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Abstract

As the length of multi-step interactive language tasks increases, it becomes compu-
tationally impractical to keep full interaction histories in context. We propose a
general and interpretable approach: Acting through Belief Bottlenecks Expressed
in Language (ABBEL), which replaces long multi-step interaction history by a
belief state, i.e., a natural language summary of what has been discovered about
task-relevant unknowns. Under ABBEL, at each step the agent first updates the
prior belief with the most recent observation from the environment, then uses
only the updated posterior belief to select an action. We systematically evaluate
frontier models under ABBEL across six diverse multi-step environments, finding
that (1) ABBEL significantly reduces context lengths, enabling near-constant
memory use over interaction steps, (2) the generated beliefs are interpretable, and
(3) bottlenecks can reduce unnecessary reasoning. However, it is challenging to
generate beliefs that are both concise and sufficient, and in some environments
we observed inferior performance due to discarding valuable information or belief
update errors. Motivated by this, we show that Reinforcement Learning is effective
for improving the ability of LLM agents to generate and reason through belief
bottlenecks. Training Qwen2.5-7B-Instruct under both ABBEL and full history
settings, ABBEL quickly catches up with a 40% increase in performance while
maintaining near-constant belief lengths over interaction steps.

1 Introduction

Tasks such as software development and scientific research can span hundreds or thousands of
interaction turns, exceeding the practical context limits of even frontier models. These limitations
necessitate the development of methods that can compress interaction histories while preserving
the most relevant information for effective decision-making. While work on maintaining minimal
sufficient statistics for sequential decision-making stretches back to Åström [1965], LLMs provide
a unique opportunity for expressing such information in language, a medium that is both flexible
and interpretable. The information in the interaction history required to solve a task can generally be
captured by a posterior belief over the values of task-relevant variables. Rolling the history into such
a belief state could, in principle, bottleneck the growing context length without harming performance.
Furthermore, recent work suggests that LLMs can accurately update natural language descriptions
of beliefs [Arumugam and Griffiths, 2025], and prompting language agents to explicitly generate a
belief before acting can even enhance performance [Kim et al., 2025].

In light of this, we propose ABBEL (Acting through Belief Bottlenecks Expressed in Language),
a framework for maintaining compact and interpretable contexts where an agent generates and acts
on natural language belief states instead of full interaction histories (Figure 1). E.g., in word guessing
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game Wordle2, the full history of guesses and feedback is replaced by the current belief over the
letters of the secret word. ABBEL alternates between updating a belief state given new observations,
and selecting an action based solely on the current belief. Thus, ABBEL relies on the ability of
the language agents to propagate the correct information at each step: they must maintain sufficient
information for selecting good actions, while discarding superfluous information, e.g., repeated
feedback that a letter is not in the secret word, to generate belief states that are compact enough to
keep the context length manageable in long horizon settings.
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Figure 1: Top: Overview of the belief update and action selection contexts over three timesteps
under ABBEL, in contrast to the typical multi-step paradigm (Vanilla) or simply prompting for belief
generation (Belief prompting) which keep all past timesteps in context. Bottom: an example step of
ABBEL in Wordle; actions are word guesses, and observations provide feedback on each letter of the
guess; see Appendix A for the full trace.

We systematically evaluate current frontier models under ABBEL across six multi-step environments
with varying levels of reasoning complexity and structure, comparing to ablations on both the belief
generation and bottleneck components. We find that in many environments, the generated belief
states are intelligible and significantly shorter than the full interaction history without significantly
impacting performance, and conditioning on self-generated beliefs can also reduce unnecessary
reasoning. While the history grows linearly with interaction steps, the belief lengths grow much
more slowly, even decreasing in some environments as possibilities are ruled out. However, for each
model we find environments where the reduced context decreases task performance, and identify key
causes: propagating erroneous beliefs across steps, hallucinating false memories of previous steps,
and repeating uninformative actions because the belief doesn’t change without new information.

Considering the significant divergence between ABBEL and typical LLM pre-training settings, and
the observed weaknesses from the frontier models, we propose to use RL to post-train LLM agents
under ABBEL to better generate and reason through belief state bottlenecks. Training Qwen2.5-7B-
Instruct in a simplified version of Wordle, we find ABBEL’s performance quickly increases to match
the success rate of the same model trained in the full context setting, demonstrating the efficacy of
this approach.

2 Related Work

Multi-step interaction through beliefs. Various approaches have been proposed for maintaining
compact representations of interaction history in multi-step exploration tasks. Hard-coded summary

2In Wordle the player has six tries to guess a five-letter secret word, receiving feedback about each letter (not
in the secret, in the secret in a different position, or in the correct position) after every guess.
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statistics have proven effective for bandit problems [Krishnamurthy et al., 2024b, Nie et al., 2025],
but lack the flexibility needed for more complex environments. Arumugam and Griffiths [2025] show
that frontier models can be effective at belief updating, but they hand-craft the initial prior beliefs
for each environment, whereas in realistic settings such priors are often unavailable, and they select
actions following a fixed heuristic.

Practical Approaches to Long-Context Management. Several recent systems have developed
practical solutions for managing long contexts in interactive tasks. Context compression methods
[Chevalier et al., 2023] generate dense vector representations that, while computationally efficient,
sacrifice interpretability. IterativeAgent from PaperBench [Starace et al., 2025] simply prunes the first
30% of context when reaching limits while preserving the system prompt and initial user message,
incentivizing high-level problem-focused planning at each step through ReACT-style prompting.
Wang et al. [2025] address long-horizon tasks in SWE-bench and webshop environments using an
LLM summarizer to condense context while maintaining task-relevant information, but this relies on
a detailed hand-crafted prompt specifying what information should be maintained. Örwall [2024]
focus on specialized tools for LLMs in SWE-bench, combining ReACT-style prompting with context
pruning strategies. These approaches demonstrate the practical necessity of belief-like representations
but have not been systematically evaluated for their ability to maintain sufficient information for
optimal decision-making across diverse task structures.

RL for LLM Context Summarization Training LLMs for multi-step interaction with custom
contexts instead of full histories is a developing area, and recent works like VeRL-Agent [Feng
et al., 2025] and rLLM [Tan et al., 2025] take the first pass in implementing frameworks with such
functionality. Recently MEM1 [Zhou et al., 2025] built on VeRL to post-train language models
with multi-step RL to generate and act on context summaries. However, MEM1 combines the belief
state with all reasoning for both belief updating and action selection in a single “internal state",
but reasoning is generally extraneous information which does not allow for the interpretability and
controllability of a true belief bottleneck.

See Appendix D for more related work.

3 Formulation

We model each environment as a Partially Observable Markov Decision Process, using Wordle as
an example environment for grounding our formulation. In Wordle the objective is to guess a secret
5-letter word in under 7 turns by guessing a 5-letter word at each step. Each task corresponds to a
randomly sampled hidden initial state s0, e.g., (secret:GUARD, step:0). At each step the agent
selects an action at from the action space, e.g., 5-letter English words. The hidden state st+1 is
updated based on st and at, which in Wordle simply increments the step counter. The agent receives
reward rt and observation ot both conditioned on at and st, e.g., rt = 1 if at = GUARD and step < 7
otherwise rt = 0, and ot is feedback on each letter in at (not present in the secret word, present at a
different position, or present at the guessed position) and the new step count (see Fig. 1).

We model LLM agents as sampling actions from context-conditioned policies at ∼ π(·|ct). In the
typical multi-step paradigm, the context includes the full interaction history of observations and
actions ht = a1o2a2o3...at−1ot−1, as shown in Fig. 1 (Vanilla), while in ABBEL it contains no
steps before the current belief. The agent is called twice at each step t: first conditioned on the
environment instructions pi (e.g., how to play Wordle) and the last belief, action, and observation,
and belief prompt pb to generate new belief bt ∼ π(·|pibt−1at−1ot−1pb) (Update belief in Fig. 1).
Next, all steps before t are removed from the context, and π is called with action prompt pa to select
the next action at ∼ π(·|pibtpa) (Select action in Fig. 1), resulting in a new observation ot from
the environment. See Appendix A for the full details. We measure the performance of π in each
environment by its expected performance across the task distribution, e.g., the uniform distribution
over all possible 5-letter secret words.

4 Evaluating Frontier Models With Belief Bottlenecks

We investigate to what extent current frontier models can already generate and reason through natural
language belief states as bottlenecks in reasoning.
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4.1 Environments

We evaluate across six multi-step environments from Tajwar et al. [2025] spanning various levels of
reasoning complexity and structure. Wordle and Mastermind demand complex reasoning using highly
structured feedback on each position of a secret word or code. Twenty Questions and Guess My City
involve iteratively narrowing down a search space of topics or cities by asking a sequence of questions.
In contrast, both actions and observations in Murder Mystery and Customer Service are free-form
descriptive sentences: actions correspond to clue-gathering or troubleshooting instructions, and
observations, generated by GPT-4o-mini, describe what the detective discovers or how the customer
responds. Table 1 summarizes key characteristics of each environment; for more details see Tajwar
et al. [2025].

Table 1: Characteristics of evaluation environments.

Environment Horizon Complex
Reasoning

Information
Structure Answer Space Size

Murder Mystery 20 No Low 3 (suspects)
Customer Service 20 No Low ∼ 102 (faulty parts)
Twenty Questions 20 No Medium ∼ 103 (e.g., animals)
Guess My City 20 No Medium ∼ 103 (all cities)
Wordle 6 Yes High 2315 (5-letter words)
Mastermind 12 Yes High 104 (4-digit numbers)

4.2 Models and Frameworks

We evaluate Gemini-2.5-Pro, DeepSeek-R1, and DeepSeek-V3 with chain-of-thought prompting. For
each model, we compare ABBEL with two frameworks. The first is a standard multi-step interaction
framework (Fig. 1, Vanilla) where at each step the agent is prompted with the initial instructions
followed by the full interaction history of actions and observations, and finally a prompt to generate
the next action. The second framework (Fig. 1, Belief prompting) follows ABBEL in first prompting
to update beliefs and then prompting to select an action given the beliefs at each step, but the full
interaction history remains in context, ablating the information bottleneck aspect of ABBEL. We
sample 40 tasks from each environment and report the mean and standard error.

4.3 Results

Belief State Compactness and Interpretability. We first investigate if ABBEL can reduce the
context length for frontier models, by examining the compactness of belief states generated through
ABBEL across different models and tasks, shown in Fig. 2. In most cases, beyond the first few
steps the belief states were significantly shorter than the length of the interaction history (the gray
lines).While the history always grows linearly with interaction steps, the belief lengths grew more
slowly, plateauing or even decreasing in some environments as possibilities were ruled out, with the
exception of Gemini 2.5 Pro in Twenty Questions and Guess My City. By inspection we found that all
models generated intelligible natural language beliefs, which allowed us to better understand their
behavior. For instance, in Twenty Questions we find that Gemini 2.5 Pro concatenates all information
from the observations, explaining why the length grows linearly with time on par with the history,
whereas DeepSeek R1 maintains a compact description of the posterior beliefs (see Appendix B for
examples).

Task Performance. We next analyze how well frontier models perform under each framework.
Fig. 3 presents the average success rates for each setting. We find that Gemini 2.5 Pro with ABBEL
mostly maintains or even exceeds the performance of the full-context settings despite significant
reductions in context length. However, the Deepseek models generally perform worse under all
frameworks and show greater drops in performance under ABBEL, though Deepseek R1 achieves
similar performance in Twenty Questions with significantly shorter beliefs compared to Gemini 2.5
Pro.

We then examine the performance of BELIEF PROMPTING to separately study the effects of prompting
for belief generation and the belief state bottleneck. Firstly, we find that BELIEF PROMPTING rarely
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Figure 2: Average length of beliefs generated under ABBEL compared to full interaction histories.
While history grows linearly over interaction steps, the belief lengths generally grow more slowly
and are significantly shorter after the first few steps.
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Figure 3: Performance of frontier models across six environments with no intervention, prompting
for beliefs before acting (BELIEF PROMPTING), and ABBEL. Error bars indicate SEM. Gemini 2.5
Pro mostly maintained performance under ABBEL despite significantly reduced contexts.

outperforms the baselines and sometimes substantially decreases performance, suggesting limitations
to prior findings that this is a helpful intervention in isolation [Kim et al., 2025]. Secondly, we
investigate belief sufficiency, comparing ABBEL and BELIEF PROMPTING to control for the effect
of belief generation. We observe that the weaker Deepseek models generally struggle more with
generating sufficient beliefs in environments with low information structure (Customer Service and
Murder Mystery), where it is more ambiguous what information should be maintained in the beliefs.
Even Gemini-2.5-Pro fails to generate fully sufficient beliefs across all environments, as evidenced
by the small performance drop in Mastermind.3

Impact on Reasoning. Finally, we investigate how ABBEL affects reasoning. Figure 4 shows the
average length of reasoning used for action selection for DeepSeek-R1 and Gemini-2.5-Pro.4 We
find that conditioning on belief states generated by ABBEL and BELIEF PROMPTING rather than full
histories significantly reduces reasoning length for comparable performance in several environments.
This suggests that in multi-step environments, reasoning models may naturally integrate information
from the interaction history as the first step of reasoning, and access to beliefs allows them to skip
this part of the reasoning process. We also find ABBEL often uses even less reasoning than BELIEF
PROMPTING while achieving similar success rates (e.g., Deepseek R1 in Twenty Questions, Guess my
City and Mastermind). Inspecting the reasoning traces (see Appendix C.2 for examples), we find that
R1 has a strong prior to ignore the belief state and reconstruct a posterior from the interaction history
when available, so belief bottlenecks provide an additional benefit of preventing unnecessary extra
reasoning over histories when beliefs are sufficient. For some environments, even the total length
of both action and belief reasoning for R1 with ABBEL was less than the baseline, with no drop
in success rate (see Fig. 6). Accounting for all tokens involved at each interaction step, including
both input contexts and output reasoning, beliefs and actions, we find ABBEL uses fewer tokens and
requires less memory in most environments once the interaction exceeds 5 steps (see figs 7 and 8).

We additionally inspect the traces to get further insight into the challenges of reasoning through
a belief bottleneck. We find that performance of ABBEL is impacted when the agent does not

3Surprisingly, Gemini-2.5-Pro performs much better under ABBEL than the baseline for Murder Mystery.
We find that in this game the model often continues gathering clues and runs out of steps before making an
accusation, while an explicit belief state over the murderer’s identity biases it to make accusations earlier.

4Only reasoning summaries were available for Gemini-2.5-Pro, which likely correlates with reasoning length.
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Figure 4: Reasoning trace lengths across steps (some models have no data at higher steps because
all episodes ended early). Access to prior beliefs reduces reasoning in most environments, while
ABBEL reduces reasoning even more than belief prompting alone.

update the belief state after uninformative observations (e.g., in Customer Service when the customer
responds “I’m not sure"), causing it to take the same action again, whereas if it can see previous
actions it is much less likely to repeat an uninformative action. We also find many cases in the
environments requiring more complex reasoning (Wordle and Mastermind) where belief state errors
are introduced and propagated from one step to the next. In the latter case, models may self-correct
their beliefs if they receive contradictory observations, but the true posterior and the wasted turns
may be irrecoverable; whereas access to the full history enables earlier error detection and perfect
posterior reconstruction. We find two main causes of belief state errors: incorrectly updating on
the new observation due to mistakes in reasoning (e.g., falsely assuming that a character cannot be
repeated in the secret), and hallucinating false memories of past interactions (see C.1 for an example).

The findings from this section collectively suggest that ABBEL can already lead to significantly
shorter yet interpretable contexts for frontier models, belief generation is a natural first step of
reasoning for multi-step interaction, and belief bottlenecks also have potential for improving reasoning
efficiency. However, for each model we found environments where there was still significant room
for improvement in either the task performance or the compactness of the generated beliefs.

5 Reinforcement Learning to Act through Belief Bottlenecks

Though we found in Section 4 that ABBEL’s significant context reduction can sometimes impact
performance, there is a significant divergence between ABBEL and typical LLM pre-training settings.
Thus, we propose the use of Reinforcement Learning (RL) to improve LLMs’ abilities to generate
and reason through belief bottlenecks. RL does not require any task-specific knowledge about the
content or format of the belief states: outcome-based rewards naturally incentivize maintaining and
correctly updating information relevant for completing the task, while penalties on the length of the
belief state can be used to encourage compactness. Further motivating our experimentation, RL has
been shown to improve general abilities across task structures and input distribution shifts compared
to SFT alone for general multi-step exploration [Nie et al., 2025, Kirk et al., 2024, Tajwar et al.,
2025] in addition to calibrating models to their parametric knowledge [Eisenstein et al., 2025].

We train Qwen2.5-7B-Instruct with COT prompting on Combination Lock, a simple 3-digit version of
Wordle proposed by Arumugam and Griffiths [2025]. We use outcome-based rewards only, training
with GRPO in VeRL-agent [Feng et al., 2025], a multi-context synchronous rollout framework (for
full details see Appendix E). In line with our findings from section 4.3, the initial performance of
ABBEL is significantly lower than either the baseline (VANILLA) or BELIEF PROMPTING. We find
that RL training is effective, leading to ABBEL’s success rate quickly increases to bridge this gap
(see Fig. 5a). ABBEL learns to generate longer belief states over training, although they are still
significantly shorter than the full history of actions and environment feedback past the first two
steps (Fig. 5b). However, the cumulative regret of the learnt policies (Fig. 9) show that ABBEL
still explores less efficiently than the other frameworks after RL. This may be due to phenomenon
observed in Section 4.3 where mistakes in belief updating get propagated across steps, leading to
inferior action choices. We leave it to future work to investigate sample-efficient training methods
which both improve belief update accuracy and encourage compactness of generated belief states.
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Figure 5: Test performance of Qwen2.5-7B-Instruct trained in Combination Lock under each frame-
work. (a) Success rates over training steps show ABBEL quickly reduces its performance gap
with other frameworks. (b) ABBEL learns to generate longer beliefs over training, but they remain
significantly shorter than the interaction history beyond the second environment step.

6 Discussion

We introduce ABBEL, a general framework for LLM agents to maintain manageable and interpretable
contexts for long horizon interactive tasks via generating natural language beliefs. Evaluating
frontier models in ABBEL across diverse multi-step environments, we find that they can maintain
interpretable beliefs that are significantly shorter than full interaction histories without impacting
performance, and the bottleneck can reduce unnecessary reasoning over full interaction histories.
However, we find some environments where frontier models generate beliefs that are either as long as
the history or cause inferior task performance under ABBEL. We identify key causes of performance
drops, including belief update errors generating false beliefs that propagate across steps. This suggests
that when used purely as an inference framework, ABBEL is most effective in settings that do not
involve complex reasoning for belief updating. We then propose reinforcement learning in ABBEL
as a general method for post-training LLM agents to generate and reason through beliefs more
effectively. In Combination Lock, a task requiring significant reasoning, we show that RL quickly
reduces the performance gap between ABBEL and models trained with full history access, with a
40% increase in success rate while belief lengths remain near-constant over interaction steps.

Future Work. We observe ABBEL still explores less efficiently after RL; investigating methods
for further improving performance while maintaining compact beliefs is an important next step.
Another interesting future direction is studying methods for training models to generate even more
compact beliefs (such as length penalties) while preserving interpretability. Evaluating ABBEL on
more realistic tasks with much longer horizons, robustness to injection of redundant or distracting
information, and the potential of ABBEL’s interpretable belief states for better diagnosis of failure
modes in LLM reasoning are also left for future work.
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A Belief Bottleneck Rollout

A.1 Rollout Algorithm

Algorithm 1 Belief Bottleneck Rollout

Require: Instructions pi, horizon H ∈ N, step function T : S ×A → S ×O, initial state s0
Require: Belief generation prompt pb, action selection prompt pa, policy π.

t← 0
s← s0
b← “This is the start of the game. No beliefs right now."
while t ≤ H do

a← π(pibpa) ▷ Action selection
s, o← T (s, a) ▷ Environment step: get new state and observation.
t← t+ 1
b← π(pibaopb) ▷ Belief update

end while

A.2 Sample ABBEL Step in Wordle

Here, we show one sample and associated prompts for the game Wordle with Deepseek R1 (illustrated
in Fig. 1).

Game State

Secret: GUARD
Step: 2 out of 6
Goal Reached: No

Instructions

You are playing a game of Wordle.
Format your response in the following way: <Think> Any step-by-step, short and concise
thinking to strategically determine the next guess for the secret word </Think> <Answer>
your guess of what the word should be </Answer>
The game begins now, please make your first guess about the secret five-letter word!

Current Belief State

Excluded letters: C, O, N, Y
Included letters: R (must be in position 1, 3, 4, or 5)
Target word contains R and excludes C, O, N, Y.

Action Prompt

This is the game information:
<game_instructions>
You are currently taking your attempt <step> out of <horizon> attempts. Look at the
current belief state and history and give an answer based on it.
Give an answer that leads to optimal exploration and do not be greedy unless it is the last
attempt. Try to maximize the amount of information you have so that you can solve the task
correctly.
Belief: <curr_belief>
Please format your response as: <Answer>your answer in the correct format mentioned
</Answer>
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Action and Observation

Action: STARE
Observation:
First letter, s, is not in the target word
Second letter, t, is not in the target word
Third letter, a, is correct and in the correct position in the target word
Fourth letter, r, is correct and in the correct position in the target word
Fifth letter, e, is not in the target word

Belief Update Prompt

This is the game information:
<game_instructions>
Look at the current belief and the agent’s action and environment response on that belief.
You have to update the current belief based on the action and response, while maintaining
important information about the game state needed to take optimal future actions.
Current belief: <curr_belief>
Agent’s action: <action>
Environment’s response: <observation>
Output the updated belief state inside <BELIEF> and </BELIEF> tags.
Understand that only the generated belief is fed to the agent to pick the next action, not the
history, so be sure to include all necessary information.

Updated Belief State

Excluded letters: C, O, N, Y, S, T, E
Included letters: A (position 3), R (position 4)
Target word contains A and R, excludes the listed letters, and has A in position 3 and R in
position 4.

B Generated Belief State Examples

We compare examples of the belief states generated by DeepSeek R1 and Gemini 2.5 Pro operating
under ABBEL. Each are at step 15 of the Twenty Questions game, where the answer is "waistcocat".

DeepSeek R1

The garment is a standalone structured, strapless, sleeveless formal bridal piece, not layered
over other garments (confirmed). Excludes outerwear (boleros, jackets), full gowns, corsets,
bustiers, and undergarments. Focus narrows to standalone bridal separates with stiffened
fabrics (taffeta, satin) or layered construction for structural elegance, lacking boning. Key
possibilities: embellished strapless bridal tops (beaded/embroidered), corsage-inspired de-
signs with tailored support, or reinforced bridal camisoles/decorative tulle overlays. Must
function independently (paired with skirts) without waist-flared elements or basque termi-
nology. Core attributes: bridal formality, structural integrity via tailoring or stiff fabrics, no
corsetry associations.

Gemini 2.5 Pro

I am playing a game of 20 Questions to identify a piece of clothing. I have now used 15 out
of 20 questions.

Here’s what I know so far:
• Fact 1: The item is worn on the upper body.
• Fact 2: It is NOT typically worn as outerwear.
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• Fact 3: It typically has a collar.
• Fact 4: It typically has buttons all the way down the front.
• Fact 5: It is typically worn by men.
• Fact 6: It is typically worn for formal or business occasions.
• Fact 7: It has short sleeves.
• Fact 8: It features decorative vertical pleats or embroidery on the front.
• Fact 9: It is NOT a Guayabera shirt.
• Fact 10: It is NOT considered a form of national dress for a specific country.
• Fact 11: It is specifically worn with a tuxedo.
• Fact 12: It is NOT called a “short-sleeved tuxedo shirt”.
• Fact 13: Its decorative front does NOT feature ruffles.
• Fact 14: Its decorative front does NOT consist of a distinct, separate panel of fabric

(a “bib”).
• Fact 15: The decorative vertical pleats on the front are NOT known as “pin-tucks”.

Based on the cumulative information, my confidence has been updated.
• Analysis: The “No” answer to my last question, “Are the decorative vertical pleats

on the front known as ‘pin-tucks’?” is a major setback. My leading hypothesis of a
“pleated-front shirt” or “pin-tuck shirt” has been invalidated. This means that if the
decorative elements are pleats, they are a very obscure type.

• Re-evaluation: I must now reconsider the other half of Fact 8: “. . . pleats or
embroidery”. Having exhausted the most common types of pleated fronts (ruffles,
bib, pin-tucks), it is highly likely that the decorative elements are not pleats at all, but
rather a form of embroidery. The object remains a very unusual item: a short-sleeved
formal shirt worn with a tuxedo, featuring vertical decorations that are not ruffles,
not a bib, and not pin-tucks.

• Current Prime Candidate: There is no longer a single prime candidate for the
item’s name. The identity is very mysterious. The immediate goal is to confirm the
nature of the decoration. My new leading hypothesis is that the item is a shirt with
vertical embroidery on the front.

My confidence in any specific name is now low. However, I am confident that the next step
must be to pivot away from pleats and investigate the “embroidery” possibility directly.

C Sample Frontier Model Reasoning Traces

C.1 Hallucinating Past Observations During Belief Update Reasoning

We provide an example ABBEL belief update from Deepseek R1 in Mastermind, demonstrating how
LLMs may hallucinate observations from previous steps when reasoning through a belief bottleneck
in multi-step environments.

Game State

Secret: 4 5 1 8
Step: 5 out of 12
Goal Reached: No
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Prior Belief

Exclusions: 0, 6, and 9 are not in the code.
Possible Codes:
- 4 5 [1/2/3] [7/8]
- 4 5 [7/8] [1/2/3]

Action and Observation

Action: 4 5 1 7
Observation: 3 exact matches, 0 partial matches

Deepseek R1 (ABBEL) Belief Update Reasoning

...but previous feedback said that the third guess (4 5 7 8) had a partial match...

4568 was never guessed; this hallucinated previous feedback leads R1 to conclude that 7 was the
partial match and must be in position 4, ruling out the true code 4518 from the posterior:

Updated Belief State

Exclusions: 0, 1, 6, 8, 9 are not in the code.
Possible Codes:
- 4 5 2 7
- 4 5 3 7

C.2 Belief State Reconstruction under Vanilla and BELIEF PROMPTING

We highlight how frontier models reconstruct previously stated information in the Vanilla and BELIEF
PROMPTING settings.

We find that Deepseek R1 reconstructs a posterior belief from the interaction history as the first step
of reasoning about the next action:

Deepseek R1 (vanilla) Action Selection Reasoning

Okay, let’s see. So, the history so far has three guesses: CLOUD, PULSE, and FAULT. Let me
recap the feedback from each.

• From CLOUD:
C, O, D are not in the target. L (second letter) is present but wrong position. U
(fourth letter) is present but wrong position.

• From PULSE:
P, S, E are not in the target. U (second letter) and L (third letter) are present but
wrong positions.

• From FAULT:
F, A are not in the target. U (third), L (fourth), and T (fifth) are present but wrong
positions.

Putting this together, the letters that are definitely in the target word are L, U, and T. Because
in FAULT, even though F and A are excluded, U, L, T are confirmed. Additionally, from
CLOUD, L and U are confirmed but not in positions 2 and 4 respectively. From PULSE, U and L
are again confirmed but positions 2 and 3 are wrong.
. . .

We find that Deepseek R1 with belief prompting sometimes fails to leverage the explicit belief state
in its context, and wastefully reconstructs a posterior belief from the interaction history:
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Deepseek R1 (BELIEF PROMPTING) Action Selection Reasoning

Belief State
First letter is S. Excluded letters: P, O, I, L, E. Correct letters: A in position 3, R in
position 4, T in position 5. Target word format: S_ART. Possible letters for position 2: B, C,
D, F, G, H, J, K, M, N, Q, U, V, W, X, Y, Z.

Reasoning
Okay, so I’m trying to figure out the next guess for Wordle. Let’s recap what we know so far.
The first guess was SPOIL. The response told us that S is correct in the first position. The
letters P, O, I, L, and E (from the fifth letter in SPOIL and the fifth in STARE) are excluded.
Then the second guess was STARE, which confirmed that S is still correct in position 1. The
letter T is present but not in position 2. Also, A is correct in position 3, R in position 4, and E
is excluded. Now the target word structure is S _ A R T. Wait, no, wait. Wait, let me check
again.
Wait, in STARE, the fifth letter was E, which is excluded. But the response for STARE said
that the fifth letter E is not in the target word. So the target word structure is S _ A R _,
since the fifth letter isn’t E. Wait, hold on. No, the correct letters from STARE: third letter A
(position 3), fourth letter R (position 4). The fifth letter E is excluded, so the fifth position
can’t be E. But the first letter is S. The second letter is T in STARE, but it’s in the target word
in a different position. So T exists but isn’t in position 2. So the target word has T somewhere
else. But the structure we have is S _ A R _, with the fifth letter not E, but from the first
guess SPOIL, the fifth letter L is excluded. So fifth position can’t be L or E. Wait, but what
about the third guess? Wait, the user only provided two guesses: SPOIL and STARE. Then the
belief state says the target word is S _ A R T. Wait, how did T get into the fifth position?
Because in STARE, the fifth letter E was wrong, but the correct letters in STARE are S (position
1), A (3), R (4). Then T in position 2 is present but in a different spot. So T must be in position
5? Because the only other positions are 2 (which was T in STARE but it’s not there), or 5.
Because positions 1, 3, 4 are already S, A, R. So T must be in position 5. That makes the
target word S _ A R T. So fifth letter is T. So structure is S _ A R T.
. . .

Finally, we find that Deepseek R1 under ABBEL reasons directly with the belief state:

Deepseek R1 (ABBEL) Action Selection Reasoning

Belief State
Excluded letters: S, L, T, R, C, D, H, V
Confirmed present letters: A (position 2), E (position 4), N (position 5)
Possible letter positions:
1: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]
2: [A]
3: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]
4: [E]
5: [N]

Reasoning Okay, let’s see. I need to figure out the best word to guess for the third attempt in
Wordle. The excluded letters are S, L, T, R, C, D. So I can’t use any of those. The confirmed
letters are A in position 2 and E in position 4. So the word must be _ A _ E _.
My first thought is to maximize the information gain. Since this is the third attempt and there
are three more left, I shouldn’t be too greedy yet. I need to test possible letters in the unknown
positions (1, 3, 5) while using letters that aren’t excluded.
Looking at the possible letters for positions 1, 3, and 5: they include B, F, G, H, I, J, K, M, N,
O, P, Q, U, V, W, X, Y, Z. I should choose a word that uses as many of these as possible in the
unknown slots to check which ones are present.
. . .
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Figure 6: Reasoning trace length for belief generation (top) and the total reasoning length at each
step, summing the belief and action selection reasoning lengths (bottom).
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Figure 7: The total number of tokens involved at each step, including both input (i.e., the context)
and output (i.e., reasoning, actions and belief states).

D More Related Work

Zhou et al. [2025] perform RL on LLM agents that combine belief update and action selection
reasoning in an “internal state” representation, and demonstrate horizon generalization after training.
However, the combined internal state does not allow the user to specify limits for belief length or
encourage shorter beliefs without impacting the ability for sophisticated action reasoning, nor is it
possible to fully isolate the information used for action selection to diagnose suboptimal behavior.

Recent work has identified specific failure modes when deploying language models for exploration
tasks. Prior work on diagnosing exploration suboptimality in LLMs [Schmied et al., 2025, Krish-
namurthy et al., 2024a] does not examine the crucial ability of LLMs to integrate knowledge from
environment feedback- apparent suboptimality in action selection may be optimal given incorrect or
incomplete beliefs. Schmied et al. [2025] diagnose three primary failure modes for non-reasoning
pre-trained LLMs in bandit problems: greediness, frequency bias (copying the most frequent action in
context regardless of reward), and the knowing-doing gap (describing correct behavior but failing to
execute it). However, these diagnostics assume the LLMs are operating from perfect beliefs, missing
errors in integrating observations into posterior beliefs.

E RL details

E.1 Environment Details

Combination Lock has the same feedback dynamics as Wordle with 3-character codes and guesses,
while additionally enforcing that all three characters of the secret code and of every guess must
be unique. Unique secret codes of 3 vocabulary characters were sampled, with a larger disjoint
vocabulary and increased horizon at test time (see Table 2).
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Figure 8: The memory usage at each step, defined as max(input + output tokens for belief updating,
input + output tokens for action selection), representing the inference-time memory requirement.
After the first few steps, ABBEL uses significantly less memory than the other frameworks.

Table 2: Characteristics of the Combination Lock environments.
Setting Horizon (H) Vocabulary Answer Space Size
Train 12 012345689 720 (3 unique digits)
Test 16 qawsedrftgyhujik 3360 (3 unique letters)

We prompted Qwen2.5-7B-Instruct to first think step by step between <think>...</think> tags,
and then generate actions or beliefs between <action></action> or <belief>...</belief>
tags. Invalid generations did not count as an environment step, i.e. did not impact regret, but we
limited the number of generation calls per game to H (VANILLA) or 2H (ABBEL and BELIEF
PROMPTING); see Table 3 for details. Each trajectory ends in success once the secret code is guessed,
or failure if either the generation limit or environment horizon is exceeded, with reward defined as
follows to encourage succeeding with as few guesses as possible:

R =

{
(H + 1− environment steps taken)/H if trajectory successful
−1 otherwise.

(1)

We leave belief state length penalties to encourage compactness for future work.

E.2 Training details

See Table 4 for the training settings and hyper parameters used.
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Table 3: Handling of invalid generations in Combination Lock.
Case Description Outcome

Valid
action

The action generation is correctly
formatted as <action>[c1, c2,
c3]</action> with three unique
characters.

Both generation and environment steps are incremented,
and feedback is presented in a newline separated list. e.g,:
8 is in Position 1!
6 is not in Position 2, but is in the lock
9 is not in the lock

Invalid
action

Most often errors take the form
of [action>...</action> or re-
peated characters.

Generation step is incremented, and the model receives
a message stating the action is invalid, reiterating the re-
quired format and prompting regeneration.

Invalid
belief

Not using <belief></belief>
tags. Errors tend to result from
forgotten beginning/ending angle
brackets or misspellings of belief.

Generation step is incremented, and the model receives
a message stating the belief is invalid, reiterating the re-
quired format and prompting regeneration.

Table 4: Settings used in experiments. The mini batch at every gradient update step was set to the
number of tensors present in the step to prevent off-policy updates, which have been shown to result
in unstable training behavior with Qwen models.

Name value

Optimization Algorithm GRPO
AdamW learning rate 1e-7
batch_size 16
GRPO n rollouts 2
mini_batch N/A
training_steps 140
num_epochs (calculated equivalent) 3.2
Learning rate decay 0.0
Gradient clipping 1.0
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Figure 9: Cumulative regret curves show that ABBEL still takes more attempts to find the secret
code after RL fine-tuning than models trained with the full history in context (VANILLA and BELIEF
PROMPTING).
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