EvolveSearch: An Iterative Self-Evolving Search Agent

Anonymous ACL submission

Abstract

The rapid advancement of large language mod-
els (LLMs) has transformed the landscape
of agentic information seeking capabilities
through the integration of tools such as search
engines and web browsers. However, cur-
rent mainstream approaches for enabling LLM
web search proficiency face significant chal-
lenges: supervised fine-tuning struggles with
data production in open-search domains, while
RL converges quickly, limiting their data uti-
lization efficiency. To address these issues, we
propose EvolveSearch, a novel iterative self-
evolution framework that combines SFT and
RL to enhance agentic web search capabili-
ties without any external human-annotated rea-
soning data. Extensive experiments on seven
multi-hop question-answering (MHQA) bench-
marks demonstrate that EvolveSearch consis-
tently improves performance across iterations,
ultimately achieving an average improvement
of 4.7% over the current state-of-the-art across
seven benchmarks, opening the door to self-
evolution agentic capabilities in open web
search domains.

1 Introduction

Rapid advances in large language models (LLMs)
have enabled agentic Al capabilities through tool
integration (e.g., search, browsing, code execution),
supporting autonomous interaction with external
environments. Recent agentic systems like Ope-
nAl Deep Research (OpenAl, 2025) achieve 51.9%
accuracy on BrowseComp, well above human per-
formance (29.8%) (Wei et al., 2025), highlighting
LLMs’ potential for deep information research.
Existing agentic systems are primarily imple-
mented via prompting-based, supervised fine-
tuning (SFT)-based, and reinforcement learning
(RL)-based approaches. Prompting-based agents
rely on predefined workflows (Anthropic, 2025;
Zhou et al., 2023), resulting in rigid behaviors and
limited generalization. They often struggle with

65.9

64.5 R _
' RL Model ‘
| e
[RL Model 62.2 i ®
| RL Model 61.0 @ @ SFTModd
@ SFT Model

63.4
[SFT Model

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 1: Iterative improvements in the average perfor-
mance of SFT and RL models, reflecting progressive
enhancement through self-evolution.

instruction following and reasoning, requiring sub-
stantial manual prompt engineering for reliable per-
formance (Pan et al., 2025). Subsequent work dis-
tills agentic capabilities into smaller LLMs via su-
pervised fine-tuning (SFT) (Wang et al., 2025; Wu
et al., 2025a). However, in open-ended search tasks,
collecting SFT data necessitates complex environ-
ment interactions, making data construction chal-
lenging. More importantly, they lack robustness
in complex, real-world environments (Zheng et al.,
2025). RL-based approaches (Shao et al., 2024)
have recently gained attention for enabling models
to acquire decision-making capabilities through on-
line interactions with the environment and reward-
driven updates. This paradigm allows agents to
adapt to task dynamics in an end-to-end manner.
However, in practice, existing RL-based methods
often converge within fewer than 100 steps, result-
ing in low data efficiency and limited performance
gains (Song et al., 2025; Jin et al., 2025).

To address the challenges of scarce SFT data
and the limited performance of the existing RL ap-
proach, we propose EvolveSearch, a novel iterative
self-evolution framework that combines SFT and
RL to enhance web search capabilities without any

external human-annotated reasoning data. Specifi-
cally, EvolveSearch proceeds in alternating phases:
(1) In the RL exploration phase, the model interacts
with a web search environment, leveraging tool-use
capabilities and receiving a hybrid reward signal.
This enables the model to identify and learn from
high-reward rollouts. (ii) In the SFT optimization
phase, the best-performing rollouts from the RL
phase are selected based on three criteria and used
to optimize the model via SFT, yielding a stronger
initialization (i.e., cold-start policy) for the next
RL cycle. By iteratively alternating between ex-
ploration and optimization, EvolveSearch progres-
sively bootstraps the performance of the RL model
and the SFT model, learning robust and effective
search behaviors from its own experience without
human intervention, as illustrated in Figure 1.

To validate the effectiveness of EvolveSearch,
we conduct extensive experiments in realistic web
search settings. Evaluation on seven multi-hop
question-answering (MHQA) benchmarks demon-
strates EvolveSearch consistently outperforms com-
petitive baselines. Notably, it achieves a 4.7% av-
erage accuracy gain over the previous state-of-the-
art (SOTA), demonstrating the benefits of combin-
ing supervised fine-tuning and reinforcement learn-
ing in a self-evolution framework. These results
highlight the strength of iterative learning from
high-reward rollouts, enabling substantial perfor-
mance improvements without reliance on human-
annotated reasoning data.

Overall, our contributions are as follows:

e We propose EvolveSearch, a novel framework
that, to the best of our knowledge, is the first to
iteratively combine RL with SFT to enhance
LLMs’ capabilities in the web search scenario.

e EvolveSearch requires no human-annotated
reasoning data; instead, it leverages high-
quality rollouts from RL models to enable con-
tinuous self-improvement via self-generated
supervision.

e We conduct extensive empirical evaluations
on multiple MHQA datasets, demonstrating
the significant effectiveness and generality of
EvolveSearch over existing SOTA.

2 Background

In this work, a question-answering rollout ex-
pands through a ReAct-based (Yao et al., 2022)
sequence of thought-action-observation itera-
tions. Within each iteration, the LLM agent gener-

ates: (i) A free-form thought (7) to extract infor-
mation, adjust action plans, and track task progress,
etc. (ii) A structured action («) to interact with
external environments. (iii) This interaction yields
an observation (o) which serves as feedback for
the next iteration. Formally, we represent the agen-
tic execution loop at a given time step ¢ as a triplet
(7¢, g, 0¢). In EvolveSearch, the action « can be
either search, corresponding to the utilization of a
search tool, or answer, which involves formulating
aresponse to the given question. The observation
o after a search action typically includes a list of rel-
evant results, such as the top-10 titles and snippets
retrieved from the search tool. Consequently, the
historical rollout leading up to time step ¢ denoted
as, H;, can be represented as the sequence:

Hi = (70, 00,00, T15 vy Tt—1, Qt—1, 0¢—1). (1)

At time step ¢, the agent considers the historical
rollout H; to generate thought 7 and subsequently
select an action ay, following policy 7 (7, vy |Hy).
Then it gets a feedback observation o if a; is a
search action. Otherwise, the rollout comes to an
end after the answer action oy is completed.

3 Method

EvolveSearch employs iterative Reinforcement
Learning (RL) and Rejection Sampling Fine-tuning
(RSFT) to train an LLM agent towards solving
question-answering problems with multiturn think-
ing and tool use. We provide an overview of our
framework, with the full workflow illustrated in
Figure 2. We begin by evenly dividing the dataset
into N parts. The process then involves iteratively
executing the following two stages IV times:

* Stage 1. In the i-th iteration, we utilize the
i-th portion of the raw data to perform RL
training on the SFT model from the previous
iteration. By implementing a hybrid reward
mechanism, we obtain an RL model with bet-
ter generalization capabilities and rollouts dur-
ing training. These rollouts provide diverse
and high-quality training data for the subse-
quent SFT training phase.

» Stage 2. We merge the high-quality and di-
verse rollouts from the previous stage into the
data pool, then refine the cold-start data by
applying three filtering rules. This refined
data is subsequently used for SFT of the fixed
base model, thereby enabling a more robust

e I
— Workflow)
Input P § Output
e \,‘ SET Model + Raw Data N A)
i-th Raw Data —’ @ i-th Rollout Data
I | -1
. e | umdn
Iteratively ’ .
Base Model | U | RLModel
= @
N i 0

Figure 2: The overall framework of EvolveSearch. We iteratively input raw question-answering data and a fixed
base model. In the ¢-th iteration, the base model first performs SFT with a filter pool of training data, followed by
RL with the i-th raw data. The rollout data during RL is filtered and incorporated into the training data pool for SFT

in the subsequent iteration.

3 Who was the screenwriter for The Blackcoat's Daughter? ‘

<think> To find out who the screenwriter for The Blackcoat's Da
ughter is, I should perform a web search to gather information ab
out the movie and its writers. </think>
<tool call>{name: web_search, arguments: {queries: [screenwri
ter for The Blackcoat's Daughter]}} </tool call>
<tool_response>title: Producer Bryan Bertino Discusses Horror
Film, The Blackcoat’s
url: https://scriptmag.com/career/selling-screenplay-producer-
bryan-bertino-discusses-horror-film-blackcoats-daughter
snippet:Writer, director, and producer Bryan Bertino discusses b
reaking in as a screenwriter and getting attached as a director...
...</tool_response>
<think> From the search results, it appears that the screenwriter
for \"The Blackcoat's Daughter\" is Oz Perkins. The information
is consistent across multiple sources, including IMDb, YouTube,
and other film-related websites. </think>
<answer> The screenwriter for \"The Blackcoat's Daughter\" is
Oz Perkins. </answer>

{name: web_search, arguments: {queries: [screenwriter
for The Blackcoat's Daughter]} }

Figure 3: The illustration of a rollout that exactly
matches the format.

cold-start model for RL training in the next
iteration.

We will further explain these two stages in Sec-
tion 3.1 and Section 3.2, respectively. The iterative
algorithm workflow is presented in Appendix D.

3.1 Hybrid Reward Reinforcement Learning

To encourage the model to explore diverse, high-
quality rollouts, we propose hybrid reward rein-
forcement learning: (i) A composite reward func-
tion is designed to guide the model towards proper
tool calls and the derivation of accurate answers
(Section 3.1.1); (ii) A modified version of Group

Relative Policy Optimization (GRPO) (Shao et al.,
2024) is applied to improve optimization stability
and bypass the need for an extra value model (Sec-
tion 3.1.2). The prompt for RL rollout is shown in
Appendix A.

3.1.1 Reward Design

We structure reward function to comprise two key
components: format reward and answer reward.

Format Reward. We establish a specific tem-
plate to generate rollouts, as illustrated in Fig-
ure 3. According to this template, the model’s
thought for each turn is enclosed within <think-
ing></thinking> tags, any tool call (action) is
placed within <tool_call></tool_call> tags, the
corresponding tool feedback (observation) is en-
closed by <tool_response></tool_response> tags,
and finally, the answer is presented within <an-
swer></answer> tags. Only when a rollout exactly
matches the format, it receives a 1.0 format reward,
denoted as Ry = 1.0. Otherwise, we do not further
check the answer, and the rollout receives a final
reward of 0.0.

Answer Reward. When the format is strictly
followed, we employ a judge model to assess
the correctness of the answer (between <answer>
and </answer> tags). The judge prompt is shown
in Appendix B. A rollout receives a 1.0 reward
(R, = 1.0) if the answer is correct, otherwise
R, = 0.0. In experiments, we also apply the F1
and recall as the answer reward for analysis, which
we detail in Appendix F.

We define the final reward as a combination of

the above two rewards:

n_ 0.5 * (Rt + Ra),
B 0, if the format is incorrect

2

if the format is correct

3.1.2 Group Relative Policy Optimization

In this work, we adopt the Group Relative Policy
Optimization (GRPO) algorithm. GRPO optimizes
the current policy my by leveraging a reference pol-
icy g, along with a set of rollouts generated by
an existing policy g . As suggested by (Yu et al.,
2025) and (Liu et al., 2025), we modify the original
sample-level loss of GRPO into the token-level loss
for better training performance. Specifically, given
G rollouts {y;}%., ~ g, (-|z)(with each input
x ~ D, where D is the experience distribution),
the current policy is then optimized by maximizing
the following objective function:

G il
J0) = EﬂﬁND,{yi}?zl ~Tg (¢ ‘ Z Z
> i 1 vil i =
[min (3¢ Ai ¢, clip(rie, 1 — €, 14+ €)Air) — fDki]
3)

where e is the clipping threshold and |y;| is the
length of rollout y;. The Dk represents the dis-
crepancy of the predicted probability between the
current policy 7y and the reference policy 7.

The advantage A;; and r;; are defined as fol-
lows:

. mo(i,)
1,t —
TQo1a (yi,t |'r7 yi,<t) @
R; — mean({R})
Aip =

T (R

where R; represents reward for y;, and mean(-),
std(-) are calculated over the batch to normalize
reward scores into advantage estimates.

3.2 Rejection Sampling Fine-Tuning

To enhance the utilization of rollouts during the
RL phase and provide a better cold-start model for
the next RL iteration, we collect the rollouts in
RL and use rejection sampling fine-tuning to learn
high-quality and diverse samples. The following
three rules are applied sequentially to ensure high-
quality, diverse and multi-step rollout filtering.

Rule 1: High-Reward Selection (HRS). We
only retain rollouts with rewards > ¢ to ensure
the high quality of training samples.

Rule 2: Same Query Deduplication (SQD). For
multiple rollouts with the same query, we retain the
sample that utilizes the tools the most, to ensure
the diversity of the training samples.

Rule 3: Multi-Calls Selection (MCS). To en-
hance data utilization efficiency, we combine roll-
outs from the current and previous iterations. We
observe that samples with multiple tool calls of-
fer meaningful thinking and search features. As
noted in Section 5, data quantity is prioritized over
quality. Hence, we select the top k rollouts with
the most tool calls for SFT in each iteration. The
distribution of tool calls for RL rollouts in each
iteration is presented in the Appendix C.

Supervised Fine-Tuning. After obtaining the
data Dy filtered by the three rules, we train the
base model in an SFT manner. This produces
a good cold-start model for the next RL stage.
Given the question x and the agentic execution
rollout H = (Yo0,Y1,-.-, Yn—1,Yn), Where each

€ {7, a, o}, the loss function for SFT is com-
puted as follows:

1

Yy #)
-])

XZyz] -log o (yi | ¢, y<i)

Here, Iy; # o] filters out tokens correspond-
ing to external feedback, ensuring that the loss is
calculated only on the actions of the agent.

4 Experiments

4.1 Benchmark and Evaluation Metrics

In EvolveSearch, we utilize the same training
and testing data as DeepResearcher (Zheng et al.,
2025). Specifically, for the training dataset, we
used a distribution ratio of NQ (Kwiatkowski et al.,
2019):TQ (Joshi et al., 2017):HotpotQA (Yang
et al., 2018):2Wiki (Ho et al., 2020) as 1:1:3:3
with a total of 80,000 samples. This includes 75%
of the samples from multi-hop scenarios, which
better reflect the complex information-seeking be-
haviors required for deep research questions. For
the evaluation dataset, we use the NQ, TQ, Hot-
Pot, and 2Wiki datasets as the in-domain evalu-
ation set, totaling 2,048 examples. We use the
Musique (Trivedi et al., 2022), Bamboogle (Press
et al., 2022), and PopQA (Mallen et al., 2022)

datasets as the out-of-domain evaluation set, to-
taling 1,129 examples. We utilize a judge model to
evaluate the correctness of the model’s response.

4.2 Implementation Details

We utilize Qwen2.5—7B—Instructl (Yang et al.,
2024) as our backbone. During the RL training
phase, each sample undergoes 16 rollouts with a
training batch size of 128, a learning rate of 1le-6,
a maximum search count of 10, and a temperature
of 1.0. The training epoch is set to 1. We utilize
Qwen2.5-72B-Instruct® as our judge model. We
split the training data into NV = 10 parts, and 8,000
samples are consumed for RL training in each iter-
ation. In the data filter process, we set k to 2000 to
select samples with the highest number of tool calls,
6 to 0.7 to select samples with a reward exceeding
0.7. In the RSFT training phase, we employ Zero-3
offload(Aminabadi et al., 2022), with a batch size
of 64, a learning rate of 3e-6, and the training epoch
set to 1.

4.3 Baselines

To evaluate the effectiveness of our approach, we
compare it with the following baseline methods:

* CoT: This baseline generates answers using
Chain-of-Thought reasoning without depend-
ing on any external reference context.

* RAG: This method integrates CoT reasoning
with retrieved reference context to assist in the
generation.

e Search-ol (Li et al., 2025) + Web Search: A
multi-step reasoning baseline where the model
is permitted to generate search queries and
send real-time search requests via APIs, ac-
cessing URLs to browse web pages. The
model can then generate answers based on
the content of these web pages.

e Search-rl (Jin et al., 2025): An RL-based fine-
tuning strategy. During both the training and
inference stages, it utilizes a retriever to ac-
cess information from Wikipedia. We con-
sider two setups: using Qwen2.5-7B-base? or
Qwen2.5-7B-Instruct as the initial actor mod-
els, respectively.

"https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
*https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-7B

* R1-Searcher (Song et al., 2025): Unlike
Search-rl, when given a search query, it
searches Bing and answers questions by sum-
marizing the first three pages of the search
results.

* DeepResearcher (Zheng et al., 2025): Un-
like R1-Searcher, DeepResearcher does not
restrict its search to a specific domain and al-
lows for autonomous selection of URLs rather
than mandatorily summarizing the top three
search results.

* DeepResearcher + Model-Based Reward
(MBR): The standard DeepResearcher uses
the F1 score as a reward. For fair comparison
with our method, we also use Qwen2.5-72B-
Instruct as the judge model for the response
reward. For simplicity, we denote this base-
line as DeepResearcher™.

» RLSearch: An RL-only baseline of our frame-
work. It is only trained via RL with the same
raw data and the same hyperparameters.

All the baselines use Qwen2.5-7B-Instruct as the
backbone unless specifically mentioned.

4.4 Main Results

The results of EvolveSearch for 3 iterations and
other baselines are presented in Table 1.

EvolveSearch consistently outperforms all base-
lines within training domains. EvolveSearch
achieves the highest performance across all datasets
within the four domains, significantly surpassing
all baselines on the NQ and 2Wiki datasets. While
DeepResearcher + MBR demonstrates comparable
performance on the NQ and HotpotQA datasets, it
is noteworthy that DeepResearcher + MBR utilizes
model-based reward, which results in performance
significantly higher than when using F1 as a reward
during training. Therefore, using F1 as a reward
tends to shorten the model’s response, thereby af-
fecting the overall quality of its responses.
EvolveSearch demonstrates impressive gener-
alization capabilities in out-of-domain scenar-
ios. It consistently surpasses all baseline methods
across three out-of-domain datasets. This indicates
that EvolveSearch allows the model to effectively
acquire reasoning skills that can be applied broadly,
instead of just adjusting to specific training data.

Method Inference In Domain Out of Domain
Environment | NQ TQ Hotpot 2Wiki Avg | Musique Bamb PopQA Avg
Prompt Based
CoTt Local RAG | 32.0 482 279 27.3 339 | 74 21.6 15.0 14.7
CoT+RAGT Local RAG | 59.6 75.8 438 24.8 51.0 | 10.0 27.2 48.8 28.7
Search-olt Web Search | 55.1 69.5 424 37.7 51.2 | 19.7 53.6 434 38.9
Training Based
Search-r1-base' Local RAG | 60.0 76.2 63.0 47.9 61.8 | 27.5 57.6 47.0 44.0
Search-rl-instruct’ Local RAG | 49.6 492 525 48.8 50.0 | 28.3 472 44.5 49.5
R1-Searcher' Web Search | 52.3 79.1 53.1 65.8 62.6 | 25.6 65.6 434 44.9
DeepResearcher’ Web Search | 61.9 85.0 64.3 66.6 69.5 | 29.3 72.8 52.7 51.6
DeepResearcher” Web Search | 66.4 86.0 65.4 75.0 73.2 | 29.0 71.7 50.2 50.3
RLSearch-itel Web Search | 68.5 863 66.7 76.4 74.5 | 304 74.2 50.4 51.6
RLSearch-ite2 Web Search | 69.3 87.7 66.8 75.5 749 | 33.5 73.6 51.1 52.7
RLSearch-ite3 Web Search | 69.8 884 65.0 71.8 73.8 | 30.8 77.0 51.8 53.2
Ours
EvolveSearch-itel Web Search | 68.5 87.4 654 75.6 74.2 | 29.3 74.0 51.2 51.5
EvolveSearch-ite2 Web Search | 69.4 86.3 66.3 78.5 75.1 | 31.6 76.5 52.8 53.6
EvolveSearch-ite3 Web Search | 71.0 89.5 67.7 76.4 76.2 | 33.8 77.1 50.3 53.7

Table 1: Main results on seven multi-hop question answering (MHQA) benchmarks. All the results labelled with

are taken from Zheng et al. (2025).

80 60
[EvolveSearch

78 1 EvolveSearch wo MCS |58
g [EvolveSearch wo HRS
576 [EvolveSearch wo SQD 56
g
=R 54
&

72 52

70 50

Avgjp Avgoop

Benchmark

Figure 4: The impact of different data filtering rules on
performance.

A good cold-start model is crucial. We select
high-quality and diverse reasoning rollouts dur-
ing the RL phase to employ Rejection Sampling
Fine-Tuning (RSFT) for obtaining a better ini-
tial policy model. From the results, especially
the comparison between the three iterations of
EvolveSearch and the RLSearch baseline, we can
conclude that a good cold-start model can further
enhance the model’s potential and stability in RL
training, thereby consistently improving the perfor-
mance.

5 Analysis

Data filtering plays a vital role. To demonstrate
the significance of data filtering rules, we report the
model’s average in-domain and out-of-domain per-

Training Reward Method AVGp AVGoop
DeepResearcher 65.5 52.8
Recall EvolveSearch-itel 68.8 55.8
EvolveSearch-ite2 69.6 56.6
EvolveSearch-ite3 69.9 58.8
DeepResearcher 61.2 50.8
Fi EvolveSearch-itel 61.6 514
EvolveSearch-ite2 62.2 51.0
EvolveSearch-ite3 62.1 52.1
DeepResearcher 73.2 50.3
EvolveSearch-itel 74.2 51.5
JudgeModel b\ eSearch-ite2 75.1 53.6
EvolveSearch-ite3 76.2 53.7

Table 2: Performance comparison of different training
rewards during the training phase.

formance across different filtering rules. For fair
comparison, we randomly select only 2000 SFT
samples for each experiment, followed by using
the additional 8000 samples for RL training. As
shown in Figure 4, each data filtering rule is es-
sential. Specifically, filtering out multi-call data
aims to enhance the model’s initial multi-step rea-
soning capabilities, filtering data with high rewards
ensures data accuracy, and filtering data with dif-
ferent queries increases diversity, thereby compre-
hensively improving the model’s performance.

EvolveSearch remains effective with different
training rewards. To evaluate the effectiveness

Method Judge Model AVG)p AVGoop
DeepSeek-V3 66.1 38.0
DeepResearcher* chatgpt-4o-latest ~ 71.0 42.5
grok-3 74.5 45.9

DeepSeek-V3 66.3 39.8

EvolveSearch-itel chatgpt-4o-latest ~ 71.8 439

grok-3 74.7 48.0

DeepSeek-V3 67.4 41.1

EvolveSearch-ite2 chatgpt-4o-latest ~ 72.6 45.0
grok-3 75.3 48.7

DeepSeek-V3 67.4 41.6
chatgpt-4o-latest ~ 72.7 45.3
grok-3 75.8 49.3

EvolveSearch-ite3

Table 3: Comparison of model performance using dif-
ferent judge models.

of our method when employing different answer
rewards, we replace the answer reward component
with three common and widely recognized metrics:
Recall, F1 Score, and Model-Based Reward. We
utilize these metrics to compare the performance
of our method against the baseline. To ensure con-
sistency between training and testing, the same
answer evaluation metric is used for both. The
experimental results, presented in Table 2, demon-
strate that our method consistently outperforms the
baseline when using each of these different answer
reward metrics on seven benchmarks. Furthermore,
we observe that as the number of iterations of our
method increases, the model’s performance on both
in-domain (ID) and out-of-domain (OOD) datasets
gradually improves.

EvolveSearch still demonstrates superior per-
formance across different judge models. To
further verify our approach’s effectiveness, we
utilize different judge models to evaluate the
model’s response. In Table 3, we select three well-
known LLMs, DeepSeek-V3 (DeepSeek-Al, 2024),
chatgpt-4o-latest*, and grok-3 as the judge model.
Although their performance is slightly lower than
the trained judge model, the improvement trend
relative to the baseline remains consistent. After
the first iteration of training, the model outperforms
the baseline in both in-domain and out-of-domain
benchmarks. As the iteration increases, the model’s
performance gradually improves, further demon-
strating the effectiveness of the method.

*https://openai.com
>https://x.ai

[SFT Model 5.9 66.6

66| 1 RL Model =
D
é 64.5

63.9
E 64
5
ol 62.2
Z62
61.0
60] 2 3
Iteration

Figure 5: Performance of SFT model and RL model at
different iterations.

Training Num AVG)p AVGoop

4000 75.6 53.3
8000 75.2 52.6
12000 75.4 53.0
16000 75.4 53.4

Table 4: The impact of different data volumes on model
performance during the RSFT phase.

The performance of the SFT Model and RL
Model improves as the number of iterations in-
creases. Figure 5 presents the performance of
the SFT model and RL model across different
iterations. We observe that as iterations grow,
not only does the RL. Model exhibit significant
improvements across seven different benchmarks,
but the SFT Model also shows considerable en-
hancement. This confirms the high quality of our
chosen data and demonstrates the effectiveness of
EvolveSearch.

Iterative training increases the frequency of
model tool calls. To investigate the model’s tool
usage on the test set throughout the entire iterative
training process, we record the average number
of search tool calls by the SFT model and the RL
model on the test set. As shown in Figure 6, our
findings reveal that, as the number of iterations
increases, the model increasingly depends on the
tool, leading to gathering more information. Fur-
thermore, we note that for the majority of questions,
the model requires only three calls to the search
tool to reach a solution, indicating that the training
data is not sufficiently challenging. A test case of
the interaction between the model and the environ-
ment is presented in the Appendix E.

Data quality is more important than data quan-
tity. To investigate the impact of SFT training

26 254
55| 2 SFT Model 247
254 [RL Model
=2
@) 2.30
=23 2.25
=
=22
8
s 2.1
D
Z20 1.98
1.9 1.91
1.8 3 3

Iteration

Figure 6: Average number of tool calls in the test set
across different iterations.

data volume on model performance, we conduct
controlled experiments using progressively scaled
datasets. Based on historical RL training rollouts,
we remove the filtering on the number of web
search tool calls. SFT is performed at four different
scales: 4,000, 8,000, 12,000, and 16,000 samples.
All experiments subsequently undergo an identical
RL training phase using a fixed 8,000 question-
answering samples. The results are presented in
Table 4, which show that merely increasing data
volume does not necessarily enhance performance,
which indicates that the quality of data is more
important than the quantity.

6 Related Work

Search Agent. Current methods often rely on
manually designed workflows to guide large lan-
guage models (LLMs) in interacting with ex-
ternal knowledge sources (Wang et al., 2024a;
Wu et al., 2025b). Recent studies like OpenRe-
searcher (Zheng et al., 2024), IterDRAG (Yue
et al., 2025), AirRAG (Feng et al., 2025), and oth-
ers have improved search capabilities using these
detailed workflows. However, these approaches
are limited by their dependence on human-crafted
prompts and interaction patterns. Recent develop-
ments about SFT for Retrieval-Augmented Genera-
tion (RAG) have become a preferred method over
manual optimization (Yu et al., 2024). For exam-
ple, CoORAG (Wang et al., 2024b) utilizes Monte
Carlo Tree Search (MCTS) to select optimal doc-
ument blocks under budget constraints but faces
high computational costs and limited generaliza-
tion due to reliance on supervised signals. Rein-
forcement Learning (RL) presents an end-to-end
approach to enhance large language models’ capa-
bilities, improving reasoning skills significantly by
late 2024 (Ouyang et al., 2022; Shao et al., 2024).

Recent research explores RL for external knowl-
edge retrieval, with systems like Search-R1 (Jin
et al., 2025), ReSearch (Chen et al., 2025), and
R1-Searcher (Song et al., 2025) evolving beyond
predefined cues to models that autonomously de-
velop reasoning during retrieval. However, these
methods often converge quickly, resulting in low
data efficiency and limited performance gains.

Self-Evolution. Large language models (LLMs)
have shown the capability to annotate datasets with-
out relying on human-annotated labels, enabling
low-resource training for other LLMs. In typical
setups, a larger model, the teacher, generates labels
for a smaller model, the student, in a process known
as context distillation. Various algorithms can be
employed, such as conventional supervised fine-
tuning (SFT) (Alpaca, 2023; Hsieh et al., 2023),
in-context learning (Krishna et al., 2024), and pref-
erence optimization (Tunstall et al., 2023; Llama-3,
2024). Self-evolution methods remove the neces-
sity for a larger LLM, reducing computational de-
mand and API costs. Recent research has shown
this approach is viable using an unlabeled dataset
with a few examples for; context (Huang et al.,
2022; Tian et al., 2023). For instance, (He et al.,
2019) uses a small labeled dataset for initial fine-
tuning before applying the trained generator to an-
notate the unlabeled data, similar strategies are em-
ployed for rationalization tasks in (Jie et al., 2024).
(Meng et al., 2022) enhances labeled datasets with
additional samples, though this is limited to clas-
sification. Our approach focuses on the open web
search domain, combining SFT and RL to enhance
search capabilities without requiring any external
human-annotated reasoning data.

7 Conclusion

In an era where current search agents have sur-
passed the capabilities of most humans, we pro-
pose EvolveSearch, a novel iterative self-evolution
framework that synergistically combines RL with
SFT to enhance web search capabilities without
any external human-annotated reasoning rollouts.
Extensive experiments on multiple MHQA bench-
marks demonstrate that EvolveSearch consistently
improves performance with each iteration, ulti-
mately achieving an average accuracy improve-
ment of 4.7% over SOTA methods on seven bench-
marks, paving the way to self-evolution and self-
improvement in open web search domains.

Limitations

EvolveSearch relies on iterative collection and fil-
tering of the rollouts during RL training for SFT,
which adds to the computation cost of the whole
training process. Designing a streaming rollout
filtering system with higher sample efficiency is
one possible way to minimize the impact of extra
computation.

In this work, the tool call is limited to web search,
so the performance of other tools remains unknown.
The investigation of multiple tools is left for future
research.

References

Alpaca. 2023. Introducing alpaca: A strong and per-
formant instruction-following language model. Ac-
cessed: 2024-06-10.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
and Yuxiong He. 2022. Deepspeed inference: En-
abling efficient inference of transformer models at
unprecedented scale. Preprint, arXiv:2207.00032.

Anthropic. 2025. Building effective agents.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and
Weipeng Chen. 2025. Research: Learning to rea-
son with search for llms via reinforcement learning.
Preprint, arXiv:2503.19470.

DeepSeek-Al. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi
Song, and Hao Wang. 2025. Airrag: Activat-
ing intrinsic reasoning for retrieval augmented gen-
eration via tree-based search. arXiv preprint
arXiv:2501.10053.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio
Ranzato. 2019. Revisiting self-training for
neural sequence generation. arXiv preprint
arXiv:1909.13788.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609—6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger

language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Yeo Wei Jie, Ranjan Satapathy, and Erik Cambria.
2024. Plausible extractive rationalization through
semi-supervised entailment signal. arXiv preprint
arXiv:2402.08479.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-rl: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghan-
deharioun, Sameer Singh, and Himabindu Lakkaraju.
2024. Post hoc explanations of language models
can improve language models. Advances in Neural
Information Processing Systems, 36.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025. Search-ol: Agentic search-enhanced
large reasoning models. CoRR, abs/2501.05366.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding rl-zero-like training: A critical
perspective. arXiv preprint arXiv:2503.20783.

Llama-3. 2024. Meta llama 3. Accessed: 2024-06-10.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Hannaneh Hajishirzi, and Daniel Khashabi. 2022.
When not to trust language models: Investigating
effectiveness and limitations of parametric and non-
parametric memories. arXiv preprint.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. Ad-
vances in Neural Information Processing Systems,
35:462-477.

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://www.anthropic.com/engineering/building-effective-agents
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://ai.meta.com/blog/meta-llama-3/

OpenAl. 2025. Deep research system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi
Yang, Bhavya Chopra, Rishabh Tiwari, Kurt Keutzer,
Aditya Parameswaran, Kannan Ramchandran, Dan
Klein, and 1 others. 2025. Why do multiagent sys-
tems fail? In ICLR 2025 Workshop on Building Trust
in Language Models and Applications.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen, Yang
Lu, and Xu Miu. 2025. R1-searcher: Incentivizing
the search capability in llms via reinforcement learn-
ing.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2023. Fine-
tuning language models for factuality. arXiv preprint
arXiv:2311.08401.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, and 1 others. 2023. Zephyr:
Direct distillation of Im alignment. arXiv preprint
arXiv:2310.16944.

Liang Wang, Haonan Chen, Nan Yang, Xiaolong
Huang, Zhicheng Dou, and Furu Wei. 2025. Chain-
of-retrieval augmented generation. arXiv preprint
arXiv:2501.14342.

Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran
Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, Ruicheng
Yin, Changze Lv, Xiaoqing Zheng, and Xuanjing
Huang. 2024a. Searching for best practices in
retrieval-augmented generation. In Proceedings of

10

the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1771617736, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Ziting Wang, Haitao Yuan, Wei Dong, Gao Cong, and
Feifei Li. 2024b. Corag: A cost-constrained retrieval
optimization system for retrieval-augmented genera-
tion. arXiv preprint arXiv:2411.00744.

Jason Wei, Nguyen Karina, Hyung Won Chung,
Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John
Schulman, and William Fedus. 2024. Measuring
short-form factuality in large language models. arXiv
preprint arXiv:2411.04368.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McK-
inney, Jeffrey Han, Isa Fulford, Hyung Won Chung,
Alex Tachard Passos, William Fedus, and Amelia
Glaese. 2025. Browsecomp: A simple yet challeng-
ing benchmark for browsing agents. arXiv preprint
arXiv:2504.12516.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin,
Liwen Zhang, Zhenglin Wang, Zhengwei Tao, Ding-
Chu Zhang, Zekun Xi, Xiangru Tang, Yong Jiang,
Pengjun Xie, Fei Huang, and Jingren Zhou. 2025a.
Webdancer: Towards autonomous information seek-
ing agency.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang,
Zekun Xi, Runnan Fang, Linhai Zhang, Yulan He,
Deyu Zhou, Pengjun Xie, and Fei Huang. 2025b.
Webwalker: Benchmarking llms in web traversal.
Preprint, arXiv:2501.07572.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-
ers. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:
An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476.

https://cdn.openai.com/deep-research-system-card.pdf
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://doi.org/10.18653/v1/2024.emnlp-main.981
https://doi.org/10.18653/v1/2024.emnlp-main.981
https://doi.org/10.18653/v1/2024.emnlp-main.981
https://arxiv.org/abs/2501.07572
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

Tian Yu, Shaolei Zhang, and Yang Feng. 2024.
Auto-rag: Autonomous retrieval-augmented gener-
ation for large language models. arXiv preprint
arXiv:2411.19443.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf
Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuan-
hui Wang, and Michael Bendersky. 2025. Inference
scaling for long-context retrieval augmented genera-
tion. In The Thirteenth International Conference on
Learning Representations.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.
Deepresearcher: Scaling deep research via reinforce-
ment learning in real-world environments. arXiv
preprint arXiv:2504.03160.

Yuxiang Zheng, Shichao Sun, Lin Qiu, Dongyu Ru,
Cheng Jiayang, Xuefeng Li, Jifan Lin, Binjie Wang,
Yun Luo, Renjie Pan, and 1 others. 2024. Open-
researcher: Unleashing ai for accelerated scientific
research. arXiv preprint arXiv:2408.06941.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, and 1 oth-
ers. 2023. Agents: An open-source framework
for autonomous language agents. arXiv preprint
arXiv:2309.07870.

11

https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz

A RL Prompt
User: {INPUT QUERY}"
An example of rollout in the RL phase is shown

below.

Prompts for RL Rollout

A conversation between User and Assistant. The

B Judgement Prompt

The prompt for answer judgement in our work is
based on Wei et al. (2024). The detailed prompt is
shown below.

user asks a question, and the assistant solves it by
calling one or more of the following tools.
<tools>
{
"name": "web_search",
"description": "Utilize the web search engine to
retrieve relevant information based on multiple
queries.",
"parameters": {
"type": "object",
"properties": {

"queries": {
"type": "array",
"items": {

"type": "string",
"description": "The search query."

},

"description”: "The list of search queries."

}
1,
"required": ["queries"]
}
}
</tools>

The assistant starts with one or more cycles of (
thinking about which tool to use —> performing tool
call —> waiting for tool response), and ends with (
thinking about the answer —> answer of the
question). The thinking processes, tool calls, tool
responses, and answer are enclosed within their
tags. There could be multiple thinking processes,
tool calls, tool call parameters and tool response
parameters.

Example response:
<think> thinking process here </think>
<tool_call>

"name": "tool name here", "arguments": {"
parameter name here": parameter value here, "
another parameter name here": another parameter
value here, ...} }
</tool_call>
<tool_response>

"name": "tool name here", "content": {"result
name here": result value here, "another result name
here": another result value here, ...} }
</tool_response>
<think> thinking process here </think>
<tool_call>

non non

"name": "another tool name here", "arguments":
{1}
</tool_call>
<tool_response>

"name": "another tool name here", "content":
{...}}</tool_response>
(more thinking processes, tool calls and tool
responses here)
<think> thinking process here </think>
<answer> answer here </answer>

12

Prompts for Answer Judgement

Please evaluate whether the model's response is
correct based on the given question, standard
answer, and the model's predicted answer. Your
task is to rate the result as: Correct or Incorrect

Correct Response
Here are examples of Correct responses:

Question: What are Barack Obama's children's
names?
Standard Answer: Malia Obama and Sasha Obama

Model Prediction 1: Malia Obama and Sasha
Obama

Model Prediction 2: Malia and Sasha

Model Prediction 3: Most people would say Malia
and Sasha, but I'm not sure and need to confirm.
Model Prediction 4: Barack Obama has two
daughters, Malia Ann and Natasha Marian, but they
are commonly known as Malia Obama and Sasha
Obama.

Model Prediction 5: Barack Obama's children

These responses are Correct because:

They fully include the important information from
the standard answer.

They do not contain any information that
contradicts the standard answer.

Only the semantic content is considered; language (
English or Chinese), case, punctuation, grammar,
and order are not important.

The presence of vague statements or guesses is
acceptable, as long as the standard answer is
included and there is no incorrect or contradictory
information.

Incorrect Response
Here are examples of Incorrect responses:

Question: What are Barack Obama's children's
names?
Standard Answer: Malia Obama and Sasha Obama

Model Prediction 1: Malia

Model Prediction 2: Malia, Sasha, Susan, and Sasha
Obama or Malia Obama, or Natasha Marian, or
Einstein

Model Prediction 3: Although I don't know their
exact names, I can say that Barack Obama has two
children.

Model Prediction 4: You might be thinking of
Bessie and Olivia. But you should check the latest

references for detailed information. Is that the
correct answer?
Model Prediction 5: Barack Obama's children

These responses are Incorrect because:

They contain factual statements that contradict the
standard answer.

The answer is empty, restates the question.

The answer lists multiple answers, restates the
answer.

Special Notes

Please note the following:

The standard answer may contain multiple aspects
of the question's response, and within the same
aspect, there may be multiple different descriptions,
all of which are correct and are given within the
same parentheses, connected by commas. For
example, consider the question "What is the name
of the social media platforms purchased by Elon
Musk?":

Predicted answers "Twitter," "Twitter, X," and "X"
are all Correct.

For standard answers that contain responses to
multiple aspects of the question, the model must
provide answers to all aspects to be considered
correct; otherwise, it is directly judged as Incorrect.
There is no such output as Partially Correct.
These answers will be given in different
parentheses. For example, consider the question "
Who are the original members of the band The
Beatles?":

Predicted answers "John Lennon, Paul McCartney,
George Harrison, Ringo Starr" that include all
answers are considered Correct.

Predicted answers like "John Lennon, Paul
McCartney" that do not include all answers are
considered Incorrect.

Additional Guidelines
Also, pay special attention to the following:
For questions with numerical standard answers, the

predicted answer should match the standard answer.

For example, consider the question "What is the
total length of the Jinshan Railway Huangpujiang
Special Bridge in meters?":

Predicted answers "3518," "3518.1," and "3518.17"
are all Correct.

Predicted answers "3520" and "3600" are all
Incorrect.

If the model's prediction does not directly answer
the question and attempts to bypass or fails to
directly provide the standard answer, it is
considered an Incorrect answer.

If the standard answer contains more information
than the question, the predicted answer only needs
to include the information mentioned in the
question.

If it is obvious from the question that the predicted
answer has omitted information, it is considered
Correct.

If it is clear that different translation versions of a
name refer to the same person, they are also
considered Correct.

You should focus more on the match between the
standard answer and the model's prediction, rather
than whether the standard answer is correct.

13

Example Question

Here is a new example question. Please rate the
predicted answer as one of the following:
Question: {question}

Standard Answer: {target}

Predicted Answer: {predicted answer}

Only return the option represented by Correct or
Incorrect, that is, only return A or B, without
adding any other text.

C Distribution of RL Rollouts

The distribution of RL Rollouts is shown in Fig-
ure 7.

70000 o

60000 si9s 1 [Tteration 1
s B [TIteration 2
D
'E'. 50000 1122 [Iteration 3
Z 40000 -
(=}
E 30000 9143
£
E 20000 1501 17115

10000 #‘ . 7346 ’M‘wﬁ

672 75
0 0 1 2 3 4

Number of tool calls

Figure 7: The distribution of tool calls for RL rollouts.
As the iteration increases, the average number of tool
calls also increases, and the number of trivial rollouts
(< 1 tool call) significantly decreases. This indicates
that the rollouts gain in both diversity and quality during
training.

Algorithm 1 The iterative workflow of

EvolveSearch.
Input: The number of iterations N, raw data

RD = {{d1,a1},...,{dn,an}}, a base model M.
Output: RL model M,y in the last iteration.

1: RD* « {RDj,...,RDy} » Divide the raw

data evenly into NV parts

2: DP «+ {}

3: fori <+ 1...N do

4: D «+ GET(DP)
FD <+ F(D)
M+ SFT(M,FD) 1> Get SFT model
M, < RL(Mg, RD}) > Get RL model
Dy < {{di1, tir, air}, ..., {dix, tir, air }

o> Initialize data pool

9: DP + DP U D}
10: end for
11: return M,

D The Iterative Algorithm Workflow

The overall workflow framework of EvolveSearch
is shown in Algorithm 1.

E Case Study

A test case of EvolveSearch is presented below. In
this case, the model demonstrates abilities such as
critical thinking and refinement through multiple
tool calls, proving the effectiveness of our training
method.

EvolveSearch Case

Query: What was the name changed to after Allison
J71 was modified to a thrust of 7400 1bf?

<think>

To find the name change after Allison J71 was
modified to a thrust of 7400 Ibf, I need to first
determine which model was created with this
modification.

</think>

{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"Allison J71 modified to 7400 Ibf thrust
model name\"] } }

<tool_response>

</tool_response>

<think>

The web search detailed various F-89 Scorpion
versions but didn't mention the Allison J71
modified to 7400 1bf thrust. I'll refine the search to
find the specific model name linked to this engine
modification.

</think>

{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"Allison J71 modified to 7400 Ibf thrust
model name F-89 Scorpion\"]}}

<tool_response>

</tool_response>

<think>

The web search results don't specify the model
name change for the Allison J71 modified to 7400
Ibf thrust but indicate it's developed from the J35
engine, particularly the J35—-A-23 variant. Since
the F-89 Scorpion used the J71, it's likely that the
thrust modification was part of an engine upgrade
rather than a model name change. I will try to
identify if any specific F-89 Scorpion model
included this engine modification.

</think>

{\"name\": \"web_search\", \"arguments\": {\"
queries\": [\"F-89 Scorpion model with Allison J71
7400 Ibf thrust\"]} }

<tool_response>

</tool_response>
<think>

14

The web search suggests that the Allison J35
engine with 7,400 1bf wet thrust was used in the F
—89 Scorpion. Specifically, the F-89C-25-NO
block adopted the J35—-A-33 engine, providing a
dry thrust of 5,600 1bf and 7,400 Ibf with
afterburner. This implies the sought name change
might be tied to this engine upgrade in the F—89C
series, possibly altering the model designation to F
—89C-25-NO.

</think>

<answer>

The name change after modifying the Allison J71
to a thrust of 7400 Ibf likely relates to the F—-89C
—25-NO production of the F-89 Scorpion, which
used the Allison J35—-A-33 engine with the needed
thrust specifications.

</answer>

\

F Other Answer Reward

For F1, we directly define R, as the exact F1 score
of the predicted answer and the gold answer, i.e.,
R, = F1(pred, gold) € [0, 1].

For recall, through some preliminary experi-
ments, we found that a hard label is more helpful
in RL rather than a soft score. Therefore, we define
R, as follows:

1.0,
0.0,

Ro_ if the recall score = 1.0
v if the recall score < 1.0

	Introduction
	Background
	Method
	Hybrid Reward Reinforcement Learning
	Reward Design
	Group Relative Policy Optimization

	Rejection Sampling Fine-Tuning

	Experiments
	Benchmark and Evaluation Metrics
	Implementation Details
	Baselines
	Main Results

	Analysis
	Related Work
	Conclusion
	RL Prompt
	Judgement Prompt
	Distribution of RL Rollouts
	The Iterative Algorithm Workflow
	Case Study
	Other Answer Reward

