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Can One Embedding Fit All? A Multi-Interest Learning Paradigm
Towards Improving User Interest Diversity Fairness

Anonymous Author(s)∗

ABSTRACT
Recommender systems have gained widespread applications across
various domains owing to their superior ability to understand and
capture users’ interests. However, the complexity and nuanced
nature of users’ interests, which can span a wide range of diversity,
pose a significant challenge in delivering fair recommendations. In
real-world scenarios, user preferences vary significantly; some users
show a clear preference toward certain item categories, while others
have a broad interest in diverse ones. Even though it is expected
that all users should receive high-quality recommendations, the
effectiveness of recommender systems in catering to this disparate
interest diversity remains under-explored.

In this work, we investigate whether users in different groups with
varied levels of interest diversity are treated fairly. Our empirical
experiments reveal an inherent disparity: users who have a wider
range of interests often receive lower-quality recommendations.
To achieve fairer recommendations, we propose a multi-interest
framework that uses multiple (virtual) interest embeddings, rather
than the utilization of single embedding to represent individual
users. Specifically, the framework consists of stacked multi-interest
representation layers. Each layer includes an interest embedding
generator that derives virtual interests from globally shared interest
parameters, and a center embedding aggregator that facilitates
multi-hop aggregation. The experiments have demonstrated the
effectiveness of the proposed method in achieving better trade-off
between fairness and utility across various datasets and backbones.
Our code and datasets are available at: Code.
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1 INTRODUCTION
Recommender systems (RSs) have been widely applied in different
domains, such as news recommendation [17], friend recommenda-
tion [7], etc. While a plethora of RSs have been proposed [12, 22, 29],
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Figure 1:Why diverse interestsmatter? Two real-world exam-
ples of RS applications (A) Food recommendation (B) Dating
recommendation1.

the main focus is on maximizing the overall utility, typically mea-
sured by metrics like Recall, F1, and NDCG [1]. These metrics offer
a comprehensive view on the accuracy of recommendations and
the system’s ability in capturing user interests. However, solely
relying on these utility-based measurements can cause issues: (1)
it hides biases across distinct user groups, posing fairness con-
cerns; and (2) it overshadows underlying performance bottlenecks,
impeding potential utility enhancements. In light of these issues,
recent studies have adopted a group-centric lens for recommen-
dations [15, 31, 32]. Investigations have been conducted on user
groups defined by explicit attributes (i.e., sensitive features) such
as gender [32], race [35], as well as implicit features (i.e., extracted
from interactions) such as number of interactions and amount of
purchases [15, 31]. These studies highlight group-specific biases and
advocate for solutions that ensure fairness. Given the rich existing
literature focused on explicit sensitive attributes, our study dives
into the implicit features and specifically focuses on a novel per-
spective termed user interest diversity. We investigate the following
research question:

Are users of varied interest diversity treated fairly in RSs?
Firstly, imbalanced user satisfaction could undermine the overall

utility of the platform and even result in dissatisfied users leaving
(i.e., increased user defection) [15, 31]. For example, in the context
of food recommendation in Fig. 1(A), some users prefer a limited
number of cuisines while others havemore flexible tastes. Satisfying
all users is a primary goal. Secondly, if the platform fails to equitably
accommodate these diverse preferences, it not only raises issues of
user satisfaction but also poses significant ethical concerns. Online
dating recommendation in Fig. 1(B) serves as a pertinent example.
Users exhibit a spectrum of sexual orientations, including homosex-
uality, bisexuality, heterosexuality, and more. While homosexual
and heterosexual users have more specific preferences related to
gender interests, bisexual users might exhibit a broader range of
interests. Ensuring a fair and unbiased system for users with varied
interest diversity is a core requirement for ethical consideration.

1Note that the illustration does not represent the authors’ perspective on the concept
of binary genders.

1

https://anonymous.4open.science/r/User-Interest-Diversity-Fairness-4BBE/
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To explore the fairness of existing models towards users exhibit-
ing various levels of interest diversity, we conduct a preliminary
experiment with detailed analysis in Sec. 2. In particular, we con-
template two scenarios: one where item category information (e.g.,
movie genres) is available, and another where it is not. We then
define two interest diversity metrics. Following this, we categorize
users into groups based on interest diversity and compare the utility
metrics of the recommendations they receive. The results reveal
a pattern that users with higher interest diversity tend to receive
lower recommendation performance. This observation remains
consistent across multiple datasets, models, definitions of interest
diversity, and group partitions. Our experiments indicates that the
unfairness among user groups with varied interest diversity (i.e.,
user interest diversity unfairness) indeed exists. To alleviate such
unfairness without compromising the overall utility performance,
it’s necessary to enhance the recommendations for users with high
interest diversity, as this is the system’s performance bottleneck.
We explore the cause of performance disparity among user groups,
and our conclusion aligns with prior work [2, 33], which suggests
that a single embedding is insufficient to capture users’ interests.

To this end, we propose a multi-interest framework to improve
user interest diversity fairness, that can be integrated into existing
RS models. In our multi-interest framework, each user is composed
of a center embedding representing users’ main characteristic and
multiple virtual embeddings, reflecting users’ interests derived from
their interacted items. We develop multi-interest representation
layers to learn better user embeddings, especially for users with
high interest diversity. Each layer includes an interest embedding
generator that derives virtual interest embeddings from globally
shared interest parameters, and a center embedding aggregator that
facilitates multi-hop aggregation. As such, the designed mechanism
can automatically assign different interest numbers that are gen-
erally consistent with the interest diversity in an implicit manner.
Experimental results validate the effectiveness of our framework
in achieving a better trade-off between fairness and utility perfor-
mance. Our main contributions are summarized as follows:

• Consistent Disparity Identification: We identify the un-
fair treatment among users with varied levels of interest
diversity, where users with broader interests tend to receive
lower recommendation quality. This pattern has been em-
pirically verified to be consistent across multiple datasets,
models, diversity metrics, and group partitions.

• Multi-interest Framework Design: We delve into the po-
tential reason causing the disparity from the embedding
space where we observe the insufficiency of using single em-
bedding to represent users and items due to their complex
multi-faceted interactions. This motivates us to propose a
multi-interest framework which is both model-agnostic and
parameter-efficient.

• Better Fairness-Utility Tradeoff: Our proposed multi-
interest framework outperforms the backbone models and
fairness baselines by achieving the optimal balance between
fairness and utility. Also, it offers superior andmore balanced
embedding alignment, along with more diverse recommen-
dations.

Table 1: Notations.

Notations Descriptions
I𝑢 User 𝑢’s interactions I𝑢 = [𝑖1, 𝑖2, ..., 𝑖𝑑𝑢 ]
𝑑𝑢 Number of interactions
C𝑢 Category set of I𝑢
𝑁 𝑐
𝑢 Number of user 𝑢’s interaction in category 𝑐

Dcat/Demb User interest diversity via item category/embedding
𝜙 ( ·, · ) Similarity function
e𝑢 /e𝑖 User/Item embeddings
ẽ𝑢 /ẽ𝑖 Normalized User/Item embeddings
A Adjencency matrix
D Degree matrix
𝐾/𝑘 Number of interests/𝑘-th interest
𝑁 Number of users and items
𝑑 Embedding dimension
�̂�𝑢𝑖 Relevance score between user 𝑢 and item 𝑖
N𝑣𝑖

The neighborhood set of node 𝑣𝑖
E𝑙
𝐶

Center embeddings at layer 𝑙
E𝑙
𝑉

Virtual interest embeddings at layer 𝑙
w𝑙
𝑘

Global interest parameter of 𝑘-th interest at layer 𝑙
↓ /↑ The lower/higher the better

2 USER INTEREST DIVERSITY UNFAIRNESS
In this section, we investigate how existing RSs treat users with
varied levels of interest diversity. First, we formally define interest
diversity, concatering two scenarios where item category is avail-
able or not. Then, we categorize users into groups with varied levels
of interest diversity. Ultimately, we demonstrate the performance
across different groups using two representative recommendation
models: LightGCN [12] and CAGCN∗ [29]. The disparate group per-
formance reveals the existence of user interest diversity unfairness.
Notations used in the paper are summarized in Table 1.

2.1 Interest Diversity Definition
User interest diversity aims to measure the dissimilarity of the
items interacted with each user in the training data (i.e., users’
historical interactions). Based on whether category information is
available, we define interest diversity based on item category or
item embedding.

Definition 2.1. Interest Diversity via Item Category. Given
user 𝑢’s historical interaction I𝑢 = [𝑖1, 𝑖2, ..., 𝑖𝑑𝑢 ] where 𝑑𝑢 is the
number of interactions and C𝑢 is the set of categories of items user
𝑢 has interacted with, 𝑁𝑐𝑢 denotes the number of items from user
𝑢’s interaction belonging to category 𝑐 , we define user 𝑢’s interest
diversity Dcat (𝑢) following Simpson’s Index of Diversity [24]:

Dcat (𝑢) = 1 −
∑
𝑐∈C𝑢 𝑁

𝑐
𝑢 (𝑁𝑐𝑢 − 1)

|I𝑢 | ( |I𝑢 | − 1) . (1)

Definition 2.2. Interest Diversity via Item Embedding. Given
the pretrained item embeddings, user𝑢’s interest diversity Demb (𝑢)
is as follows:

Demb (𝑢) = 1 − E(𝑖,𝑖′ ) ∈I𝑢×I𝑢𝜙 (e𝑖 , e𝑖′ ), (2)

where 𝜙 (e𝑖 , e𝑖′ ) =
e𝑖 ·e𝑖′

∥e𝑖 ∥ ∥e𝑖′ ∥ is the cosine similarity between the
embeddings of two items 𝑖, 𝑖′.

Essentially, Dcat (𝑢) measures the probability that two randomly
sampled items are from different categories, and Demb (𝑢) measures
the dissimilarity between the interacted items in their embedding
space. For both scenarios, a larger value indicates a higher level of
interest diversity. Unless specified, we use Dcat for default.

2
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Figure 2: Group recommendation performance (Recall ↑): the pattern that users with more diverse interests generally receive
lower recommendation quality is consistent across various datasets,models, diversity metrics, and group partitions. A larger
group ID indicates a higher level of user interest diversity.

2.2 Group Partition
Given users’ interest diversity, we group users with k-means cluster-
ing [18]. The number of clusters is determined using the commonly-
used elbow method [25]. The assignment of clusters subsequently
defines the group partition, with a higher group ID indicating a
higher diversity of interests. It’s worth noting that there are al-
ternative methods to group users, e.g., dividing users into equal
sized groups based on number of users, or range of user interest
diversity. Unless specified otherwise, we primarily rely on k-means
clustering in the experiments.

2.3 Preliminary Results
Given the exceptional performance of utilizing graphs in RSs, we
select two graph-based models for evaluation: LightGCN [12] and
CAGCN∗ [29]. The former is a widely recognized and frequently
used model. The latter is a newer development and improves the
overall utility by reducing the emphasis of neighbors not adhering
to the main interest which is closely related to our topic.

We evaluate them on four datasets including ml-1m, epinion,
embmetics, and anime, the details of which will be described in
Sec. 4.1.1. The preliminary results across different scenarios are
illustrated in Fig. 2. Specifically, Fig. 2(A) is the group utility perfor-
mance (Recall) where groups are divided based on k-means cluster-
ing with Dcat as the diversity metric. The curves suggest a trend that
as interest diversity increases, the group utility performance gener-
ally decreases. This pattern is observable across multiple datasets
and models. We also explore another diversity definition Demb in
Fig. 2(B) which shows a similar trend. Additionally, we obtain re-
sults based on different group partitions including the equal user
number and equal user interest diversity range in Fig. 2(C). The
results show a consistent trend across various datasets, models,
diversity metrics, and group partitions that users with diverse in-
terests generally receive a lower recommendation quality. This
indicates the existence of user interest diversity unfairness, which
jeopardizes the user experience for user with diverse interests.

3 THE MULTI-INTEREST FRAMEWORK
To mitigate the user interest diversity unfairness identified in Sec. 2,
we dive into the source of unfairness from the alignment and mis-
alignment between user and item embeddings. Our empirical find-
ings indicate a trend in alignment that correlates with the observed
performance disparities: user group with diverse interests has poor

performance as well as poor alignment. We hypothesize that the
suboptimal alignment arises from the inadequacy of using single
embedding to align user’s diverse interests with the interacted items
(illustrated in Fig. 4). To improve the alignment, especially for users
with higher level of interest diversity, we propose a multi-interest
framework where each user is represented by multiple (virtual)
interest embeddings. Based on the proposed framework, we im-
prove the alignment for users with high interest diversity, thereby
improving their recommendation performance and alleviating the
detected performance bias.

Next, we discuss the source of unfairness in Sec. 3.1, give an
overview of the multi-interest framework in Sec. 3.2, elaborate the
components details in Sec. 3.3 and the optimization in Sec. 3.4.

3.1 Source of Unfairness
Since the core component in majority RSs is to learn high-quality
user and item embeddings, we investigate the root cause of user in-
terest diversity unfairness from the embedding space. Prior research
has underscored the correlation between embedding alignment
(i.e., the capacity to bring users and their associated items closer
in the embedding space) and utility performance [26, 27]. A supe-
rior alignment typically correlates with a better performance. The
alignment definition is as follows:

Alignment = E(𝑢,𝑖 )∼𝑝pos ∥ẽ𝑢 − ẽ𝑖 ∥2 , (3)
where ẽ𝑢 and ẽ𝑖 are the 𝑙2 normalized user and item embeddings
from historical interacted pairs. It measures the Euclidean distance
in the unit hypersphere and a lower Alignment score (aka. shorter
distance) corresponds to better utility performance. To uncover the
potential reason for unfair recommendation performance across
different user groups, we measure the average Alignment in each
group. Results on ml-1m in Fig. 3 (results for other datasets are
included in Appedix A) show that (1) CAGCN∗ exhibits superior
alignment compared to LightGCN, a consistency mirrored in the
performance illustrated in Fig. 2; (2) Users displaying a broader
spectrum of interests tend to have larger Alignment scores in the
embedding space. This suggests that the current recommendation
models are not effective in aligning users and items, particularly
when users have a wide array of interests.

Fig.4(A) depicts the alignment challenge for user with high inter-
est diversity. When the user is represented by a single embedding,
to achieve an optimal alignment with every interacted item, the
learned single embedding falls in-between the interacted items.

3
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Figure 3: Group-level embedding alignment (↓) of ml-1m
dataset based on LightGCN and CAGCN∗.

This results in a poor alignment with the real interests. Such insuffi-
ciency of using single embedding to align interacted items, that are
from diverse interests, motivates us to use multiple embeddings to
represent different user interests [2, 14, 33]. As shown in Fig. 4(B),
the user has multiple embeddings. For items belonging to diverse
interests, the embeddings can be automatically obtained and they
have a better alignment with the corresponding interacted items in
the embedding space. Comparing the scenarios of single-interest
and multi-interest, we find that owing to a better alignment, the
recommended items in Fig. 4(B) are more accurate than Fig. 4(A).
This underscores the potential of the multi-interest approach.

3.2 Model Architecture
Fig. 5 shows the multi-interest framework where each user/item
has different types of embeddings, including (1) center embeddings
E𝑙
𝐶
∈ R𝑁×𝑑 representing users/items main characteristic/features

where 𝑁 is the number of node (including users and items) and 𝑑
is the dimension; (2) interest (virtual) embeddings E𝑙

𝑉
∈ R𝑁×𝐾×𝑑

which relate to specific interests where 𝐾 is the number of inter-
ests (for simplicity, we denote E𝑉 as virtual embeddings hereafter).
Among these embeddings, center embeddings are learnable param-
eters while the virtual embeddings are calculated based on center
embeddings via attentions. This mechanism avoids introducing a
large number of learnable parameters by sharing the global inter-
est parameters w𝑙

𝑘
in the attention mechanism. We represent the

𝑘-th virtual embedding of node 𝑣𝑢 as E𝐿
𝑉
[𝑣𝑢 , 𝑘] and the user center

embedding as E𝐿
𝐶
[𝑣𝑢 ]. Similar notations apply to the item side.

With these notations, the framework is as follows: (1) Given the
user-item bipartite graph, user and item embeddings are obtained
through the multi-interest representation layers (details in Sec. 3.3);
(2) After obtaining the embeddings, the relevance score 𝑦𝑢𝑖 for user,
item pair (𝑣𝑢 , 𝑣𝑖 ) is calculated based on the last layer representations
where L is the number of hops:

𝑦𝑢𝑖 =
𝐾max
𝑘=1

E𝐿𝑉 [𝑣𝑢 , 𝑘]⊤E𝐿𝐶 [𝑣𝑖 ] +
𝐾max
𝑘=1

E𝐿𝑉 [𝑣𝑖 , 𝑘]⊤E𝐿𝐶 [𝑣𝑢 ]; (4)

(3) These predicted relevance scores are optimized via Bayesian
Personalized Ranking Loss (BPR) loss [22] LBPR.

Note that the relevance score in Eq.(4) is different from the cal-
culation in previous recommendation models [12, 29] or multi-
interest-based session recommendation [2, 33]. In previous works,
because user and item only have single embeddings, the dot product
between the user and the item embedding (i.e., e𝑢⊤e𝑖 ) denotes their
relevance score. In multi-interest based session recommendation,

Figure 4: Multi-interest motivation: single embedding is in-
sufficient to capture users’ diverse interests.

only items have learnable parameters and users/sessions are cal-
culated based on items (𝐾 embeddings with e𝑘𝑢 denoting the 𝑘-th
interest) and thereforemax𝐾

𝑘=1 e
𝑘
𝑢
⊤
e𝑖 is sufficient to update the item

embeddings. However, similar to LightGCN, we have both user and
item embeddings to learn. Simply optimizing the traditional multi-
interest relevance score that is commonly used in session-based
representation cannot utilize user embeddings, indicating it is not
suitable in our case. Therefore, we use the symmetric scores shown
in Eq.(4) where both user and item embeddings are optimized.

3.3 Multi-Interest Representation Layer
Next, we introduce the details of multi-interest representation layer,
which is at the core of the architecture and designed to learn, cal-
culate and aggregate multiple embeddings. The model is composed
of stacked layers to deliver the final user and item embeddings.

3.3.1 Interest embedding generation: Virtual embeddings of 𝑙-th
layer for node 𝑣 and𝑘-th interest (i.e., E𝑙

𝑉
[𝑣, 𝑘]) is calculated in Eq.(5)

as the weighted average of the center embeddings of neighbors. The
weight is calculated in Eq.(6) based on Softmax attentionmechanism
where𝑇 is the temperature to control the Softmax smoothness. The
input logits to Softmax function are cosine distances between virtual
embeddings and the global interest w𝑙

𝑘
. Intuitively, if an item is

related to the 𝑘-th interest, the attention will be higher and lead
to larger contribution to the aggregates from this item. Therefore,
E𝑙
𝑉
[𝑣, 𝑘] captures information related to 𝑘-th interest.

E𝑙𝑉 [𝑣, 𝑘] =
∑︁
𝑣𝑛∈N𝑣

𝑎𝑙
𝑘,𝑣𝑛

E𝑙𝐶 [𝑣] (5)

𝑎𝑙
𝑘,𝑣𝑛

=
exp(𝜙 (E𝑙

𝐶
[𝑣𝑛],w𝑙𝑘 )/𝑇 )∑

𝑖 exp(𝜙 (E𝑙𝐶 [𝑣𝑛],w
𝑙
𝑖
)/𝑇 )

(6)

3.3.2 Center embedding aggregator: We adopt the similar approach
as LightGCN [12] to update embeddings based on topology of the
graph. Different from LightGCN, we use virtual embeddings to
update the center embedding as in Eq.(7). Since virtual embeddings
have extra dimension in interest, these embeddings need to be
transformed to the same dimension as center embedding before the
aggregation. We use an argmax operator to select the interest id
of the “matching slide” called mid. The embeddings of mid index
has the highest dot product similarity with the node’s center em-
bedding. Such operator has been commonly used in multi-interest
literature [2, 33] and has been verified to have faster convergence
and better performance compared with other ways to use multi-
interests [14]. In detail, for each node 𝑣 whose center embedding is

4
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Figure 5: Multi-interest framework (interest number equals two): rather than a single embedding, each user/item is represented
by multiple embeddings (i.e., center and virtual). Center embeddings and global interest embeddings are learnable parameters
while the interest (virtual) embeddings are calulated without assigning extra parameters.

E𝑙
𝐶
[𝑣], the id of the matching slide for one neighbor node 𝑣𝑛 ∈ N𝑣

is selected as:

mid(𝑣, 𝑣𝑛, 𝑙) = argmax𝐾
𝑘=1 (E

𝑙
𝑉 [𝑣𝑛, 𝑘]

⊤
E𝑙𝐶 [𝑣])

Given the “matching slide,” the aggregation process is as follows:

E𝑙+1𝐶 [𝑣] =
∑︁
𝑣𝑛∈N𝑣

1√︁
𝑑𝑣𝑑𝑣𝑛

E𝑙𝑉 [𝑣𝑛,mid(𝑣, 𝑣𝑛, 𝑙)] (7)

3.4 Optimization
We utilize the BPR loss [22] (LBPR) to train our multi-interest RS.

LBPR = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
log𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) + _Θ∥Θ∥2,

where D = {(𝑢, 𝑖, 𝑗) |𝑢 ∈ U ∧ 𝑖 ∈ I+
𝑢 ∧ 𝑗 ∈ I−

𝑢 } is the training
dataset andU is the total user set, I+

𝑢 /I−
𝑢 are the item sets that user

𝑢 has/hasn’t interacted with. 𝜎 (·) is Sigmoid function. Θ denotes
the model parameter with _Θ controlling the 𝐿2 norm regulation
to prevent over-fitting. 𝑦𝑢𝑖 is the predicted preference/relevance
score computed based on Eq.(4).

4 EXPERIMENTS
In this section, we evaluate the performance of our multi-interest
framework on on real-world datasets and compare the utility and
fairness performancewith various representativemethods. Through
experiments, we aim to answer the following research questions:
• RQ1: Does our proposed multi-interest framework achieve a

better utility-fairness trade-off than the baseline methods?
• RQ2: Is the multi-interest framework able to learn higher-quality

embeddings with better alignment?
• RQ3: Can the multi-interest framework learn to match the num-

ber of users’ interest embeddings with the diversity of their
historical interactions?

• RQ4: Can the multi-interest framework provide extra benefits
beyond accuracy and fairness, e.g., recommendation diversity?

• RQ5: How do the hyperparameters affect the performance?

Table 2: Dataset statistics.

Dataset # Edges # Users # Items # Category
ml-1m 223305 5645 2357 18
epinion 163320 11875 11164 26
cosmetics 930275 53238 28310 400
anime 901328 40112 4514 76

4.1 Experimental Setup
4.1.1 Datasets. We evaluate the proposed multi-interest frame-
work on four datasets including ml-1m, epinion, cosmetics, and
anime2. We pre-process data by (1) filtering edges by maintain-
ing the highest rating score so that the remaining edges show
strong preferences; and (2) applying k-core filtering iteratively
to remove users with interaction number smaller than 5. After
that, we randomly split the dataset into train/validation/test based
on 60%/20%/20% proportions. The statistics of the pre-processed
datasets are summarized in Table 2.

4.1.2 Baselines. To verify whether our framework can achieve a
better trade-off between fairness and utility, and further general-
ize to different backbones, we compare the performance of two
representative recommendation backbones (LightGCN [12] and
CAGCN∗ [29]) before/after equipping our proposed multi-interest
framework. For a fair comparison, we also apply other fair base-
lines to the backbones including DRO [11] and ARL [13]. Note that
all these methods are group-agnostic which means that the group
partition is unavailable during training. The descriptions for the
compared methods are as follows:
• LightGCN [12] is a GNN-based method that aggregates high-

order neighborhood information and simplifies traditional GCN
by removing the linear transformation and nonlinear activation.

• CAGCN∗ [29] is a fusionmodel of LightGCN [12] andCollaboration-
Aware Graph Convolutional Network (CAGCN) [29]. It analyzes
how message-passing captures collaborative filtering (CF) ef-
fect and pre-computes a topological metric, Common Interacted
Ratio (CIR), for collaboration-aware propagation.

2Datasets are available at: ml-1m, epinion, cosmetics, anime
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Table 3: Fairness and utility performance (The best is highlighted in bold and the runner-up is underlined).

Backbone Method ml-1m epinion cosmetics anime Avg
RankRecall↑ Unfairness↓ Recall↑ Unfairness↓ Recall↑ Unfairness↓ Recall↑ Unfairness↓

LightGCN

- 0.3087 0.0376/0.1018 0.0904 0.0320/0.0378 0.2116 0.1260/0.1942 0.4015 0.0384/0.098 2.08
DRO 0.3143 0.0409/0.1047 0.0926 0.0377/0.0.451 0.2104 0.1296/0.2013 0.4029 0.0453/0.1102 2.92
ARL 0.2973 0.0376/0.1058 0.0850 0.0316/0.0381 0.1941 0.1199/0.1730 0.3844 0.0407/0.1110 2.83
Multi 0.3116 0.0385/0.0856 0.0901 0.0364/0.0222 0.2405 0.1193/0.1494 0.4239 0.0430/0.1136 1.92

CAGCN∗

- 0.3141 0.0429/0.1054 0.0948 0.0380/0.0373 0.2286 0.1332/0.1903 0.4044 0.0415/0.1096 2.83
DRO 0.3173 0.0401/0.0946 0.0927 0.0383/0.0375 0.2294 0.1350/0.1891 0.4024 0.0414/0.1012 2.58
ARL 0.3024 0.0367/0.1121 0.0912 0.0354/0.0380 0.2167 0.1257/0.1734 0.3884 0.0413/0.0985 2.67
Multi 0.3107 0.0411/0.0921 0.0922 0.0378/0.0212 0.2548 0.1297/0.1368 0.4237 0.0417/0.0904 1.92

• DRO [11] is a group-agnostic optimization approach that aims
to improve the performance of the worst-case instances via dis-
tributionally robust learning.

• ARL [13] is a group-agnostic optimization approach that lever-
ages an adversary module to automatically adjust the weight
in the training loss so that instances with higher loss will be
assigned higher weights.

• Multi is the multi-interest framework proposed in this paper.
It learns multiple interest embeddings to represent each user to
mitigate the performance gap among user groups.

4.1.3 Implementation details. For all methods, we use Adam opti-
mizer for training and set the learning rate to 0.001, batch size to
2048, L2 coefficient to 0.001, and embedding dimension to 32. We
early stop the training process when the best validation score re-
mains unchanged for 25 epochs. Trend coefficient in CAGCN∗ is set
to 1.0. Temperature in the Softmax function is set to 2.0. The model
hyperparameters are selected based on the best recall value during
validation. For each model, we tune the number of hops within
{1, 2, 3}. Additionally, for DRO-based model, we tune the hyperpa-
rameter [ within {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For our model, we tune
interest number within {2, 4, 8, 16}. We run the experiments three
times and report the average results. The best hyperparameters for
each model are reported in Appendix B. When applied on CAGCN∗

backbone, the aggregation weights in Eq.(7) is substituted with the
pre-computed topological-based weights introduced in work [29].

4.1.4 Metrics. For utility performance, we adopt Recall@20 and
NDCG@20. For fairness performance, we use the standard devia-
tion of the utility performance across user groups. The deviation
measures the performance gap among groups, and a larger score sig-
nifies lower fairness. Based on group partitions via interest diversity
metrics Dcat and Demb, we report two corresponding (un)fairness
scores. This setting can evaluate whether the group-agnostic mod-
els are effective for different group partitions.

4.2 Performance Comparison (RQ1)
Wepresent the utility and fairness scores for LightGCN andCAGCN∗

backbones respectively in Table 3 (The results based on another
utility metric NDCG is included in Appendix C). Since the standard
deviations for all methods across various seeds are negligible com-
pared with the main performance, we leave them out. From the
result, we draw several observations:

• The multi-interest framework has the best fairness-utility trade-off
in general. Our proposed method achieves the best and runner
up performance in most of the times when compared with other
methods. Upon calculating the average rank for each method,
ours emerges as the leader in both backbones. While the current
rank of 1.92 indicates some room for enhancement towards the
optimal rank of 1, it underscores the efficacy and potential of the
multi-interest framework in balancing fairness and utility.

• The multi-interest framework works better with large dataset. In
cosmetics dataset, which has the highest count of items and
categories, our method consistently delivers enhanced perfor-
mance in both fairness and utility. Given the diversity of items
and categories, learning varied interests becomes more essential,
amplifying the advantages.

• The multi-interest framework is more stable across backbones com-
pared with other fairness baselines (i.e., DRO and ARL). DRO and
ARL rank higher than the base model CAGCN∗, however, their
rank drops when integrated into LightGCN. This underscores the
complexity of maintaining an optimal balance across different
models. Furthermore, such distinct performance variations of
DRO and ARL across different backbones can be attributed to
their inherent design. These methods were specifically designed
to enhance the performance for instances with suboptimal rec-
ommendations. While Fig. 2 demonstrates that the user group
with diverse interests has the poorest average performance and
is expected to gain the most, other factors, such as the percentage
of under-performing users in each group, play a role. If other
groups have a higher proportion of users with poor recommenda-
tions, they might obtain greater benefits, thereby increasing the
unfairness. Therefore, we can observe in some cases (e.g., DRO
in ml-1m with LightGCN backbone) that the utility improves
and the fairness drops. Such percentage in each group can vary
across models, resulting in high instability of DRO and ARL due
to their heavy reliance on the performance distribution. This
suggests that DRO and ARL are not universally effective in the
current context. In contrast, the multi-interest framework relies
on the underlying interests rather than performance, which is
more closely related to the current setting and more stable.

4.3 Representation Quality (RQ2)
Multiple embeddings are expected to learn a better embedding dis-
tribution compared with single embeddings (Fig. 4), especially for
the embedding alignment between user and interacted items. To
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Table 4: Embedding alignment (Results with improved align-
ment compared with backbone are highlighted in bold).

Method ml-1m epinion cosmetics anime
LightGCN 0.8774 0.5951 0.7937 1.0165

Multi-LightGCN 0.5007 0.4111 0.5396 0.7514
CAGCN∗ 0.7512 0.5429 0.7069 0.9118

Multi-CAGCN∗ 0.4315 0.2973 0.4694 0.7176

Figure 6: Group-level embedding alignment of ml-1m dataset
based on two backbones.

evaluate this, we calculate the average alignment based on the back-
bones and their multi-version. Table 4 shows that multi-interest
improves the alignment consistently. This suggests that the frame-
work effectively brings users and their interacted items closer in the
embedding space. However, an intriguing observation arises when
examining performance metrics. While the improved alignment in
CAGCN∗ leads to superior utility performance compared to Light-
GCN in Table 3, the enhanced alignment in the multi-version does
not always result in better utility performance relative to the back-
bones. This inconsistency may arise from the trade-off between
alignment and uniformity [26]. Specifically, while alignment im-
proves, it could lead to reduced uniformity in the multi-version due
to more user embeddings, which offsets the anticipated enhance-
ments. The nuanced interplay between alignment and uniformity,
and strategies to effectively balance them, present intriguing av-
enues for future exploration in multi-interest scenario.

Beyond evaluating overall alignment, we delve into embedding
alignment at the group level. In Fig. 6, there’s a discernible trend
when comparing the backbone to its multi-version: alignment ap-
pears more evenly distributed across different groups. Since align-
ment is closely related to the utility performance, it contributes to a
fair recommendation across groups, which follows our expectation.

4.4 Interest Matching (RQ3)
For each user, our multi-interest framework initially assigns the
same number of interests (i.e.,𝐾 ). Given the underlying assumption
that users exhibit varied levels of interest diversity, can the model
autonomously adjust the number of interests even if it begins with
an equal allocation? To answer this question, we obtain the set of
interests that matches the recommended items (i.e., for each item,
the matched interest is the specific interest that has the maximum
relevance score) and calculate the average matched interest num-
ber for each group. Results in Fig. 7 show that for the first three
groups, users with more diverse interests have been assigned a
larger interest number, indicating that our model has the ability to
distinguish different interest diversity and can automatically cater

Table 5: Diversity measured by Dcat and Demb (Results with
improved diversity compared with backbone are in bold).

Diversity Method ml-1m epinion cosmetics anime

Dcat

LightGCN 0.3852 0.5477 0.6849 0.3193
Multi-LightGCN 0.3768 0.5454 0.6110 0.3300
CAGCN∗ 0.3786 0.5382 0.6611 0.3206
Multi-CAGCN∗ 0.4182 0.6667 0.7639 0.3573

Demb

LightGCN 0.3189 0.2871 0.4271 0.5134
Multi-LightGCN 0.3206 0.3338 0.3781 0.4557
CAGCN∗ 0.3934 0.3292 0.3833 0.4259
Multi-CAGCN∗ 0.5229 0.3987 0.4919 0.4009

Figure 7: Average interest number for each group on ml-1m.

to user preferences to some extend. However, the trend for the last
two groups is not consistent, which leave us a future direction to
explicitly assign interest number based on user interest diversity in
addition to the current implicit way.

4.5 Recommendation Diversity (RQ4)
We measure the diversity of the recommended item sets. The re-
sults are presented in Table 5 based on two diversity metrics: Dcat
in Eq.(1) and Demb in Eq.(2). First, the cosmetics dataset, which
has the highest number of categories among the datasets, consis-
tently exhibits the greatest diversity in comparison to the other
datasets. Second, CAGCN∗ has a slightly reduced Dcat than Light-
GCN. This is attributed to CAGCN∗’s mechanism: it assigns higher
pre-computed topological-based weights to neighbors that are more
densely connected to the center node (i.e., nodes that are topologi-
cally more similar). While certain nodes gain emphasis, others get
overshadowed. This reduces the likelihood of recommendations
based on less-similar users, resulting in the drop in diversity. Third,
multi-CAGCN∗ has a consistent diversity enhancement (in both
Dcat andDemb) comparedwith the backbone (with enhancements in
7/8 cases). We hypothesize that CAGCN∗ learns more accurate user
interests and incorporating higher-quality embeddings amplifies
the advantages of our multi-interest framework.

4.6 Sensitivity Analysis (RQ5)
There are two hyperparameters in the model: the number of inter-
ests and the number of hops. From Fig. 8, we draw the following
observations. A larger interest number could contribute to the util-
ity performance but not necessary maintain a higher performance.
This could be due to the increasing learning difficulty and over-
fitting risk. Our multi-model prefers a smaller hop since (1) the
multi-interest representation layer in Sec. 3.3 aggregates neighbor-
hood information, serving as an implicit hop; (2) more layers would
result in a higher level of smoothness which hides the diversity.
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Figure 8: Sensitivity analysis on Multi-LightGCN.

5 RELATEDWORKS
5.1 Fairness in Recommender Systems
The majority RS development is concentrated predominantly on
utility performance enhancement. However, emergent concerns
regarding the equitable treatment of diverse user groups have mo-
tivated the advent of fairness-aware recommender systems [16, 28,
34]. Researchers have divided users into groups and investigated the
group-level unfairness based on various criteria which can be sum-
marized into two primary categories [34]: (1) explicit features, which
involve sensitive features such as gender [5, 32], race [10, 35] and
age [8]; (2) implicit features, which are extracted from interactions
such as the number of interactions (i.e., degree) and the amount of
purchases [9, 15, 21, 31]. While the explicit features are vital to fair-
ness discourse, they are often inaccessible due to privacy policies
or users’ reluctance to share such information. Consequently, our
research focuses on implicit features given the profusion of user
interactions in recommendation scenarios. Despite the significance
of all previously mentioned features, our study explores a novel
perspective within the realm of implicit features called user interest
diversity considering its close relationship with the RS goal and
its high relevance to real-world applications. Additionally, while
most works adopt group information during training [16, 26], re-
cent works have also explored group-agnostic directions with the
assumption that group partitions are not available during the opti-
mization [11, 13]. In this work, we follow this setting considering
there are various ways to divide users into groups. Our goal is to de-
velop a model that upholds fairness across diverse group divisions
rather than catering to specific partition.

5.2 Multi-interest Recommender Systems
The main idea of multi-interest solutions is that single embedding
is insufficient to represent the node’s features, hence necessitating
the deployment of multiple embeddings. This idea has been exten-
sively employed in session-based recommendations - depending
on how the interests are obtained, the solutions fall into attention-
based and category-based methods. The attention-based methods
extract interests from the interactions into interest embeddings
based on the attention mechanism. MIND [14] initializes the effort
to extract interests based on dynamic capsule routing. After that,
ComiRec [2] leverages self-attention to learn multiple interests

given item interactions. While ComiRec [2] considers the item-to-
interest relationship, Re4 [33] models interest-to-item relationship
by adding regularizations. The cluster-based methods perform clus-
tering on the interacted items and obtain representative embedding
per cluster to depict interests. PinnerSage [19] clusters interacted
items with the Ward hierarchical clustering method [30], and uti-
lizes the embedding of the center item, which minimizes the sum of
distance to other items within the cluster, to depict user’s interests.
MIP [23] assigns each interest as the representation of the latest
interacted item in each cluster. In addition, MIP learns the weight
to represent the preference over each interest and integrates it into
the relevance score.

Beyond their application within RSs, multi-interest idea has also
been applied in other representation learning tasks. For instance, the
multi-interest-based random walk [20] assigns each node a target
embedding along with multiple context embeddings. Similarly, in
the multi-interest-based Graph Neural Network (GNN)[3], each
node is characterized by several embeddings and an additional
membership embedding that signifies the association with each
interest. The principle of node partitioning[6] has also been adapted
to accommodate multi-interest strategies, where a node is divided
into several virtual nodes based on neighborhood structure, whose
embeddings represent the original node.

In contrast, we delve into multi-interest in direct recommenda-
tion, emphasizing the importance of learning both user and item
embeddings. Notably, in contrast to numerous studies [3, 6, 20] that
increase parameter size for user representation, we employ shared
global interest parameters for all users. This approach allows us to
compute virtual interests in a parameter-efficient manner.

6 CONCLUSION
In this study, we examine whether users with varied levels of inter-
est diversity are treated similarly/fairly in recommendation systems.
Initial findings reveal a consistent disparity among user groups
across different models, datasets, diversity metrics, and group par-
titions. This indicates the existence of User Interest Diversity Un-
fairness. Specifically, users with a broader range of interests often
receive lower-quality recommendations, which has a negative im-
pact on the user fairness and overall utility. Delving into the embed-
ding space, we notice a trend linking group embedding alignment
and utility performance. This suggests that a single embedding
may not adequately represent diverse interests. To address this, we
introduce a multi-interest framework where users are character-
ized by multiple (virtual) interest embeddings. Evaluation on two
representative recommendation system backbones demonstrates
that our approach better balances fairness and utility. Additionally,
the learned embeddings have higher-quality and more balanced
alignment in the embedding space. The proposed framework also
provides more diverse recommendations. In future research, we
aim to enhance the interest generation component. Currently this
component is based on Softmax attention, other attentions or gen-
erative methods can be used to derive interest embeddings. For
instance, we can incorporate text information and leverage large
language models (LLM) for interest extraction/generation [4]. The
trade-off between alignment and uniformity within the realm of
multi-interest also merits investigation.
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Table 6: Performance (NDCG) on LightGCN backbone (The best is highlighted in bold and the runner-up is underlined).

Method ml-1m epinion cosmetics anime
NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ Avg Rank↓

LightGCN 0.2335 0.0133/0.0307 0.0462 0.0166/0.0153 0.1154 0.0643/0.1021 0.2594 0.0154/0.0513 2.33
DRO-LightGCN 0.2368 0.0139/0.0292 0.0473 0.0192/0.0188 0.1158 0.0670/0.1076 0.2553 0.0141/0.0514 2.75
ARL-LightGCN 0.2258 0.0138/0.0324 0.0438 0.0167/0.0178 0.1063 0.0607/0.0897 0.2466 0.0156/0.0483 3.00
Multi-LightGCN 0.2363 0.0137/0.0499 0.0464 0.0184/0.0093 0.1373 0.0592/0.0756 0.2852 0.0176/0.0471 1.92

Table 7: Performance (NDCG) on CAGCN∗ backbone (The best is highlighted in bold and the runner-up is underlined).

Method ml-1m epinion cosmetics anime
NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ Avg Rank↓

CAGCN∗ 0.2382 0.0138/0.0249 0.0492 0.0196/0.0143 0.1288 0.0692/0.1027 0.2619 0.0164/0.0521 2.33
DRO-CAGCN∗ 0.2418 0.0144/0.0246 0.0483 0.0197/0.0148 0.1296 0.0708/0.1025 0.2613 0.0161/0.0554 2.67
ARL-CAGCN∗ 0.2295 0.0126/0.0318 0.0471 0.0183/0.0180 0.1218 0.0640/0.0899 0.2591 0.0185/0.0556 3.00
Multi-CAGCN∗ 0.2352 0.0132/0.0592 0.0480 0.0192/0.0107 0.1472 0.0663/0.0704 0.2875 0.0168/0.0446 2.00

A GROUP-LEVEL EMBEDDING ALIGNMENT
In this section, we present the group embedding alignment on Light-
GCN and CAGCN∗ on the other three datasets in Fig. 9. Generally,
the trend is similar to the one in Fig. 3. When interest diversity
increases, the embedding alignment shows a poor performance.
The trend when using Demb as diversity metric is more consistent.

Figure 9: Group-level embedding alignment on epinion, cos-
metics, and anime datasets based on LightGCN and CAGCN∗.

B BEST HYPERPARAMETERS
For each model, we tune the number of hops within {1, 2, 3}. Ad-
ditionally, for DRO-based model, we tune the hyperparameter [
within {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For our model, we tune interest
number within {2, 4, 8, 16}.

Best hyperparameters for each model on three seeds are as fol-
lows (the order of four datasets is ml-1m, epinion, cosmetics, and
anime):

(1) LightGCN as backbone:
• LightGCN (number of hops): [3,3,2], [3,3,3], [2,2,2], [3,3,3].
• DRO (number of hops): [2,2,2], [3,3,3], [2,2,2], [2,2,2], [2,2,2];

([): [0.6,0.6,0.6], [0.6,0.6,0.6], [0.0,0.0,0.0], [0.6,0.6,0.6].
• ARL (number of hops): [2,2,2], [2,3,3], [3,2,2], [2,3,2].

• Multi (number of hops): [2,1,1], [2,2,2], [2,2,2], [1,1,1];
(number of interests): [16,8,4], [8,4,8], [4,16,16], [2,4,2].

(2) CAGCN∗ as backbone:
• CAGCN∗ (number of hops): [3,3,3], [3,3,3], [3,3,3], [1,1,1].
• DRO (number of hops): [3,3,3], [3,3,3], [3,3,3], [1,2,1];

([): [0.6,0.6,0.6], [0.0,0.0,0.4], [0.0,0.0,0.0], [0.6,0.6,0.6].
• ARL (number of hops): [3,3,2], [3,3,3], [3,3,3], [2,2,2].
• Multi (number of hops): [1,1,1], [2,2,2], [2,2,2], [1,1,1];

(number of interests): [16,8,4], [16,8,2], [4,16,8], [8,2,2].

C FAIRNESS AND UTILITY TRADE-OFF
In this section, we report another utility performance NDCG and
its corresponding fairness metric (i.e., the standard deviation of
group NDCG performance) in Table 6 and Table 7 based on two
backbones. Note that the models are the same as in Table 3 which
are selected based on the best recall value. Similar to Table 3, our
proposed multi-interest framework has the highest rank among all
compared methods, indicating its effectiveness in balancing fairness
and utility performance.
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