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Abstract
Image-based 3D reconstruction or 3D photogrammetry of small-scale objects including insects and biological specimens is

challenging due to the use of a high magnification lens with inherently limited depth of field, and the object’s fine

structures. Therefore, the traditional 3D reconstruction techniques cannot be applied without additional image prepro-

cessing. One such preprocessing technique is multifocus stacking/fusion that combines a set of partially focused images

captured at different distances from the same viewing angle to create a single in-focus image. We found that the image

formation is not properly considered by the traditional multifocus image capture and stacking techniques. The resulting in-

focus images contain artifacts that violate the perspective projection. A 3D reconstruction using such images often fails to

produce accurate 3D models of the captured objects. This paper shows how this problem can be solved effectively by a new

multifocus multiview 3D reconstruction procedure which includes a new Fixed-Lens multifocus image capture and a

calibrated image registration technique using analytic homography transformation. The experimental results using the real

and synthetic images demonstrate the effectiveness of the proposed solutions by showing that both the fixed-lens image

capture and multifocus stacking with calibrated image alignment significantly reduce the errors in the camera poses and

produce more complete 3D reconstructed models as compared with those by the conventional moving lens image capture

and multifocus stacking.

Keywords Fixed-lens multifocus capture � Macroimaging � Multifocus stacking � Multifocus image fusion �
Image registration � Perspective image formation � Multiview stereo � 3D reconstruction � Multifocus multiview

reconstruction � Image-based 3D reconstruction � Insects � Small objects � Small specimens

1 Introduction

3D reconstruction of small objects including insects and

biological specimens is challenging due to the use of a high

magnification lens with limited depth of field, fine features,

and complex surface properties. Recent advancements

[15, 39, 47, 49] show that the photogrammetry or image-

based multiview 3D reconstruction can be applied with

some success to create the true-colour 3D models of small

specimens.

The solutions enabling the images of small specimens (a

few centimeters or smaller) to be reconstructed in 3D

generally include a two-axis turntable combined with

macrorail and macrophotography to capture multifocus

multiview images [39], calibration target [39, 49], multi-

focus image fusion/stacking [57], scale-shift calibration

and automatic background masking [49], and a multiview

3D reconstruction [1–3, 45, 46].

Despite multiple techniques to tackle different issues of

image-based 3D reconstruction of small specimens,

obtaining an accurate 3D model is still difficult. Our pre-

liminary study [26] showed that there is a neglected source

of the error caused by the multifocus image stacking that
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needed to be accounted for. To tackle this problem, [26]

proposed a Fixed-Lens multifocus image capture technique

with fitted homography-based image alignment/

registration.

This paper is an extension of our preliminary study [26].

We describe the fixed-lens multifocus capture setup. We

further improve the image registration with a new analytic

formulation of homography transformation for the multi-

focus images. Finally, we perform a more detailed com-

parison with state-of-the-art techniques.

The remainder of this paper is organized as follows.

Section 2 contains the review of the relevant literature. An

overview of the concept of the pinhole camera model, the

problem of perspective inconsistency, depth of focus and

multifocus stacking is introduced in Sect. 3. Section 4

describes our proposed method fixed-lens image acquisi-

tion setup. Formulations of the required shift and scale to

construct homography transformation is presented in Sect.

5. In Sect. 6, a brief overview of the Laplacian pyramid-

based image fusion algorithm to fuse the aligned images of

a single stack into an in-focus image and background

masking to remove the background of the fused image is

discussed. Section 7 contains the 3D reconstruction results

showing the effectiveness of the proposed method versus

the conventional method. Finally, Sect. 8 concludes the

paper with our findings. The codes and data will be

released on GitHub1.

2 Related work

Image-based multiview 3D reconstruction procedure

[18, 46, 52] utilizes the images of a scene/object captured

from multiple viewpoints to reconstruct the scene/object in

3D. However, 3D reconstruction of small-scale objects is

different from the conventional 3D reconstruction mainly

in terms of image acquisition and preparation. Instead of

conventional image acquisition, multifocus image acqui-

sition is required for small-scale objects because of the

shallow depth of field of high magnification lens (macro-

lens) used to capture the images. Consequently, an addi-

tional image preprocessing step, namely multifocus

stacking, is also required to combine the multifocus images

before feeding them to a conventional 3D reconstruction

algorithm.

Multifocus images can be synthesized from light field

images for dense light field reconstruction [43, 44]. Mul-

tifocus images are obtained by weighted summation of

shifted multiview images captured by a light field/plenoptic

camera. These synthesized multifocus images can also be

used to estimate 3D scene flow [14]. For dense light field

synthesis, Kodama and Kubota [23] propose reconstructing

an in-focus image from the multifocus images obtained by

shifting the pinhole. Light field images can be used directly

for 3D reconstruction as well [36, 48, 60, 62].

However, light field reconstruction is not the same as

multifocus multiview reconstruction. Light field images are

captured from slightly different (shifted) viewpoint but

from the same direction, whereas in multifocus multiview

reconstruction, multiview images are captured from dif-

ferent directions and different distances between the cam-

era and the object.

Several investigations have been performed to recon-

struct 3D models of small specimens from multifocus

multiview images. For detailed 3D surface/image recon-

struction, structured light scanning is used by Geng [16],

whereas Ritz et al. [41] used lens-shifted structured light.

Real-time 3D image reconstruction from multifocus ima-

ges has been proposed by Kodama et al. [24] using efficient

linear filtering with multidimensional symmetry. These

methods did not consider 3D reconstruction from multiple

views.

Gallo et al. [15] and Silvester and Hillson [47] used

structure-from-motion (SfM)-based multifocus multiview

3D reconstruction for small biological specimens. Nguyen

et al. [39] and Ströbel et al. [49] investigated 3D recon-

struction of small insects from multifocus multiview ima-

ges applying SfM with shape-from-silhouette and

multiview-stereo, respectively. However, all these works

utilize conventional multifocus image capture and stacking

technique. Hence, these studies do not properly address the

perspective distortion caused by the conventional multifo-

cus image capture and fusion technique.

Multifocus image fusion is very crucial for multifocus

multiview 3D reconstruction. A large number of multifocus

fusion algorithms have been proposed so far, and several

review articles can be found in the literature

[29, 33, 35, 57]. The fusion methods can be classified into

two groups: (a) the spatial domain methods

[6, 7, 11, 27, 28, 31, 32, 61] and (b) the transform domain

methods [9, 21, 23, 25, 38, 53, 56, 59].

Most of the spatial domain image fusion methods are

fast and easy to implement compared with transform-based

methods. But spatial domain methods depend heavily on

the accuracy of the optimal weight/decision map estima-

tion. In general, transform domain methods achieve supe-

rior performance compared to spatial domain methods at

the cost of computational complexity.

To overcome the complexity of manually designing the

feature extraction and fusion rules, recently deep learning-

based image fusion approaches have been introduced

[4, 17, 20, 37, 40, 55, 58]. All the deep learning-based

fusion techniques take a pair of partially focused images as

1 https://github.com/chuong/multifocus_multiview_stereo_reconstru

ction.
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input to produce an in-focus image as the output and not

useful when the number of images in the stack is higher

than two.

As the input images could contain some misalignments,

image registration before image fusion is necessary. A

common practice is to compute the homography transfor-

mations between the images with a reference image by

direct registration or feature-based registration [5, 51, 63].

Recent state-of-the-art multifocus fusion techniques with

misalignment consideration include the methods proposed

by Liang et al. [30] with feature-based registration and Ji

et al. [22] with optimization robust to misalignment.

However, these techniques do not account for the image

scaling effect, therefore limiting their use for the more

general imaging conditions.

Most multifocus fusion algorithms aim to produce good

looking images without considering further applications

such as 3D reconstruction. These good looking stacked in-

focus images often contain artifacts due to the parallax

error between the images in a stack. This leads to unreli-

able camera pose estimation for 3D reconstruction and

consequently, an inaccurate 3D model.

To deal with unreliable estimation of the camera poses,

Ströbel et al. [49] precomputed the camera poses using a

textured sphere for 3D reconstruction. However, this

workaround solution restricts the predetermined camera

positions. To tackle the parallax error, Ströbel et al. [49]

proposed to use a calibration target to estimate the scale

and shift components for image registration. Although the

scale-shift image registration partially corrects the parallax

error, the perspective projection in a stacked in-focused

image is not guaranteed. This violates the pinhole projec-

tion model used by the most multiview 3D reconstruction

algorithms, and it causes poor 3D reconstruction.

The Fixed-Lens multifocus image capture technique

with fitted homography-based image alignment proposed

by Li and Nguyen [26] aims to preserve the perspective

consistency. The fixed-lens image capture provides the

images with the same perspective projection. The fixed-

lens multifocus images can be registered perfectly using a

homography transformation as there is no parallax error. A

calibration target is used to precompute the homography

transformations for the image registration.

In this paper, as an extension of the method proposed by

Li and Nguyen [26], we combine the fixed-lens image

capture with the proposed image registration using the

analytic homography transformation formulated in Sect. 5

to further improve the accuracy of the estimated camera

poses and reconstructed 3D models.

3 Perspective image formation and depth
of focus effect

3.1 Pinhole camera and perspective image
formation

The first camera invented was the pinhole camera as shown

in the top of Fig. 1 where the pinhole C is the center of

image formation allowing the light rays to pass straight

through. Modern cameras use lenses instead of the pinhole

to improve the image quality, but it adds the depth of focus

where a film or image sensor is located to capture a clear

in-focus image. Due to the image capture process of a

camera, a transformation between the 3D world to the 2D

image happens where the depth is missing in the captured

image. Furthermore, different parts in the scene appear at

different scales or magnifications depending on their dis-

tances to the camera lens. This is demonstrated by the

bottom of Fig. 1 where the images of the same object are

captured at two different distances. As the camera lens

moves, the center C of image formation moves. This leads

to the changes in the relative distances (and magnifications)

between parts of the scene to the camera center. As a result,

the change of the relative scales of different parts of the

scene causes different perspective distortions.

3.2 Depth of focus, depth of field and multifocus
stacking

Due to the use of lenses in modern cameras, image quality

is significantly better, but the depth of focus is introduced

in the image. As shown in the top of Fig. 2, an object at

distance d0 forms an image at distance d00 ¼
d0fL
d0�fL

, where fL

is the lens focal length. If an image sensor is placed at this

distance (i.e. at the back focal plane), the image will be

clear and in focus.

In reality, an image is considered in focus if the image of

a point remains smaller than a circular dot called the circle

of confusion (COC) with an empirical diameter /coc. From

[19], /coc is chosen approximately 0.1% of the mean of the

width and height of the image sensor. For example, for a

35mm sensor format, /coc is chosen to be 0.025mm.

Strictly speaking, /coc should be selected as the larger

value of the size of an image pixel and the optical reso-

lution of the lens.

The distance range where the image remains in focus is

called the depth of focus DoFocus. Using the proportional

relationship, one can obtain the depth of focus as:

Neural Computing and Applications (2021) 33:7421–7440 7423

123



DoFocus

2d00
¼ /coc

/a

) DoFocus ¼ 2
/coc

/a

d00

or DoFocus ¼ 2
fnumber/coc

fL
d00

ð1Þ

where /a is the diameter of the lens aperture, and

fnumber ¼ fL=/a.

This depth of focus translates to the depth of field

DoField where the objects stay within so that their images

are in-focus. Assuming the circle of confusion /coc is

backprojected into the scene to the size /coc=M where M ¼
d00=d0 is the lens magnification, the proportional relation-

ship gives:

DoField

2d0
¼ /coc

M/a

) DoField ¼ 2
/coc

M/a

d0

or DoField ¼ 2
d20/coc

d00/a

¼ 2
d0ðd0 � fLÞ/coc

fL/a

ð2Þ

To capture the scenes at different distances, the position of

the lens and/or the image sensor needs to be adjusted to put

the image into focus.

For an object with the parts at different distances, only

some parts are in focus and the other parts are out of focus.

This is especially prevalent in macroimaging where the

size of the scene is tens of centimeter or smaller and a high

magnification lens is used. Figure 3 shows the images

captured as a camera (and lens) moves toward the speci-

men at constant incremental depth at the same viewing

angle. Multifocus image stacking produced an in-focus

image representing that single viewing angle.

The conventional multifocus capture is to move the

camera and lens together. The step size of the macrorail

movement is equivalent to the depth of field. However, the

recommended macrorail step size is 50% of the depth of

field in this case to allow 50% overlapping between the in-

focus regions of the successive images to help guide the

image registrations for the optimization-based multifocus

stacking algorithms.

By using such multifocus stacked images captured at

different angles, the 3D reconstruction of small objects

becomes possible as reported by [15, 39, 47, 49]. However,

such in-focus stacked images do not correctly represent the

Fig. 1 Top: pinhole camera

principle and perspective

projection [50] where all the

straight light rays go through

this hole (image in the public

domain). The pinhole represents

the camera center for image

formation. Bottom: the pair of

oranges captured by the same

camera of 5mm focal length at

different distances leading to

different perspective image

formations (or distortions).

(Best viewed in colour on the

screen)
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perspective image formation, leading to reconstruction

errors or failures. This becomes more severe when the size

of the objects becomes smaller, i.e. a few centimeters long

or smaller.

4 Fixed-Lens Multifocus Capture

The conventional camera setup captures the multifocus

images by moving the camera and lens together as shown

in the top of Fig. 4. As the whole camera moves, the

camera center moves, and the perspective view moves with

it. To avoid moving the perspective view of the camera, we

propose that the lens is fixed and only the image sensor

moves during scanning as shown in the bottom of Fig. 4. In

this case, the center of perspective image formation does

not change. Although the image size of the whole scene

becomes larger when the sensor is moving away from the

lens, the relative scales or magnifications of different parts

of the scene stay the same.

It is worth mentioning that, for the fixed-lens multifocus

capture, the step size of the image sensor movement

(macrorail step size) is equivalent to the depth of focus, and

similar to the conventional multifocus capture, the rec-

ommended macrorail step size is 50% of the depth of focus

to allow 50% overlapping between the in-focus regions of

the successive images.

Fig. 2 Top: the image formation through a lens of focal length fL.
After passing the lens, the rays parallel to the optical axis go through

the focal point and the rays going through the focal point become

parallel to the optical axis. Bottom: the image sensor is used to

capture an image of an object at a position within the depth of focus

where a point source grows into a circle of confusion [19] of diameter

/coc. A captured image is considered as out of focus if the image

sensor is placed outside the depth of focus or the object is located

outside of the depth of field

Fig. 3 A set of 61 partially out-

of-focus images (only eight of

them shown here) captured at

different camera positions are

stacked to produce an in-focus

image. The stacked image,

however, does not represent a

single perspective image

formation due to the moving

lens. (Best viewed in colour on

the screen)
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An example of the camera lens setup for the proposed

fixed-lens multifocus capture is shown in the right of Fig. 5

as compared to the conventional Moving-Lens Capture

(left). For the Fixed-Lens type, the lens is fixed to the upper

frame while the camera body is moved by a macrorail to

capture multiple partially focused images. A rubber duct

connects the lens and the camera body to prevent ambient

light and dust from entering the camera sensor chamber. A

small flower is mounted on a two-axis turntable to capture

the images at different pan-tilt angles.

5 Image alignment for multifocus stacking

Images captured at different distances have different

magnifications or scales. Furthermore, the direction of the

camera’s movement is not generally aligned with the lens

optical axis, causing a relative shift in the image. To

account for such changes, camera calibration is performed

to measure the relative scale change and shift from one

image to another. This can be carried out by capturing

multifocus images of a known calibration target placed

perpendicular to the optical axis of the lens. The relative

scale and shift can be measured from the relative positions

of the control points (circles) between the images. Once the

relative scales and shifts of the scene in the partially

focused images are determined, the image mapping is

applied to remove the scale change and shift between the

images captured from the same viewing angle.

Unlike the methods proposed by [26, 49] where the

calibration images are used to extract the scale shift or

homography transformation directly from the multifocus

images of a calibration target, we propose in the following

sections that analytic homography transformations can be

obtained with additional constraints from the macrorail

displacement. Our method, therefore, generates more

consistent transformations as it is less affected by the out-

of-focus effect of the multifocus images of a calibration

target.

Fig. 4 The conventional multifocus capture (top) and the proposed

Fixed-Lens Multifocus Capture (bottom) for multifocus image

capture. For the conventional scanning, the movement of the camera

and lens is the same as that of the front focal plane. For the proposed

scanning, the movement of the camera is smaller than that of the front

focal plane if the lens magnification is smaller than 1, and vice versa

Fig. 5 The lens and pan-tilt setups capture the multifocus multiview

images of small objects. The camera is mounted on a macrorail fixed

to the lower frame for the multifocus capture. A macrolens is attached

to a camera for the conventional moving lens setup (left) or to a

stationary frame for our proposed fixed-lens setup (right). For the

fixed-lens setup, an expandable rubber duct connects the macrolens

and the camera body. The object/specimen is pinned to a fridge

magnet on a pan-tilt turntable for the multiview capture. (Best viewed

in colour on the screen)
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5.1 Analytic formulation of homography
transformation for the moving lens

We used a laser printed dot pattern as the calibration target.

For the scale-shift calibration, multiple images of the same

target are captured at different depths, dj where j ¼ 0 to

jmax as shown in Fig. 6. For simplicity, it is assumed that all

distances (including depth) are measured in the pixel

coordinates throughout the manuscript unless mentioned

otherwise. The linear step size of the camera movement

along the macrorail is denoted as Dd. An image, Ij of the

calibration target is captured from a camera position Sj
located at depth dj from the target.

The aim of the calibration is to determine the camera

intrinsics (camera matrix and distortion coefficients) as

well as the shifts and scales between the images captured at

different depths. Also, note that zero distortion is assumed

in the image alignment stage to keep the scale-shift for-

mulation simpler. However, the 3D reconstruction stage

takes the distortion into account.

5.1.1 Estimation of the magnification and camera matrix

As a laser printed dot pattern is used, the physical distances

between the dots of the calibration target can be measured

in millimeters and these distances can then be converted

into pixels using the pixel size of the camera.

Let DX and DY be the horizontal and vertical distances

between the centers of the dots in the world coordinates.

We assume that DX remains the same between any two

neighboring centers of the dots of the same row which also

holds for all rows as well and DY remains the same

between any two neighboring centers of the dots of the

same column which also holds for all columns. In other

words, the object (calibration target in this case) plane is

assumed to be perpendicular to the optical axis and parallel

to the image plane.

Let, Ij¼0 be the in-focus image of the calibration target

captured with the above-mentioned assumption where the

horizontal and vertical distances between the centers of the

dots in the image coordinates become Du and Dv,

respectively. Now assume that the calibration target is

located at depth d0 and imaged at depth d00. The relation

between d0 and d00 can be expressed using the thin-lens

equation as follows

1

d0
þ 1

d00
¼ 1

fL
ð3Þ

where fL is the focal length of the lens which is known from

the camera specification.

Now, the magnification M can be defined by

M ¼ d00
d0

¼ Du
DX

¼ Dv
DY

ð4Þ

Putting the expression d00 ¼ Md0 into (3), we get

1

d0
þ 1

Md0
¼ 1

fL

Hence, the depth d0 becomes

d0 ¼
fLðM þ 1Þ

M
ð5Þ

So, d00 can be written as

d00 ¼ fLðM þ 1Þ ð6Þ

Here, d00 represents the focal length of the camera, fC. For

the conventional image captures, the object is relatively far

from the camera, i.e. d0 �! 1, making d00 �! fL. How-

ever, for the macrophotography, d0 is relatively small and

fL cannot be used as an approximation for d00.

So, the camera matrix, K can be expressed assuming the

camera center is at the image center as

K ¼
fC 0 Cx

0 fC Cy

0 0 1

2
64

3
75 ¼

d00 0 w=2

0 d00 h=2

0 0 1

2
64

3
75

where fC ¼ d00 is the focal length of the camera, ðCx ¼
w=2;Cy ¼ h=2Þ is the principal point of the camera

assuming that the optical center coincides with the image

center, w and h are the width and height of the image.

Thus, an initial estimate of the camera matrix is

obtained. Later, the estimated camera matrix can be refined

by minimizing the reprojection error through an opti-

mization procedure that seeks to optimize the magnifica-

tion, M, the principal point ðCx;CyÞ and other calibration

parameters.

5.1.2 Shift and scale formulation for analytic homography

Since d0 represents the distance between the target and the

camera located at S0, we can calculate the distances dj
between the target and the other camera positions Sj as

dj ¼ d0 � jDd
Fig. 6 Image acquisition for calibration. Images of a dot pattern target

are captured at different depths using the moving lens camera setup

Neural Computing and Applications (2021) 33:7421–7440 7427

123



where j ¼ 0; 1; . . .; jmax and Dd is the linear displacement

per step of the camera toward the target. The negative sign

indicates the decreasing distances between the camera and

the target as the camera is moving toward the target.

Now, the coordinates of a pixel p0 (of the image I0 taken

from the camera located at d0 distance from the target) with

respect to the target coordinate system can be expressed as

Tp ¼ ½X; Y ; Z; 1�T

¼ d0ðu0 � CxÞ
fC

;
d0ðv0 � CyÞ

fC
; d0; 1

� �T

where ðu0; v0Þ is the coordinate of the pixel, p0 in the image

coordinate system.

The pixel p0 of the image I0 is mapped to pixel pj of the

image Ij taken from the camera located at dj distance from

the target. Let, the coordinate of the pixel pj in the image

coordinate system is ðuj; vjÞ. The pixel position pj can be

determined as follows

uj; vj; 1½ �T¼ K½R j t�Tp ð7Þ

where R is a 3� 3 rotation matrix, t a 3� 1 translation

vector. This rotation translation matrix ½R j t� represents the
extrinsic parameters of the camera relative to the target. As

this calibration involves only the linear motion of the

camera, the relative rotation matrix R between different

camera positions can be considered as an identity matrix.

However, the translation vector t with the displacement

direction vector ½r; c; 1� becomes

t ¼ ½�rjDd;�cjDd;�jDd�T

The displacement direction vector represents misalignment

between the macrorail axis along which the camera moves

and the camera optical axis which causes an additional

lateral shift of the pixel pj. Misalignment occurs when the

macrorail axis is not parallel to the camera optical axis.

Now, (7) becomes

uj; vj; 1½ �T ¼ K½I j t�Tp

)

uj

vj

1

2
664

3
775 ¼

fC 0 Cx � ðrjDd fC þ CxdjÞ

0 fC Cy � ðcjDd fC þ CydjÞ

0 0 1 � jDd

2
664

3
775Tp

The expressions of uj and vj can be written as

uj ¼
d0ðu0 � CxÞ � rjDd fC

dj
þ Cx ð8Þ

and

vj ¼
d0ðv0 � CyÞ � cjDd fC

dj
þ Cy ; ð9Þ

respectively.

After rearranging, (8) and (9) become

uj ¼ aðjÞu0 þ buðj; rÞ

¼ d0
dj
u0 þ Cx 1� d0

dj

� �
� rjDd fC

dj

and

vj ¼ aðjÞv0 þ bvðj; cÞ

¼ d0
dj
v0 þ Cy 1� d0

dj

� �
� cjDd fC

dj

;

respectively, where aðjÞ, buðj; rÞ and bvðj; cÞ represent the
required scaling factor, horizontal shift and vertical shift,

respectively, to map the pixel p0 of the image I0 onto the

image Ij and can be expressed as

aðjÞ ¼ d0
dj

¼ d0
d0 � jDd

buðj; rÞ ¼ Cxð1� aðjÞÞ � rjDd fC
dj

and

bvðj; cÞ ¼ Cyð1� aðjÞÞ � cjDd fC
dj

;

respectively.

For the perfect alignment case where the camera dis-

placement axis is parallel to its optical axis, r ¼ c ¼ 0. In

such case, the horizontal and vertical shifts become

buðj; r ¼ 0Þ ¼ Cxð1� aðjÞÞ and bvðj; c ¼ 0Þ ¼ Cyð1�
aðjÞÞ, respectively. Now, the relationship between the

corresponding shifts for the misaligned and perfectly

aligned cases can be written as follows

buðj; rÞ ¼ buðj; 0Þ �
rjDd fC

dj

bvðj; cÞ ¼ bvðj; 0Þ �
cjDd fC

dj

Once the shifts and scale are known, mapping of the image

I0 onto Ij can be done using the following transformation

Ij ¼ HI0

)
uj

vj

1

2
64

3
75 ¼

aðjÞ 0 buðj; rÞ
0 aðjÞ bvðj; cÞ
0 0 1

2
64

3
75

u0

v0

1

2
64

3
75 ð10Þ

where H is the homography transformation function

between the front-parallel planes at distances d0 and dj
from the lens of the first camera position S0. Thus, a ref-

erence image, I0 can be mapped onto all other images, Ij for

j ¼ 0 to jmax.
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However, in multifocus stacking, we are interested in

the inverse homography transformation function so that

every image can be mapped onto a reference image, say I0.

This inverse transformation is expressed as follows

I0 ¼ H�1Ij ð11Þ

The scaling factor aðjÞ can be computed easily from the

known focal length fL, magnification M, and step size Dd.
To estimate r and c, the mapping error between the cali-

bration images is minimized.

5.2 Analytic formulation of homography
transformation for the fixed lens

For the fixed-lens setup, the lens is fixed at a position while

the camera moves. The camera refers to the sensor/focal

plane. In this case, the distance between the lens and the

calibration target is fixed, while the distance between the

lens and the sensor plane varies. In the moving lens case,

the lens and the sensor plane (called camera altogether)

move together and the same amount. This means the dis-

tance between the lens and the sensor plane (which is

called the focal length of the camera) is fixed and the

distance between the lens and the target varies for the

moving lens setup.

Similar to the moving lens case, multiple images of the

same target are captured to determine the shift and scale by

moving the sensor plane Dd0 amount per step toward the

lens while keeping the lens fixed as shown in Fig. 7. An

image Ij is captured with d0j distance between the sensor

plane and the lens where j ¼ 0; 1; ::::jmax.

5.2.1 Estimation of the magnification and camera matrix

The magnification M can be estimated in a similar way as

discussed in Sect. 5.1.1 for the moving lens case using (4).

Let I0 be the in-focus image of the target captured with d00
distance between the sensor plane and the lens, where the

calibration target is located at depth d0 from the lens. Here,

d00 represents the focal length of the camera which is the

distance between the sensor plane and the lens. The

distances, d0 and d00 can be calculated using (5) and (6),

respectively, once the magnification is known.

Since d00 represents the distance between the sensor

plane and the lens, it is possible to compute the distances,

d0j between the lens and the other sensor plane positions as

d0j ¼ d00 � jDd0

where j ¼ 0; 1; . . .; jmax and Dd0 is the linear displacement

per step of the sensor plane toward the lens. The negative

sign indicates the decreasing distances between the sensor

plane and the lens as the sensor plane is moving toward the

lens.

As the sensor plane moves Dd0 amount per step with the

displacement direction vector ½l; k; 1�, it causes small lat-

eral movement of the image center with respect to the

camera center. This happens due to the misalignment

between the sensor plane movement along the macrorail

axis and the optical axis of the lens. This misalignment is

represented by the displacement direction vector.

Thus, the camera matrix changes for each position of the

sensor plane. Let, Kj be the camera matrix corresponds to

image Ij captured with d0j distance between the sensor plane

and the lens. It is also assumed that the optical center of the

lens is at the image center for the first sensor plane position

when j ¼ 0. So, Kj becomes

Kj ¼

fC 0 Cx þ jDCx

0 fC Cy þ jDCy

0 0 1

2
664

3
775

¼

d0j 0 ðw=2Þ þ jlDd0

0 d0j ðh=2Þ þ jkDd0

0 0 1

2
664

3
775

where fC ¼ d0j is the focal length of the camera, DCx ¼
lDd0 and DCy ¼ kDd0 are the horizontal and the vertical

shifts of the image center due to the misalignment.

Now, the camera matrices can be estimated by mini-

mizing the reprojection error through an optimization

procedure. The calibration parameters required to be esti-

mated are the magnification M, the principal point ðCx;CyÞ,
the horizontal and vertical components of the displacement

direction vector l and k, respectively.

5.2.2 Shift and scale formulation for analytic homography

For the fixed lens, the relative rotation matrix R between

different sensor plane positions can be considered as an

identity matrix, while the translation vector t becomes

t ¼ ½0; 0; 0�T

Now, (7) can be rewritten for the fixed-lens setup as
Fig. 7 Image acquisition for calibration. Images of a dot pattern target

are captured at different depths using the fixed-lens camera setup
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uj; vj; 1½ �T ¼ Kj½I j t�Tp

¼

d0j 0 Cx þ jDCx 0

0 d0j Cy þ jDCy 0

0 0 1 0

2
664

3
775Tp

Using the expressions of uj and vj, we can obtain the shifts

and scale for the fixed-lens setup similarly as shown

in Sect. 5.1.2. So, for the fixed-lens setup, the scaling

factor, a0ðjÞ, the horizontal shift, b0uðj; lÞ and the vertical

shift, b0vðj; kÞ required to map the image I0 onto the image Ij
can be expressed as

a0ðjÞ ¼
d0j
d00

¼ d00 � jDd0

d00

b0uðj; lÞ ¼ Cxð1� a0ðjÞÞ þ jlDd0

and

b0vðj; kÞ ¼ Cyð1� a0ðjÞÞ þ jkDd0 ;

respectively.

Now, for the fixed-lens case, the homography transfor-

mation between the back-parallel planes at distances d0 and

dj from the lens can be constructed as shown in (10) to map

the image I0 onto Ij. Inverse transformation can be used as

shown in (11) for multifocus stacking. In our experimental

setup, we carefully align the lens as well as the image

sensor with the macrorail so that the camera displacement

axis perfectly aligns with the camera optical axis for both

the moving and the fixed-lens setups. Hence, the shifts and

scale have been computed without considering the addi-

tional lateral shift caused by the misalignment.

For the perfect alignment case, shifts and scale can be

computed easily without performing any optimization once

the magnification,M is known and with the assumption that

the optical center of the lens lies at the image center.

Images of a stack captured from the same camera view are

aligned using the computed shifts and scale to a reference

image position in that stack. Please note that shifts and

scales are the same for all camera views as long as the

reference image position remains the same in the image

stacks. The aligned images of the same stack are then fused

together to obtain an in-focus image for that viewpoint.

5.3 Step size selection for the camera movement

It is already known that the recommended linear step size

for the camera displacement for the moving lens setup is

half of the depth field. However, in our experiment, the

chosen step size is almost equal to the depth of field to

reduce the computational burden and memory usage. The

depth of field can be computed from four parameters using

(2). These parameters are the magnification M, the COC

/coc, the distance between the lens and the object d0 and

the aperture size of the lens /a. All parameters can be

obtained except the COC.

For the lens (Canon MP-E 65mm f/2.8 1-5x

macrophotolens) we used, the manufacturer provided a

table describing the depth of field for different magnifica-

tions M and f-number. A continuous relation between

magnification and depth of field can be obtained using the

provided data by fitting an empirical function. COC can

also be computed using that same data from the table. In

this case, the computed value of the COC is 0.035 mm.

For the fixed-lens setup, the chosen linear step size for

the camera displacement is almost equal to the depth of

focus to have a reasonable number of captured images,

although it is recommended to use half of the depth of

focus as the step size. The depth of focus can be obtained

using (1) from given COC /coc and /a. We can compute d00
for a given magnification M using (6).

6 Image fusion and background masking

In this work, the Laplacian pyramid fusion approach [54] is

combined with our proposed calibrated analytic homogra-

phy for multifocus image stacking. The Laplacian pyramid

fusion is based on a multiresolution signal decomposition

scheme which produces a high-quality fused image by

exploiting the global and local information as well as the

spatial and gray information. In this approach, each source

image of the stack is decomposed into multilevel images.

For the comparison, stacking with feature-based align-

ment using the scale-invariant feature transform (SIFT) [34]

is chosen as the baseline approach which does not consider

the constrained movement of the macrorail. In addition, the

stacking results of the calibrated image alignment techniques

proposed by Ströbel et al. [49] and Li and Nguyen [26] are

also compared with the proposed stacking method. The

Laplacian pyramid fusion method is used for blending in all

the cases. Our proposed multifocus stacking consists of

image alignment using the analytic homography transfor-

mation formulated in Sect. 5 and blending those aligned

images using the Laplacian pyramid fusion.

The multiview 3D reconstruction optionally accepts the

masks or object silhouettes to ignore the image region

belong to the background to speed up the process and to

improve the reconstruction accuracy. The automatic

background segmentation can lead to significant errors and

often requires manual input to correct them. To improve

the automatic background segmentation, Ströbel et al. [49]

proposed to use two images, one in normal front lighting

and one with strong back light. The back light is a uniform
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light source such as a light box to produce a clear contrast

between the background area and object area. As a result,

the automatic segmentation of the image with the strong

back light is very accurate and efficient without the need

for manual correction. The drawbacks of capturing the

separate images with the back light include doubling of the

data storage and the time to capture and preprocess the

images, and obtaining the exact same camera positions

between the front light and back light. Figures 8 and 9

show the examples of the in-focus foreground images

(left), the in-focus back light images (middle) and the final

images with background masks (right), for different com-

binations of the lens setups and multifocus stacking

methods.

The results of Fig. 8 are shown for the moving lens with

focus stacking using SIFT feature-based homography

(8(a)), the moving lens with our proposed multifocus

stacking approach using analytic homography (8(b)), the

fixed lens with stacking using SIFT feature-based homog-

raphy (8(c)) and our proposed stacking method using

analytic homography (8(d)). Similar comparisons using the

synthetic images of a different scene are provided in Fig. 9.

More blending results with different camera views are

provided in the supplementary material.

It is noted that the stacked images look very much

similar (except the changes in the brightness due to slightly

different lighting conditions for different runs) between the

moving lens and fixed lens for different multifocus stack-

ing methods. This shows that the artifacts and distortions

are difficult to recognize and they only make a difference

when used for the 3D reconstruction.

7 Multiview 3D reconstruction

An overview of the multifocus multiview 3D reconstruc-

tion experiment can be summarized as follows:

– Capture a set of multifocus single-view images of a

calibration dot target facing perpendicular to the optical

axis of the lens.

– Estimate the magnification M from the known size vs

the imaged size of the target. For the calibrated image

registration, precompute a homography matrix for each

image of the calibration target in a stack relative to the

reference image in the middle of the stack.

– Capture the multifocus multiview images of an object

of interest using either the Moving-Lens setup or the

Fixed-Lens setup. For each setup, two images were

capture with the front light and again with the back

light at each camera position.

– Apply the multifocus stacking methods separately for

the images with the front light and the back light.

– Threshold the stacked in-focus image with the back

light to create a background mask and add this as a

transparent channel to the corresponding stacked image

with the front light.

– Obtain the 3D model by feeding the stacked images

with the background masks into the 3D reconstruction

software. This paper includes the results using an open

source software Meshroom of AliceVision [3]. Please

refer to the supplementary material for the results using

a commercial software Photoscan of Agisoft [2].

(a) Moving lens & stacking with SIFT fea-
ture based homography

(b) Moving lens & proposed stacking with
analytic homography

(c) Fixed lens & stacking with SIFT feature
based homography

(d) Fixed lens & proposed stacking with an-
alytic homography (ours)

Fig. 8 Comparisons of the in-focus images for different cases. (a)
moving lens and stacking with SIFT feature-based homography, (b)
moving lens and proposed stacking with analytic homography, (c)
fixed lens and stacking with SIFT feature-based homography and (d)
fixed lens and proposed stacking with analytic homography (ours).

For each case, left: the blended in-focus image, middle: the in-focus

mask and right: the in-focus image with background mask as the

transparent channel. The in-focus image by the fixed lens is sharper

than that by the moving lens. All images are cropped to show mostly

the specimen. (Best viewed in colour on the screen) (colour

figure online)

Neural Computing and Applications (2021) 33:7421–7440 7431

123



7.1 Image acquisition setup

Figure 5 shows setups for the multifocus multiview

imaging experiment. The camera attached to the macrorail

and the object of interest is mounted on a pan-tilt rig

(Cognisys StackShot 3X). The camera Canon 5DS is

coupled with a macrolens Canon MP-E65mm f/2.8 1-5X.

For the moving-lens setup (left), the lens is attached to the

camera body and moves together with the camera. For the

Fixed-Lens setup (right), the lens is fixed to an upper

frame; therefore, the lens remains stationary during cap-

turing multifocus images while the camera body is moving.

An expandable rubber duct connects the lens and the

camera body to protect the camera sensors from ambient

illumination and dust.

In the experiment, an insect was chosen as a scanning

target. The two experimental setups were performed on the

specimen to capture the multifocus multiview images and

to reconstruct the 3D models. Different viewpoints have

been created by the pan-tilt rotation of the insect after

placing the insect on a stage in front of the camera. The

chosen step size for the pan and tilt rotations was 15�. To
cover the 360� pan angle view, 24 images have been

captured with different pan angles. For each pan angle, five

images with different tilt angles have been captured with

15� interval. So, the total number of viewpoints used in this

experiment is 120.

The pan-tilt rotation was similar for both the moving

and fixed-lens setups. The images were also captured in

similar conditions for the two image acquisitions with

different lens setups. We used the same exposure time and

ISO for both setups. The chosen exposure time and ISO

was 1/40s and 200, respectively. However, the magnifica-

tion was different for different lens setups due to some

setup constraints. The magnification for the fixed and the

moving lens setup was 1.7 and 1.3, respectively. Image

resolution was set to 4320� 2880 pixels.

The number of camera positions or the required number

of images to be captured for each view depends on the

insect size and the magnification of the camera. For the

fixed-lens setup, the depth of focus is estimated as 0.53mm

where COC, /coc ¼ 0:035mm, magnification, M ¼ 1:7,

focal length of the lens, fL ¼ 65mm and aperture size,

/a ¼ fL=2:8. So, the recommended linear step size of the

camera movement along the macrorail is 0.265 mm (half of

the depth of focus). The maximum dimension (length in

this case) of the insect in this experiment is approximately

13mm. Considering the movement of the insect due to the

(a) Moving lens & stacking with SIFT fea-
ture based homography

(b) Moving lens & stacking with calibrated
scaling [49]

(c) Moving lens & proposed stacking with an-
alytic homography

(d) Fixed lens & stacking with SIFT feature
based homography

(e) Fixed lens & stacking with fitted homog-
raphy [26]

(f) Fixed lens & proposed stacking with an-
alytic homography (ours)

Fig. 9 Comparisons of the in-focus images of agrilus-anxius obtained
from partially in-focus synthetic images for different cases. For each

case, left: the blended in-focus image, middle: the in-focus mask and

right: the in-focus image with background mask as the transparent

channel. (Best viewed in colour on the screen) (colour figure online)
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pan-tilt rotation, the total linear distance that the camera

needs to move to get the insect in and out of focus for all

views is 30mm. Consequently, the required number of

camera positions to cover that distance is approximately

113 with the recommended step size, 0.265mm. But, to

speed up the process, we chose the step size as 0.5mm

which requires 61 images to be captured for each view.

Now, for the moving lens setup, the depth of field is

approximately 0.267 mm where the parameters are the

same as the fixed-lens setup except the magnification

M(¼ 1:3). We captured 61 images with 0.25mm step size

of the camera movement for each view instead of 114

images with the recommended step size of 0.133mm to

reduce the required number of images to be captured. So,

for both fixed and moving lens setups, the total number of

images captured is 7320.

To collect more data and evaluate different configura-

tions, the synthetic datasets are generated using Blender [8]

with the known 3D models of two specimens Agrilus

Anxius from Digital Archive of Natural History [12] and

beechnut from Digital Archive of Natural History [13]. The

Blender add-ons were used to render the images for the

moving and fixed-lens configurations with the magnifica-

tions M ¼ 0:76 and M ¼ 0:5, respectively. The number of

the tilt positions is 13 for complete spherical camera

positions with 15o tilt step size. The number of the pan

positions varies with the tilt to maintain an equal pan angle

step of 15o along each tilt angle. Thus, a uniform distri-

bution of the camera positions can be achieved where the

angle between the two nearest camera positions is

approximately 15o, leading to 184 camera views to cover

the complete spherical surface around the virtual specimen.

The macrorail step size is 0.625 mm for both moving and

fixed-lens setups. Similar image size and lens to those of

the real camera setup are chosen.

7.2 Results and discussion

For the multifocus fusion comparison, our baseline is SIFT

feature-based image registration with homography trans-

formation computed between the multifocus images of the

object. Multifocus fusion by Ströbel et al. [49] is called

‘‘stacking with calibrated scaling,’’ where the scale and

shift for image registration are precomputed using the

calibration target images and included for the moving lens

camera setup. Implementation by Li and Nguyen [26] is

called ‘‘stacking with fitted homography,’’ where the

homography transformation is precomputed using the cal-

ibration target images, and included for the Fixed-Lens

camera setup. Finally, our proposed registration technique

is called ‘‘stacking with analytic homography’’ and inclu-

ded for both the Moving-Lens and the Fixed-Lens camera

setups. All these techniques use the Laplacian pyramid

algorithm [54] for image fusion.

We also try two state-of-the-art algorithms proposed by

Ji et al. [22] and Liang et al. [30]. However, the results are

not suitable for the 3D reconstruction as shown in Sect. 1 of

the supplementary material. This is because the image

scale varies significantly between the multifocus images

and these algorithms do not account for such variation.

For the multiview stereo reconstruction, an open-source

software Meshroom [3] is used for all comparisons in this

paper. Meshroom is executed with default pipeline and

‘‘Describer Preset = high’’ on FeatureExtraction node and

‘‘Geometric Estimator = loransac’’ on FeatureMatching

node. The supplementary material includes the results by

commercial software Photoscan Pro [2] which has ‘‘visi-

bility-consistent’’ feature for mesh generation to obtain a

better 3D reconstruction of fine structures which often get

missing in the reconstructions by Meshroom.

Figure 10 provides a qualitative comparison of the

dense clouds and camera poses obtained from the images

captured by different camera setups and fused with dif-

ferent registration techniques. The visual accuracy and

completeness of the camera poses using the fixed lens are

significantly better than that of the Moving-Lens capture.

From the dense clouds, the model generated from the

Moving-Lens capture is sparser, and this implies that the

conventional moving lens camera setup recovers fewer

details of the surface geometry than that of our Fixed-Lens

capture. From the estimated camera poses, we can see that

the poses reconstructed by the moving lens setup are not

well aligned. On the contrary, the estimated camera poses

generated by the fixed lens can reproduce a completed

camera trajectory, and the recovered camera positions are

also well aligned as expected on a spherical surface. The

combination of the Fixed-Lens capture and our proposed

multifocus fusion with calibrated homography transfor-

mation provides the best results.

Figure 11 shows the snapshots of the reconstructed

mesh models from the point clouds shown in Fig. 10. This

figure confirms the effectiveness of the Fixed-Lens capture

versus the Moving-Lens capture, and our proposed multi-

focus stacking scheme using analytic homography versus

the stacking with SIFT feature-based homography. The

reconstructed mesh model by the Fixed-Lens capture and

our proposed stacking method is the most accurate and

shows the best resolution.

For a quantitative comparison, we use the estimated

camera positions to compute the errors in the radial posi-

tions and the pan-tilt rotation angles as compared to the

expected values. Due to the pan-tilt scanning motion, the

camera positions are expected to move around the rotation

axis and lie on a spherical surface. The rotation axis and the

center of rotation were estimated by the plane and circle
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fittings. From the fitted center and rotation axis, the radial

distance and pan-tilt rotation steps can be computed from

the camera positions. The mean and standard deviations of

these values indicate the accuracy of the 3D

reconstructions.

Tables 1 and 2 show the mean and standard deviation of

the radial distances and angles of the poses for both the

moving lens and the fixed lens with our proposed (using

analytic homography) and standard (using SIFT feature-

based homography) stacking methods using Meshroom.

Table 1 shows the comparison between different image

stacking methods, whereas Table 2 shows the comparison

between different lens setups.

Tables 1 and 2 confirm that both the Fixed-Lens capture

and our proposed multifocus stacking with analytic

homography reduce the noise (standard deviation) and the

difference with the expected rotation steps. The combina-

tion of the two approaches resulted in the lowest errors

shown in the bottom rows of Tables 1 and 2. Note that the

mean radial distances were computed based on the lens

magnification as multiview reconstruction does not provide

the true scale.

Table 3 shows the comparison of the expected camera

focal lengths and estimated focal lengths by bundle

adjustment for different settings. Again, it confirms that the

fixed-lens setup and our proposed image stacking with

analytic homography produces the closest focal length to

the expected value. The overestimated focal length for the

Moving Lens setup suggests that its stacked images contain

significant perspective projection distortion, while those

from the Fixed-Lens setup still maintain original perspec-

tive projection.

Note that while the estimated camera focal length of

189.84 mm by the moving-lens setup and focus stacking

with SIFT feature-based homography using Meshroom is

reasonably close to the expected value of 149.5mm, the

reconstruction quality is very poor as shown in Figs. 10

and 11. Furthermore, there were several stacked images

obtained by focus stacking with SIFT feature-based

homography where bundle adjustment for 3D reconstruc-

tions failed to estimate their camera poses, leading them to

be excluded. These indicate that general focus stacking

without constrained image alignment is not suitable for

stacking the images for 3D reconstruction of small objects.

Figure 12 shows the qualitative comparisons between

the snapshots of the reconstructed 3D models of Agrilus

Anxius beetle obtained using Meshroom with the camera

positions on a complete spherical surface. Again, the fixed-

lens setup and our proposed image stacking with analytic

homography lead to a more complete and cleaner 3D

model. Figure 12 also shows the comparison of the

reconstruction error with respect to the ground truth model

in terms of mean Hausdorff distance (MHD) computed

using MeshLab [10].

The Hausdorff distance [42] represents how far the

reconstructed 3D mesh is from the original 3D model.

(a) Moving lens & stacking with feature
based homography

(b) Moving lens & proposed stacking with
analytic homography

(c) Fixed lens & stacking with feature based
homography

(d) Fixed lens & proposed stacking with an-
alytic homography (ours)

Fig. 10 A comparison between the structure-from-motion reconstruc-

tions obtained using Meshroom from the images captured using the

proposed Fixed-Lens Multifocus Capture and the Moving-Lens

Multifocus Capture by stacking with SIFT feature-based homography

and analytic homography. The comparison cases are: (a) moving lens

and stacking with SIFT feature-based homography, (b) moving lens

and proposed stacking with analytic homography, (c) fixed lens and

stacking with SIFT feature-based homography and (d) fixed lens and

proposed stacking with analytic homography (ours). For each case,

left: the camera poses from the reconstruction and right: the dense

point cloud from the reconstruction. More uniform camera poses and

a denser point cloud from the fixed lens indicate better image quality

than that of the moving lens. (Best viewed in colour on the screen)

(colour figure online)
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Again, the fixed-lens setup and image stacking with ana-

lytic homography produce the most accurate 3D recon-

struction and the smallest MHD, about half of that of the

Moving Lens with image alignment using calibrated scal-

ing proposed by Ströbel et al. [49]. Furthermore, the rela-

tive improvement of our 3D reconstruction method using

analytic homography in terms of MHD is 13:9% compared

with the second-best method proposed in our preliminary

study [26].

The corresponding quantitative comparisons in terms of

the mean and standard deviation of the radial distances and

angles of the poses between different image stacking

Fig. 11 A qualitative comparison between the reconstructed 3D models obtained using Meshroom. (Best viewed in colour on the screen) (colour

figure online)

Table 1 A comparison between

the expected and estimated

camera centers obtained using

Meshroom

Stacking with feature-based homography

Mean ± STD of Mean ± STD of Mean ± STD of

radial distance (mm) pan step (degree) tilt step (degree)

Moving lens 115:00� 15:74 16:63� 6:89 16:31� 4:41

Fixed lens (ours) 103:23� 3:67 15:12� 2:07 15:11� 0:89

Stacking with analytic homography (proposed)

Moving lens 115:00� 1:87 15:02� 1:14 15:21� 1:03

Fixed lens (ours) 103:23� 0:98 14:94� 0:68 15:09� 0:28

The true pan step ¼ 15�, and the true tilt step ¼ 15�
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methods and between different lens setups are given in

Tables 4, 5, respectively. Additional quantitative compar-

ison in terms of the focal length is shown in Table 6. 3D

reconstructions are also performed with incomplete

spherical camera positions and the results are shown in the

supplementary material. In addition, the experiments were

performed with another specimen beechnut-fagus-sylvatica

and with another 3D reconstruction software Agisoft

Photoscan. These results are included in the supplementary

material. The results obtained from the synthetic dataset

show similar trends as those of the real dataset.

8 Conclusion

In this paper, we proposed the new Fixed-Lens Multifocus

Capture and the calibrated analytic homography-based

image alignment process for accurate 3D reconstruction of

small-scale objects. Currently, the image-based 3D recon-

struction devices using the lens moving with the camera to

capture the multifocus images suffer from perspective

distortion that reduces the accuracy of 3D reconstruction.

With the proposed Fixed-Lens Multifocus Capture setup,

the lens remains stationary while the camera and the image

sensor move during multifocus image capturing. The cal-

ibrated image alignment using analytic homography is

performed to account for the change of relative scale and

in-plane shift between the images captured at different

depths with the constraint of macrorail motion. The reg-

istered images are fused to create an in-focus image that is

consistent with the perspective image formation for each

viewing angle.

The experiments using the real and synthetic images of

different objects demonstrated the effectiveness of our

proposed fixed-lens setup with analytic homography-based

image alignment stacking as compared with the conven-

tional moving lens setup and various stacking methods.

The reconstruction results showed that both of our pro-

posed Fixed-Lens capture setup and analytic homography-

based image stacking improve the accuracy of 3D recon-

struction significantly as compared with the conventional

approaches. Particularly, the combination of our proposed

approaches produced the most accurate 3D model and

camera poses. Furthermore, the estimated focal lengths by

bundle adjustment suggested that the perspective projec-

tion distortion was introduced in the stacked images from

the Moving-Lens capture setup. Our study also shows that

the multifocus stacking without calibrated scale-shift

homography-based alignment likely leads to the image

rejections and 3D reconstruction errors as the bundle

adjustment could not estimate their camera poses.

Table 2 A comparison between the expected and estimated camera centers obtained using Meshroom

Moving lens

Mean ± STD of Mean ± STD of Mean ± STD of

radial distance (mm) pan step (degree) tilt step (degree)

Stacking with feature based homography 115:00� 15:74 16:63� 6:89 16:31� 4:41

Stacking with analytic homography (proposed) 115:00� 1:87 15:02� 1:14 15:21� 1:03

Fixed lens (ours)

Stacking with feature based homography 103:23� 3:67 15:12� 2:07 15:11� 0:89

Stacking with analytic homography (proposed) 103:23� 0:98 14:94� 0:68 15:09� 0:28

The true pan step ¼ 15�, and the true tilt step ¼ 15�

Table 3 A comparison between the expected and estimated camera focal lengths obtained using Meshroom

Estimated Focal Length (mm) Expected Focal Length

(mm)
Stacking with SIFT feature based

homography

Stacking with analytic homography

(proposed)

Moving lens 189.84 276.44 149.5

Fixed lens

(ours)

155.94 193:44 175.5
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(a) Moving lens & stacking with SIFT feature based homography
(MHD = 0.003072)

(b) Moving lens & stacking with calibrated scaling [49]
(MHD = 0.002386)

(c) Moving lens & proposed stacking with analytic homography
(MHD = 0.002319)

(d) Fixed lens & stacking with SIFT feature based homography
(MHD = 0.002066)

(e) Fixed lens & stacking with fitted homography [26]
(MHD = 0.001450)

(f) Fixed lens & proposed stacking with analytic homography
(ours) (MHD = 0. 001247)

(g) Ground truth model

Fig. 12 A comparison between

the snapshots of the

reconstructed 3D models of

Agrilus Anxius with mean

Hausdorff distance (MHD) as

the reconstruction error. The

relative improvement of our

proposed method in terms of

MHD is 13:9% compared with

the second-best method [26].

(Best viewed in colour on the

screen) (colour figure online)
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Table 4 A comparison between

the expected and estimated

camera centers obtained using

Meshroom. The true pan step

¼ 15�, and the true tilt

step ¼ 15�

Agrilus Anxius (with complete spherical camera positions)

Stacking with feature-based homography

Mean ± STD of Mean ± STD of Mean ± STD of

radial distance (mm) pan step (degree) tilt step (degree)

Moving lens 150:00� 1:53 14:88� 1:18 14:89� 0:32

Fixed lens 193:17� 0:81 14:92� 0:63 14:94� 0:17

Stacking with calibrated scaling

Moving lens [49] 150:00� 0:49 14:93� 0:29 14:95� 0:32

Stacking with fitted homography

Fixed lens [26] 193:17� 0:05 14:95� 0:12 14:99� 0:01

Stacking with analytic homography (proposed)

Moving lens 150:00� 0:47 14:94� 0:33 14:95� 0:12

Fixed lens (ours) 193:17� 0:04 14:96� 0:11 14:99� 0:01

Table 5 A comparison between the expected and estimated camera centers obtained using Meshroom. The true pan step ¼ 15�, and the true tilt

step ¼ 15�

Agrilus Anxius (with complete spherical camera positions)

Moving lens

Mean ± STD of Mean ± STD of Mean ± STD of

radial distance (mm) pan step (degree) tilt step (degree)

Stacking with feature-based homography 150:00� 1:53 14:88� 1:18 14:89� 0:32

Stacking with calibrated scaling [49] 150:00� 0:49 14:93� 0:29 14:95� 0:32

Stacking with analytic homography (proposed) 150:00� 0:18 14:94� 0:33 14:95� 0:12

Fixed lens (ours)

Stacking with feature-based homography 193:17� 0:81 14:92� 0:63 14:94� 0:17

Stacking with fitted homography [26] 193:17� 0:05 14:95� 0:12 14:99� 0:01

Stacking with analytic homography (proposed) 193:17� 0:04 14:96� 0:11 14:99� 0:01

Table 6 A comparison between the expected and estimated camera focal lengths obtained using Meshroom

Agrilus Anxius (with complete spherical camera positions)

Estimated Focal Length (mm)

Stacking with SIFT feature

based homography

Stacking with

calibrated scaling

[49]

Stacking with fitted

homography [26]

Stacking with analytic

homography (proposed)

Expected focal

length (mm)

Moving

Lens

80.84 85.58 NA 91.66 114.70

Fixed lens

(ours)

89.70 NA 97.02 97:39 97.96
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