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Abstract

Recent advances in reasoning and planning capabilities of large language models
(LLMs) have enabled their potential as autonomous agents capable of tool use
in dynamic environments. However, in multi-turn conversational environments
like τ -bench, these agents often struggle with consistent reasoning, adherence
to domain-specific policies, and extracting correct information over a long hori-
zon of tool-calls and conversation. To capture and mitigate these failures, we
conduct a comprehensive manual analysis of the common errors occurring in the
conversation trajectories. We then experiment with reformulations of inputs to
the tool-calling agent for improvement in agent decision-making. Finally, we
propose the Input-Reformulation Multi-Agent (IRMA) framework, which au-
tomatically reformulates user queries augmented with relevant domain rules and
tool suggestions for the tool-calling agent to focus on. The results show that IRMA
significantly outperforms ReAct, Function Calling, and Self-Reflection by 16.1%,
12.7%, and 19.1%, respectively, in overall pass^5 scores. These findings highlight
the superior reliability and consistency of IRMA compared to other methods in
dynamic environments.

1 Introduction

Recent advancements in Large Language Models (LLMs) [1–4] have created the potential for them
to be used as reasoning agents with varied levels of autonomy in complex real-world tasks like
customer support, scientific discovery, legal reasoning and enterprise operations [5–10]. However,
such complex tasks require the need of reasoning and planning capabilities beyond just language
processing: they require the ability on behalf of these agents to be able to invoke suitable tools2

which can complete tasks through logic implemented in computer programs leading to deterministic
outcomes. Recent research [11–13], which benchmarks the simulation of such real-world problem-
solving settings, shows that LLM-agents significantly falter in correctly solving these tasks and
commit errors that range from generative hallucinations to failure to adhere to context and domain-
specific policy violations by incorrect reasoning about actions over extended interactions.

These shortcomings underscore the need for more fine-grained evaluations and methods that can
diagnose and address the nuanced failure modes of LLM agents in complex, real-world interactions
that employ natural language as a form of communication. Thus, our main focus in this work is to find
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Figure 1: Overview of the tasks conducted for evaluating and improving tool-calling capabilities of
language agents in τ -bench [11]. Stage 1) involved human evaluators manually evaluating simulated
conversation trajectories to find common failure modes of the language agents. Stage 2) employs
a human-in-the-loop approach to experiment with various prompt reformulations to improve agent
correctness. Stage 3) automates this process through the IRMA framework, which leads to improved
agent behavior.

and mitigate the causes of why language agents fail to solve simulations of real-world conversational
requests that require complex reasoning and relevant information processing according to the situation
at hand. To this end, we utilize τ - bench [11] as an appropriate test-bed for such investigation as it
emulates realistic airline and retail dialogues. We define the reasoning about actions of language
agents as the ability to generate context-aware inference and decision-making tokens for selecting
the next best action (a tool-call in this context). Additionally, we define and evaluate the planning
capabilities of the agents through decision-making for tool-calling over multiple tool-calls in the
correct sequential manner to complete a goal.

To address the challenges, we propose a three-pronged sequential approach. First, we develop
a comprehensive error classification that categorizes common reasoning and planning mistakes
in a multi-turn tool-calling simulation. This taxonomy serves as a diagnostic guideline to sys-
tematically identify and understand the causes of failures for LLM agents. Second, we manually
experiment with input reformulations of the user requests to evaluate whether the correct prompt
reformulations can guide the tool-calling agents towards correct decision-making through appropriate
tool-calling/response to the user. Third, we automate this prompt-reformulation process by building
a multi-agent LLM framework (§5.2), called Input-Reformulation Multi-Agent (IRMA), which
further optimizes the input reformulation with augmentation of follow-up questions (§5.1). Before
the tool-calling agent invokes or responds to any tool output, our automated framework supplies
targeted guidance that ensures strict adherence to domain-specific rules and well-placed follow-up
questions to extract accurate information, thereby enhancing its reasoning and planning capabilities
in dynamic environments.

Our results show that the IRMA framework not only outperforms ReAct [14], Function Calling, and
Self-Reflection [15] on pass@1, but also achieves 20% and 22.4% higher accuracy on Airline tasks
compared to Gemini 1.5 Pro-FC and Claude 3.5 Haiku-FC, respectively. IRMA also demonstrates
stronger reliability, with higher scores on pass^4 and pass^5 (Figure 3). In addition, IRMA solves
tasks in fewer turns than competing methods, highlighting its efficiency (Figure 4). Lastly, IRMA
shows greater robustness, with an increased performance gap on pass^5 after removing tasks affected
by ground truth and instruction errors in the airline and retail domains.

2 Related Works

Tool-Integration for LLMs The ReAct framework, introduced by Yao et al. [14], is one of the
first approaches to explore the potential of Large Language Models (LLMs) as tool-using agents by
integrating reasoning and acting within LLMs. Toolformer [16] presents a fine-tuning approach to
teach LLMs to invoke tool calls. ToolEVO [17] and ToolLLM [18] employ tree search algorithms
for integrating and evaluating tool-learning capabilities in LLMs. ToolACE [19], AutoTools [20],
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and APIGen [21] introduce automated frameworks designed to generate accurate, complex, and
high-quality tool-learning data, with works like [22, 23] extending this to multi-turn interactive
conversational settings.

Tool-Use Benchmarks LLMs have been extensively evaluated on invoking external functions in
both single-turn and interactive multi-turn conversational test beds. API-Bench [24] and API-Bank
[25] are two prominent benchmarks designed to evaluate the function-calling capabilities of LLMs in
single-turn scenarios. NESTful [26] focuses on evaluating LLMs’ ability to handle nested sequences
of API calls. ToolQA-D [17] gauges robustness in changing API specifications. τ -bench [11] and
ToolSandbox [12] emulate realistic dialogues requiring policy-compliant tool use over multi-turn
user-agent interactions, where each step modifies an external environment. While these existing
multi-turn benchmarks evaluate the overall success of tool-calling agents, they lack fine-grained
analysis of reasoning errors while following complex domain rules—a gap our work addresses
through the construction of a fine-grained error classification by evaluating τ -bench.

3 Problem Statement

To evaluate the tool-usage capabilities of current Large Language Models (LLMs), we adopt the
benchmark provided by τ -bench [11]. This benchmark is specifically designed to assess language
agents in realistic, multi-turn interaction settings. τ -bench includes tasks from two domains: (1)
Airline, comprising 50 tasks centered around flight reservation scenarios, and (2) Retail, containing
115 tasks focused on shopping and order management. In this setup, both the user and the customer-
service assistant are simulated by LLMs, enabling a controlled environment for analyzing interactive
behavior.

Each task is framed as a Partially Observable Markov Decision Process (POMDP) (Details in
Appendix A), where the assistant agent must generate appropriate function calls based on user inputs.
These function calls are executed in an external environment, which then returns outputs that shape the
ongoing dialogue. The interaction continues until the user ends the conversation, and the performance
of the assistant is evaluated based on final rewards. These rewards reflect how closely the agent’s
actions align with gold-standard trajectories and how well it fulfills the user’s goals.

A key challenge in τ -bench arises from the dynamic nature of user-agent interactions, where both user
inputs and agent responses can vary across runs. This variability requires the agent to consistently
execute correct action sequences, regardless of the conversational path. However, current results
indicate that even state-of-the-art LLMs struggle to reliably complete these tasks as the number of
trials increases. To address this limitation, we conduct a root-cause analysis of common agent errors
(§4) and introduced IRMA, a multi-agent framework (§5) designed to improve agent reliability in
this challenging setting.

4 Error-Classification

To identify the failure modes of LLMs, human evaluators conducted experiments using GPT-4o [27]
as the base model for both the user and the assistant agent across all tasks in τ -bench [11]. Both
ReAct and function-calling agent configurations were used to generate up to five trials per task in
each domain. Evaluators manually reviewed the resulting multi-turn conversation trajectories from
the retail and airline domains. While prior studies [28–30] have examined failures related to tool
availability, definition errors, or tool set complexity, our analysis focuses specifically on the contextual
reasoning limitations of LLMs in generating tool calls within dynamic, multi-turn interactions.

Although τ -bench provides a general taxonomy of failure types for the retail domain, our classification
is more cause-oriented than effect-oriented. By framing errors in terms of their underlying causes, we
can more effectively inform the design of targeted interventions, such as retrieval-augmented memory
to mitigate context retention issues or follow-up question generation (§5.1) to reduce hallucinations
from context drift. The following subsections (§4.1–§4.4) provide a detailed breakdown of the
identified error types.
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4.1 User Instruction Hallucination

User instruction errors occur when the LLM-simulated user deviates from the original task instruction,
typically in the later stages of a conversation. These errors highlight the limitations of LLMs in
maintaining instruction fidelity over long contexts, especially when multiple follow-up turns introduce
competing directives. Another contributing factor is context drift, where the model increasingly relies
on recent inputs or high-probability continuations, leading it to overlook or forget the initial user
intent. An Example illustrating this error is provided in Figure 7 in Appendix D.

4.2 Agent Hallucination

Agent hallucination errors arise when the assistant agent generates incorrect or incomplete responses
that fail to fully satisfy the user’s request. For example, the agent may neglect to process all items
specified by the user or incorrectly fulfill a request by selecting the wrong item or applying it to the
wrong order. These errors reflect underlying challenges with LLM memory limitations [31] and the
degradation of instruction-following abilities over long contexts [32]. As prior context accumulates,
excessive or outdated information can distort the model’s understanding, leading to hallucinated
outputs and ultimately incorrect decisions [33].

4.3 Domain Policy Violation

Domain policy violations occur when tool-calling agents make decisions that contradict the domain-
specific constraints defined for task completion. For instance, in Retail task 19 (Figure 8), the
agent attempts to exchange the user’s office chair and pet bed even when the order is no more in
‘delivered’ status: a prerequisite domain rule required to be satisfied for exchange. This leads to the
agent violating the domain rule (see Figure 11): ’An order can only be exchanged if its status is

’delivered’...’ Such violations may also arise when the user issues an invalid request, and the agent
proceeds to fulfill it without adhering to the applicable domain rules. This error is caused due to
similar reasons as mentioned in §4.1 and §4.2.

4.4 Contextual Misinterpretation

Contextual misinterpretation errors occur when the tool-calling agent misunderstands the intent or
nuance of the user’s request and generates function calls using inappropriate tools for the given
context. For example, if a user asks to return an item and receive a different one in exchange, a
human familiar with the domain policies would recognize this as an exchange request. However, the
LLM-based agent may misinterpret it as a simple return, failing to grasp the full context and thereby
invoking the wrong tool.

5 Methodology

Figure 2: FACT agent demonstrates superior user guidance,
avoiding tool-call errors encountered by the ReAct Agent.

As outlined in the previous sections,
complex dynamic environments such
as τ -bench present reliability chal-
lenges. Specifically, the user simu-
lator may hallucinate during interac-
tions, generating questions that do not
adhere to the provided instructions. In
this study, we aim to improve the assis-
tant agent’s tool-calling performance
in τ -bench by enabling more accu-
rate decision-making. Unlike prior
approaches that monitor and correct
agent actions through verification or
reflection, our method focuses on en-
hancing the quality of the agent’s in-
put before any action is taken. To
achieve this, we first introduce a novel
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prompting strategy: Follow-up Question Acting (FACT), designed to support decision-making in
dynamic settings. We then present the Input Reformulation Multi-Agent (IRMA) framework that
reformulates the agent’s input to guide more effective and context-aware decisions.

5.1 FACT: Follow-up question ACTing

Although reasoning-based prompting techniques like ReAct outperform non-reasoning methods
such as Act, they remain inefficient in dynamic environments. As shown in Figure 2, ReAct often
calls a tool prematurely, triggers an error, and only then asks clarifying questions, leading to longer
conversations and increased interaction issues. To overcome this, we introduce Follow-up Question
ACTing (FACT), a prompting method that first gathers information through targeted questions before
calling a tool. Our results in Figure 4 show that FACT is more effective than ReAct and performs
comparably to Function Calling. We refer readers to Appendix §E.1.

Another advantage of FACT is its ability to involve the user in the loop. When the user simulator
hallucinates or provides misleading input, FACT detects the issue and hands off the conversation to
a human, ensuring more robust handling of unreliable inputs. In summary, FACT is more efficient,
reliable, and consistent than other methods in dynamic environments. However, in long conversations,
it may forget domain rules and tools due to system prompt limitations, leading to domain violations.
To address this, we propose the Input-Reformulation Multi-Agent Framework (IRMA), which
restructures the user prompt to retain key information like domain rules and a relevant tool list within
the assistant’s input.

5.2 IRMA: Input-Reformulation Multi-Agent Framework

Our analysis reveals three key failure cases for assistant agents. First, in long conversations, the agent
may forget the user’s initial request and respond only partially. Second, it may violate domain rules
by forgetting constraints from lengthy policy lists. Third, tool selection becomes harder over time,
especially when tools have similar names (e.g., "search_direct_flight" vs. "search_onestep_flight"),
leading to incorrect choices.

We hypothesize that combining user queries with crucial context, such as domain rules and relevant
tools, can improve the assistant agent’s decision-making. To test this, we conducted a human-in-the-
loop experiment with prompt engineers who reformulated queries using additional policy and tool
information. In most cases, the agent successfully completed the tasks, motivating us to automate
this input reformulation process.

Based on this insight, we propose the Input Reformulation Multi-Agent Framework (IRMA).
In contrast to prior methods that focus on post-hoc correction of the agent’s behavior, such as Self-
Reflection, PlanGen [34], or other verification-based approaches, IRMA centers on enhancing the
quality of the input provided to the assistant agent. This approach enhances decision-making at the
input stage—before any action is taken—ensuring more accurate and context-aware responses. The
framework comprises three core modules: memorization, constraints, and tool suggestion.

Memorization This module is independent of the language model and is responsible for storing
the user queries throughout the interaction trajectory. It helps the agent retain awareness of the initial
request and make decisions accordingly. The conversation history is maintained within <memory>
tags.

Constraints One of the main reasons the agent makes incorrect decisions is domain policy violation.
A key insight from the human-in-the-loop experiment was the positive impact of providing a concise
list of domain constraints to guide the assistant agent’s decisions. To address this challenge, we define
a dedicated agent that generates a checklist of relevant domain constraints based on the user query. If
the user query is a response to a follow-up question from the assistant, the agent is prompted to return
“None”. The generated constraint list is stored within <constraints> tags to ensure the assistant
agent receives a structured and interpretable input prompt.

Tool Suggestion Although the number of available tools is limited, the assistant agent sometimes
struggles to select the most relevant tool for a given user query. In some cases, after encountering
an error or receiving an empty output, the agent may lose track of other parts of the user’s request.
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To mitigate this, we introduce a Tool Selector agent that generates a short list of tools most relevant
to the user query, along with a one-line explanation for each suggestion. This list is stored within
<tool_suggested> tags to help the assistant agent focus on selecting the most appropriate tool.

In summary, the IRMA framework aims to replicate the input reframing performed by researchers
during the human-in-the-loop experiment. Unlike other techniques such as verification, self-reflection,
or agentic verification methods, IRMA functions in a loop-free manner and focuses on strengthening
the input by reformulating the user query. This approach not only improves accuracy but also
offers better cost-effectiveness compared to alternative methods. In the next section, we provide a
comparative analysis of IRMA against existing techniques.

6 Experiments

6.1 Experimental Setup

In this section, we introduce the baseline models and methods used for comparison, followed by a
detailed analysis of the Input Reformulation Multi-Agent (IRMA) framework using various evaluation
metrics.

Model Method τ -Retail τ -Airline Overall

Open-Source Models

Qwen 2.5 32B ReAct 24.4 25.0 24.7
Llama 3.1 70B ReAct 50.4 26.0 38.2
DeepSeek v31 ReAct 58.3 22.8 40.6
Phi-4 14B ReAct 32.2 28.0 30.1

Close-Source Models

Gemini 1.5 pro1 FC 54.9 25.2 40.1
Claude 3.5 Haiku2 FC 51.0 22.8 36.9
Claude 3.5 Sonnet2 FC 62.6 36.0 49.3
gpt-4o FC 60.5 42.4 51.4
gpt-4o ReAct 51.8 39.6 45.7
gpt-4o SR 51.1 44.8 47.9

gpt-4o (ours) IRMA 58.3 47.2 52.75

Table 1: Performance of various open and closed-source models
in Pass^1 for retail and airline domains in τ -bench across 5 runs.
’SR’ stands for the Self-Reflection agent. 1 from [35]; 2 from [36].

Models and Methods We eval-
uated IRMA against a range of
open-source and closed-source
language models. The open-
source models include Qwen2.5-
32B, LLaMA3-70B, DeepSeek-
V3, and Phi-4-14B, while the
closed-source models comprise
Claude 3.5, Gemini 1.5, and
GPT-4o. In addition, we com-
pared IRMA with three widely
adopted prompting strategies:
(1) ReAct, a reasoning-based
prompting technique; (2) Func-
tion Calling, designed specifi-
cally to enhance a model’s tool-
calling capability; and (3) Self-
Reflection, a method aimed at im-
proving tool-use performance by
addressing errors in the agent’s
actions.

Evaluation To evaluate performance, we use the pass^k metrics, which measure the reliability and
consistency of models across different prompting strategies. The pass^k metric (pronounced "pass hat
k") is defined as the probability that all of the k independently sampled outputs successfully complete
the task, averaged across all tasks. Specifically, if a task is run for n independent trials and c of those
are successful (i.e., have a correct result with reward r = 1), an unbiased estimate of pass ^k can be
computed using the following formula:

pass^k = Etask

[(
c

k

)/(
n

k

)]
This metric provides insight into how likely a model is to succeed given multiple attempts, capturing
both reliability and diversity in its outputs.

6.2 Experimental Results

As outlined in the τ -bench, in real-world scenarios—reliability and consistency are often more critical
than the average success rate (measured by pass@1). We argue that an ideal agentic method should
exhibit three key properties: (1) Accuracy, (2) Reliability, and (3) Consistency. Accordingly, we
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Figure 3: Comparison of IRMA and other techniques across five runs with varying values of K. The
figure shows a significant performance difference between IRMA and other methods on pass^5. Note
that all methods use GPT-4o as the base model. See Appendix B for more details.

begin by comparing results using pass@1 to assess accuracy, and then evaluate the performance of
state-of-the-art methods using pass^k to measure reliability and consistency.

IRMA outperforms other state-of-the-art methods in tool calling. We conducted evaluations
of multiple methods—Function Calling (FC), ReAct, and Self-Reflection—each executed over five
trials. These experiments were performed using the GPT-4o as backbone LLM. The results, presented
in Table 1, show that the IRMA framework outperforms ReAct, Self-Reflection, and FC by 6.1%,
3.9%, and 0.4%, respectively, in overall pass@1 score. Additionally, in the airline tasks, which
represent the most challenging scenarios within the dynamic environment, IRMA on GPT-4o achieves
improvements of 20%, 22.4%, and 9.2% compared to Gemini 1.5 Pro-FC, Claude 3.5 Haiku-FC, and
Claude 3.5 Sonnet-FC, respectively. These findings highlight IRMA’s strong accuracy in real-world
tasks and demonstrate its effectiveness over existing methods.

IRMA is more reliable and consistent than other methods in dynamic settings. The results in
Table 1 show that the performance of IRMA on retail pass^1 is slightly lower than that of GPT-4o-FC.
For this reason, we further explored the performance of other methods using pass^k to evaluate their
reliability and consistency. The results in Figure 4 show that IRMA, compared with ReAct and FC
on GPT-4o, is much more reliable and consistent, outperforming ReAct and FC by 16.1% and 12.6%,
respectively, in overall scores on pass^5.

IRMA is more robust on tasks with GT and UI errors. As explained in the previous sections,
τ -bench suffers from two major issues: (1) Ground Truth (GT) errors and (2) User Instruction (UI)
errors. Figure 5 in the Appendix shows the distribution of these errors across the airline and retail
tasks. We progressively removed tasks affected by these problems, and the results revealed that the
performance of all three methods improved, with IRMA showing slightly greater gains compared to
the others. We hypothesize that IRMA is more robust to hallucination-related issues. Specifically, in
tasks with GT errors, IRMA tends to avoid incorrect tool calls or invalid actions and instead produces
safe and accurate responses.

A key observation is the change in performance difference between IRMA and FC on pass^5. Before
removing tasks with GT and UI errors, IRMA outperformed FC by 10%. However, after removing
these problematic tasks, the performance gap widened to 16.1% on average. Similar patterns were
observed for other methods as well, reinforcing the claim that IRMA is more robust and less sensitive
to noisy supervision and ambiguous instructions compared to existing techniques.

IRMA solves tasks more efficiently and effectively, using fewer turns than others. One of
the primary reasons assistant agents make incorrect decisions in the final turns is the length of the
conversation, which often causes them to forget important rules and instructions. In an ideal scenario,
an assistant should resolve the user’s query with the fewest but most effective actions. To investigate
this aspect, we analyzed the distribution of turns in successful task completions by IRMA, ReAct,
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FC, and Self-Reflection, as shown in Figure 4 in the Appendix. The results show that, in retail tasks,
IRMA completes tasks with 7.9 points fewer turns than Self-Reflection and 3.1 points fewer than FC.
In airline tasks, IRMA requires 8.3 fewer turns than Self-Reflection, 1.1 fewer than FC, and 3.3 fewer
than ReAct. These results demonstrate IRMA’s superior efficiency compared to other state-of-the-art
methods.

Input Reformulation framework vs Self-Reflection The central concept of IRMA is to
reformulate the agent’s input under the assumption that supplying sufficient and well-structured
information enables the agent to act more reliably and consistently in real-world scenarios. To
evaluate this, we implemented the Self-Reflection method (Appendix F), which analyzes the agent’s
previous actions and extracts relevant information from domain rules to guide future decisions (see
section E.1 for implementation details). As shown in Figure 3, IRMA outperforms Self-Reflection in
both airline and retail tasks, achieving a 3.9% higher overall score in pass@1. More notably, IRMA
exceeds Self-Reflection by 19.1% in pass^5, highlighting its superior reliability in a real-world
environment.

In summary, while ReAct and Self-Reflection perform well in certain settings, they fall
short in complex, dynamic environments like τ -bench. Role-play methods, including verification
techniques, are also inefficient, as real-world scenarios require assistant agents to act based on limited
information, with each action affecting the environment. Although Function Calling was designed
for tool use, our results show it lacks reliability in decision-making and offers limited controllability,
even in GPT-4o with tailored system prompts. Combining FACT with GPT-4o-FC led to a 12%
performance drop, highlighting the need for more robust approaches. In contrast, IRMA consistently
delivers higher accuracy, reliability, and consistency in dynamic environments like τ -bench.

7 Conclusion

In this work, we investigate the limitations of state-of-the-art LLM-based tool-calling agents in
complex, multi-turn environments, focusing on the retail and airline domains of τ -bench. Through a
detailed analysis of conversation trajectories, we identify four major failure modes: user instruction
hallucination, agent hallucination, domain-policy violations, and contextual misinterpretation, all
of which stem from limitations in memory retention, contextual reasoning, and adherence to do-
main constraints across extended interactions. To address these challenges, we propose the Input
Reformulation Multi-Agent (IRMA) framework, designed to enhance the structure of the assistant
agent’s input. Our results show that IRMA not only outperforms other methods in pass^1 but also
demonstrates significantly higher reliability, achieving an overall score of 43% pass^in τ -bench.
Moreover, by leveraging the FACT agent, IRMA exhibits greater efficiency in task completion. In
conclusion, IRMA shows robust and consistent behavior in the unreliable and dynamic environment
of τ -bench, highlighting its effectiveness in real-world tool-use scenarios.

8 Limitations

Although the Input Reformulation Multi-Agent (IRMA) framework demonstrated superior
performance on τ -bench, several limitations remain. As shown in Figure 3, while IRMA exhibits
greater reliability compared to other methods, its performance on pass^5 still hovers around 43%.
This indicates that there is still considerable room for improving the reliability of tool-using agents
in real-world scenarios. Another limitation of this work is that our experiments and analysis are
restricted to the τ -bench benchmark. It would be valuable to evaluate IRMA across a broader range
of real-world environments to assess its generalizability.

Moreover, our observations suggest that beyond the error taxonomy we proposed, τ -bench
itself suffers from issues related to unfair reward modeling. Building a truly dynamic and
reliable evaluation environment—especially one that can control for the correctness of user
instructions—would have a significant impact on the field. Such an environment would enable more
rigorous development and evaluation of agentic frameworks and encourage further research into
robust, real-world agent behavior. Ultimately, we believe this work contributes meaningfully to the
research community and provides a strong foundation for developing more reliable and consistent
agentic methods for dynamic environments.
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We have utilized AI assistants, specifically Grammarly and ChatGPT, to correct grammatical errors
and rephrase sentences.

References
[1] Yashwanth Annepaka and Prasenjit Pakray. Large language models: a survey of their de-

velopment, capabilities, and applications. Knowledge and Information Systems, 67:2967–
3022, 2025. doi: 10.1007/s10115-024-02310-4. URL https://doi.org/10.1007/
s10115-024-02310-4.

[2] Amir Saeidi, Shivanshu Verma, Aswin RRV, Kashif Rasul, and Chitta Baral. Triple preference
optimization: Achieving better alignment using a single step optimization. arXiv preprint
arXiv:2405.16681, 2024.

[3] Divij Handa, Mihir Parmar, Aswin RRV, Md Nayem Uddin, Hamid Palangi, and Chitta Baral.
Guidedsampling: Steering llms towards diverse candidate solutions at inference-time. arXiv
preprint arXiv:2510.03777, 2025.

[4] RRV Aswin, Jacob Dineen, Divij Handa, Md Nayem Uddin, Mihir Parmar, Chitta Baral, and
Ben Zhou. Thinktuning: Instilling cognitive reflections without distillation. arXiv preprint
arXiv:2508.07616, 2025.

[5] Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. Travelagent: An ai
assistant for personalized travel planning. arXiv preprint arXiv:2409.08069, 2024.

[6] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[7] Harmanpreet Singh, Nikhil Verma, Yixiao Wang, Manasa Bharadwaj, Homa Fashandi, Kevin
Ferreira, and Chul Lee. Personal large language model agents: A case study on tailored
travel planning. In Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimorina,
editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing: Industry Track, pages 486–514, Miami, Florida, US, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.37. URL https://
aclanthology.org/2024.emnlp-industry.37/.

[8] Yingxuan Yang, Qiuying Peng, Jun Wang, and Weinan Zhang. Multi-llm-agent systems:
Techniques and business perspectives. arXiv preprint arXiv:2411.14033, 2024.

[9] Venkatesh Mishra, Bimsara Pathiraja, Mihir Parmar, Sat Chidananda, Jayanth Srinivasa, Gaowen
Liu, Ali Payani, and Chitta Baral. Investigating the shortcomings of llms in step-by-step legal
reasoning.

[10] Divij Handa, David Blincoe, Orson Adams, and Yinlin Fu. Optagent: Optimizing query
rewriting for e-commerce via multi-agent simulation. arXiv preprint arXiv:2510.03771, 2025.

[11] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark
for tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

[12] Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive
evaluation benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

[13] Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. 2024.

[14] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

9

https://doi.org/10.1007/s10115-024-02310-4
https://doi.org/10.1007/s10115-024-02310-4
https://aclanthology.org/2024.emnlp-industry.37/
https://aclanthology.org/2024.emnlp-industry.37/
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045


[15] Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving
performance. arXiv preprint arXiv:2405.06682, 2024.

[16] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
can teach themselves to use tools. Advances in Neural Information Processing Systems, 36:
68539–68551, 2023.

[17] Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo, Yesai Wu, Yankai Lin, Wenzheng
Feng, and Yasheng Wang. Learning evolving tools for large language models. arXiv preprint
arXiv:2410.06617, 2024.

[18] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
real-world apis. arXiv preprint arXiv:2307.16789, 2023.

[19] Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang,
Weinan Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function
calling. arXiv preprint arXiv:2409.00920, 2024.

[20] Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin,
Suzan Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language models
as automatic tool agents, 2025. URL https://arxiv.org/abs/2405.16533.

[21] Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei
Liu, Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable
and diverse function-calling datasets. Advances in Neural Information Processing Systems, 37:
54463–54482, 2024.

[22] Akshara Prabhakar, Zuxin Liu, Weiran Yao, Jianguo Zhang, Ming Zhu, Shiyu Wang, Zhiwei Liu,
Tulika Awalgaonkar, Haolin Chen, Thai Hoang, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025.

[23] Fan Yin, Zifeng Wang, I Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long T Le, Kai-Wei
Chang, Chen-Yu Lee, et al. Magnet: Multi-turn tool-use data synthesis and distillation via graph
translation. arXiv preprint arXiv:2503.07826, 2025.

[24] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544–126565, 2024.

[25] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li,
Fei Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms.
arXiv preprint arXiv:2304.08244, 2023.

[26] Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank Agarwal, Maxwell Crouse, Yara Rizk,
Kelsey Bradford, Asim Munawar, Sadhana Kumaravel, Saurabh Goyal, et al. Nestful: A bench-
mark for evaluating llms on nested sequences of api calls. arXiv preprint arXiv:2409.03797,
2024.

[27] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[28] Jimin Sun, So Yeon Min, Yingshan Chang, and Yonatan Bisk. Tools fail: Detecting silent errors
in faulty tools. arXiv preprint arXiv:2406.19228, 2024.

[29] Cailin Winston and René Just. A taxonomy of failures in tool-augmented llms. In Proceedings
of the International Conference on Automation of Software Test (AST), April 28–29 2025.

[30] Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-
agent llm systems fail? arXiv preprint arXiv:2503.13657, 2025.

10

https://arxiv.org/abs/2405.16533


[31] Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, and Yong Wu. Cognitive memory in large
language models. arXiv preprint arXiv:2504.02441, 2025.

[32] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

[33] Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu, Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao
Lin, Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng, and Hayato Yamana. ToolBeHonest:
A multi-level hallucination diagnostic benchmark for tool-augmented large language models.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 11388–11422, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.637. URL https://aclanthology.org/2024.emnlp-main.637/.

[34] Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi,
Jindong Gu, Zifeng Wang, Hootan Nakhost, et al. Plangen: A multi-agent framework for
generating planning and reasoning trajectories for complex problem solving. arXiv preprint
arXiv:2502.16111, 2025.

[35] Scaled Cognition. Apt-1: Adaptive prompt tuning for llms. https://www.scaledcognition.
com/blog/apt-1, 2025. Accessed: 2025-05-19.

[36] Anthropic. Claude 3.5 models and computer use. https://www.anthropic.com/news/
3-5-models-and-computer-use, 2024. Accessed: 2025-05-20.

A Task Definition in τ -bench

Following Yao et al. [11], each task in τ -bench is modelled as a partially observable Markov decision
process (POMDP)

M = ⟨S, A, O, T , R, U⟩.
We briefly restate every component and specify how they instantiate in the retail and airline
domains.

State space S : The hidden state is factored into S = Sdb ⊗ Suser where Sdb is a snapshot of the
underlying database (orders, flights, balances etc.) and Suser stores the latent user context (identity,
revealed preferences, dialogue progress).

Action space A : The agent can either (i) invoke an API tool that queries or mutates the database
(Adb) or (ii) send a free-form respond message to the user (Auser). Thus A = Adb ∪ Auser.

Observation space O : After each action the environment returns either a JSON payload/error
from the database (Odb) or the next user utterance produced by an LLM simulator (Ouser), yielding
O = Odb ∪ Ouser.

Transition function T : T : S ×A → S ×O is deterministic for database tools (state is updated,
observation is the tool output) and stochastic for respond, which calls the user simulator to sample
the next utterance and potentially reveal more of the instruction.

Reward function R : At dialogue termination we compare the execution log to a gold reference:
(1) hashes of mutable tables must match, (2) all mandatory natural-language outputs must appear in
the agent’s responses. If both hold, R = 1, otherwise 0.

Instruction space U : Each task provides a fixed natural-language instruction u ∈ U describing
the user goal, persona and constraints. The user simulator may disclose u incrementally; therefore
the agent must act under partial observability.

This causal decomposition lets us pinpoint failure modes such as wrong tool arguments (action-level),
policy violations (transition-level), or hallucinated user messages (observation-level).
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B Pass^k Results

B.1 Airline results

Tables 2-4 refer to pass^k results of the baselines and our implemented methods. As explained in
§6.2, IRMA performs better when there are no ground-truth or user instruction errors. All results are
obtained using GPT-4o as the LLM in the agent frameworks.

Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5

ReAct 0.396 0.2779 0.2279 0.200 0.180
IRMA 0.452 0.3680 0.3280 0.308 0.300
FC 0.424 0.3120 0.2660 0.232 0.200
Self-reflection 0.448 0.3140 0.2560 0.224 0.200

Table 2: Results on all Airline tasks.

Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
ReAct 0.4941 0.3735 0.3206 0.2882 0.2647
IRMA 0.5706 0.4912 0.4471 0.4235 0.4118
FC 0.5529 0.4353 0.3794 0.3353 0.2941
Self reflection 0.5167 0.3750 0.3139 0.2778 0.2500

Table 3: Results of different methods on all Airline tasks, excluding the tasks with ground-truth
errors.

Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
ReAct 0.5226 0.4065 0.3516 0.3161 0.2903
IRMA 0.6258 0.5387 0.4903 0.4645 0.4516
FC 0.6000 0.4774 0.4161 0.3677 0.3226
Self reflection 0.5556 0.4146 0.3528 0.3111 0.2778

Table 4: Results of different methods on all Airline tasks, excluding the tasks with ground-truth errors
and user instruction errors.

B.2 Retail results

Tables 5-7 represent the results of the baseline and our implemented methods in the Retail domain.

Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
ReAct 0.5182 0.3704 0.2999 0.2573 0.2260
IRMA 0.5826 0.4783 0.4261 0.3948 0.3739
FC 0.6052 0.4522 0.3643 0.3043 0.2609
Self-reflection 0.5113 0.3809 0.3017 0.2383 0.1826

Table 5: Results of different methods on all Retail tasks.

C Domain Policies

Figures 11 and 12 are the domain policies present for the retail and airline domains in the τ -bench.
These rules are injected verbatim as the system prompt to every tool-calling agent. An agent that
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Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
ReAct 0.5304 0.3804 0.3080 0.2643 0.2321
IRMA 0.5982 0.4911 0.4375 0.4054 0.3839
FC 0.6164 0.4616 0.3732 0.3125 0.2679
self-reflection 0.5250 0.3911 0.3098 0.2446 0.1875

Table 6: Results of different methods on all Retail tasks, excluding the tasks with ground-truth errors.

Method Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
ReAct 0.5562 0.4048 0.3200 0.2818 0.2476
ours 0.6248 0.5171 0.4629 0.4305 0.4095
FC 0.6381 0.4838 0.3933 0.3314 0.2857
self reflection 0.5562 0.4171 0.3305 0.2610 0.2000

Table 7: Results of different methods on all Retail tasks, excluding the tasks with ground-truth errors
and user instruction errors.

violates any of them—even if it successfully fulfills the user’s request—receives zero reward, so strict
compliance is essential. The Tool-Calling Agent has to strictly operate under the constraints of these
policies to correctly solve user requests.

D Failure Example

Figures 7 and 8 show an example of errors occurring in the conversational trajectories simulating
task 19 (retail) of the user-agent interactions as enumerated in subsections of §4. Error 1 in Figure
7 shows an example of ’User Instruction Hallucination’ occurring in the very first user turn. Error
2 in Figure 8 shows an example of ’Domain Policy Violation’ error. The user instruction for Task
19 is provided in Figure 6. This ’instruction’ represents the original user instruction provided to the
LLM-simulated user. It is the ‘script’ the user has to follow to provide requests to the agent.
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Figure 4: Comparison of IRMA and other methods based on the number of turns in successful tasks
in the Airline and Retail domains.
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Figure 5: Error statistics across Airline and Retail tasks. GT: Ground Truth errors; UI: User
Instruction errors.

E Input Reformulation Multi Agent framework

E.1 Follow-up question ACTing (FACT) Agent

The primary difference between FACT and other prompting techniques lies in the instruction section
of the system prompt (refer to Figure 9).

F Self-Reflection Framework

To check the effectiveness of self-reflection as an alternative against the baselines and IRMA, we
implement a multi-agent LLM self-reflection pipeline, consisting of a retriever LLM agent and a
verifier LLM agent. Contrary to input reformulation, where the prompt provided in the user query
is reformulated, the self-reflection agent pauses the tool-calling LLM agent before the execution
environment executes the tool-call. All of the previous user queries are provided as input to the
retriever agent to extract the relevant domain policy rules based on the user intent reflected from
the user requests in the conversation. The retrieved rules are provided to the verifier agent along
with the tool-calling agent’s planned tool call. The verifier agent then verifies whether the tool-call
is correct by providing a reflective justification based on determining whether any domain rule has
been violated or not. The overall pipeline of the self-reflection agent is provided in Figure 10. The
reflective feedback loop from verifier is set to be a one-time loop as the execution of the loop is
very latency-heavy and invoking it multiple times might not be ideal in real-world customer-agent
scenarios.

Method - IRMA Ablations (↓) Pass^1 Pass^2 Pass^3 Pass^4 Pass^5
Memory only 0.416 0.27 0.212 0.18 0.16
Constraint only 0.416 0.276 0.206 0.164 0.14
Tool Suggestion only 0.424 0.268 0.19 0.14 0.1
Memory + Constraint 0.428 0.31 0.26 0.236 0.22
Memory + Tool Suggestion 0.448 0.294 0.214 0.16 0.12
Constraint + Tool Suggestion 0.38 0.264 0.212 0.18 0.16
Memory + Constraints + Tool Suggestion (All components) 0.452 0.368 0.328 0.308 0.3

Table 8: Results of IRMA component ablations on airline tasks. Bold scores represent the best
scores. Italic scores represent the second-best scores. GPT-4o is used as the backbone LLM for all
the sub-agents.

G Ablation Study on IRMA

We ablate the three IRMA modules—Memory (M), Constraint (C), and Tool (T)—and evaluate them
on the airline subset. Across all Pass^k metrics, the full configuration (M+C+T) achieves the best
performance, indicating strong complementarity among modules. Among the ablations, M+C is
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consistently the strongest, ranking second overall in terms of better reliability at higher values of
k. This pattern suggests that instruction retention (M) and policy/constraint adherence (C) account
for most gains in long-horizon reasoning and plan stability, while tool disambiguation (T) provides
the additional performance improvement needed to reach state-of-the-art performance. In sum, each
module targets a distinct failure mode—carryover of instructions (M), rule compliance (C), and tool
selection/parameterization (T)—but their integration is necessary for robust behavior in dynamic
tool-use settings.

G.1 Constraints Extractor Agent

Constraints Extractor System Prompt

You are a **Constraint Filtering Agent**. Your task is to extract a **checklist of domain policy
constraints** that are **relevant and necessary** to fulfill a user’s query, based on operations policy.

### Rules:
1. Include only constraints that are **directly triggered** by the user’s intent and required to process or
plan their request.
2. **Do not include** constraints that:
* Are conditional on user actions not yet taken (e.g., no action requested, no reservation referenced).
* Involve future steps like confirmation or verification, unless the user request makes them necessary.
3. Each constraint must be listed as a **checklist item** in clear, concise terms.
4. **If a constraint includes any value-based condition or limitation** (e.g., specific dollar amount,
multiplier, eligibility thresholds), **you must extract and include that value**.
5. Output should follow this structure:

<constraints>
1. [Constraint 1: include any relevant thresholds, values, or limits]
2. [Constraint 2: include specific roles, benefits, or values]
...
</constraints>

* Do not include explanations, reasoning, or commentary.
* Return only the ‘<constraints>‘ block.

Constraints Extractor User Prompt

Given the following **user request** and **domain policy constraints**, extract only the **relevant
and necessary constraints** that must be satisfied to process the user’s intent.

* **DO NOT** list all constraints.
* **DO** include only those constraints that are directly required to fulfill the user’s current request. *
**If a constraint includes a specific value or condition (e.g., dollar amounts, eligibility rules, thresholds),
it must be included in the output.**
* **If no constraint needs to be satisfied, return only ‘None‘ inside the ‘<constraints>‘ block.**
* Present the output as a numbered checklist inside a ‘<constraints>‘ block.
* Do not add any explanation or extra text.

### Input Format:
Constraints: CONS
User Query: {USER_QUERY }
### Output Format:
<constraints> 1. [First relevant constraint with any required values] 2. [Second relevant constraint...]
</constraints>
If nothing applies:
<constraints> None </constraints>

15



G.2 Tool Selector Agent

Tool Selector System Prompt

"You are a smart AI agent that selects the most relevant tools from a predefined list, based on a user
query. Each tool in the list has a name and a description of its capabilities.

### Your Task:

Given a user query and a list of available tools, analyze the query and select only the tools
that are relevant for fulfilling the user’s request.

### Guidelines:

1. **Understand the User Query** Carefully analyze the user query to identify:

* The main intent (e.g., search, update, calculate, retrieve). * The specific domain, data, or
functionality being asked for. * Any implicit goals or constraints.

2. **Evaluate Tool Relevance** For each tool in the list, assess:

* Whether the tool can directly help address the query. * Whether using the tool would move
the system closer to satisfying the user’s intent. * Ignore tools that are only tangentially or theoretically
related.

3. **Be Precise**

* Do not select tools based on vague or partial overlap. * Select **only those tools** that
are likely to be **functionally useful** to respond to the query.

4. **Output Format** Return a list of selected tool names. If no tools are relevant, return an
empty list.

### Constraints:

* Do not call or execute any tool. * Generate one line explanations to show the reason of
suggestiong the tool. * Generate a list of tools not only one. * Do not make assumptions beyond what
is implied in the query or tool descriptions.

Tool Selector User Prompt

Available Tools:tool_list
User Query: user_query
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Figure 6: User instruction and Ground-Truth Action Sequence of Task 19 (Retail) in τ -bench.
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Figure 7: Part 1 of the conversation trajectory simulation of Task 19 (Retail).
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Figure 8: Part 2 of the conversation trajectory simulation of Task 19 (Retail).

19



(a) Part 1 of the FACT system prompt

Figure 9: FACT System prompt.
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(b) Part 2 of the FACT system prompt

Figure 9: FACT System prompt.
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Figure 10: Overview of the pipeline showcasing the working of the self-reflection framework. The
italicized text inside dotted green dotted text boxes refer to prompt gists provide to the Retriever and
Verifier LLM Agent. The self-reflection only activates when the assistant generates the tokens to
invoke a tool call.
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(a) Part 1 of the Retail Domain Rules

Figure 11: Domain Policies of the Retail Domain
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(b) Domain Policies of the Retail Domain

Figure 11: Domain Policies of the Retail Domain
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(a) Part 1 of the Airline Domain Rules

Figure 12: Domain Policies of the Airline Domain.
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(b) Part 2 of the Airline Domain Rules

Figure 12: Domain Policies of the Airline Domain

26


	Introduction
	Related Works
	Problem Statement
	Error-Classification
	User Instruction Hallucination
	Agent Hallucination
	Domain Policy Violation
	Contextual Misinterpretation

	Methodology
	FACT: Follow-up question ACTing
	IRMA: Input-Reformulation Multi-Agent Framework

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Limitations
	Task Definition in -bench
	Pass^k Results
	Airline results
	Retail results

	Domain Policies
	Failure Example
	Input Reformulation Multi Agent framework
	Follow-up question ACTing (FACT) Agent

	Self-Reflection Framework
	Ablation Study on IRMA
	Constraints Extractor Agent
	Tool Selector Agent


