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Abstract001

The rapid advancement of large language mod-002
els (LLMs) has transformed the landscape003
of agentic information seeking capabilities004
through the integration of tools such as search005
engines and web browsers. However, cur-006
rent mainstream approaches for enabling LLM007
web search proficiency face significant chal-008
lenges: supervised fine-tuning struggles with009
data production in open-search domains, while010
RL converges quickly, limiting their data uti-011
lization efficiency. To address these issues, we012
propose EvolveSearch, a novel iterative self-013
evolution framework that combines SFT and014
RL to enhance agentic web search capabili-015
ties without any external human-annotated rea-016
soning data. Extensive experiments on seven017
multi-hop question-answering (MHQA) bench-018
marks demonstrate that EvolveSearch consis-019
tently improves performance across iterations,020
ultimately achieving an average improvement021
of 4.7% over the current state-of-the-art across022
seven benchmarks, opening the door to self-023
evolution agentic capabilities in open web024
search domains.025

1 Introduction026

Rapid advances in large language models (LLMs)027

have enabled agentic AI capabilities through tool028

integration (e.g., search, browsing, code execution),029

supporting autonomous interaction with external030

environments. Recent agentic systems like Ope-031

nAI Deep Research (OpenAI, 2025) achieve 51.9%032

accuracy on BrowseComp, well above human per-033

formance (29.8%) (Wei et al., 2025), highlighting034

LLMs’ potential for deep information research.035

Existing agentic systems are primarily imple-036

mented via prompting-based, supervised fine-037

tuning (SFT)-based, and reinforcement learning038

(RL)-based approaches. Prompting-based agents039

rely on predefined workflows (Anthropic, 2025;040

Zhou et al., 2023), resulting in rigid behaviors and041

limited generalization. They often struggle with042

Figure 1: Iterative improvements in the average perfor-
mance of SFT and RL models, reflecting progressive
enhancement through self-evolution.

instruction following and reasoning, requiring sub- 043

stantial manual prompt engineering for reliable per- 044

formance (Pan et al., 2025). Subsequent work dis- 045

tills agentic capabilities into smaller LLMs via su- 046

pervised fine-tuning (SFT) (Wang et al., 2025; Wu 047

et al., 2025a). However, in open-ended search tasks, 048

collecting SFT data necessitates complex environ- 049

ment interactions, making data construction chal- 050

lenging. More importantly, they lack robustness 051

in complex, real-world environments (Zheng et al., 052

2025). RL-based approaches (Shao et al., 2024) 053

have recently gained attention for enabling models 054

to acquire decision-making capabilities through on- 055

line interactions with the environment and reward- 056

driven updates. This paradigm allows agents to 057

adapt to task dynamics in an end-to-end manner. 058

However, in practice, existing RL-based methods 059

often converge within fewer than 100 steps, result- 060

ing in low data efficiency and limited performance 061

gains (Song et al., 2025; Jin et al., 2025). 062

To address the challenges of scarce SFT data 063

and the limited performance of the existing RL ap- 064

proach, we propose EvolveSearch, a novel iterative 065

self-evolution framework that combines SFT and 066

RL to enhance web search capabilities without any 067
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external human-annotated reasoning data. Specifi-068

cally, EvolveSearch proceeds in alternating phases:069

(i) In the RL exploration phase, the model interacts070

with a web search environment, leveraging tool-use071

capabilities and receiving a hybrid reward signal.072

This enables the model to identify and learn from073

high-reward rollouts. (ii) In the SFT optimization074

phase, the best-performing rollouts from the RL075

phase are selected based on three criteria and used076

to optimize the model via SFT, yielding a stronger077

initialization (i.e., cold-start policy) for the next078

RL cycle. By iteratively alternating between ex-079

ploration and optimization, EvolveSearch progres-080

sively bootstraps the performance of the RL model081

and the SFT model, learning robust and effective082

search behaviors from its own experience without083

human intervention, as illustrated in Figure 1.084

To validate the effectiveness of EvolveSearch,085

we conduct extensive experiments in realistic web086

search settings. Evaluation on seven multi-hop087

question-answering (MHQA) benchmarks demon-088

strates EvolveSearch consistently outperforms com-089

petitive baselines. Notably, it achieves a 4.7% av-090

erage accuracy gain over the previous state-of-the-091

art (SOTA), demonstrating the benefits of combin-092

ing supervised fine-tuning and reinforcement learn-093

ing in a self-evolution framework. These results094

highlight the strength of iterative learning from095

high-reward rollouts, enabling substantial perfor-096

mance improvements without reliance on human-097

annotated reasoning data.098

Overall, our contributions are as follows:099

• We propose EvolveSearch, a novel framework100

that, to the best of our knowledge, is the first to101

iteratively combine RL with SFT to enhance102

LLMs’ capabilities in the web search scenario.103

• EvolveSearch requires no human-annotated104

reasoning data; instead, it leverages high-105

quality rollouts from RL models to enable con-106

tinuous self-improvement via self-generated107

supervision.108

• We conduct extensive empirical evaluations109

on multiple MHQA datasets, demonstrating110

the significant effectiveness and generality of111

EvolveSearch over existing SOTA.112

2 Background113

In this work, a question-answering rollout ex-114

pands through a ReAct-based (Yao et al., 2022)115

sequence of thought-action-observation itera-116

tions. Within each iteration, the LLM agent gener-117

ates: (i) A free-form thought (τ ) to extract infor- 118

mation, adjust action plans, and track task progress, 119

etc. (ii) A structured action (α) to interact with 120

external environments. (iii) This interaction yields 121

an observation (o) which serves as feedback for 122

the next iteration. Formally, we represent the agen- 123

tic execution loop at a given time step t as a triplet 124

(τt, αt, ot). In EvolveSearch, the action α can be 125

either search, corresponding to the utilization of a 126

search tool, or answer, which involves formulating 127

a response to the given question. The observation 128

o after a search action typically includes a list of rel- 129

evant results, such as the top-10 titles and snippets 130

retrieved from the search tool. Consequently, the 131

historical rollout leading up to time step t denoted 132

as,Ht, can be represented as the sequence: 133

Ht = (τ0, α0, o0, τ1, ..., τt−1, αt−1, ot−1). (1) 134

At time step t, the agent considers the historical 135

rolloutHt to generate thought τt and subsequently 136

select an action αt, following policy π(τt, αt|Ht). 137

Then it gets a feedback observation o if αt is a 138

search action. Otherwise, the rollout comes to an 139

end after the answer action αt is completed. 140

3 Method 141

EvolveSearch employs iterative Reinforcement 142

Learning (RL) and Rejection Sampling Fine-tuning 143

(RSFT) to train an LLM agent towards solving 144

question-answering problems with multiturn think- 145

ing and tool use. We provide an overview of our 146

framework, with the full workflow illustrated in 147

Figure 2. We begin by evenly dividing the dataset 148

into N parts. The process then involves iteratively 149

executing the following two stages N times: 150

• Stage 1. In the i-th iteration, we utilize the 151

i-th portion of the raw data to perform RL 152

training on the SFT model from the previous 153

iteration. By implementing a hybrid reward 154

mechanism, we obtain an RL model with bet- 155

ter generalization capabilities and rollouts dur- 156

ing training. These rollouts provide diverse 157

and high-quality training data for the subse- 158

quent SFT training phase. 159

• Stage 2. We merge the high-quality and di- 160

verse rollouts from the previous stage into the 161

data pool, then refine the cold-start data by 162

applying three filtering rules. This refined 163

data is subsequently used for SFT of the fixed 164

base model, thereby enabling a more robust 165
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Figure 2: The overall framework of EvolveSearch. We iteratively input raw question-answering data and a fixed
base model. In the i-th iteration, the base model first performs SFT with a filter pool of training data, followed by
RL with the i-th raw data. The rollout data during RL is filtered and incorporated into the training data pool for SFT
in the subsequent iteration.

Figure 3: The illustration of a rollout that exactly
matches the format.

cold-start model for RL training in the next166

iteration.167

We will further explain these two stages in Sec-168

tion 3.1 and Section 3.2, respectively. The iterative169

algorithm workflow is presented in Appendix D.170

3.1 Hybrid Reward Reinforcement Learning171

To encourage the model to explore diverse, high-172

quality rollouts, we propose hybrid reward rein-173

forcement learning: (i) A composite reward func-174

tion is designed to guide the model towards proper175

tool calls and the derivation of accurate answers176

(Section 3.1.1); (ii) A modified version of Group177

Relative Policy Optimization (GRPO) (Shao et al., 178

2024) is applied to improve optimization stability 179

and bypass the need for an extra value model (Sec- 180

tion 3.1.2). The prompt for RL rollout is shown in 181

Appendix A. 182

3.1.1 Reward Design 183

We structure reward function to comprise two key 184

components: format reward and answer reward. 185

Format Reward. We establish a specific tem- 186

plate to generate rollouts, as illustrated in Fig- 187

ure 3. According to this template, the model’s 188

thought for each turn is enclosed within <think- 189

ing></thinking> tags, any tool call (action) is 190

placed within <tool_call></tool_call> tags, the 191

corresponding tool feedback (observation) is en- 192

closed by <tool_response></tool_response> tags, 193

and finally, the answer is presented within <an- 194

swer></answer> tags. Only when a rollout exactly 195

matches the format, it receives a 1.0 format reward, 196

denoted as Rf = 1.0. Otherwise, we do not further 197

check the answer, and the rollout receives a final 198

reward of 0.0. 199

Answer Reward. When the format is strictly 200

followed, we employ a judge model to assess 201

the correctness of the answer (between <answer> 202

and </answer> tags). The judge prompt is shown 203

in Appendix B. A rollout receives a 1.0 reward 204

(Ra = 1.0) if the answer is correct, otherwise 205

Ra = 0.0. In experiments, we also apply the F1 206

and recall as the answer reward for analysis, which 207

we detail in Appendix F. 208

We define the final reward as a combination of 209
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the above two rewards:210

R =

{
0.5 ∗ (Rf +Ra), if the format is correct
0, if the format is incorrect

(2)211

3.1.2 Group Relative Policy Optimization212

In this work, we adopt the Group Relative Policy213

Optimization (GRPO) algorithm. GRPO optimizes214

the current policy πθ by leveraging a reference pol-215

icy πθref along with a set of rollouts generated by216

an existing policy πθold . As suggested by (Yu et al.,217

2025) and (Liu et al., 2025), we modify the original218

sample-level loss of GRPO into the token-level loss219

for better training performance. Specifically, given220

G rollouts {yi}Gi=1 ∼ πθold(·|x)(with each input221

x ∼ D, where D is the experience distribution),222

the current policy is then optimized by maximizing223

the following objective function:224

J (θ) = Ex∼D,{yi}Gi=1∼πθold (·|x)
1∑G

i=1 |yi|

G∑
i=1

|yi|∑
t=1

[min (ri,tAi,t, clip(ri,t, 1− ϵ, 1 + ϵ)Ai,t)− βDKL]
(3)225

where ϵ is the clipping threshold and |yi| is the226

length of rollout yi. The DKL represents the dis-227

crepancy of the predicted probability between the228

current policy πθ and the reference policy πref .229

The advantage Ai,t and ri,t are defined as fol-230

lows:231

ri,t =
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)

Ai,t =
Ri −mean

(
{R}

)
std

(
{R}

) (4)232

where Ri represents reward for yi, and mean(·),233

std(·) are calculated over the batch to normalize234

reward scores into advantage estimates.235

3.2 Rejection Sampling Fine-Tuning236

To enhance the utilization of rollouts during the237

RL phase and provide a better cold-start model for238

the next RL iteration, we collect the rollouts in239

RL and use rejection sampling fine-tuning to learn240

high-quality and diverse samples. The following241

three rules are applied sequentially to ensure high-242

quality, diverse and multi-step rollout filtering.243

Rule 1: High-Reward Selection (HRS). We244

only retain rollouts with rewards ≥ δ to ensure245

the high quality of training samples.246

Rule 2: Same Query Deduplication (SQD). For 247

multiple rollouts with the same query, we retain the 248

sample that utilizes the tools the most, to ensure 249

the diversity of the training samples. 250

Rule 3: Multi-Calls Selection (MCS). To en- 251

hance data utilization efficiency, we combine roll- 252

outs from the current and previous iterations. We 253

observe that samples with multiple tool calls of- 254

fer meaningful thinking and search features. As 255

noted in Section 5, data quantity is prioritized over 256

quality. Hence, we select the top k rollouts with 257

the most tool calls for SFT in each iteration. The 258

distribution of tool calls for RL rollouts in each 259

iteration is presented in the Appendix C. 260

Supervised Fine-Tuning. After obtaining the 261

data Df filtered by the three rules, we train the 262

base model in an SFT manner. This produces 263

a good cold-start model for the next RL stage. 264

Given the question x and the agentic execution 265

rollout H = (y0, y1, ..., yn−1, yn), where each 266

yi ∈ {τ, α, o}, the loss function for SFT is com- 267

puted as follows: 268

L =− 1∑|H|
i=1 I[yi ̸= o]

×
|H|∑
i=1

I[yi ̸= o] · log πθ(yi | x, y<i)

(5) 269

Here, I[yi ̸= o] filters out tokens correspond- 270

ing to external feedback, ensuring that the loss is 271

calculated only on the actions of the agent. 272

4 Experiments 273

4.1 Benchmark and Evaluation Metrics 274

In EvolveSearch, we utilize the same training 275

and testing data as DeepResearcher (Zheng et al., 276

2025). Specifically, for the training dataset, we 277

used a distribution ratio of NQ (Kwiatkowski et al., 278

2019):TQ (Joshi et al., 2017):HotpotQA (Yang 279

et al., 2018):2Wiki (Ho et al., 2020) as 1:1:3:3 280

with a total of 80,000 samples. This includes 75% 281

of the samples from multi-hop scenarios, which 282

better reflect the complex information-seeking be- 283

haviors required for deep research questions. For 284

the evaluation dataset, we use the NQ, TQ, Hot- 285

Pot, and 2Wiki datasets as the in-domain evalu- 286

ation set, totaling 2,048 examples. We use the 287

Musique (Trivedi et al., 2022), Bamboogle (Press 288

et al., 2022), and PopQA (Mallen et al., 2022) 289
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datasets as the out-of-domain evaluation set, to-290

taling 1,129 examples. We utilize a judge model to291

evaluate the correctness of the model’s response.292

4.2 Implementation Details293

We utilize Qwen2.5-7B-Instruct1 (Yang et al.,294

2024) as our backbone. During the RL training295

phase, each sample undergoes 16 rollouts with a296

training batch size of 128, a learning rate of 1e-6,297

a maximum search count of 10, and a temperature298

of 1.0. The training epoch is set to 1. We utilize299

Qwen2.5-72B-Instruct2 as our judge model. We300

split the training data into N = 10 parts, and 8,000301

samples are consumed for RL training in each iter-302

ation. In the data filter process, we set k to 2000 to303

select samples with the highest number of tool calls,304

δ to 0.7 to select samples with a reward exceeding305

0.7. In the RSFT training phase, we employ Zero-3306

offload(Aminabadi et al., 2022), with a batch size307

of 64, a learning rate of 3e-6, and the training epoch308

set to 1.309

4.3 Baselines310

To evaluate the effectiveness of our approach, we311

compare it with the following baseline methods:312

• CoT: This baseline generates answers using313

Chain-of-Thought reasoning without depend-314

ing on any external reference context.315

• RAG: This method integrates CoT reasoning316

with retrieved reference context to assist in the317

generation.318

• Search-o1 (Li et al., 2025) + Web Search: A319

multi-step reasoning baseline where the model320

is permitted to generate search queries and321

send real-time search requests via APIs, ac-322

cessing URLs to browse web pages. The323

model can then generate answers based on324

the content of these web pages.325

• Search-r1 (Jin et al., 2025): An RL-based fine-326

tuning strategy. During both the training and327

inference stages, it utilizes a retriever to ac-328

cess information from Wikipedia. We con-329

sider two setups: using Qwen2.5-7B-base3 or330

Qwen2.5-7B-Instruct as the initial actor mod-331

els, respectively.332

1https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
2https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-7B

• R1-Searcher (Song et al., 2025): Unlike 333

Search-r1, when given a search query, it 334

searches Bing and answers questions by sum- 335

marizing the first three pages of the search 336

results. 337

• DeepResearcher (Zheng et al., 2025): Un- 338

like R1-Searcher, DeepResearcher does not 339

restrict its search to a specific domain and al- 340

lows for autonomous selection of URLs rather 341

than mandatorily summarizing the top three 342

search results. 343

• DeepResearcher + Model-Based Reward 344

(MBR): The standard DeepResearcher uses 345

the F1 score as a reward. For fair comparison 346

with our method, we also use Qwen2.5-72B- 347

Instruct as the judge model for the response 348

reward. For simplicity, we denote this base- 349

line as DeepResearcher∗. 350

• RLSearch: An RL-only baseline of our frame- 351

work. It is only trained via RL with the same 352

raw data and the same hyperparameters. 353

All the baselines use Qwen2.5-7B-Instruct as the 354

backbone unless specifically mentioned. 355

4.4 Main Results 356

The results of EvolveSearch for 3 iterations and 357

other baselines are presented in Table 1. 358

EvolveSearch consistently outperforms all base- 359

lines within training domains. EvolveSearch 360

achieves the highest performance across all datasets 361

within the four domains, significantly surpassing 362

all baselines on the NQ and 2Wiki datasets. While 363

DeepResearcher + MBR demonstrates comparable 364

performance on the NQ and HotpotQA datasets, it 365

is noteworthy that DeepResearcher + MBR utilizes 366

model-based reward, which results in performance 367

significantly higher than when using F1 as a reward 368

during training. Therefore, using F1 as a reward 369

tends to shorten the model’s response, thereby af- 370

fecting the overall quality of its responses. 371

EvolveSearch demonstrates impressive gener- 372

alization capabilities in out-of-domain scenar- 373

ios. It consistently surpasses all baseline methods 374

across three out-of-domain datasets. This indicates 375

that EvolveSearch allows the model to effectively 376

acquire reasoning skills that can be applied broadly, 377

instead of just adjusting to specific training data. 378
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Method Inference In Domain Out of Domain
Environment NQ TQ Hotpot 2Wiki Avg Musique Bamb PopQA Avg

Prompt Based
CoT† Local RAG 32.0 48.2 27.9 27.3 33.9 7.4 21.6 15.0 14.7
CoT+RAG† Local RAG 59.6 75.8 43.8 24.8 51.0 10.0 27.2 48.8 28.7
Search-o1† Web Search 55.1 69.5 42.4 37.7 51.2 19.7 53.6 43.4 38.9

Training Based
Search-r1-base† Local RAG 60.0 76.2 63.0 47.9 61.8 27.5 57.6 47.0 44.0
Search-r1-instruct† Local RAG 49.6 49.2 52.5 48.8 50.0 28.3 47.2 44.5 49.5
R1-Searcher† Web Search 52.3 79.1 53.1 65.8 62.6 25.6 65.6 43.4 44.9
DeepResearcher† Web Search 61.9 85.0 64.3 66.6 69.5 29.3 72.8 52.7 51.6
DeepResearcher∗ Web Search 66.4 86.0 65.4 75.0 73.2 29.0 71.7 50.2 50.3
RLSearch-ite1 Web Search 68.5 86.3 66.7 76.4 74.5 30.4 74.2 50.4 51.6
RLSearch-ite2 Web Search 69.3 87.7 66.8 75.5 74.9 33.5 73.6 51.1 52.7
RLSearch-ite3 Web Search 69.8 88.4 65.0 71.8 73.8 30.8 77.0 51.8 53.2

Ours
EvolveSearch-ite1 Web Search 68.5 87.4 65.4 75.6 74.2 29.3 74.0 51.2 51.5
EvolveSearch-ite2 Web Search 69.4 86.3 66.3 78.5 75.1 31.6 76.5 52.8 53.6
EvolveSearch-ite3 Web Search 71.0 89.5 67.7 76.4 76.2 33.8 77.1 50.3 53.7

Table 1: Main results on seven multi-hop question answering (MHQA) benchmarks. All the results labelled with †

are taken from Zheng et al. (2025).

Figure 4: The impact of different data filtering rules on
performance.

A good cold-start model is crucial. We select379

high-quality and diverse reasoning rollouts dur-380

ing the RL phase to employ Rejection Sampling381

Fine-Tuning (RSFT) for obtaining a better ini-382

tial policy model. From the results, especially383

the comparison between the three iterations of384

EvolveSearch and the RLSearch baseline, we can385

conclude that a good cold-start model can further386

enhance the model’s potential and stability in RL387

training, thereby consistently improving the perfor-388

mance.389

5 Analysis390

Data filtering plays a vital role. To demonstrate391

the significance of data filtering rules, we report the392

model’s average in-domain and out-of-domain per-393

Training Reward Method AVGID AVGOOD

Recall

DeepResearcher 65.5 52.8
EvolveSearch-ite1 68.8 55.8
EvolveSearch-ite2 69.6 56.6
EvolveSearch-ite3 69.9 58.8

F1

DeepResearcher 61.2 50.8
EvolveSearch-ite1 61.6 51.4
EvolveSearch-ite2 62.2 51.0
EvolveSearch-ite3 62.1 52.1

Judge Model

DeepResearcher 73.2 50.3
EvolveSearch-ite1 74.2 51.5
EvolveSearch-ite2 75.1 53.6
EvolveSearch-ite3 76.2 53.7

Table 2: Performance comparison of different training
rewards during the training phase.

formance across different filtering rules. For fair 394

comparison, we randomly select only 2000 SFT 395

samples for each experiment, followed by using 396

the additional 8000 samples for RL training. As 397

shown in Figure 4, each data filtering rule is es- 398

sential. Specifically, filtering out multi-call data 399

aims to enhance the model’s initial multi-step rea- 400

soning capabilities, filtering data with high rewards 401

ensures data accuracy, and filtering data with dif- 402

ferent queries increases diversity, thereby compre- 403

hensively improving the model’s performance. 404

EvolveSearch remains effective with different 405

training rewards. To evaluate the effectiveness 406
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Method Judge Model AVGID AVGOOD

DeepResearcher∗
DeepSeek-V3 66.1 38.0

chatgpt-4o-latest 71.0 42.5
grok-3 74.5 45.9

EvolveSearch-ite1
DeepSeek-V3 66.3 39.8

chatgpt-4o-latest 71.8 43.9
grok-3 74.7 48.0

EvolveSearch-ite2
DeepSeek-V3 67.4 41.1

chatgpt-4o-latest 72.6 45.0
grok-3 75.3 48.7

EvolveSearch-ite3
DeepSeek-V3 67.4 41.6

chatgpt-4o-latest 72.7 45.3
grok-3 75.8 49.3

Table 3: Comparison of model performance using dif-
ferent judge models.

of our method when employing different answer407

rewards, we replace the answer reward component408

with three common and widely recognized metrics:409

Recall, F1 Score, and Model-Based Reward. We410

utilize these metrics to compare the performance411

of our method against the baseline. To ensure con-412

sistency between training and testing, the same413

answer evaluation metric is used for both. The414

experimental results, presented in Table 2, demon-415

strate that our method consistently outperforms the416

baseline when using each of these different answer417

reward metrics on seven benchmarks. Furthermore,418

we observe that as the number of iterations of our419

method increases, the model’s performance on both420

in-domain (ID) and out-of-domain (OOD) datasets421

gradually improves.422

EvolveSearch still demonstrates superior per-423

formance across different judge models. To424

further verify our approach’s effectiveness, we425

utilize different judge models to evaluate the426

model’s response. In Table 3, we select three well-427

known LLMs, DeepSeek-V3 (DeepSeek-AI, 2024),428

chatgpt-4o-latest4, and grok-35 as the judge model.429

Although their performance is slightly lower than430

the trained judge model, the improvement trend431

relative to the baseline remains consistent. After432

the first iteration of training, the model outperforms433

the baseline in both in-domain and out-of-domain434

benchmarks. As the iteration increases, the model’s435

performance gradually improves, further demon-436

strating the effectiveness of the method.437

4https://openai.com
5https://x.ai

Figure 5: Performance of SFT model and RL model at
different iterations.

Training Num AVGID AVGOOD

4000 75.6 53.3
8000 75.2 52.6

12000 75.4 53.0
16000 75.4 53.4

Table 4: The impact of different data volumes on model
performance during the RSFT phase.

The performance of the SFT Model and RL 438

Model improves as the number of iterations in- 439

creases. Figure 5 presents the performance of 440

the SFT model and RL model across different 441

iterations. We observe that as iterations grow, 442

not only does the RL Model exhibit significant 443

improvements across seven different benchmarks, 444

but the SFT Model also shows considerable en- 445

hancement. This confirms the high quality of our 446

chosen data and demonstrates the effectiveness of 447

EvolveSearch. 448

Iterative training increases the frequency of 449

model tool calls. To investigate the model’s tool 450

usage on the test set throughout the entire iterative 451

training process, we record the average number 452

of search tool calls by the SFT model and the RL 453

model on the test set. As shown in Figure 6, our 454

findings reveal that, as the number of iterations 455

increases, the model increasingly depends on the 456

tool, leading to gathering more information. Fur- 457

thermore, we note that for the majority of questions, 458

the model requires only three calls to the search 459

tool to reach a solution, indicating that the training 460

data is not sufficiently challenging. A test case of 461

the interaction between the model and the environ- 462

ment is presented in the Appendix E. 463

Data quality is more important than data quan- 464

tity. To investigate the impact of SFT training 465
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Figure 6: Average number of tool calls in the test set
across different iterations.

data volume on model performance, we conduct466

controlled experiments using progressively scaled467

datasets. Based on historical RL training rollouts,468

we remove the filtering on the number of web469

search tool calls. SFT is performed at four different470

scales: 4,000, 8,000, 12,000, and 16,000 samples.471

All experiments subsequently undergo an identical472

RL training phase using a fixed 8,000 question-473

answering samples. The results are presented in474

Table 4, which show that merely increasing data475

volume does not necessarily enhance performance,476

which indicates that the quality of data is more477

important than the quantity.478

6 Related Work479

Search Agent. Current methods often rely on480

manually designed workflows to guide large lan-481

guage models (LLMs) in interacting with ex-482

ternal knowledge sources (Wang et al., 2024a;483

Wu et al., 2025b). Recent studies like OpenRe-484

searcher (Zheng et al., 2024), IterDRAG (Yue485

et al., 2025), AirRAG (Feng et al., 2025), and oth-486

ers have improved search capabilities using these487

detailed workflows. However, these approaches488

are limited by their dependence on human-crafted489

prompts and interaction patterns. Recent develop-490

ments about SFT for Retrieval-Augmented Genera-491

tion (RAG) have become a preferred method over492

manual optimization (Yu et al., 2024). For exam-493

ple, CoRAG (Wang et al., 2024b) utilizes Monte494

Carlo Tree Search (MCTS) to select optimal doc-495

ument blocks under budget constraints but faces496

high computational costs and limited generaliza-497

tion due to reliance on supervised signals. Rein-498

forcement Learning (RL) presents an end-to-end499

approach to enhance large language models’ capa-500

bilities, improving reasoning skills significantly by501

late 2024 (Ouyang et al., 2022; Shao et al., 2024).502

Recent research explores RL for external knowl- 503

edge retrieval, with systems like Search-R1 (Jin 504

et al., 2025), ReSearch (Chen et al., 2025), and 505

R1-Searcher (Song et al., 2025) evolving beyond 506

predefined cues to models that autonomously de- 507

velop reasoning during retrieval. However, these 508

methods often converge quickly, resulting in low 509

data efficiency and limited performance gains. 510

Self-Evolution. Large language models (LLMs) 511

have shown the capability to annotate datasets with- 512

out relying on human-annotated labels, enabling 513

low-resource training for other LLMs. In typical 514

setups, a larger model, the teacher, generates labels 515

for a smaller model, the student, in a process known 516

as context distillation. Various algorithms can be 517

employed, such as conventional supervised fine- 518

tuning (SFT) (Alpaca, 2023; Hsieh et al., 2023), 519

in-context learning (Krishna et al., 2024), and pref- 520

erence optimization (Tunstall et al., 2023; Llama-3, 521

2024). Self-evolution methods remove the neces- 522

sity for a larger LLM, reducing computational de- 523

mand and API costs. Recent research has shown 524

this approach is viable using an unlabeled dataset 525

with a few examples for; context (Huang et al., 526

2022; Tian et al., 2023). For instance, (He et al., 527

2019) uses a small labeled dataset for initial fine- 528

tuning before applying the trained generator to an- 529

notate the unlabeled data, similar strategies are em- 530

ployed for rationalization tasks in (Jie et al., 2024). 531

(Meng et al., 2022) enhances labeled datasets with 532

additional samples, though this is limited to clas- 533

sification. Our approach focuses on the open web 534

search domain, combining SFT and RL to enhance 535

search capabilities without requiring any external 536

human-annotated reasoning data. 537

7 Conclusion 538

In an era where current search agents have sur- 539

passed the capabilities of most humans, we pro- 540

pose EvolveSearch, a novel iterative self-evolution 541

framework that synergistically combines RL with 542

SFT to enhance web search capabilities without 543

any external human-annotated reasoning rollouts. 544

Extensive experiments on multiple MHQA bench- 545

marks demonstrate that EvolveSearch consistently 546

improves performance with each iteration, ulti- 547

mately achieving an average accuracy improve- 548

ment of 4.7% over SOTA methods on seven bench- 549

marks, paving the way to self-evolution and self- 550

improvement in open web search domains. 551
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Limitations552

EvolveSearch relies on iterative collection and fil-553

tering of the rollouts during RL training for SFT,554

which adds to the computation cost of the whole555

training process. Designing a streaming rollout556

filtering system with higher sample efficiency is557

one possible way to minimize the impact of extra558

computation.559

In this work, the tool call is limited to web search,560

so the performance of other tools remains unknown.561

The investigation of multiple tools is left for future562

research.563
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A RL Prompt794

An example of rollout in the RL phase is shown795

below.796

Prompts for RL Rollout

A conversation between User and Assistant. The
user asks a question, and the assistant solves it by
calling one or more of the following tools.
<tools>
{

"name": "web_search",
"description": "Utilize the web search engine to
retrieve relevant information based on multiple
queries.",
"parameters": {

"type": "object",
"properties": {

"queries": {
"type": "array",
"items": {

"type": "string",
"description": "The search query."

},
"description": "The list of search queries."

}
},
"required": ["queries"]

}
}
</tools>

The assistant starts with one or more cycles of (
thinking about which tool to use −> performing tool
call −> waiting for tool response), and ends with (
thinking about the answer −> answer of the
question). The thinking processes, tool calls, tool
responses, and answer are enclosed within their
tags. There could be multiple thinking processes,
tool calls, tool call parameters and tool response
parameters.

Example response:
<think> thinking process here </think>
<tool_call>
{"name": "tool name here", "arguments": {"
parameter name here": parameter value here, "
another parameter name here": another parameter
value here, ...}}
</tool_call>
<tool_response>
{"name": "tool name here", "content": {"result
name here": result value here, "another result name
here": another result value here, ...}}
</tool_response>
<think> thinking process here </think>
<tool_call>
{"name": "another tool name here", "arguments":
{...}}
</tool_call>
<tool_response>
{"name": "another tool name here", "content":
{...}}</tool_response>
(more thinking processes, tool calls and tool
responses here)
<think> thinking process here </think>
<answer> answer here </answer>

797

User: {INPUT QUERY} "

798

B Judgement Prompt 799

The prompt for answer judgement in our work is 800

based on Wei et al. (2024). The detailed prompt is 801

shown below. 802

Prompts for Answer Judgement

Please evaluate whether the model's response is
correct based on the given question, standard
answer, and the model's predicted answer. Your
task is to rate the result as: Correct or Incorrect
.

Correct Response

Here are examples of Correct responses:

Question: What are Barack Obama's children's
names?
Standard Answer: Malia Obama and Sasha Obama

Model Prediction 1: Malia Obama and Sasha
Obama
Model Prediction 2: Malia and Sasha
Model Prediction 3: Most people would say Malia
and Sasha, but I'm not sure and need to confirm.
Model Prediction 4: Barack Obama has two
daughters, Malia Ann and Natasha Marian, but they
are commonly known as Malia Obama and Sasha

Obama.
Model Prediction 5: Barack Obama's children

These responses are Correct because:
They fully include the important information from
the standard answer.
They do not contain any information that
contradicts the standard answer.
Only the semantic content is considered; language (
English or Chinese), case, punctuation, grammar,
and order are not important.
The presence of vague statements or guesses is
acceptable, as long as the standard answer is
included and there is no incorrect or contradictory
information.

Incorrect Response

Here are examples of Incorrect responses:

Question: What are Barack Obama's children's
names?
Standard Answer: Malia Obama and Sasha Obama

Model Prediction 1: Malia
Model Prediction 2: Malia, Sasha, Susan, and Sasha
Obama or Malia Obama, or Natasha Marian, or

Einstein
Model Prediction 3: Although I don't know their
exact names, I can say that Barack Obama has two
children.
Model Prediction 4: You might be thinking of
Bessie and Olivia. But you should check the latest

803
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references for detailed information. Is that the
correct answer?
Model Prediction 5: Barack Obama's children

These responses are Incorrect because:
They contain factual statements that contradict the
standard answer.
The answer is empty, restates the question.
The answer lists multiple answers, restates the
answer.

Special Notes

Please note the following:
The standard answer may contain multiple aspects
of the question's response, and within the same
aspect, there may be multiple different descriptions,
all of which are correct and are given within the
same parentheses, connected by commas. For
example, consider the question ''What is the name
of the social media platforms purchased by Elon
Musk?'':
Predicted answers ''Twitter,'' ''Twitter, X,'' and ''X''
are all Correct.
For standard answers that contain responses to
multiple aspects of the question, the model must
provide answers to all aspects to be considered
correct; otherwise, it is directly judged as Incorrect.
There is no such output as Partially Correct.
These answers will be given in different
parentheses. For example, consider the question ''
Who are the original members of the band The
Beatles?'':
Predicted answers ''John Lennon, Paul McCartney,
George Harrison, Ringo Starr'' that include all
answers are considered Correct.
Predicted answers like ''John Lennon, Paul
McCartney'' that do not include all answers are
considered Incorrect.

Additional Guidelines
Also, pay special attention to the following:
For questions with numerical standard answers, the
predicted answer should match the standard answer.
For example, consider the question ''What is the
total length of the Jinshan Railway Huangpujiang
Special Bridge in meters?'':
Predicted answers ''3518,'' ''3518.1,'' and ''3518.17''
are all Correct.
Predicted answers ''3520'' and ''3600'' are all
Incorrect.
If the model's prediction does not directly answer
the question and attempts to bypass or fails to
directly provide the standard answer, it is
considered an Incorrect answer.
If the standard answer contains more information
than the question, the predicted answer only needs
to include the information mentioned in the
question.
If it is obvious from the question that the predicted
answer has omitted information, it is considered
Correct.
If it is clear that different translation versions of a
name refer to the same person, they are also
considered Correct.
You should focus more on the match between the
standard answer and the model's prediction, rather
than whether the standard answer is correct.

804

Example Question
Here is a new example question. Please rate the
predicted answer as one of the following:
Question: {question}
Standard Answer: {target}
Predicted Answer: {predicted answer}
Only return the option represented by Correct or
Incorrect, that is, only return A or B, without
adding any other text.

805

C Distribution of RL Rollouts 806

The distribution of RL Rollouts is shown in Fig- 807

ure 7. 808

Figure 7: The distribution of tool calls for RL rollouts.
As the iteration increases, the average number of tool
calls also increases, and the number of trivial rollouts
(≤ 1 tool call) significantly decreases. This indicates
that the rollouts gain in both diversity and quality during
training.

Algorithm 1 The iterative workflow of
EvolveSearch.
Input: The number of iterations N , raw data
RD = {{d1, a1}, ..., {dn, an}}, a base modelM.
Output: RL model MrN in the last iteration.

1: RD⋆ ← {RD⋆
1, ...,RD⋆

N} ▷ Divide the raw
data evenly into N parts

2: DP ← {} ▷ Initialize data pool
3: for i← 1...N do
4: D ← GET (DP) ▷ Get all data
5: FD ← F(D) ▷ Filter data by three rules
6: Ms ← SFT (M,FD) ▷ Get SFT model
7: Mri ← RL(Ms,RD⋆

i ) ▷ Get RL model
8: Dr

i ← {{di1, ti1, ai1}, ..., {dik, tik, aik}}
▷ Obtain i-th RL rollout data

9: DP ← DP ∪ Dr
i ▷ Combine D with Dr

i

10: end for
11: returnMrN
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D The Iterative Algorithm Workflow809

The overall workflow framework of EvolveSearch810

is shown in Algorithm 1.811

E Case Study812

A test case of EvolveSearch is presented below. In813

this case, the model demonstrates abilities such as814

critical thinking and refinement through multiple815

tool calls, proving the effectiveness of our training816

method.817

EvolveSearch Case

Query: What was the name changed to after Allison
J71 was modified to a thrust of 7400 lbf?
<think>
To find the name change after Allison J71 was
modified to a thrust of 7400 lbf, I need to first
determine which model was created with this
modification.
</think>
<tool_call>
{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"Allison J71 modified to 7400 lbf thrust
model name\"]}}
</tool_call>
<tool_response>
...
</tool_response>
<think>
The web search detailed various F−89 Scorpion
versions but didn't mention the Allison J71
modified to 7400 lbf thrust. I'll refine the search to
find the specific model name linked to this engine
modification.
</think>
<tool_call>
{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"Allison J71 modified to 7400 lbf thrust
model name F−89 Scorpion\"]}}
</tool_call>
<tool_response>
...
</tool_response>
<think>
The web search results don't specify the model
name change for the Allison J71 modified to 7400
lbf thrust but indicate it's developed from the J35
engine, particularly the J35−A−23 variant. Since
the F−89 Scorpion used the J71, it's likely that the
thrust modification was part of an engine upgrade
rather than a model name change. I will try to
identify if any specific F−89 Scorpion model
included this engine modification.
</think>
<tool_call>
{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"F−89 Scorpion model with Allison J71
7400 lbf thrust\"]}}
</tool_call>
<tool_response>
...
</tool_response>
<think>

818

The web search suggests that the Allison J35
engine with 7,400 lbf wet thrust was used in the F
−89 Scorpion. Specifically, the F−89C−25−NO
block adopted the J35−A−33 engine, providing a
dry thrust of 5,600 lbf and 7,400 lbf with
afterburner. This implies the sought name change
might be tied to this engine upgrade in the F−89C
series, possibly altering the model designation to F
−89C−25−NO.
</think>
<answer>

The name change after modifying the Allison J71
to a thrust of 7400 lbf likely relates to the F−89C
−25−NO production of the F−89 Scorpion, which
used the Allison J35−A−33 engine with the needed
thrust specifications.
</answer>

819

F Other Answer Reward 820

For F1, we directly define Ra as the exact F1 score 821

of the predicted answer and the gold answer, i.e., 822

Ra = F1(pred, gold) ∈ [0, 1]. 823

For recall, through some preliminary experi- 824

ments, we found that a hard label is more helpful 825

in RL rather than a soft score. Therefore, we define 826

Ra as follows: 827

Ra =

{
1.0, if the recall score = 1.0
0.0, if the recall score < 1.0

828
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