only with VidUDC33K since PexelsUDC is not publicly
available. DDRNet (Liu et al., 2024) is the only existing UDC video restoration model, while Fast-
DVDNet (Tassano et al., 2020), EDVR (Wang et al., 2019), and ESTRNN (Zhong et al., 2020) are
video restoration models for other general tasks (e.g., deblur, denoising, and super-resolution). DIS-
CNet (Feng et al., 2021) and UDC-UNet (Liu et al., 2023) are UDC still image restoration models.

Table 3 shows the restoration performance of the six models on both VidUDC33K and UDC-VIX.
Interestingly, the performance rankings of the benchmark models across the two datasets do not
consistently align. The varying severity of flares between the two datasets is the main reason for
the inconsistent restoration performance rankings. Unlike UDC-VIX, VidUDC33K lacks accurate
depictions of real-world flares. Examination of input PSNR, SSIM, and LPIPS metrics indicates that
their performance degradation on UDC-VIX is more severe than on VidUDC33K. The top perform-
ers on UDC-VIX, UDC-UNet and ESTRNN, use residual CNNs to manage complex degradations
and enhance restoration quality. They also provide better frame-to-frame consistency than the oth-
ers, which is crucial for reducing flicker, although some flicker persists. This shows the benefits
of residual connections in improving consistency. Note that the restored video of VidUDC33K by
DDRNet using their pre-trained model does not create flickering. This result underscores the ne-
cessity for research dedicated to UDC’s video restoration using real-world UDC video datasets, an
area where UDC-VIX holds promise for significant contributions. Extensive analyses and visual
comparisons are available in Appendix B.2 and B.3, and on our project site.

5.2 FACE RECOGNITION

The face recognition (FR) task verifies whether two images are of the same person, similar to typical
smartphone applications like Face ID. As shown in Figure 9, we assess average FR accuracy using
seven FR models from the DeepFace library (Serengil, 2022), such as VGG-Face (Parkhi et al.,
2015), Facenet (Schroff et al., 2015), OpenFace (Baltrušaitis et al., 2016), DeepFace (Taigman et al.,
2014), DeepID (Sun et al., 2014), Dlib (King, 2009), and ArcFace (Deng et al., 2019). We test 600
FR frame pairs (human 1 and human 2 from different videos) on a balanced dataset, with 49.2% of
the same person (human 1 = human 2) and 50.8% of different people (human 1 ̸= human 2).

As shown in Figure 9, we compare the effect of human 2’s restoration level in terms of PSNR, SSIM,
and LPIPS (X-axis) on FR accuracy (Y -axis). Human 1 is always ground truth (GT) and human 2
can be Input, Restored, or GT). Therefore, Input, Restored, or GT in Figure 9 indicates the
group to which human 2 belongs. For example, in Figure 9(a), the PSNR for Input is calculated
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Figure 9: FR accuracy. Model error cases are excluded when calculating the accuracy, where the
model error indicates when FR models fail due to severe UDC degradation. Frames restored by
deep learning models with higher performance in (a) PSNR, (b) SSIM, and (c) LPIPS achieve better
recognition accuracy. PSNR between the two GTs is plotted as 35.00 for easy observation.

between human 2 (Input) and human 2 (GT). Similarly, the FR accuracy for Input is calculated
between human 1 (GT) and human 2 (Input). To verify the relationship between restoration level
and FR accuracy, we illustrate six deep-learning models’ restoration performance (highlighted with
green circle) and corresponding FR accuracy in Figure 9. The PSNR for Restored is calculated
between human 2 (Restored) and human 2 (GT). Similarly, the FR accuracy for Restored is
calculated between human 1 (GT) and human 2 (Restored).

The results show the significance of leveraging the UDC degradation by deep-learning restoration
models to enhance FR accuracy. For example, as depicted in Figure 9(a), Input with PSNR of
16.31 shows 64.5% FR accuracy, UDC-UNet with PSNR of 27.74 shows 82.2% FR accuracy, and
GT shows 90.3% FR accuracy.

6 LIMITATIONS

UDC-VIX has two limitations. One is that UDC degradations vary with display pixel design, affect-
ing diffraction patterns, PSF, and light propagation, leading to variation in degradation such as blur,
transmittance decrease, and especially flares (see Figure 5(b) and (c)). Models trained on UDC-VIX
may not work optimally on devices other than Samsung Galaxy Z-Fold 5 (Samsung Electronics Co.,
Ltd., 2023), such as the ZTE Axon series (ZTE Corporation, 2020; 2021; 2022) or other Samsung
Galaxy Z-Fold series (Samsung Electronics Co., Ltd., 2021; 2022). However, models trained on
UDC-VIX can be fine-tuned for other devices. Please see Appendix B.4 for details. The other is
that fast-moving objects like speeding cars are excluded from UDC-VIX. Despite the efforts to
synchronize the two cameras to ensure a synchronization difference of less than 8 msec between
paired frames (Section 3), rapid movements can still result in scene difference by the cameras.

7 CONCLUSION

As far as we know, UDC-VIX is the first UDC video dataset that includes actual UDC degradation,
such as low transmittance, blur, noise, and flare. We propose an efficient video-capturing system
to acquire a matched pair of UDC-degraded and ground-truth videos with precise synchronization
of two cameras. Furthermore, we align UDC-VIX frame by frame using DFT, showing the highest
alignment accuracy, enough to train deep learning models. From the comparison experiments, we
demonstrate the effectiveness of UDC-VIX. Notably, UDC-VIX solely presents significant actual
UDC degradation (e.g., variant flares) and stands out from other datasets by featuring videos tailored
for face recognition. Through the thorough experiments, we figure out the models trained with the
synthetic UDC video dataset are impractical because they fail to capture UDC-degraded videos’
actual characteristics accurately. Moreover, restoring UDC degradation is significant in enhancing
face recognition accuracy. Based on the insights above, we expect that UDC-VIX will significantly
contribute to the UDC video restoration studies.
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A DETAILS OF THE UDC-VIX DATASET

In this section, we provide detailed information about the UDC-VIX dataset.

A.1 DATASET ACQUISITION

As described in Section 3 of the main body of the paper, to construct a real-world UDC video dataset
with precise alignment and synchronization, we propose a video-capturing system. This section
details the alignment algorithm based on Discrete Fourier Transform (DFT) and its advantages. We
also describe the techniques for synchronized video capture using the two camera modules.

Alignment. The alignment algorithm we use involves shifting, rotating, and cropping paired
frames with DFT. The detailed alignment algorithm is illustrated in Algorithm A.1. In this algo-
rithm, following the alignment settings by Ahn et al. (2024), we use λ1 = λ3 = 1 and λ2 = 0, and
we do not apply rotation. Their experiments show that applying rotation reduces the Percentage of
Correct Keypoints (PCK) when varying λ1, λ2, λ3, and θrotation.

The loss function in Equation 1 in the main body of the paper enables the incorporation of both
local (i.e., MSE) and global (i.e., DFT) information across spatial and frequency domains. Using
DFT to align the paired frames offers a significant advantage because it can decompose a frame into
its constituent spatial frequency components. Figure A.1(a) and (c) depict paired frames G and D
comprising multiple sinusoidal gratings, indicating a noticeable spatial shift. Figure A.1(b) and (d)
represent the differences in phase and amplitude, respectively. Thus, reducing the phase component
is critical for effectively aligning the paired frames for the same scene.

The controller. When capturing videos, we discard the initial 30 frames because it takes approxi-
mately 15 frames for the ground-truth camera and 25 frames for the UDC to achieve focus. The UDC
requires more frames for focusing due to its degradation. Furthermore, we use a solid-state drive

Algorithm A.1 Alignment of paired images IG and ID (Ahn et al., 2024).
Require: Images IG, ID of size (H,W ), hyperparameters s, θr , r, λ1, λ2, λ3

Ensure: Aligned images G, D of size (H∗,W ∗)
Crop G from IG using center crop
Crop D from ID to the size of G
Initialize best loss Lbest to a large value
Initialize optimal shifts sopt x, sopt y, and rotation θopt to 0
for θrotation from −θr to θr with step r do

Apply rotation of θrotation to ID to get Drotated
for xshift from −s to s with step 1 do

for yshift from −s to s with step 1 do
Calculate crop position (p, q) relative to the center crop:

p = xcenter crop + xshift
q = ycenter crop + yshift

Crop image Dtmp from Drotated at position (p, q)
Calculate loss L using the loss function in Eq. 1 between Dtmp and G
if L < Lbest then

Update Lbest to L
Update sopt x to xshift
Update sopt y to yshift
Update θopt to θrotation

end if
end for

end for
end for
Apply optimal rotation θopt to ID to get Drotated
Calculate crop position (popt, qopt) relative to the center crop:

popt = xcenter crop + sopt x
qopt = ycenter crop + sopt y

Crop Drotated to acquire an aligned image D at position (popt, qopt)
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Figure A.1: Frequency analysis based on the conceptual illustration for paired frames involving
shifts without degradation. (a) The original frame G consists of multiple sinusoidal gratings. The in-
verse DFT applied to FG(u, v) produces each sinusoidal grating. (b) The phase difference between
G and D. (c) The spatially shifted frame D in the spatial domain comprises multiple sinusoidal grat-
ings, as in (a). (d) The amplitude difference between G and D, showing no difference.

(SSD) instead of a secured digital (SD) card, as the SD card takes longer to save FHD resolution
videos, which disrupts synchronization between the two cameras.

A.2 DATASET DETAILS AND STATISTICS

This section provides detailed information about the UDC-VIX dataset.

Statistics. From a pool of 647 videos, we have randomly selected 510 for training, 69 for valida-
tion, and 68 for the test set. The UDC-VIX dataset will be available in PNG format accompanied
by a conversion script from PNG to NPY. We offer the dataset in MP4 format for the review process
to facilitate video quality assessment. Moreover, we have also annotated each video pair, providing
a detailed overview of the total count and the distribution of different annotation labels. The video
pairs are thoughtfully categorized into various settings, including the presence of flare and light
sources, human presence and types of human motion, and indoor/outdoor.

(c)(b)

35.40%

19.12%

17.31%

22.87%

5.30%

Human absent (0)

Hand waving (1)

Thumbs-up (2)

Body-swaying (3)

Walking (4)

(a)

30.10%

10.80%

46.20%

12.80%

Flare absent (0)

Natural sunlight (1)

Artificial light (2)

Both (3)
72.30%

27.70%

Indoor (0)

Outdoor (1)

Figure A.2: The dataset distribution. The parenthesis beside a label is the encoding of the label. Note
that a video pair can have multiple annotation labels. (a) The distribution of the lighting conditions.
(b) The distribution of the human’s presence and their actions. (c) The distribution of the shooting
location.

IRB approval. We have obtained Institutional Review Board (IRB) approval for our UDC-VIX
dataset, as our research involves human subjects. This rigorous process ensures the highest standards
of research ethics. Using IRB-approved procedures, we enlisted 22 voluntary research participants.
As shown in Table A.1, the IRB-approved participant information sheet provides comprehensive
instructions verbally explained on the shoot day.

Similarly, it is essential to note that the users of the UDC-VIX dataset are engaged in research in-
volving human subjects. Therefore, the users are required to secure IRB approval by the regulations
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Table A.1: Prescribed instructions from IRB-approved participant information sheet. Out of thirty
shots per person, videos displaying issues such as being out-of-focus are eliminated from the dataset.

Q. What procedures will be followed if the participants take part in the study?
A. If the participants agree to take part in, the following procedures will be conducted:
The participants will be photographed with 30 shots using the UDC and regular digital cameras
according to the following motions:

• 5-second shots of body-swaying × 9 shots (6 indoors / 3 outdoors)
• 5-second shots of waving hands × 9 shots (6 indoors / 3 outdoors)
• 5-second shots of giving a thumbs-up × 9 shots (6 indoors / 3 outdoors)
• 5-second shots of walking indoors/outdoors × 3 shots

Since the UDC camera is located under the display and operates in low-light environments, it is
necessary to shoot in various locations (indoors/outdoors) and conditions (bright/dark) to reflect the
diverse quality degradation patterns of the UDC. Additionally, it is crucial to recognize individu-
als from various angles for tasks like face recognition, especially for personal authentication in the
financial sector. Therefore, we must develop deep-learning models that restore the subject’s appear-
ance from different angles (e.g., front, left, and right), necessitating a dataset with shots from various
angles. The recorded videos will be publicly released as a dataset for the UDC research.
Q. How long will the study participation last?
A. The study will take approximately 30 minutes. While the actual recording will take 2 minutes
and 30 seconds (5 seconds × 30 shots), additional time will be needed for:

• The subject’s shooting angle adjustments (5 minutes)
• Moving between locations (5 minutes)
• Checking alignment accuracy after moving (5 minutes)
• Making necessary adjustments (10 minutes)

Q. Will compensation be provided for participating in this study?
A. As a token of gratitude for participating in the study, the participants will receive a Starbucks
gift card worth 50,000 Korean won. However, suppose the participants withdraw from participation
before completing the 30 shots or request the disposal of the captured videos. In that case, we regret
to inform the participants that compensation cannot be provided. Compensation will be provided
to those who assist in fully completing the 30-shot video capture. Should the participants request
the disposal of the videos after compensation has been provided, they will be required to return the
compensation amount.

of their respective countries. When the users download the dataset, there will be instructions about
the IRB approval, as shown in Figure A.3.

A.3 RIGOROUS MAINTENANCE PLAN

This section provides the UDC-VIX’s easy accessibility and rigorous maintenance plan for long-
term preservation.

Easy accessibility. The UDC-VIX dataset will be publicly available at our research group’s home-
page (accessible in the camera-ready) as depicted in Figure A.3, improving accessibility.

Users can access the dataset by filling out a form on the research group’s homepage. Upon submis-
sion, they will receive an email with the download link. Instructions for accessing the UDC-VIX
dataset will also be provided on our project site, guiding users to the research group’s homepage for
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Under Display Camera (UDC) is an advanced imaging system that places a digital camera lens underneath a display panel, effectively concealing the camera. 
However, the display panel significantly degrades captured images or videos, introducing low transmittance, blur, noise, and flare issues. Tackling such 
issues is challenging because of the complex degradation of UDCs, including diverse flare patterns. Despite extensive research on UDC images and their 
restoration models, studies on videos have yet to be significantly explored. While two UDC video datasets exist, they primarily focus on unrealistic or 
synthetic UDC degradation rather than real-world UDC degradation. In this paper, we propose a real-world UDC video dataset called UDC-VIX. Unlike 
existing datasets, only UDC-VIX exclusively includes human motions that target facial recognition. We propose a video-capturing system to simultaneously 
acquire non-degraded and UDC-degraded videos of the same scene. Then, we align a pair of captured videos frame by frame, using discrete Fourier 
transform (DFT). We compare UDC-VIX with six representative UDC still image datasets and two existing UDC video datasets. Using six deep-learning 
models, we compare UDC-VIX and an existing synthetic UDC video dataset. The results indicate the ineffectiveness of models trained on earlier synthetic 
UDC video datasets, as they do not reflect the actual characteristics of UDC-degraded videos. \hl{We also show that the effectively restored frames by deep 
learning models show better face recognition accuracy through the experiments.} UDC-VIX enables further exploration in the UDC video restoration and 
offers better insights into the challenge. UDC-VIX is available at our project site. 

If you would like to download the UDC-VIX dataset, kindly complete the provided form. Please note that the UDC-VIX dataset is intended solely for UDC 
research purposes and can only be utilized by researchers with valid IRB approval. You must comply with legal regulations governing dataset usage in both 
the Republic of Korea and your nationality, obtaining IRB clearance accordingly. Additionally, it's essential to understand that any misuse or unauthorized 
distribution of the dataset beyond specified guidelines and the license will result in legal repercussions, for which you are solely responsible. By proceeding, 
you agree to these terms.
Name Organization E-mail

X X

Figure A.3: Our Research Group’s homepage section for the UDC-VIX dataset, which offers in-
formation and download access. It is temporarily inaccessible during the review period and will be
available in the camera-ready version.

download. Distributing the dataset via the research group’s homepage ensures long-term preserva-
tion. Handling contact and bug reports via email allows for continuous maintenance and updates.

License. The UDC-VIX dataset is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Under this license, the users
of the UDC-VIX dataset can freely utilize, share, and modify this work by adequately attributing the
original author, distributing any derived works under the same license, and utilizing it exclusively
for non-commercial purposes. It is essential to mention that the UDC-VIX dataset is restricted to
UDC research purposes only, as outlined in our IRB documentation. Detailed information about this
license can be found in the official Creative Commons website.

B ANALYSIS DETAILS

This section describes the novelty of the UDC-VIX dataset in two ways. One is to detail the limita-
tions of a synthetic dataset (e.g., VidUDC33K (Liu et al., 2024)). The other is to offer experimental
results using six benchmark models such as DISCNet (Feng et al., 2021), UDC-UNet (Liu et al.,
2023), FastDVDNet (Tassano et al., 2020), EDVR (Wang et al., 2019), ESTRNN (Zhong et al.,
2020), and DDRNet (Liu et al., 2024). We also provide training details to ensure reproducibility.

B.1 REASONS OF THE STRANGE SCENES IN VIDUDC33K

In Section 4 in the main body of the paper, we describe less meaningful and strange scenes in the
VidUDC33K dataset. Two main strange phenomena exist in the VidUDC33K dataset. One is the
flare appearance in improbable situations and unintended white artifacts. The other is the darkened
and nearly featureless degraded frames.

Improbable situations and unintended white artifacts. Liu et al. (2024) endeavor to synthesize
flares through the convolution of the PSF with ground-truth images. However, the desired flares do
not manifest as expected. Subsequently, they employ a scaling procedure to pixel values exceeding
a certain threshold to amplify those values, which is followed by PSF convolution. This results in
the flare appearance in improbable situations and unintended white artifacts. Flares in improbable
scenarios are described in Figure 8 in the main body of the paper and Figure B.1. As for unintended
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Figure B.1: The visual illustration that showcases improbable flares resulting from excessive scaling
in the VidUDC33K dataset (Liu et al., 2024). (a) Flare in the river. (b) Flare from the dust on the
camera lens. (c) Flare on the bird feathers. (d) Flare on the flower petals. (e) Flare on the mountain
peaks. (f) Flare on the food. (g) Flare in the snake eyes. (h) Flare on the waterfalls.

white artifacts, pixel values exceeding a certain threshold are amplified, resulting in artifacts in re-
gions close to white. Consequently, areas with clouds in the sky, waterfalls, and white walls become
excessively white, losing their original color, as depicted in Figure B.2. Experiments are conducted
without applying scaling to verify that the scaling is related to the flare generation. The results pre-
sented in the final row of Figure B.2 demonstrate that without scaling, flares do not manifest even
in frames where they are expected to appear. Approximately 12% of the videos exhibit unintended
white artifacts due to the scaling procedure, which is unsuitable for deep learning training.

The darkened and nearly featureless frames. Liu et al. (2024) strive to create temporally variant
flares in continuous video sequences. They simulate the dynamic changes of the PSF during mo-
tion by computing the inter-frame homography matrix Ht−1→t, formulated as Equation 3, between
consecutive frames.

kt = T (kt−1, Ht−1→t)

=

∣∣∣∣F (
H−1

t−1→t

(
F−1

(√
kt−1

))) ∣∣∣∣2,
Ht−1→t = M(IGT

t−1, I
GT
t ),

(3)

where T (·) is the transformation function that utilizes H−1
t−1→t to perform a perspective warp on the

PSF of the previous frame, kt−1. H−1
t−1→t denotes the inverse matrix of Ht−1→t. F(·) and F−1(·)

represent the Fourier transform and its inverse, respectively. M(·) is the matching component used
to calculate the homography matrix between frames.

However, this process occasionally results in PSF values approaching zero, causing the degraded
frames to appear entirely black. Specifically, this issue occurs in 4 out of 677 videos, as depicted
in Figure B.3. The first frame does not undergo PSF transformation, while subsequent frames do.
Therefore, as seen in Figure B.3(c), only the frames after the first one (e.g., the tenth frame) some-
times become black.
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(a) (b) (c) (d)

Figure B.2: The visual depiction that shows white artifacts resulting from excessive scaling in the
VidUDC33K dataset (Liu et al., 2024). The frames without the scaling procedure do not exhibit these
white artifacts, unlike the frames with the scaling procedure. Additionally, the flares in the frames
with the scaling procedure are not visible in the frames without the scaling procedure. It appears
that the authors use scaling to generate flares, inadvertently creating unrealistic white artifacts in the
process. (a) The ground-truth frame with scaling procedure. (b) The degraded frame with scaling
procedure. (c) The ground-truth frame without scaling procedure. (d) The degraded frame without
scaling procedure.

B.2 QUANTITATIVE RESULTS OF THE BENCHMARK MODELS

Among the categories illustrated in Figure A.2, the light conditions and shooting location are related
to the restoration performance. In Table B.1, although the presence of humans seems to influence
restoration performance, it is not directly correlated. To ensure the safety of participants, 86.4% of
scenes, including humans, are captured indoors, which causes less severe degradation than outdoor
natural flares. Given that a UDC-VIX video can have multiple annotations (e.g., an outdoor scene
with flares caused by natural sunlight), the annotation type listed in a column in Table B.1 cannot be
considered the only factor influencing UDC degradation. However, it is reasonable to recognize the
annotation type as a significant factor affecting PSNR, SSIM, and LPIPS values.
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155.mp4 234.mp4 265.mp4 671.mp4

Figure B.3: The visual representation that demonstrates black frames resulting from incorrectly
transformed PSFs in the VidUDC33K dataset Liu et al. (2024). (a) The first frame of the degraded
video. (b) The first frame of the ground-truth video. (c) The tenth frame of the degraded video. (d)
The tenth frame of the ground-truth video.

Light sources. As shown in Table B.1, all models encounter difficulties in restoring scenes with
flare (Flare - Present - Average) compared to those without flare (Flare - Absent). Within flare-
present scenes, the severity of degradation varies based on the light source (e.g., natural sunlight,
artificial light, or both). Intense sunlight can oversaturate pixel values, obscuring objects around
the flares (see Figure B.4(a) and (c)). Consequently, the benchmark models have more difficulty
restoring videos with flares caused by natural sunlight than those caused by artificial light.

Shooting location. The benchmark models struggle more with restoring outdoor scenes than in-
door scenes, as shown in Table B.1. Approximately 33.3% of outdoor and 15.4% of indoor scenes
include flares caused by natural sunlight in the UDC-VIX dataset. Moreover, sunlight-induced flares
occurring indoors are often less severe than those occurring outdoors. For example, outdoor scenes
with natural sunlight flares show severe flare, as shown in Figure B.4(a), whereas indoor scenes with
the same type of flares tend to be less severe, as depicted in Figure B.4(c) and (d). Notably, the flare
in the upper right corner of Figure B.4(d) is mild, a result of sunlight scattered by a glass window
rather than entering the camera directly. This understanding is crucial as it highlights the unique
challenges of restoring outdoor scenes where direct sunlight is a significant factor. Consequently, all
models face more significant difficulties restoring outdoor scenes than indoor scenes.

B.3 QUALITATIVE RESULTS OF THE BENCHMARK MODELS

This section presents the visual results of the restored frames. The restoration outputs from bench-
mark models, which highlight various degradations that these models have yet to address, demon-
strate the novelty of the UDC-VIX dataset and emphasize the importance of developing deep-
learning models using real-world dataset.

Light sources. As illustrated in Figure B.4, flares can be categorized into glare, shimmer, and
streak (Ahn et al., 2024; Dai et al., 2022). A glare is characterized by intense and robust light,
resulting in circular patterns as artifacts. Shimmer entails rapid and nuanced light or color intensity
variations across an image. A streak manifests as a lengthy, slender, and usually irregular line of
light or color within an image.
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Table B.1: Comparison of restoration performance. Each row’s best and worst scores within each
category are bold-faced and underlined, respectively.

Model Metric

Flare presence and light sources Shooting location Human presence

AveragePresent
Absent Indoor Outdoor Present AbsentNatural Artificial Both Averagesunlight light

PSNR ↑ 21.93 24.15 22.37 23.55 26.53 25.43 21.92 26.94 20.18 24.53
DISCNet (Feng et al., 2021) SSIM ↑ 0.7495 0.8451 0.8191 0.8255 0.8546 0.8573 0.7708 0.8795 0.7550 0.8351

LPIPS ↓ 0.2925 0.2894 0.3250 0.2945 0.2206 0.2608 0.2973 0.2247 0.3521 0.2702

PSNR ↑ 23.20 27.76 25.36 26.67 29.91 29.13 23.71 31.34 21.25 27.74
UDC-UNet (Liu et al., 2023) SSIM ↑ 0.7962 0.8995 0.8857 0.8802 0.8954 0.9092 0.8158 0.9276 0.8088 0.8852

LPIPS ↓ 0.2167 0.1814 0.2173 0.1920 0.1596 0.1679 0.2204 0.1398 0.2563 0.1814

PSNR ↑ 22.80 23.78 21.49 23.32 24.67 24.34 22.10 25.34 20.92 23.76
FastDVDNet (Tassano et al., 2020) SSIM ↑ 0.7696 0.8523 0.8245 0.8347 0.8474 0.8593 0.7798 0.8720 0.7792 0.8388

LPIPS ↓ 0.2927 0.2772 0.3048 0.2834 0.2414 0.2568 0.3065 0.2364 0.3294 0.2696

PSNR ↑ 21.54 23.14 21.58 22.67 24.89 24.07 21.47 25.11 20.32 23.40
EDVR (Wang et al., 2019) SSIM ↑ 0.7515 0.8422 0.8132 0.8231 0.8380 0.8484 0.7690 0.8612 0.7682 0.8280

LPIPS ↓ 0.2836 0.2843 0.3039 0.2867 0.2359 0.2605 0.2975 0.2390 0.3259 0.2700

PSNR ↑ 22.99 25.54 24.08 24.92 25.70 26.07 22.60 26.99 21.91 25.18
ESTRNN (Zhong et al., 2020) SSIM ↑ 0.7805 0.8818 0.8577 0.8615 0.8567 0.8847 0.7884 0.8938 0.7990 0.8599

LPIPS ↓ 0.2670 0.2192 0.2640 0.2331 0.2087 0.2086 0.2725 0.1920 0.2845 0.2251

PSNR ↑ 22.61 24.14 23.49 23.80 25.89 25.35 22.00 26.43 20.98 24.49
DDRNet (Liu et al., 2024) SSIM ↑ 0.7799 0.8628 0.8455 0.8465 0.8524 0.8697 0.7870 0.8810 0.7898 0.8484

LPIPS ↓ 0.2578 0.2267 0.2434 0.2341 0.2079 0.2079 0.2765 0.1936 0.2830 0.2255

As outlined in Section 4 in the main body of the paper, flares differ based on the light sources (i.e.,
light source variant flare). Additionally, even with the same light source, flares vary depending
on the location (i.e., spatially variant flare). In Figure B.4(a) and (c), sunlight-induced flares are
intense, causing all models to struggle to restore obscured objects. Conversely, artificial light in
Figure B.4(b) and (c) is relatively easier to restore than sunlight-induced flares. However, benchmark
models still face challenges restoring areas affected by shimmer and streak, resulting in speckled
artifacts around the flare edges. The mild flare caused by natural light in Figure B.4(d) originates
from sunlight scattered by a glass window, which all models restore well. Light sources like the
one shown in Figure B.4(e), covered by a diffuser, produce less severe flares, leading to effective
restoration by all models. As shown in Figure B.4(f), deep-learning models restore the glare and
shimmer of fluorescent light, though the restoration of the blurred flare on the human face varies
among models.

Shooting location. The visual restoration performance is sometimes influenced by the presence
or absence of flares within the frame rather than solely by the shooting location. For instance, while
Figure B.4(b) and (h) portray indoor scenes, models generally excel in restoring the flare-free frame
in Figure B.4(h). Likewise, in outdoor scenes depicted in Figure B.4(a) and (i), models tend to
achieve better restoration for the flare-free frame in Figure B.4(i). However, it is worth noting that
some models may inaccurately render the sky with a reddish hue.

Human. The presence of humans alone does not pose a significant challenge to restoration. In-
stead, the restoration difficulty hinges on how UDC degradations, such as noise, blur, transmittance
decrease, and flare, impact humans. For example, in Figure B.4(d) and (e), despite the presence of
flares in the frames, they do not affect humans. However, in Figure B.4(f), the reflection of fluo-
rescent light on the person’s glasses poses challenges for restoring fine details around the eyes. In
Figure B.4(g) and (h), human faces appear reddish in the input frames compared to the ground-truth
frames due to UDC-induced diffraction occurring differently across RGB channels. Moreover, the
restored facial colors vary among models. In applications like face recognition for smartphone un-
locking, financial authentication, and video conferencing, it is crucial to consider these diverse UDC
degradations for accurate human restoration since facial color is crucial in images or videos.

Flicker. The visual comparison in the paper can only show a single frame. Despite some successful
restoration results of a frame in Figure B.4, multiple frames in the video often exhibit flickering
across all models. This flickering may result from varying degradations between consecutive frames,
such as transmittance decreases and flares. To see the flickering of the restored videos, please visit
our project site.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Input GT DISCNet UDC-UNet FastDVDNet EDVR ESTRNN DDRNet

Figure B.4: The visual comparison of the restoration performance regarding different annotations.
The red, green, and yellow arrows represent the flares’ glare, shimmer, and streak, respectively. (a)
Natural sunlight + Human absent + Outdoor. (b) Artificial light + Human absent + Indoor. (c) Both
+ Human absent + Indoor. (d) Natural sunlight + Hand waving + Indoor. (e) Artificial light + Hand
waving + Indoor. (f) Artificial light + Thumbs-up + Indoor. (g) Natural sunlight + Thumbs-up +
Indoor. (h) Flare absent + Body-swaying + Indoor. (i) Flare absent + Human absent + Outdoor.

B.4 CROSS-DATASET VALIDATION

This section demonstrates the cross-dataset validation to tackle the unique dataset distribution
and degradation patterns of UDC datasets as discussed in Section 6. For example, Samsung
Galaxy Z-Fold 3 (Samsung Electronics Co., Ltd., 2021) (UDC-SIT (Ahn et al., 2024)) and Sam-
sung Galaxy Z-Fold 5 (Samsung Electronics Co., Ltd., 2023) (UDC-VIX) share similar pixel de-
signs, they still exhibit differences. Similarly, Samsung Galaxy Z-Fold 5 (UDC-VIX) and ZTE Axon
20 (ZTE Corporation, 2020) (VidUDC33K (Liu et al., 2024)) have vastly different pixel designs, as
they come from different vendors.

Figure B.5(a) and (c) illustrate that the UDC-SIT and UDC-VIX datasets show similar degradation,
such as blur, transmittance decrease, and flare shape. In contrast, Figure B.5(b) and (c) highlight
the stark difference between the VidUDC33K and UDC-VIX datasets. This discrepancy arises from
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Figure B.5: Comparison of the UDC datasets, showing varied data distribution and degradation pat-
terns. (a) UDC-SIT (Ahn et al., 2024). (b) VidUDC33K (Liu et al., 2024). (c) UDC-VIX. The first
and second rows showcase GT and UDC-degraded, respectively.

Table B.2: The design of experiments demonstrating the effect of fine-tuning and the the use of a
real-world dataset (e.g., UDC-VIX). The first and the second subscripts beside M indicate the train-
ing and fine-tuning datasets, respectively. For example, Ms3 refers to the model trained on UDC-
SIT without fine-tuning, while Ms3s5 denotes the model trained on UDC-SIT and subsequently
fine-tuned on UDC-VIX. Models without subscripts are trained and tested on the same dataset.

Experiments Model name Training dataset Fine-tuning dataset Test dataset

Exp. 1
Ms3 UDC-SIT - UDC-VIX
Ms3s5 UDC-SIT UDC-VIX UDC-VIX
M UDC-VIX - UDC-VIX

Exp. 2
Ms5 UDC-VIX - VidUDC33K
Ms5z20 UDC-VIX VidUDC33K VidUDC33K
M VidUDC33K - VidUDC33K

Exp. 3
Mz20 VidUDC33K - UDC-VIX
Mz20s5 VidUDC33K UDC-VIX UDC-VIX
M UDC-VIX - UDC-VIX

two factors: the variation in pixel design and the synthetic nature of the VidUDC33K dataset, which
results in unrealistic degradation patterns.

Fine-tuning models to address variant dataset distributions or degradation patterns is crucial in prac-
tical applications. To evalute the effect of fine-tuning and validate the effectiveness of UDC-VIX,
which reflects real-world degradation, we conduct three experiments (Exp. 1-3), as shown in Ta-
ble B.2. The model names with or without subscripts specify the datasets used for training, fine-
tuning, and testing. For example, Ms3 refers to the model trained on UDC-SIT (Samsung Galaxy
Z-Fold 3) without fine-tuning, Ms5z20 is trained on UDC-VIX (Samsung Galaxy Z-Fold 5) and
fine-tuned on VidUDC33K (ZTE Axon 20), while Mz20s5 is trained on VidUDC33K (ZTE Axon
20) and fine-tuned on UDC-VIX (or Samsung Galaxy Z-Fold 5). We use models M such as UDC-
UNet (Liu et al., 2022b), DISCNet (Feng et al., 2021), and DDRNet (Liu et al., 2024) among six
benchmark models in Table 3, given computational resource constraints. Fine-tuning is performed
for 10% or 20% of the total iterations, with the learning rate set to 10% or 20% of the original value.

Experiment 1: impact of fine tuning on UDC-VIX. This experiment evaluates the impact of
fine-tuning on UDC-VIX by comparing the performance of models trained on UDC-SIT when tested
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Table B.3: [Exp. 1] Restoration performance of DISCNet (Feng et al., 2021) and UDC-
UNet (Liu et al., 2022b) trained on UDC-SIT (Ahn et al., 2024), with and without additional fine-
tuning on UDC-VIX. Models without subscripts refer to those trained and tested on UDC-VIX
without fine-tuning, as detailed in Table 3. The number of iterations represents the percentage of
fine-tuning iterations relative to the total iterations in the original configurations the authors provide.

Model name PSNR ↑ SSIM ↑ LPIPS ↓ Training Fine-tuning (# Iterations) Test

DISCNets3 16.83 0.7107 0.3307 UDC-SIT - UDC-VIX
DISCNets3s5 23.03 0.8231 0.2550 UDC-SIT UDC-VIX (10%) UDC-VIX
DISCNets3s5 23.43 0.8280 0.2483 UDC-SIT UDC-VIX (20%) UDC-VIX
DISCNet 24.53 0.8351 0.2702 UDC-VIX - UDC-VIX
UDC-UNets3 17.24 0.7228 0.3409 UDC-SIT - UDC-VIX
UDC-UNets3s5 24.77 0.8656 0.2145 UDC-SIT UDC-VIX (10%) UDC-VIX
UDC-UNets3s5 25.23 0.8703 0.2046 UDC-SIT UDC-VIX (20%) UDC-VIX
UDC-UNet 27.74 0.8852 0.1814 UDC-VIX - UDC-VIX

Table B.4: [Exp. 2] Restoration performance of DISCNet (Feng et al., 2021), UDC-
UNet (Liu et al., 2022b), and DDRNet (Liu et al., 2024) trained on UDC-VIX, with and without
additional fine-tuning on VidUDC33K (Liu et al., 2024). Models without subscripts refer to those
trained directly on VidUDC33K, as shown in Table 3. The number of iterations represents the per-
centage of fine-tuning iterations relative to the total iterations in the original configurations the au-
thors provide.

Model name PSNR ↑ SSIM ↑ LPIPS ↓ Training Fine-tuning (# Iterations) Test

DISCNets5 18.73 0.7503 0.4159 UDC-VIX - VidUDC33K
DISCNets5z20 28.89 0.9129 0.1727 UDC-VIX VidUDC33K (10%) VidUDC33K
DISCNet 28.89 0.8405 0.2432 VidUDC33K - VidUDC33K
UDC-UNets5 19.84 0.7682 0.3737 UDC-VIX - VidUDC33K
UDC-UNets5z20 29.57 0.9139 0.1506 UDC-VIX VidUDC33K (10%) VidUDC33K
UDC-UNet 28.37 0.8361 0.2561 VidUDC33K - VidUDC33K
DDRNets5 20.10 0.8313 0.3446 UDC-VIX - VidUDC33K
DDRNets5z20 29.12 0.8994 0.2180 UDC-VIX VidUDC33K (10%) VidUDC33K
DDRNet 31.91 0.9313 0.1306 VidUDC33K - VidUDC33K

on UDC-VIX, with and without fine-tuning on UDC-VIX. For Ms3 and Ms3s5, we use UDC-UNet
and DISCNet, two restoration models specifically designed for UDC still image, since UDC-SIT is
the still image dataset. As presented in Table B.3, DISCNets3 and UDC-UNets3 trained exclusively
on UDC-SIT struggle to generalize to UDC-VIX. In contrast, DISCNets3s5 and UDC-UNets3s5,
which incorporate fine-tuning with UDC-VIX, demonstrate superior restoration performance for
UDC-VIX degradations. Notably, increasing the number of fine-tuning iterations further enhances
the performance.

These findings lead to the following conclusions: while Samsung Galaxy Z-Fold 3 (UDC-SIT) and
Samsung Galaxy Z-Fold 5 (UDC-VIX) share similar pixel designs due to their origin from the same
vendor, their differences are substantial enough to require fine-tuning. With adequate adaptation,
however, these models effectively leverage degradations from other UDC devices, underscoring the
potential for cross-device generalization with fine-tuning.

Experiment 2: impact of fine tuning on VidUDC33K. This experiment aims to assess the im-
pact of fine-tuning on VidUDC33K. It compares the performance of models trained on UDC-VIX
when tested on VidUDC33K, both with and without fine-tuning on VidUDC33K. For the mod-
els Ms5 and Ms5z20, we use UDC-UNet, DISCNet, and DDRNet, which are explicitly designed
to address UDC degradations. These models, selected from the six benchmark models in Table 3,
demonstrate the effectiveness of fine-tuning across datasets, even when the source and target de-
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Figure B.6: [Exp. 2] Comparison of restoration performance across different models on the
VidUDC33K dataset (Liu et al., 2024). (a) UDC-degraded (at first row) and GT (at second row)
frames of VidUDC33K dataset. Test frames by the models such as (b) DISCNet, (c) UDC-UNet,
and (d) DDRNet without (first row) and with (second row) fine-tuning. The models in the first row
are pre-trained on UDC-VIX without fine-tuning on VidUDC33K. The models in the second row
are pre-trained on UDC-VIX and fine-tuned on VidUDC33K, showing improved restoration perfor-
mance.

vices differ, such as the Samsung Galaxy Z-Fold 5 and ZTE Axon 20. Notably, fine-tuning improves
generalization and allows the models to perform well on different devices, as shown in Table B.4.

Interestingly, despite the differences in device architecture, the fine-tuned models DISCNets5z20 and
UDC-UNets5z20 outperform DISCNet and UDC-UNet, solely trained by VidUDC33K, as shown in
Table B.4. This performance boost can be attributed to the fact that UDC-VIX exhibits more real-
istic and severe degradation patterns such as noise, blur, transmittance decrease, and variant flares
compared to the synthetic VidUDC33K dataset, as discussed in Section 4. Consequently, models pre-
trained on UDC-VIX show improved performance with fine-tuning on VidUDC33K when tested on
VidUDC33K, highlighting the benefits of using a real-world dataset.

Figure B.6 illustrates these findings. Models trained on UDC-VIX without fine-tuning (e.g.,
DISCNets5, UDC-UNets5, and DDRNets5) are able to restore blur but fail to address flare artifacts,
as described in Figure B.6(c), (e), and (g). Interestingly, they show better restoration of transmittance
decrease compared to VidUDC33K’s ground truth, likely due to the brighter tone in UDC-VIX’s
ground truth compared to VidUDC33K’s. On the other hand, models fine-tuned on VidUDC33K
effectively restore the complex degradation patterns specific to VidUDC33K, underscoring the im-
portance of pre-trained on real-world datasets like UDC-VIX, as shown in Figure B.6(d), (f), and
(h).

Experiment 3: comparison of UDC-VIX and VidUDC33K. This experiment evaluates the ef-
fect of fine-tuning on UDC-VIX by comparing the performance of models trained on VidUDC33K
when tested on UDC-VIX, with and without fine-tuning on UDC-VIX. For the models Mz20

and Mz20s5, we use DDRNet, which is the only publicly available pre-trained model trained on
VidUDC33K. As shown in Table B.5, DDRNetz20, when not fine-tuned on UDC-VIX, fails to ef-
fectively handle the complex, severe, and real-world degradations present in UDC-VIX. In contrast,
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Table B.5: [Exp. 3] Restoration performance of DDRNet (Liu et al., 2024) trained by
VidUDC33K (Liu et al., 2024), with and without additional fine-tuning on UDC-VIX. Models with-
out subscripts refer to those trained directly on UDC-VIX, as shown in Table 3. The number of
iterations represents the percentage of fine-tuning iterations relative to the total iterations in the
original configurations the authors provide.

Model name PSNR ↑ SSIM ↑ LPIPS ↓ Training Fine-tuning (# Iterations) Test

DDRNetz20 11.34 0.5369 0.5584 VidUDC33K - UDC-VIX
DDRNetz20s5 21.79 0.8250 0.2560 VidUDC33K UDC-VIX (10%) UDC-VIX
DDRNet 24.49 0.8484 0.2255 UDC-VIX - UDC-VIX

(a) (b) (c) (d)
Degraded GT DDRNetz20 DDRNetz20s5

Figure B.7: [Exp. 3] Comparison of restoration performance across different models on the UDC-
SIX dataset. (a) UDC-degraded and (b) GT images from the UDC-VIX dataset. Restored images
by (c) DDRNetz20, (d) DDRNetz20s5. The model DDRNetz20 is pre-trained on VidUDC33K with-
out fine-tuning on UDC-VIX, while DDRNetz20s5 is pre-trained on VidUDC33K and fine-tuned on
UDC-VIX, showing improved restoration performance. However, compared to the results in Fig-
ure B.6, the fine-tuned model still struggles to handle the real-world degradations present in the
UDC-VIX dataset, as it is originally trained on the synthetic VidUDC33K dataset.

DDRNetz20s5, fine-tuned on UDC-VIX, demonstrates significant performance improvements over
DDRNetz20.

However, as illustrated in Figure B.7, even with fine-tuning, DDRNetz20s5 still shows limitations in
handling specific real-world degradations, such as severe flares. Unlike Experiment 2, where mod-
els are pre-trained on the real-world UDC-VIX dataset, Experiment 3, which involves pre-training
on the synthetic VidUDC33K, highlights the challenges of leveraging realistic degradation patterns.
These results emphasize pre-training models on real-world datasets like UDC-VIX to fully capture
complex degradations that synthetic datasets cannot adequately represent.

B.5 REPRODUCIBILITY

This section provides detailed information on the deep-learning models used to compare the UDC-
VIX dataset in the paper for reproducibility. The code can be found and downloaded at our project
site.

The learnable restoration models used for evaluating the UDC-VIX dataset include DISCNet (Feng
et al., 2021), UDC-UNet (Liu et al., 2023), FastDVDNet (Tassano et al., 2020), EDVR (Wang et al.,
2019), ESTRNN (Zhong et al., 2020), and DDRNet (Liu et al., 2024). We use a single-node GPU
cluster to train each benchmark model. Each node has eight AMD Instinct MI100 GPUs. While we
mainly stick to the original authors’ code and training settings for the models, we introduce some
modifications except ESTRNN.

• DISCNet. DISCNet is designed to restore UDC still images in high dynamic range (HDR)
(e.g., SYNTH (Feng et al., 2021)). Accordingly, we modify the PyTorch DataLoader to use
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normalization instead of Reinhard tone mapping (Reinhard et al., 2002). The DataLoader
randomly selects one frame per video from the UDC-VIX dataset for each iteration during
the training and validation phases.

• UDC-UNet. UDC-UNet is also designed to restore UDC still images in HDR. The original
authors do not conduct normalization or tone mapping in the DataLoader and employ a tone
mapping L1 loss function. However, since the UDC-VIX dataset has a low dynamic range
(LDR), we modify the PyTorch DataLoader to use normalization. We clamp the model
output between 0 and 1 and then calculate the L1 loss. The DataLoader randomly selects
one frame per video from the UDC-VIX dataset for each iteration.

• FastDVDNet. FastDVDNet is a video denoising model that utilizes NVIDIA’s Data Load-
ing Library (DALI) (Nvidia, 2018), processing a noise map and multiple frames as inputs.
Instead of DALI, we employ the PyTorch DataLoader tailored to the UDC-VIX dataset in
npy format. We set the noise level to zero. To accommodate FHD resolution and multiple
degradations in the UDC-VIX dataset, we increase the patch size from 64 to 256. Fur-
thermore, we extend the training duration of FastDVDNet to 400 epochs, compared to the
original 95, to ensure the model reaches full saturation.

• EDVR. To address out-of-memory issues with EDVR, which boasts 23.6 M parameters,
we reduce the patch size from 256 to 192. Additionally, during inference on the test set, we
divide it into two patches of size 3× 1, 060× 1, 060 each and merge them afterward.

• DDRNet. During the inference process, the authors of DDRNet partition each frame into
patches of size 3 × 256 × 256 and input 50 frames simultaneously. However, patch-wise
inference introduces the borderline between patches. To address this, we conduct inference
at full resolution (3× 1, 060× 1, 900) with ten frames at a time.

C DISCUSSION ON THE RESPONSIBLE USE OF THE DATASET

This section discusses the potential negative societal impacts, the corresponding user guidelines, and
our responsibility.

C.1 POTENTIAL NEGATIVE SOCIETAL IMPACTS

The UDC-VIX dataset includes the faces and motions of 22 research participants, raising concerns
about its potential for misuse, such as in deep fake applications. This technology can generate con-
vincingly altered videos, threatening individual privacy and societal trust. Deep fakes can infringe
upon personal integrity and privacy, leading to social unrest and confusion. Given these potential
negative societal impacts, careful consideration is needed when using the dataset.

C.2 USER GUIDELINES

The users of the UDC-VIX dataset are expected to adhere to the following guidelines:

• Responsible use. Users must ethically and responsibly utilize the dataset, ensuring it does
not infringe on individual privacy or contribute to societal harm.

• Compliance with legal and ethical standards. Users must comply with all relevant legal
and ethical standards, including obtaining Institutional Review Board (IRB) approvals by
the regulations of their respective countries, and respect any restrictions or conditions im-
posed by the IRB or other regulatory bodies. Any violations of the laws of the Republic of
Korea or the user’s respective country will be the user’s sole responsibility.

• Restricted Usage. Users must avoid using the UDC-VIX dataset for harmful applications,
such as deep fake technologies or other misinformation or manipulation. Moreover, the 22
participants’ agreed-upon research scope during our IRB review centers on acquiring UDC
video datasets and developing restoration models. Therefore, this dataset must exclusively
serve UDC research purposes.
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C.3 OUR RESPONSIBILITY

As custodians of the UDC-VIX dataset, we acknowledge our responsibility to:

• Protect participant privacy. Our foremost concern is preserving the privacy and confiden-
tiality of research participants. While participants consented to the public use of their faces
and motions within the dataset, we are dedicated to providing user guidance for appropriate
research utilization and exerting efforts to safeguard other personal information.

• Facilitate ethical use. We provide comprehensive guidelines and documentation on
datasheets for datasets, our project site, and our research group’s homepage. The email
automatically sends the download link when users complete the application form on our
research group’s homepage, which will also inform users about the dataset’s potential risks
and ethical considerations.

• Respond to concerns. Our commitment to the responsible management of the UDC-VIX
dataset extends to promptly addressing any concerns or complaints raised. We value users’
feedback and are ready to take appropriate actions, such as data corrections and updates,
to mitigate potential harm or misuse if any misuse of the dataset is reported through our
research group’s homepage, as shown in Figure A.3.
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