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Causal drivers of dynamic networks
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Dynamic network models describe temporal interactions between social actors and have been
widely applied in detecting financial fraud, tracking the spread of invasive species and analyzing
the dissemination of misinformation. A fundamental question in these domains is identifying the
causal drivers underlying these processes. However, existing network models remain purely de-
scriptive, relying on correlative structures rather than causal inference. In this paper, we propose a
causal extension of dynamic network modeling based on structural relational event models (REMs).
REMs represent instantaneous interactions as discrete temporal events, where a sender initiates
an interaction directed toward one or more receivers. Formally, we define a dynamic network as
a multivariate counting process N = {Nsr(t) | Nsr(t) ∈ N0}, along with a covariate process
X = {Xsr(t) | Xsr(t) ∈ Rp}, where the subscripts (s, r) refer to the directed edges of the net-
work. Our objective is to determine which of the covariates X causally influence the dynamic
network N , making this a causal discovery problem.

Recent advances in causal discovery exploit the invariance property of causal models under
interventions, that is the fact that the conditional distribution of a target variable remains unchanged
across different covariate distributions. In the case of REMs, we define an invariant causal prediction
method using the fact that partial likelihood inference of a dynamic social network is equivalent with
logistic regression. In particular, consider the true causal model as dependent on a function fPA

describing the causal effects on N of its causal parents XPA ⊂ X . We can identify this function,
up to a zero set, using two key conditions: (i) the causal model fPA solves an expected likelihood
maximization conditional on the true causal parents XPA; (ii) its associated Pearson risk is equal to
1, i.e.
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where ḃ(·) and b̈(·) are the first and second derivative of the cumulant generator function b(·) =
log(1 + exp(·)). The empirical analogue of these two conditions provides a consistent causal dis-
covery algorithm.

Unlike existing invariance prediction methods, this approach enables causal discovery from a
single observational dataset, eliminating the need for multiple distinct environments. We validate
the method through simulations and demonstrate its real-world applicability by analyzing bike-
sharing data from Washington D.C. in July 2023.
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