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Abstract—This paper presents an enhanced version of the
Animated Oat Optimization (AOO) algorithm, a novel evolu-
tionary metaheuristic inspired by the rolling and propagation
mechanisms of oat seeds in humid environments. To improve its
performance, we integrate a parallel co-evolutionary framework
with novel communication strategies to facilitate collaboration
among subpopulations. Furthermore, a competitive strategy with
an incentive mechanism is introduced to promote the evolution
of high-quality solutions while reducing computational cost. The
proposed algorithm, termed the Competitive Parallel Animated
Oat Optimization (CPAOO), is evaluated on the CEC 2017
benchmark suite. Experimental results confirm that CPAOO
achieves superior performance compared to several state-of-the-
art evolutionary algorithms.

Index Terms—Animated Oat Optimization, Competitive Par-
allel, Communication Strategy, Incentive Mechanism.

I. INTRODUCTION

Optimization problems have traditionally been addressed
through mathematical programming methods such as linear
programming, integer programming, and gradient-based al-
gorithms [1]. While these classical approaches provide the-
oretical guarantees for convex problems, they often struggle
with non-convex, high-dimensional, or discontinuous search
spaces commonly encountered in real-world applications [2].
This limitation has motivated the development of alternative
optimization paradigms, particularly Evolutionary Algorithms
(EAs).

Unlike traditional methods that rely on mathematical prop-
erties like differentiability, EAs operate through population-
based stochastic search inspired by biological evolution prin-
ciples [3], [4]. These algorithms maintain multiple candidate
solutions simultaneously and use selection, recombination, and
variation operators to explore the solution space. This funda-
mental difference enables EAs to handle complex problems
without requiring gradient information or convexity assump-
tions, while demonstrating remarkable robustness against local
optima. The versatility of EAs has led to their successful
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deployment across diverse domains including engineering
design [5], financial modeling [6], image processing [7],
[8], biomedical applications [9], transportation planning [10],
feature selection [11], and energy system optimization [12],
[13], establishing EAs as indispensable tools in modern com-
putational intelligence [14].

This context has spurred the development of numerous
influential EAs, including Grey Wolf Optimizer (GWO) [15],
Whale Optimization Algorithm (WOA) [16], Particle Swarm
Optimization (PSO) [17], Differential Evolution (DE) [18],
and Genetic Algorithm (GA) [19]. As a recent contribution
to this field, the Animated Oat Optimization algorithm es-
tablishes its search strategy by simulating the dispersal and
growth mechanisms of oat seeds in response to environmental
factors [20]. In this methodology, each candidate solution is
treated as a viable seed, with fitness values quantifying its
survival potential. The optimization procedure evolves through
three characteristic phases: random diffusion, eccentric mo-
tion, and ejection migration. The execution and transition
between these phases are governed by humidity variations and
physical obstacles within the simulated environment, resulting
in distinct search behaviors.

To enhance the performance of EAs in complex opti-
mization tasks, various improvement strategies have been
developed in recent years. Among them, surrogate-assisted
optimization reduces computational costs by constructing ap-
proximate models to replace expensive fitness evaluations [21].
For instance, Yu et al. introduced a surrogate-assisted differ-
ential evolution with fitness-independent parameter adaptation
(SADE-FI), which utilizes ”dimensional improvements” rather
than surrogate-predicted fitness values for parameter adapta-
tion, thereby significantly enhancing performance on high-
dimensional expensive problems [22]. Chu et al. developed
a surrogate-assisted social learning PSO (SASLPSO) that
synergizes a global surrogate, an adaptive local surrogate,
and a random grouping-based pre-screening strategy, leading
to enhanced performance on expensive optimization prob-



lems, particularly in high-dimensional search spaces [23].
Decomposition-based cooperative coevolution addresses com-
plexity by dividing problems into smaller subproblems, which
are then solved by collaborative subpopulations. Zhong et
al. proposed a hierarchical Cooperative Coevolution (hCC)
framework for Very Large-Scale Traveling Salesman Problems
(VLSTSP). This framework begins with small-scale decom-
position to manage dimensionality and then systematically re-
optimizes subcomponents at higher levels to capture initially
missed critical interactions, demonstrating significant potential
and scalability [24]. Parallel optimization strategies balance
exploration and exploitation through population partitioning
and information exchange. For example, Pan et al. devel-
oped the Parallel Compact Gannet Optimization Algorithm
(PCGOA), which adopts a compact strategy by utilizing a
probability distribution model instead of maintaining a full
population, thereby significantly reducing memory overhead.
The algorithm also incorporates novel communication strate-
gies between subpopulations to improve solution accuracy
and convergence speed [25]. In a similar vein, Zhang et al.
proposed the Parallel Compact Sine Cosine Algorithm (PC-
SCA). This method also leverages a compact strategy through
a probability model to virtualize the population, achieving
substantial memory savings. Furthermore, it introduces three
distinct parallel communication strategies tailored for different
problem types (unimodal, multimodal, and complex nonlinear)
to effectively escape local optima and enhance solution preci-
sion [26].

This paper proposes a cooperative-competitive framework
for enhancing the Animated Oat Optimization algorithm,
designated as the Competitive Parallel Animated Oat Opti-
mization (CPAOO). The proposed architecture incorporates
two innovative communication strategies: the Elite Integra-
tion Communication Strategy (EI) and the Elite Orienta-
tion Communication Strategy (EO). Initially, the population
is partitioned into multiple independent subpopulations that
evolve simultaneously using the standard AOO procedure. At
predetermined intervals, inter-subpopulation communication is
activated through elite individual migration and knowledge
sharing, effectively maintaining population diversity while
accelerating convergence. The main contributions of this work
are summarized as follows:

• The EI Strategy migrates elite individuals from different
subpopulations into a designated elite subpopulation, ef-
fectively reducing the risk of premature convergence to
local optima.

• The EO Strategy enhances both the quality and diversity
of individuals across subpopulations, thereby improving
the algorithm’s global exploration capability.

• A competitive strategy with an incentive mechanism
(CIM) is proposed to select high-performing individuals
and motivate their active participation in the evolution-
ary process, effectively reducing computational overhead
while improving overall population quality.

The remainder of this paper is organized as follows: Sec-

tion II outlines the fundamental principles of the original
Animated Oat Optimization algorithm. Section III elaborates
on the proposed Competitive Parallel Animated Oat Opti-
mization framework. Section IV presents experimental results
and performance comparisons using standard benchmark func-
tions. Finally, Section V concludes with summary remarks and
potential research directions.

II. RELATED WORK

A. Animated Oat Optimization algorithm
Unlike many EAs that model animal behaviors, AOO

uniquely capitalizes on the dynamic interplay between a
plant’s structural mechanics and its environmental interactions
to drive the optimization process. The core inspiration stems
from three observed biological phenomena in animated oat
seeds: initial random dispersal facilitated by external agents
like wind, which promotes exploration; precise locomotion
via humidity-driven hygroscopic twisting and rolling of the
awn, enabling localized exploitation; and a resilient ejection
mechanism where energy stored in the awn is released to
overcome obstacles, allowing escape from local optima. These
mechanisms collectively equip AOO with a robust strategy for
balancing global exploration and local exploitation.

1) Initialization Phase: Similar to most EAs, the AOO
algorithm initializes its population by randomly generating
N individuals (Xi) within the problem space, defined by the
upper bound (U ) and lower bound (L). Each individual is
initialized as Xi = r × (U − L) + L, where r represents
a uniformly distributed random number in the range [0, 1].
The AOO algorithm utilizes several key hyperparameters that
are functions of the maximum iteration count (T ), the current
iteration count (t), and the problem dimensionality (D). These
parameters include: seed mass (m = 0.5 × r

D ), main awn
length (ML = N× r

D ), eccentricity coefficient (e = 0.5× r
D ),

and dynamic adjustment factor (c = 1−
(
t
T

)3
).

2) Exploration Phase: In the exploration phase, AOO mim-
ics the random dispersal of seeds under natural forces such as
wind. The update rule combines multiple guiding positions to
enhance global search capability:

W =
c

π
× (2× rD − 1)⊗ U (1)

Xnew
i = 1

N ×
∑N
i=1Xi +W if mod

(
i, N10

)
= 0

Xnew
i = Xbest +W if mod

(
i, N10

)
= 1

Xnew
i = Xi +W others

(2)

Here, W denotes the random movement step size, rD is a D-
dimensional random vector with elements in [0, 1], and Xbest

represents the position of the current global best individual.
3) Exploitation Phase: The exploitation phase considers

two motion patterns based on whether seeds encounter ob-
stacles:

Eccentric Rolling (No Obstacle): Seeds roll due to the
hygroscopic deformation of the awn. The displacement is
modeled as:

A = U −
∣∣∣∣U × t× sin (2× π × r)

T

∣∣∣∣ (3)



R =
(
m× e+ML2

)
× rD (−A,A)

D
(4)

Xnew
i = Xbest +R+ c× Levy (D)⊗Xbest (5)

Ejection (With Obstacle): When a seed hits an obstacle,
it stores and releases energy, leading to projectile motion:

B = U −
∣∣∣∣U × t× cos (2× π × r)

T

∣∣∣∣ (6)

k = 0.5× (1 + r) x = 3× r
D

θ = π × r α = e
rT

T

π

(7)

J =
2× k × x2 × sin (2θ)

mg
× rD (−B,B)

D
× (1− α) (8)

Xnew
i = Xbest + J + c× Levy (D)⊗Xbest (9)

In the above, R and J represent rolling and ejection
displacements, respectively. Parameters such as the elastic
coefficient k, awn length variation x, ejection angle θ, and
air resistance coefficient α are used to simulate physical
motion. The Lévy flight function Levy (D) helps the algorithm
escape local optima. The symbol rD (−A,A) denotes a D-
dimensional vector with each component randomly drawn
from [-A,A], and rT is a random number in [0,T].

III. PROPOSED COMPETITIVE PARALLEL ANIMATED OAT
OPTIMIZATION ALGORITHM

The proposed Competitive Parallel Animated Oat Opti-
mization (CPAOO) algorithm enhances the standard AOO
by integrating a parallel co-evolutionary architecture with
innovative interaction mechanisms. As illustrated in Fig. 1,
the population is initially divided into K subpopulations
that evolve independently following the original AOO search
procedures. In the figure, IT denotes the predefined iteration
threshold that triggers communication, while the evolution-
ary process within each subpopulation is governed by the
Competitive Strategy with an Incentive Mechanism (CIM).
Two specialized communication strategies, namely the Elite
Integration Communication Strategy (EI) and Elite Orientation
Communication Strategy (EO), are periodically activated to
facilitate knowledge transfer across subpopulations, effectively
balancing global exploration and local refinement. This frame-
work establishes a dynamic information exchange network that
addresses the inherent conflict between diversity preservation
and convergence speed in traditional single-population evolu-
tion.

A. EI Communication Strategy

The EI strategy operates on a designated best subpopulation,
which contains the current global best solution. During com-
munication phases, the top-performing individuals from other
subpopulations are identified and migrated into this best sub-
population. To preserve a stable subpopulation size, an equiv-
alent number of lower-fitness individuals are removed from

Start

End

mod(t, IT)==0Initialize K 
subpopulations

Based on the CIM strategy, 
the K subpopulations evolve 
independently using 
the AOO algorithm.

t>T

Update the optimal 
solution

EI strategy

Best Subpopulation

EO strategy

Other subpopulations

YesNo

YesNo

Fig. 1: The Overall Process of CPAOO

the best subpopulation. This concentration of high-quality
solutions not only intensifies the search around promising
regions but also effectively prevents premature convergence
by ensuring continuous renewal within the best subpopula-
tion. This mechanism mimics the natural phenomenon where
superior organisms gather in resource-rich areas, ensuring the
algorithm remains focused on promising search directions.

Worst1 Worstn…

GBEST

Best1

Best2

Bestn

…

Other subpopulations

Best subpopulation

Join

eliminate

Fig. 2: Elite Integration Communication Strategy

B. EO Communication Strategy

The EO strategy guides the evolution of non-best sub-
populations through two complementary operations. First, the
global best individual directly replaces the worst member in
each non-best subpopulation, enabling direct propagation of
elite knowledge. Second, a new guiding solution, Xnew, is
generated by performing a weighted combination of the best
individuals from all subpopulations, as defined by:Qi = 1

K−1 ×
(
1− fi∑K

j=1 fj

)
Xnew =

∑K
i=1Qi ×Xbest

i

(10)

Where k denotes the total number of subpopulations, Xbest
i

represents the best individual in the i-th subpopulation, and the
weight Qi is proportional to the fitness value of Xbest

i . This
newly created individual then replaces a randomly selected
non-elite member in a different subpopulation, thereby steering
the population toward more promising regions for exploration.



This dual guidance mechanism ensures both rapid dissemina-
tion of high-quality genes and sustained exploratory vitality
across the population.
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Fig. 3: Elite Orientation Communication Strategy

C. CIM Strategy

To improve computational resource utilization efficiency,
this paper introduces CIM strategy. In this strategy, individ-
uals are randomly paired for direct competition. Winners are
granted a high probability (e.g., 0.8) of advancing to the next
generation, while losers are assigned a lower probability (e.g.,
0.2) but are not completely eliminated. This selective pressure
continuously enhances population quality throughout iterations
while significantly reducing the number of fitness evaluations,
thereby effectively lowering computational overhead without
compromising solution accuracy. The competition mechanism
simulates the survival-of-the-fittest principle in natural selec-
tion, ensuring that high-quality individuals receive more evo-
lutionary opportunities while potentially valuable individuals
retain their evolutionary possibilities.

Population

…

Randomized 
grouping

Winner

Loser

Population (next generation)
Competition

Use AOO Evolution (80% probability)

Directly into the next generation

Use AOO Evolution (20% probability)

Fig. 4: Competitive Strategy with an Incentive Mechanism

D. Algorithmic Procedure

The complete procedure of CPAOO is summarized in Algo-
rithm 1. The algorithm begins by initializing multiple subpop-
ulations and then iterates through cycles of independent evolu-
tion, periodic communication, and competitive selection until
termination criteria are met. The synergy between cooperative
information exchange and competitive individual selection
enables CPAOO to effectively maintain the balance between
diversification and intensification throughout the entire search
process. By establishing a multi-level interaction mechanism,
the algorithm achieves significant improvements in both search
efficiency and solution quality.The pseudocode of the CPAOO
algorithm is presented below:

Algorithm 1 Competitive Parallel Animated Oat Optimization
Algorithm

Input: Number of individuals in the total population (N ),
fitness function (F ), problem dimension (D), number
of subpopulations (K), maximum iteration count (T ),
iteration threshold (IT );

Output: Optimal solution;
1: Initialization: Initialize each subpopulation (G1–GK);
2: while t ≤ T do
3: for i = 1 : K do
4: Using the CIM strategy, divide individuals into win-

ners (Ws) and losers (Ls);
5: Individuals in Ws and Ls evolve using AOO accord-

ing to the set probability;
6: end for
7: Update GBEST ;
8: if mod (t, IT ) == 0 then
9: Compute Xnew using Eq. (10);

10: for i = 1 : K do
11: if Gi.Best == GBEST then
12: Employing the EI strategy for information ex-

change;
13: else
14: Employing the EO strategy for information ex-

change.
15: end if
16: Update the best and worst individuals in the sub-

population;
17: end for
18: Update GBEST ;
19: end if
20: end while

IV. EXPERIMENTS AND MATHEMATICAL ANALYSIS

The comprehensive performance of the CPAOO algorithm
was evaluated using the CEC 2017 benchmark suite with a
problem dimension of 30. This benchmark categorizes func-
tions into four major classes based on their complexity. The
competing algorithms selected for this study include classical
EAs, novel EAs, and EAs enhanced with parallel strategies.
Specifically, the compared algorithms encompass PSO, DE,
GWO, PCSCA, and PCGOA. All algorithms were configured
according to their original references and implemented in
MATLAB R2022b. The experiments employed a population
size of 100 and a maximum of 1000 iterations for each run. To
ensure statistical reliability, each algorithm was independently
executed 20 times, and the average performance was recorded
as the final result. For CPAOO, the participation probabilities
for individuals in the winner and loser groups were set to 0.8
and 0.2, respectively.

In addition, rigorous statistical analysis was performed on
the experimental results to ensure the reliability of the perfor-
mance comparisons. The non-parametric Wilcoxon rank-sum
test was employed to assess the significance of performance



TABLE I: Performance results of various algorithms on CEC2017.

Algorithm CPAOO AOO GWO PSO DE PCSCA PCGOAFun
F1 2.6922E+03 3.4317E+03(+) 5.6323E+08(+) 1.4276E+09(+) 6.0705E+03(+) 9.3927E+06(+) 6.9838E+07(+)
F2 8.2157E+03 3.6048E+02(-) 3.4665E+04(+) 9.6579E+03(+) 1.2083E+05(+) 5.0708E+04(+) 6.0537E+04(+)
F3 4.8789E+02 5.1403E+02(+) 5.7350E+02(+) 6.0193E+02(+) 4.9372E+02(+) 5.4232E+02(+) 5.2732E+02(+)
F4 5.7243E+02 6.1701E+02(+) 5.9756E+02(+) 6.9756E+02(+) 6.6078E+02(+) 8.2619E+02(+) 7.9610E+02(+)
F5 6.0076E+02 6.1673E+02(+) 6.0447E+02(+) 6.1829E+02(+) 6.0000E+02(-) 6.7523E+02(+) 6.7310E+02(+)
F6 7.8150E+02 8.4015E+02(+) 8.5789E+02(+) 9.9892E+02(+) 8.8741E+02(+) 1.1024E+03(+) 1.1138E+03(+)
F7 8.5343E+02 8.9527E+02(+) 8.7501E+02(+) 1.0060E+03(+) 9.6551E+02(+) 1.0996E+03(+) 1.0201E+03(+)
F8 9.0027E+02 2.4014E+03(+) 1.2922E+03(+) 1.4619E+03(+) 1.0064E+03(+) 1.0445E+04(+) 9.1586E+03(+)
F9 3.3694E+03 4.2945E+03(+) 3.6660E+03(+) 7.8584E+03(+) 6.9666E+03(+) 6.3013E+03(+) 5.8399E+03(+)
F10 1.2355E+03 1.2422E+03(+) 1.3121E+03(+) 1.4881E+03(+) 1.3169E+03(+) 1.5308E+03(+) 1.5166E+03(+)
F11 2.4996E+06 3.6879E+06(+) 3.0948E+07(+) 1.5174E+08(+) 1.3391E+07(+) 4.2780E+07(+) 3.0208E+07(+)
F12 4.0024E+04 1.1464E+05(+) 7.9073E+04(+) 5.1645E+07(+) 4.6744E+05(+) 7.4003E+05(+) 4.7324E+05(+)
F13 7.5540E+03 1.7788E+04(+) 5.6800E+04(+) 3.0162E+04(+) 1.2055E+05(+) 1.9237E+05(+) 1.5078E+05(+)
F14 2.0948E+04 5.4504E+04(+) 2.6015E+05(+) 5.9878E+06(+) 1.0882E+05(+) 1.0128E+05(+) 9.2242E+04(+)
F15 2.1014E+03 2.3622E+03(+) 2.4482E+03(+) 3.1940E+03(+) 2.4967E+03(+) 3.4998E+03(+) 3.6120E+03(+)
F16 1.8453E+03 2.0195E+03(+) 1.9821E+03(+) 2.1713E+03(+) 1.9631E+03(+) 2.4230E+03(+) 2.4109E+03(+)
F17 1.7406E+05 3.4780E+05(+) 6.6857E+05(+) 7.3913E+05(+) 1.0168E+06(+) 4.4144E+06(+) 2.4393E+06(+)
F18 6.7534E+04 1.7648E+05(+) 2.3897E+05(+) 1.1190E+07(+) 8.6543E+04(+) 8.6134E+06(+) 6.8694E+06(+)
F19 2.2118E+03 2.3752E+03(+) 2.3281E+03(+) 2.5320E+03(+) 2.2799E+03(+) 2.7391E+03(+) 2.8028E+03(+)
F20 2.3531E+03 2.3959E+03(+) 2.3747E+03(+) 2.4839E+03(+) 2.4560E+03(+) 2.5889E+03(+) 2.6107E+03(+)
F21 2.3006E+03 4.1364E+03(+) 4.3967E+03(+) 6.3471E+03(+) 3.8818E+03(+) 6.7828E+03(+) 5.6628E+03(+)
F22 2.7027E+03 2.7543E+03(+) 2.7335E+03(+) 2.8547E+03(+) 2.8046E+03(+) 3.0838E+03(+) 3.0506E+03(+)
F23 2.8689E+03 2.9347E+03(+) 2.9253E+03(+) 3.0107E+03(+) 3.0022E+03(+) 3.2150E+03(+) 3.1833E+03(+)
F24 2.8952E+03 2.8946E+03(=) 2.9512E+03(+) 2.9976E+03(+) 2.8877E+03(-) 2.9460E+03(+) 2.9667E+03(+)
F25 3.6655E+03 4.6581E+03(+) 4.3536E+03(+) 4.3555E+03(+) 5.2297E+03(+) 6.7349E+03(+) 4.5214E+03(+)
F26 3.2171E+03 3.2379E+03(+) 3.2394E+03(+) 3.2571E+03(+) 3.2180E+03(=) 3.4055E+03(+) 3.3169E+03(+)
F27 3.1992E+03 3.2423E+03(+) 3.3835E+03(+) 3.3478E+03(+) 3.2567E+03(+) 3.3167E+03(+) 3.3102E+03(+)
F28 3.4785E+03 3.7909E+03(+) 3.6997E+03(+) 4.0857E+03(+) 3.8220E+03(+) 4.8939E+03(+) 4.8822E+03(+)
F29 9.2010E+05 1.3278E+06(+) 6.5275E+06(+) 1.4668E+07(+) 8.5251E+04(-) 1.6537E+07(+) 1.8423E+07(+)
+/=/- -/-/- 27/1/1 29/0/0 29/0/0 25/1/3 29/0/0 29/0/0

differences between algorithms, while the Friedman test with
corresponding post-hoc analysis was conducted to evaluate the
overall ranking significance across multiple algorithms.

Table I presents the experimental results of the CPAOO
algorithm and the selected competitors on the CEC 2017
benchmark. Compared to other parallel algorithms, CPAOO
demonstrates significant advantages. Notably, CPAOO consis-
tently outperformed the other parallel algorithms, PCSCA and
PCGOA, across all benchmark functions. Against the original
AOO algorithm, CPAOO showed slightly weaker performance
only on function F2. Nonetheless, even on F2, CPAOO still
surpassed all other competing algorithms. When compared to
novel EAs, CPAOO achieved comprehensive superiority across
all benchmark functions. In comparisons with classical EAs
(specifically PSO and DE), CPAOO demonstrated markedly
superior overall performance relative to PSO and outperformed
DE on the vast majority of functions. A comprehensive anal-
ysis of the experimental data confirms that CPAOO possesses
outstanding overall performance.

Table II presents the Friedman test results, where CPAOO
achieved the best average rank of 1.1724. Fig. 5 illustrates the
convergence behavior of the algorithms on selected benchmark
functions. On unimodal functions, CPAOO, despite a slower
initial convergence, maintains a stable convergence trend and
ultimately attains the best results, showing potential for further
improvement. This robust performance is attributed to the EI

strategy, which enhances the algorithm’s exploitation capa-
bility. For complex functions, CPAOO demonstrates superior
exploration capability, which is intuitively reflected in its
consistent attainment of better solutions. This advantage is
particularly evident on function F21. On multimodal functions,
CPAOO exhibits a characteristic stepwise convergence pattern.
This indicates that the integration of parallel and competitive
strategies effectively enables the algorithm to escape local op-
tima. However, CPAOO did not achieve the optimal result on
function F29, suggesting there is room for further enhancement
in addressing specific complex composition problems.

TABLE II: Friedman test results.

Algorithm rank

CPAOO 1.1724
AOO 2.8276
GWO 3.4828
PSO 5.3448
DE 3.4483

PCSCA 6.1379
PCGOA 5.5862

p: 6.7530E-23



(a) F1 (Unimodal) (b) F8 (Multimodal) (c) F9 (Multimodal) (d) F13 (Hybrid)

(e) F19 (Hybrid) (f) F21 (Composition) (g) F25 (Composition) (h) F29 (Composition)

Fig. 5: Convergence curves of various algorithms on CEC2017 benchmark functions.

V. CONCLUSION AND OUTLOOK

This paper introduces a significant enhancement to the
AOO algorithm by proposing the Competitive Parallel AOO
algorithm. This is achieved through the integration of a parallel
architecture with two novel subpopulation communication
mechanisms: the EI and EO strategies. This integration sig-
nificantly enhances information exchange across subpopula-
tions and effectively balances the algorithm’s exploration and
exploitation capabilities. Furthermore, the introduction of a
competitive strategy with an incentive mechanism enhances
population diversity and vitality, while simultaneously reduc-
ing the total number of required fitness evaluations, thereby
lowering computational overhead. The comprehensive perfor-
mance and robustness of the proposed CPAOO algorithm have
been rigorously validated through extensive experiments on the
CEC 2017 benchmark suite. Future research will focus on two
primary directions: further refinement of the subpopulation
interaction mechanisms to enhance performance on specific
problem types, and the application of the CPAOO algorithm
to practical domains such as reversible data hiding, to validate
its utility in real-world scenarios.
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