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Abstract
We study a Bayesian learning dynamics induced by agents who repeatedly allocate loads on a set
of resources based on their belief of an unknown parameter that affects the cost distributions of re-
sources. In each step, belief update is performed according to Bayes’ rule using the agents’ current
load and a realization of costs on resources that they utilized. Then, agents choose a new load using
an adaptive strategy update rule that accounts for their preferred allocation based on the updated
belief. We prove that beliefs and loads generated by this learning dynamics converge almost surely.
The convergent belief accurately estimates cost distributions of resources that are utilized by the
convergent load. We establish conditions on the initial load and strategy updates under which the
cost estimation is accurate on all resources. These results apply to Bayesian learning in congestion
games with unknown latency functions. Particularly, we provide conditions under which the load
converges to an equilibrium or socially optimal load with complete information of cost parameter.
We also design an adaptive tolling mechanism that eventually induces the socially optimal outcome.
Keywords: Bayesian learning, Congestion games, Adaptive pricing mechanisms

1. Introduction
1.1. Learning dynamics
We consider a situation in which one or more agents (players) allocate non-negative loads on a finite
set of resources E. The aggregate effect of agents’ allocation strategy is captured by a load vector,
denoted x = (xe)e∈E , where xe is the total load (or level of utilization) on resource e. The set of
feasible load vectors is a convex continuous set X ⊆ R|E|≥0 . The cost of using resource e, denoted
ye, is a continuous random variable, which may be correlated with the costs of other resources. We
denote the vector of costs for all resources as y = (ye)e∈E , and the vector of costs for the resources

that are utilized by load vector x as ŷ = (ŷe)e∈Ê . Here Ê ∆
= {E|xe > 0} denotes the set of

resources with non-zero load. We refer y as the full cost vector and ŷ as the observed cost vector.
In our setup, the joint probability distribution of cost vector depends on a (scalar or vector)

parameter s, which takes values in a finite set S. The true parameter governing the cost distribution,
denoted s∗ ∈ S, is unknown. For a given load vector x and cost parameter s, the probability density
function of full cost vector y is φs(y|x). The probability density function of the observed cost vector
ŷ, denoted φ̂s(ŷ|x), is the marginal of φs(y|x) on the set Ê. We assume that the following holds:

(A1) The probability density function φs(y|x) is continuous in x for all s ∈ S.
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We focus on learning of the unknown cost parameter s under the discrete-time stochastic dy-
namics governing the evolution of the belief distribution θk ∈ ∆(S) and the load vector xk ∈ X for
the time steps k = 1, 2, . . . . The state of learning dynamics in step k is defined by (θk, xk). In each

step k, the set of utilized resources is Êk ∆
= {E|xke > 0} and observed cost vector ŷk ∆

=
(
ŷke
)
e∈Êk is

realized according to the probability density function φ̂s(ŷk|xk), which is the marginal of φs(y|xk)
on the set Êk. Specifically, the dynamics of (θk, xk)∞k=1 is described by the following update rule:

θk+1(s) =
θk(s)φ̂s(ŷk|xk)∑

s′∈S θ
k(s′)φ̂s′(ŷk|xk)

, ∀s ∈ S, (1a)

xk+1 = (1− ak)xk + akg
(
θk+1

)
. (1b)

That is, the belief θk+1 is obtained by Bayesian update from θk based on the randomly realized
cost vector ŷk and current load vector xk. The new load vector xk+1 is obtained by taking a linear
combination of xk and g(θk) : ∆(S)→ X , where scalar ak is the step size of update.

From a game-theoretic viewpoint, the function g(·) captures the aggregate effect of the strategic
choices made by the agents in allocating the load to various resources, given the updated (common)
belief of the cost parameter. In other words, the function g captures the outcome of agents’ “pre-
ferred” allocation strategy based on the updated belief. The exact form of g(θ) depends on how the
unknown cost parameter affects the agents’ individual payoffs. The step size ak in (1b) determines
the relative weight of the previous load vector xk and the allocation g(θk+1) based on agents’ pref-
erence. In fact,

(
ak
)∞
k=1

may be exogenously given, or endogenously determined based on states;
for e.g. agents may adaptively choose ak based on the θk+1 and g(θk+1). We refer (1a) (resp. (1b))
as the belief update (resp. strategy update) of the learning dynamics.

We make the following (mild) assumptions:
(A2) θ1(s) > 0 for all s ∈ S.
(A3) ak ∈ (0, 1] for all k and

∏∞
k=1

(
1− ak

)
= 0.

(A4) g(θ) is continuous in θ.
Note that (A2) ensures that the belief in any step does not exclude the true parameter s∗, i.e.,

θk(s∗) > 0 for all k ≥ 1 with probability (w.p.) 1. In (A3), ak ∈ (0, 1] ensures that for any xk and
g(θk) in the convex set X , the updated load vector xk+1 ∈ X . We do not assume that the step sizes
(ak)∞k=1 are constant or diminishing as k becomes large, but just require that

∏∞
k=1

(
1− ak

)
=

0. The assumption of constant or diminishing step sizes, which is typical in stochastic recursive
methods Tsitsiklis (1994), Borkar and Meyn (2000), may be limiting when it comes to modeling
how agents adaptively change their strategy based on updated beliefs. For e.g., based on realized
cost vector ŷk – which affects the updated belief θk+1 – the agents may choose g(θk+1) as their
strategy in some steps (ak = 1), and put very low weight on g(θk+1) in other steps (ak close to
0). On the other hand, the assumption

∏∞
k=1

(
1− ak

)
= 0 only imposes a mild restriction on ak

when it indeed converges to zero. In particular, it is satisfied as long as ak does not converge to zero
asymptotically faster than the rate 1− e−

1
k . Besides, it trivially holds when ak is lower-bounded by

a small positive number for all k.

1.2. Our contributions and related literature
In this paper, we analyze (1) to address the problem of Bayesian learning of the unknown parameter,
based on step-dependent cost observations on utilized resources and load allocations generated by
the update rule. In Section 2, we first show that the learning dynamics converges to a fixed point
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almost surely. We also establish an exponential convergence rate of the belief of the unknown
parameter. Secondly, when the initial load vector utilizes all resources and ak ∈ (0, 1) for all k, the
convergent belief forms an accurate estimation of the observed cost distribution with the convergent
load vector on all resources, including the ones not utilized at fixed point. However, in general, one
can only guarantee that the belief forms an accurate estimation on utilized resources at fixed point.

Our analysis approach draws from the fundamental ideas from learning in games Fudenberg and
Kreps (1995), Monderer and Shapley (1996), Shamma and Arslan (2005), Cominetti et al. (2010),
Krichene et al. (2014), and learning in control systems Tsitsiklis (1994), Borkar and Meyn (2000),
Recht (2019). The distinguishing feature of our model is that it captures the dynamic interaction
between (i) information aggregation via Bayesian belief updates, and (ii) adaptive allocation via
strategy updates. This interaction is key in the study of statistical learning in strategic environments.
Related literature on information aggregation via Bayesian learning includes Gale and Kariv (2003),
Acemoglu et al. (2011), and Jadbabaie et al. (2013).

In Section 3, we extend our results to study Bayesian learning in congestion games, where
an unknown parameter affects the latency (or average cost) of congestible resources. We show that
under certain assumptions on the latency functions, the step-sizes, and full exploration at initial state,
the fixed point corresponds to the complete information equilibrium (resp. socially optimal) load
vector, when the g(·) function for agents’ strategy update computes an equilibrium (resp. socially
optimal) allocation based on the updated belief. Our treatment is related to the paper by Borkar and
Kumar (2003) – their work focuses on stochastic approximation with two time-scales for analyzing
the dynamics of cost estimates and asynchronous strategy updates in communication networks.

Our results are useful for designing an adaptive tolling mechanism to induce a socially optimal
outcome in congestion games with unknown latency functions. For classical congestion games (i.e.,
full knowledge of latency functions), it is well-known that the negative externalities due to agents’
selfish actions can be internalized by a tolling scheme based on marginal cost pricing Pigou (2017),
Dial (1999), Roughgarden and Tardos (2002), and Ozdaglar and Srikant (2007). However, few have
studied toll assignment under limited information about latency functions (Poveda et al. (2017),
and Farokhi and Johansson (2015)). In Section 4, we present an adaptive pricing mechanism that
computes belief-based toll assignments to ensure that the convergent load corresponds to a socially
optimal outcome under complete information of latency functions.

2. Convergence Result and Fixed Point Properties

Our main result in this section is that the sequence of states (θk, xk)∞k=1 converges to a fixed point
(θ̄, x̄) with probability 1. We also provide an asymptotic rate of convergence, and discuss some
fixed point properties. To begin with, we introduce two basic definitions: fixed point of the learning
dynamics (1), and set of distinguishable parameters based on an observed vector.

Definition 1 (Fixed point) State (θ̄, x̄) is a fixed point of (1) if

θ̄(s) =
θ̄(s)φ̂s(ŷ|x̄)∑

s′∈S θ̄(s
′)φ̂s′(ŷ|x̄)

, ∀s ∈ S, ∀ŷ = (ŷe)e∈{E|x̄e>0} , (2a)

x̄ = (1− a)x̄+ ag
(
θ̄
)
, ∀a ∈ (0, 1]. (2b)

That is, at a fixed point (θ̄, x̄), the belief θ̄ is invariant to the Bayesian update (1a) for any ran-
domly realized cost vector ŷ on the resources utilized by x̄ satisfying (2b). Note that if the learning
dynamics starts at a fixed point, i.e. (θ1, x1) = (θ̄, x̄), then (θk, xk) ≡ (θ̄, x̄) for any k > 1 w.p.1.
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Definition 2 (Distinguishable parameters based on observed cost vector) For a load vector x ∈
X , parameter s is distinguishable from the true parameter s∗ based on the observed cost vector ŷ if
the Kullback–Leibler (KL) divergence between the distributions of ŷ given s and s∗ is positive, i.e.

DKL

(
φ̂s
∗
(ŷ|x)||φ̂s(ŷ|x)

)
=

∫
ŷ
φ̂s
∗
(ŷ|x) log

(
φ̂s
∗
(ŷ|x)

φ̂s(ŷ|x)

)
dŷ > 0.

The set of distinguishable parameters based on ŷ is Ŝ†(x)
∆
= {S|DKL

(
φ̂s
∗
(ŷ|x)||φ̂s(ŷ|x)

)
> 0}.

It is well-known that the KL-divergence between any two distributions is non-negative, and is equal
to zero if and only if the two distributions are identical (e.g., see Chapter 2 in Cover and Thomas
(2012)). Therefore, if s ∈ Ŝ†(x), then Pr(φ̂s

∗
(ŷ|x) 6= φ̂s(ŷ|x)) > 0. Hence, an observed cost

vector ŷ based on load vector x can be used to distinguish s ∈ Ŝ†(x) and s∗.
It is important to note that the set of distinguishable parameters in Definition 2 depends on the

load vector x. A parameter s /∈ Ŝ†(x) may be distinguishable by another load vector that utilizes a
different set of resources or utilizes resources with a different load level in comparison to x.

The following proposition characterizes the properties of fixed points:

Proposition 3 Any state (θ̄, x̄) such that θ̄(s∗) > 0 is a fixed point of (1) if and only if it satisfies:

θ̄(s) = 0, ∀s ∈ Ŝ†(x̄), (3a)

x̄ = g(θ̄). (3b)

Hence, any fixed point (θ̄, x̄) with positive belief on the true parameter s∗ must assign zero
probability to all the distinguishable parameters s ∈ Ŝ†(x̄). Recall that the strategy update (1b) is a
linear combination of x and g (θ), and the weight on g(θ) is positive; thus, a fixed point load vector
x̄must be equal to g(θ̄). For such a fixed point, we must have that if θ̄(s) > 0 for a parameter s ∈ S,
then DKL

(
φ̂s
∗
(ŷ|x̄)||φ̂s(ŷ|x̄)

)
= 0; equivalently, φ̂s

∗
(ŷ|x̄) = φ̂s(ŷ|x̄) for any ŷ. Therefore, we

can estimate the distribution of the observed cost vector ŷ at fixed point (θ̄, x̄):

µ̂(ŷ|θ̄, x̄)
∆
=
∑
s∈S

θ̄(s)φ̂s(ŷ|x̄)
(3a)
=

∑
s∈S\Ŝ†(x̄)

θ̄(s)φ̂s(ŷ|x̄) =
∑

s∈S\Ŝ†(x̄)

θ̄(s)φ̂s
∗
(ŷ|x̄) = φ̂s

∗
(ŷ|x̄). (4)

In other words, using Proposition 3 we obtain that fixed point belief θ̄ must provide an accurate
estimation of the observed cost distribution when the load vector is x̄.

We are now ready to present the convergence theorem.

Theorem 4 For any initial condition (θ1, x1), the sequence of states (θk, xk)∞k=1 generated by the
learning dynamics (1) converges to a fixed point (θ̄, x̄) ∈ ∆(S) × X with probability 1. Further-
more, for any s ∈ Ŝ†(x̄), θk(s) converges to 0 exponentially fast:

lim
k→∞

1

k
log(θk(s)) = −DKL(φ̂s

∗
(ŷ|x̄)||φ̂s(ŷ|x̄)). w.p.1 (5)

The proof of this result involves three steps: First, we use martingale convergence theorem to show
that both sequences

(
θk(s)
θk(s∗)

)∞
k=1

(this ratio is well-defined due to (A2)) and
(
θk(s∗)

)∞
k=1

converge

with probability 1. Hence, the sequence of beliefs
(
θk
)∞
k=1

also converges to a belief θ̄ with proba-
bility 1. Second, by iteratively applying (1b), we can write xk as a weighted summation of the initial
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load vector x1 and the sequence of
(
g(θj)

)k+1

j=2
. By utilizing the convergence of θk and (A3)–(A4),

we show that
(
xk
)∞
k=1

also converges to a fixed point load vector x̄ with probability 1. Third, based

on the convergence of both θk and xk and (A1), we argue that the log-likelihood ratio log
(
θk(s)
θk(s∗)

)
must converge to −∞ for any distinguishable parameter s ∈ Ŝ†(x̄). Therefore, the belief of any
s ∈ Ŝ†(x̄) converges to zero, with an exponential rate given by the (non-zero) KL-divergence be-
tween the distributions of observed cost vector under parameters s and s∗.

To summarize, the learning dynamics (1) converges to a fixed point with probability 1 (The-
orem 4), and the belief distribution eventually forms an accurate estimation of the observed cost
distribution with the fixed point load vector x̄ (Proposition 3). However, it is important to note that
the estimation of cost distribution may not be accurate on the resources that are not utilized by x̄
(i.e. e ∈ {E|x̄e = 0}). Additionally, the estimation of cost distribution may not be accurate for a
different load vector; i.e. when x 6= x̄, the distribution µ̂(ŷ|θ̄, x) may be different from φs

∗
(ŷ|x).

Next, we study how the initial load vector x1 affects the properties of the fixed point. In particu-
lar, x1 influences the fixed point belief θ̄ because it affects the costs of which resources are observed
and incorporated in the belief update (1a). Thus, x1 also affects the fixed point load vector x̄ that
must satisfy (2b). Proposition 7 clarifies how x1 affects (θ̄, x̄). As a preparation, we define the set
of distinguishable parameters based on full cost vector y and introduce a lemma.

Definition 5 (Distinguishable parameters based on full cost vector) For any x ∈ X , the set of
distinguishable parameters from s∗ based on y is S†(x)

∆
= {S|DKL

(
φs
∗
(y|x)||φs(y|x)

)
> 0},

where DKL

(
φs
∗
(y|x)||φs(y|x)

)
=
∫
y φ

s∗(y|x) log
(
φs
∗

(y|x)
φs(y|x)

)
dy.

Lemma 6 ∀x ∈ X , DKL

(
φ̂s
∗
(ŷ|x)||φ̂s(ŷ|x)

)
≤ DKL(φs

∗
(y|x)||φs(y|x)) and Ŝ†(x) ⊆ S†(x).

Hence, any parameter s that is distinguishable from s∗ based on ŷ is also distinguishable based on y.
The following proposition is a refinement of Theorem 4 for the case when all resources are utilized
by the initial load vector, and the step size is strictly smaller than 1 for all steps.

Proposition 7 If x1
e > 0 for all e ∈ E and ak ∈ (0, 1) for all k, then (θk, xk)∞k=1 converges to a

fixed point (θ̄, x̄) ∈ ∆(S)×X such that θ̄(s) = 0 for all s ∈ S†(x̄) and x̄ = g(θ̄) with probability
1. Moreover, for any s ∈ S†(x̄), θk(s) converges to 0 exponentially fast: limk→∞

1
k log(θk(s)) =

−DKL(φs
∗
(y|x̄)||φs(y|x̄)).

Under the conditions of Proposition 7, we can conclude that the belief θ̄ accurately estimates the
distribution of costs on all resources, including the ones not utilized by x̄. Since all the resources
are utilized by x1 and ak < 1, the strategy update (1b) ensures that xke > 0 for all e ∈ E and all k.
This is true even when fixed point load vector is such that there exists some e ∈ E for which x̄e = 0
(i.e., limk→∞ x

k
e = 0), since such a resource is still utilized repeatedly in the learning dynamics.

From (A1), we obtain that any s that is distinguishable based on full cost vector given x̄ is excluded
from θ̄. Hence, the estimation of full cost distribution is accurate.

From Propositions 3 and 7, we obtain that when the learning dynamics starts with an initial load
vector that utilizes all resources, the set of convergent states is a subset of all possible fixed points
that are attainable from an arbitrary initial condition. In general, if a belief θ̄ forms an accurate
estimation on resources that are utilized with x̄ but not on the remaining ones, then S†(x̄) \ Ŝ†(x̄)
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must be a non-empty set, and there exists a s ∈ S†(x̄) \ Ŝ†(x̄) such that θ̄(s) > 0. Indeed, such
a belief θ̄ would be a fixed point belief (i.e., it satisfies (3a) in Proposition 3), but cannot be a
convergent belief of the dynamics that starts with all resources being utilized (Proposition 7).

Finally, from Theorem 4, Lemma 6, and Proposition 7, we conclude that when all resources
are utilized initially and the step size is less than 1, the belief of the learning dynamics converges
with a higher asymptotic rate, because the information on cost of resources that may not be utilized
otherwise is included in the belief update in all steps.

3. Learning in congestion games with unknown cost parameter

In this section, we instantiate the general formulation of learning dynamics in Sec. 1 to a traffic rout-
ing (congestion) game. Specifically, E is a set of congestible resources, which form a network with
multiple origin-destination (o-d) pairs belonging to the set I . Each o-d pair i ∈ I is connected by a
set of routes (i.e., sequence of resources) Ri. We denote R = ∪i∈IRi as the set of all routes in the
network. The cost of delay on each resource e ∈ E is random and denoted by ye. Importantly, the
probability distribution of full cost vector y = (ye)e∈E is governed by an unknown parameter s ∈ S.

A set of non-atomic agents make routing decisions on the network. The demand of agents
routing between o-d pair i ∈ I is Di ≥ 0, and the total demand is D =

∑
i∈I Di. Let f =

(fr)r∈R ∈ F denote a routing strategy, where fr is the traffic demand on route r ∈ R. A strategy f
is feasible if

∑
r∈Ri

fr = Di for all i ∈ I , and fr ≥ 0 for all r ∈ R. For any resource e ∈ E, the
load xe is the sum of traffic flows on the routes passing through it, i.e. xe =

∑
r3e fe. The set of

feasible load vectors (i.e. load vectors that can be induced by a feasible f ) is convex, and denoted
by X . For a given x ∈ X and s ∈ S, the probability density function of cost vector y is φs(y|x).

For any e ∈ E, s ∈ S, and x ∈ X , we call the expected value of the realized cost ye based
on the probability density function φs(y|x) as the average cost (“latency”) of the resource e under
load x. A standard assumption in congestion games is that the latency function `se(·) : R>0 → R>0

is an increasing function of load xe for any e ∈ E and s ∈ S. In addition, we assume that:
(A5) For every s ∈ S and e ∈ E, `se(xe) is a strictly increasing C2 function in xe, and (xe ·

`se(xe)) is strictly convex in xe. Additionally, ∃α, β > 0 such that d`
s
e(xe)
dxe

≥ α, and d2(xe·`se(xe))
dx2e

≥ β
for all xe , e ∈ E and s ∈ S

We now describe the learning dynamics (1) when non-atomic agents play the aforementioned
traffic routing game in each step k = 1, 2, . . . . Here the sequence of load vectors

(
xk
)∞
k=1

generated
by strategy update (1b) capture the impact of agents’ routing strategies on network congestion (i.e.,
level of utilization of various resources), and hence influence the realised costs in each step. The
load vector xk in each stage k is induced by the agents’ routing strategy fk as follows: for any
function g : ∆S → X , one can find another function f : ∆(S) → F that captures the agents’
preferred routing strategy based on the belief θ; i.e., g(θ) gives the load vector induced by routing
strategy f(θ). Thus, the dynamics of xk in (1b) is induced by agents updating the routing strategy
fk following the dynamics fk+1 = (1 − ak)fk + akf

(
θk+1

)
for all k. Since the cost of each

resource depends on the its aggregate load, we focus on the dynamics of xk instead of fk.
Furthermore, in congestion games, it is natural to focus on learning dynamics when the function

g(θ) computes a Wardrop equilibrium or a socially optimal load vector, based on the current belief
of cost parameter θ. A Wardrop equilibrium corresponds to the situation when agents selfishly
prefer to minimize their expected individual cost of routing based on belief θ. On the other hand,
a socially optimal load vector minimizes the expected social cost of all agents based on belief θ.
Using known results on congestion games (Sandholm (2001)) and (A5), we have the follows:
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Lemma 8 For any θ ∈ ∆(S) and x ∈ X , let Φ(x|θ) ∆
=
∑

s∈S
∑

e∈E θ(s)
∫ xe

0 `se(z)dz and

E[C(x)|θ] ∆
=
∑

s∈S
∑

e∈E θ(s)xe`
s
e(xe). Then, we have: (i) gwe(θ) = arg minx∈X Φ(x|θ) is

the unique equilibrium load vector. (ii) gopt(θ) = arg minx∈X E[C(x)|θ] is the unique socially
optimal load vector. (iii) gwe(θ) and gopt(θ) are continuous functions of θ.

Note that both Φ(x|θ) and E[C(x)|θ] are convex functions of load vector x; hence, gwe(θ) and
gopt(θ) can be solved for any θ using known convex optimization algorithms.

Under assumptions (A1) – (A3) and (A5), our results in Sec. 2 hold for learning dynamics
(1) in the setting of congestion games. Specifically, with g(θ) = gwe(θ) (resp. g(θ) = gopt(θ)),
the load vector eventually converges to x̄, which is a Wardrop equilibrium (resp. socially optimal)
load vector based on the convergent belief θ̄. This fixed point belief accurately estimates the cost
distributions on resources that are utilized under x̄ (Thm. 4). Additionally, when x1

e > 0 for all
e ∈ E and ak < 1 for all k, the estimation of cost distribution on all resources is accurate (Prop. 7).

However, even under the conditions of Prop. 7, θ̄ may not accurately estimate the cost distribu-
tion when the underlying load vector is different from x̄. The question then arises as to whether the
fixed point condition x̄ = gwe(θ̄) (resp. x̄ = gopt(θ̄)) is equivalent to learning the Wardrop equi-
librium (resp. socially optimal) load vector with complete information of the true cost parameter
s∗, denoted xwe∗ (resp. xopt∗). Our next proposition addresses this question. We first introduce the
following assumption on the latency functions, which is needed for the case of g(θ) = gopt(θ):

(A6) For all s ∈ S and any x > 0, if s /∈ S†(x), then d`se(xe)
dxe

= d`s
∗

e (xe)
dxe

for all resources e ∈ E.

If s /∈ S†(x) but d`se(xe)
dxe

6= d`s
∗

e (xe)
dxe

on some resource e ∈ E, then perturbing xe locally dis-
tinguishes s from s∗. Essentially, (A6) is weaker than the assumption that any s which is not
distinguishable from s∗ with load vector x is also not distinguishable in a small neighborhood of x.

Proposition 9 Assume that (A1) – (A3) and (A5) hold. For learning dynamics (1) with x1
e > 0 for

all e ∈ E and ak ∈ (0, 1) for all k, we have x̄ ≡ xwe∗ for g(·) = gwe(·). Additionally, we have
x̄ ≡ xwe∗ for g(·) = gopt(·) under (A6).

When g(·) = gwe(·), the fixed point θ̄ accurately estimates the distribution of costs on all
resources under load vector x̄ (Prop. 7); thus the estimated value of `s

∗
e (x̄e) must also be accurate

on all resources. Then, we show that x̄ satisfies the set of variational inequalities (Dafermos (1980))
with respect to the true cost parameter s∗, and hence must be the unique equilibrium load vector
corresponding to the game with complete information of s∗.

On the other hand, when g(·) = gopt(·), then fixed point load vector x̄ = gopt(θ̄) (the socially
optimal load vector corresponding to θ̄). To obtain this conclusion, we show that x̄ is the equilibrium
load vector of a modified congestion game, where the latency function for each resource e ∈ E and
parameter s ∈ S is `se(xe)+xe (d`se(xe)) / (dxe). Then, from assumption (A6) and Prop. 7, we know
that θ̄ accurately estimates the modified latency functions on all resources, and x̄ is the equilibrium
load vector of the modified congestion game, which is equivalent to xopt∗.

In fact, when the conditions in Prop. 9 are not satisfied, the fixed point load vector for learning
dynamics (1) with g(·) = gwe(·) (resp. g(·) = gopt(·)) may not be equivalent to xwe∗ (resp. xopt∗),
resulting in a higher social cost defined as Cs

∗
(x) =

∑
e∈E xe`

s∗
e (xe) for x ∈ X . Specifically, our

previous work Wu and Amin (2019) shows that when g(·) = gwe(·) and the resource set E forms
a series-parallel network (i.e. it does not have an embedded wheatstone network; see Milchtaich
(2006))), we have Cs

∗
(x̄) ≥ Cs∗(xwe∗) for any x̄. Furthermore, since xopt∗ minimizes Cs

∗
(x), we

directly have Cs
∗
(x̄) ≥ Cs∗(xopt∗) for all x̄ in any network.
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4. Adaptive learning of optimal toll assignment

In this section, we focus on adaptive learning of a socially optimal toll assignment by modifying the
dynamics (1) to include toll assignment by a central authority based on the belief of unknown cost
parameter. The augmented state in step k is

(
θk, τk, xk

)
, where τk =

(
τke
)
e∈E ∈ R|E|≥0 is the vector

of toll prices in step k. In each step k, the central authority updates the belief θk based on xk and
ŷk, uses the updated belief θk+1 to revise τk, and announces τk+1 to all agents; the agents update
xk induced by their routing strategy based on θk+1 and τk+1.

To gain intuition about the modified dynamics, one can analyze how to assign toll for a given
belief θ so that the induced equilibrium load is equivalent to the socially optimal load gopt(θ). Let
us assume that the toll τe on each resource has been converted from monetary price to the equivalent
cost of delay. Then, for a load vector x, the cost experienced by agents utilizing resource e is ye+τe
(where ye is the realized cost of delay) and the modified latency function is ˜̀s

e(xe) = `se(xe) + τe.
The equilibrium load vector can be computed as the minimizer of the potential function associated
with the modified latency functions:

g̃we(θ, τ) = arg min
x∈X

Φ̃(x|θ) ∆
=
∑
s∈S

∑
e∈E

θ(s)

∫ xe

0
(`se(z) + τe) dz. (6)

If τe is set to
∑

s∈S θ(s)z · (d`se(z)) / (dz), which is the marginal cost of utilizing e, then the po-
tential function Φ̃(x|θ) is identical to the expected social cost E[C(x)|θ] =

∑
s∈S

∑
e∈E θ(s)xe`

s
e(xe).

Then, g̃we(θ, τ) = arg minx∈X Φ̃(x|θ) = arg minx∈X E[C(x)|θ] = gopt(θ), which is the socially

optimal load vector based on θ. The socially optimal toll that induces gopt(θ) is h(θ)
∆
= (he(θ))e∈E :

he(θ) =
∑
s∈S

θ(s)xe
d`se(xe)

dxe

∣∣∣∣∣
x=gopt(θ)

, ∀e ∈ E. (7)

Formally, the modified dynamics evolves as follows: In each step k, the belief θk is updated
based on xk and ŷk according (1a); the toll vector τk and load vector xk are updated as follows:

τk+1 = (1− bk)τk + bkh
(
θk+1

)
, (8a)

xk+1 = (1− ak)xk + akg̃we
(
θk+1, τk+1

)
, (8b)

where h(·) and g̃we(·) are given by (7) and (6), respectively. Thus, based on belief θk, (8a) linearly
combines τk and the socially optimal toll vector with step size bk. Based on θk and τk, (8b) linearly
combines xk and the equilibrium load vector with step size ak. We modify (A3) as follows:

(A3′). ak ∈ (0, 1), bk ∈ (0, 1] for all k and
∏∞
k=1(1− ak) =

∏∞
k=1(1− bk) = 0.

Finally, follows from Theorem 4, Lemma 8, and Proposition 9, we show that the load vector
converges to socially optimal load vector xopt∗ under complete information of cost parameter s∗,

and the toll vector converges to the optimal toll vector τ opt∗ =

(
xe

d`s
∗

e (xe)
dxe

∣∣∣
xe=xopt∗e

)
e∈E

.

Proposition 10 Assume that (A1)–(A2), (A3′), and (A5)–(A6) hold. Then the modified dynamics
(1a), (8a)-(8b) with x1

e > 0 for all e ∈ E converges to a fixed point
(
θ̄, τ̄ , x̄

)
with probability 1,

where θ̄(s) = 0, for all s ∈ S†(xopt∗), τ̄ = τ opt∗, and x̄ = xopt∗.

Thus, when the dynamics (1a), (8a)-(8b) starts with an initial load that utilizes all resources and
the step size in each strategy update (8b) is less than 1, then at fixed point the belief provides an
accurate estimation of costs on all resources and the toll is assigned to the socially optimal toll under
full information of cost parameter, leading to a socially optimal load allocation.
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