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ABSTRACT

Detecting AI-generated text is an increasing necessity to combat misuse of LLMs
in education, business compliance, journalism, and social media, where synthetic
fluency can mask misinformation or deception. While prior detectors often rely on
token-level likelihoods or opaque black-box classifiers, these approaches struggle
against high-quality generations and offer little interpretability. In this work, we
propose DivEye, a novel detection framework that captures how unpredictability
fluctuates across a text using surprisal-based features. Motivated by the observa-
tion that human-authored text exhibits richer variability in lexical and structural
unpredictability than LLM outputs, DivEye captures this signal through a set
of interpretable statistical features. Our method outperforms existing zero-shot
detectors by up to 33.2% and achieves competitive performance with fine-tuned
baselines across multiple benchmarks. DivEye is robust to paraphrasing and ad-
versarial attacks, generalizes well across domains and models, and improves the
performance of existing detectors by up to 18.7% when used as an auxiliary sig-
nal. Beyond detection, DivEye provides interpretable insights into why a text
is flagged, pointing to rhythmic unpredictability as a powerful and underexplored
signal for LLM detection.

1 INTRODUCTION

Large Language Models (LLMs) have become deeply integrated into daily human workflows, pow-
ering applications from personal assistants to academic writing (Alahdab, 2024; Meyer et al., 2023;
Lund et al., 2023) and content creation (Hu et al., 2024; Yuan et al., 2022). Their fluency and gen-
eralization capabilities make them highly useful, but this same fluency enables a growing number
of concerning applications. AI-generated text can now be seamlessly inserted into essays, news ar-
ticles, legal briefs, scientific abstracts, and social media posts, often without detection (De Giorgio
et al., 2025; Papageorgiou et al., 2024; Telenti et al., 2024; Törnberg et al., 2023).

As LLM-generated outputs grow more sophisticated and human-like, detecting them has become an
increasingly difficult challenge (Abdali et al., 2024; Gameiro et al., 2024; Wu et al., 2025; Zhang
et al., 2024). Reliable AI-text detection is crucial for mitigating risks such as misinformation, AI-
assisted academic dishonesty, professional misconduct, and the inadvertent suppression of authentic
human writing. Traditional approaches to this problem rely on supervised detectors (Shukla et al.,
2024; Tolstykh et al., 2024; Wang et al., 2024b) trained on annotated datasets of AI and human-
authored text. These models often incorporate rich features, ranging from stylometry and structure
to information-theoretic metrics, and achieve high performance within the domain they were trained
on. However, such methods struggle to generalize to unseen models or domains (Doughman et al.,
2024; Gameiro et al., 2024), especially as new LLMs are frequently released. In contrast, zero-shot
detectors (Bao et al., 2024; Gehrmann et al., 2019; Mitchell et al., 2023; Wang et al., 2024a) offer
a promising alternative by avoiding model-specific training. These approaches either extract statis-
tical cues from language model probability distributions or use LLMs themselves as inference-time
detectors, enabling model-agnostic detection at scale. Given the increasing deployment of unknown
or fine-tuned LLMs in the wild, zero-shot detection has become an essential tool for maintaining
platform integrity and addressing the forensic needs of AI-era communication.
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Figure 1: Overview of DivEye. DivEye extracts diversity-based features (see Section 3, Equation
6) from token-level surprisal patterns. These features can be used in two ways: (1) as a standalone
detector, or (2) as an enhancement to existing detectors, improving their performance.

Contributions. We introduce DivEye1, a lightweight classifier trained on features extracted from
off-the-shelf LLMs in a zero-shot manner. These features capture diversity-based statistics of token-
level surprisal, which we leverage to improve AI-text detection. Our approach focuses on capturing
the distributional irregularities in AI-generated text that arise from differences in the generative
process compared to human writing.

• Zero-shot diversity detection: We propose DivEye, a lightweight classifier trained on zero-shot
features derived from token-level surprisal diversity metrics. These metrics capture fluctuations
and patterns that reflect the constrained and often repetitive generation process of LLMs. We
provide a principled motivation for each feature, connecting them to known properties of human
vs. machine text generation, and demonstrate how DivEye can improve AI-text detection using
these features.

• Language & Model-agnostic detection: DivEye leverages zero-shot features, requiring no ac-
cess to the generator model’s internals or any fine-tuning. It operates purely on token probability
sequences from an off-the-shelf language model and generalizes across different languages and
model families.

• Complementary to existing detectors: We show that DivEye captures statistical patterns that
are distinct from those used by traditional detectors, which often rely on fine-tuned language
representations or classifier-based signals. When combined with these approaches, DivEye sig-
nificantly boosts overall robustness, particularly against challenging high-quality generations and
paraphrased adversarial examples.

• Strong generalization across domains and attacks: Extensive evaluations across three bench-
marks and varied testbeds reveal that DivEye not only achieves state-of-the-art accuracy in stan-
dard settings but also remains robust when tested on unseen domains and language models.

2 BACKGROUND AND PROBLEM FORMULATION

The emergence of LLM has led to a new era of machine-generated text that can closely mimic hu-
man writing across a range of tasks. These models are trained to approximate the true conditional
distribution of natural language, denoted as Phuman(xt | x<t), by learning from massive corpora
of human-written text (Chen et al., 2024; Lu et al., 2025). The LLM’s learned distribution is rep-
resented as PLLM(xt | x<t), and during inference, the model generates text by sampling tokens
sequentially from this distribution. While modern LLMs achieve remarkable fluency, they still con-
stitute an imperfect approximation: PLLM ̸= Phuman in general. At inference time, an LLM selects
tokens by sampling from this learned distribution (Zhou et al., 2024), which remains an approxima-
tion of the true distribution that governs human text generation (Ippolito et al., 2020; Jones et al.,
2024). This approximation gap, subtle as it may be, is the crux of AI text detection.

From a theoretical standpoint, prior works (Ghosal et al., 2023; Sadasivan et al., 2025) highlight the
fundamental limitations of AI text detection: as generative models approach the ideal of human-

1The code of our method and experiments is available at https://anonymous.4open.science/
r/diveye/.
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like language modeling, distinguishing their outputs from real text becomes increasingly difficult,
if not impossible. Yet, as Chakraborty et al. (2023) point out, even models arbitrarily close to
optimal remain statistically detectable under certain conditions, particularly when multiple samples
or robust features are available. This theoretical detectability provides a foundation for practical
detection methods that capitalize on the subtle imperfections in current LLM outputs.

In practice, existing detection approaches fall into two broad categories: watermarking and zero-
resource detection. Watermarking techniques (Block et al., 2025; Gloaguen et al., 2025; Kirchen-
bauer et al., 2024; Liang et al., 2024; Liu et al., 2024a) embed distinct patterns in generated text
but necessitate access to model internals or fine-tuning capabilities, rendering them unsuitable for
black-box or adversarial settings, as well as for practical cases of watermark-free AI text detection.
In contrast, zero-resource detection methods require no prior knowledge of the target model, instead
relying on statistical or learned discrepancies between human and AI text. These methods can be
further categorized as statistical and training-based approaches.

Statistical / Zero-shot detection methods refers to identifying AI-generated text without task-
specific training, either by leveraging LLM probability cues or prompting LLMs directly as detec-
tors. For example, methods like Entropy (Lavergne et al., 2008), LogRank (Ghosal et al., 2023),
DetectGPT (Bao et al., 2024; Mitchell et al., 2023), and Binoculars (Hans et al., 2024) use off-
the-shelf LLMs to evaluate the consistency of token predictions under masked or perturbed inputs.
These methods assume that AI-generated texts are sampled from a narrower, more concentrated
conditional probability distribution than human writing, resulting in greater token-level confidence
and reduced lexical diversity.

Training-based / Fine-tuned detection methods (Chen et al., 2023; Mao et al., 2024; Hu et al.,
2023) train classifiers, such as fine-tuned transformers on a labeled corpora of human and AI text.
While these models can be accurate, they often fail to generalize across domains or against adversar-
ial paraphrasing, especially when trained on specific generators or prompts. We discuss all related
works in more detail in Appendix A.

Despite significant progress, no existing method fully resolves the problem of detecting AI-
generated text in the wild. Our work addresses this gap by approaching the problem from a new
angle: instead of analyzing individual token probabilities (Solaiman et al., 2019) in isolation, we
propose to measure statistical diversity over token sequences, quantifying how text fluctuates in its
use of surprising or predictable tokens. This provides a more global signature of the generative
process that is robust to paraphrasing, domain shifts, and even partial text corruption.

3 DIVEYE : METHODOLOGIES

DivEye is built on the central observation that fluctuations in token-level surprisal provide a strong
signal for distinguishing machine- and human-generated text. By systematically analyzing the statis-
tical variation of surprisal across a sequence, DivEye captures distributional and temporal patterns
that go beyond traditional likelihood-based metrics. The name DivEye thus reflects our method’s
focus on diversity-aware analysis of language generation behavior.

3.1 DESIGN HYPOTHESIS

A central challenge in detecting AI-generated text (Ghosal et al., 2023; Sadasivan et al., 2025) lies in
the fact that current models, though fluent, often prioritize coherence and consistency at the cost of
variability and unpredictability. By contrast, human writers naturally introduce irregularities, such
as unexpected lexical choices or structural shifts, that make their text inherently more diverse.

Our hypothesis is that human-written text inherently exhibits greater stylistic diversity and
unpredictability than AI-generated text. In everyday writing, humans make creative, spontaneous
choices, sometimes using unexpected words or phrases, that introduce bursts of surprise amid more
routine language. Our approach centers on the premise that AI-generated text, despite its fluency,
often lacks the inherent diversity observed in human-written language. This divergence stems from
the fundamental objective of LLMs: to maximize the likelihood of generated sequences within their
learned probability distributions (Park & Choi, 2024). Consequently, AI-generated text tends to
exhibit a higher degree of predictability, resulting in lower variability and surprisal compared to

3
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Figure 2: Distributions of predicted class probabilities for diverse AI-text detectors. Trained and
evaluated on Testbed 4 of the MAGE benchmark, DivEye shows stronger separation between La-
bel 0 (human-written) and Label 1 (AI-generated), indicating greater confidence and discriminative
power.

human-authored content. We support this hypothesis through both intuitive reasoning and empirical
evidence, as detailed in Remark 1.

Rather than treating token-level surprisal in isolation, DivEye analyzes how it varies across an
entire text to capture higher-level stylistic patterns. By extracting global statistical features from
surprisal sequences, our method reveals differences in the rhythm and variability of unpredictability,
traits that distinguish human writing from the more uniform outputs of LLMs, as illustrated by the
clear class separation in predicted probabilities shown in Figure 2.

3.2 MATHEMATICAL UNDERPINNING OF DIVEYE

To robustly distinguish AI-generated text from human-written text, it is insufficient to rely solely on
a single measure such as perplexity (Xu et al., 2024). Perplexity summarizes average token likeli-
hood, but overlooks how unpredictability fluctuates within a text. To better capture these patterns,
DivEye computes higher-order statistical features over surprisal sequences, revealing structural
signals beyond aggregate likelihood.

Surprisal. Human language is inherently diverse and unpredictable, balancing consistent patterns
with bursts of creativity, often introducing novel expressions, grammatical deviations, and stylistic
variation. These deviations result in varying levels of token predictability, which can be quantified
using surprisal (Kuribayashi et al., 2025) - a well-known information-theoretic measure defined as
the negative log-probability of a token under a language model:

S(xt) = − logP (xt | x1, x2, . . . , xt−1)

Given a text sequence X = {x1, x2, . . . , xn}, surprisal measures how ”unexpected” each token is
in context. It can be computed directly from a model’s log-probabilities, providing a principled way
to quantify the local unpredictability of text.

Rather than examining individual token surprisals in isolation, we summarize their behavior through
aggregate metrics. The mean surprisal serves as a coarse indicator of how “expected” a text is
on average: Lower values suggest higher conformity to the model’s learned distribution, whereas
higher values point to more frequent unpredictability. However, as stated before, human writing is
not merely unpredictable in aggregate; it also exhibits fluctuations in predictability that correspond
to stylistic variation, topic shifts, or bursts of creativity. This motivates analyzing not just the mean
but also the variance of surprisal, which captures the extent of variation in token-level surprise
throughout the text. Formally, this can be represented as:

Mean: µS =
1

n

n∑
t=1

S(xt); Variance: σ2
S =

1

n − 1

n∑
t=1

(S(xt) − µS)
2 (1)

Mean and Variance are not sufficient. While mean and variance capture the central tendency
and spread of surprisal values, they overlook deeper structural signals that differentiate human and
AI text. AI-generated text is optimized for consistency, producing more symmetrical distributions
centered around high-probability tokens (Ippolito et al., 2020). Skewness (γ1) quantifies this asym-
metry: a positive skew suggests the presence of rare, surprising tokens typically found in human
writing. Similarly, kurtosis (γ2) captures the frequency of extreme deviations from the norm. A high
kurtosis indicates heavy-tailed behavior, another hallmark of authentic, stylistically diverse writing.
These higher-order moments allow DivEye to detect subtle irregularities and stylistic outliers that
can be missed by detectors focusing only on average behavior.
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Skewness: γ1 =
1

n

n∑
t=1

(
S(xt) − µS

σS

)3

; Kurtosis: γ2 =
1

n

n∑
t=1

(
S(xt) − µS

σS

)4

− 3. (2)

Static metrics still miss temporal structure. While static surprisal statistics (mean, variance,
skewness, kurtosis) describe the overall distribution of token-level unpredictability, they fail to
capture how this unpredictability evolves throughout a sequence, a key trait distinguishing human
and AI-generated text. To model these temporal dynamics, we compute the first-order difference
∆St = S(xt)− S(xt−1), which reflects immediate changes in surprisal. The mean (∆µ) and vari-
ance (∆σ2) of ∆St quantify the typical magnitude and variability of these shifts, capturing stylistic
volatility such as abrupt topic or tone changes commonly found in human writing.

We further analyze the second-order difference ∆2St = ∆St − ∆St−1, which tracks fluctuations
in the rate of change of surprisal. From this sequence, we extract three metrics: (1) variance (σ2

∆2 ),
to capture the extent of rapid or erratic stylistic transitions; (2) entropy (H∆2 ), which reflects the
irregularity of these transitions; and (3) autocorrelation (ρ(∆2St)), which measures whether bursts
of unpredictability cluster together, often indicative of structured human creativity. These second-
order metrics reveal rhythmic and non-stationary patterns in human text that are typically absent
in the more homogeneous output of LLMs, providing a richer signal for robust AI-text detection.
Mathematically, these can be defined as:

∆St = S(xt) − S(xt−1), ∆µ =
1

n − 1

n∑
t=2

∆St, ∆σ
2
=

1

n − 2

n∑
t=2

(∆St − µ∆)
2 (3)

∆
2
St = ∆St − ∆St−1, σ

2
∆2 =

1

n − 3

n∑
t=3

(∆
2
St − µ∆2 )

2
, H∆2 = −

∑
b

pb log pb, (4)

ρ(∆
2
St) =

E
[
(∆2St − µ∆2 )(∆

2St+1 − µ∆2 )
]

σ2
∆2

(5)

where µ∆2 is mean of second-order differences, and pb is the empirical probability of a value falling
into bin b after discretizing ∆2St for entropy computation. We provide empirical validation of these
temporal features and their individual contributions to detection performance in Appendix B.

Combinations. Collectively, DivEye, formalized as (D) in Equation 6, encapsulates critical as-
pects of text generation that distinguish human creativity from algorithmically generated predictabil-
ity, thereby serving as a robust basis for our detection framework.

D = {µs, σ
2
s , γ1, γ2︸ ︷︷ ︸

Distribution

⊕∆µ,∆σ2︸ ︷︷ ︸
1st-Order

⊕σ2
∆2 , H∆2 , ρ∆2︸ ︷︷ ︸

2nd-Order

} (6)

Here, D is a vector of statistical features with a dimension of 9, including distributional properties,
first-order differences, and second-order differences of the text. We can apply any autoregressive
LLM to generate these feature vectors by passing the text tokens through the model to compute
the features listed above, which are then concatenated into the final vector D. We train a binary
classifier using DivEye features, optionally combined with predictions from an AI-text detector.
Implementation details are further explained in Algorithm 1 and Appendix C .

DivEye as a booster. Existing detectors, whether fine-tuned classifiers or zero-shot LLM-based
methods, primarily rely on semantic or surface-level cues, and often falter against high-quality ad-
versarial examples that closely mimic human writing. DivEye offers a complementary signal by
capturing statistical and temporal patterns of token-level unpredictability that are orthogonal to tra-
ditional features. We integrate DivEye into both settings by augmenting detector outputs with its
feature vector and training a lightweight meta-classifier (e.g., XGBoost (Chen & Guestrin, 2016) or
Random Forest (Breiman, 2001)) over the combined representation. Empirically, we find that this
fusion significantly boosts performance, particularly on adversarial and out-of-distribution exam-
ples, without requiring retraining or modification of the original model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our DivEye framework across a comprehensive suite of datasets that encom-
pass a wide range of generative models, domains, and adversarial strategies. Our primary benchmark

5
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Table 1: Performance of zero-shot methods on 6 diverse testbeds from MAGE. The OOD settings
examine the detection capability on texts from unseen domains or texts generated by new LLMs.

Settings Methods HumanAcc MachineAcc AvgAcc AUROC

Testbed 2,3,4: In-distribution detection

Arbitrary-domains & Model-specific (GPT-J [98])

LogRank 58.81% 63.94% 61.38% 0.67
Entropy 76.43% 76.84% 76.64% 0.83
DetectLLM 66.36% 62.07% 64.21% 0.72
FastDetectGPT 62.31% 50.49% 56.4% 0.59
Binoculars 60.11% 65.22% 62.67% 0.69
BiScope 89.62% 84.86% 87.24% 0.93
DivEye 90.63% 88.56% 89.60% 0.97

Fixed-domain (WP [34]) & Arbitrary-models

LogRank 89.61% 56.15% 72.88% 0.76
Entropy 85.96% 60.4% 73.18% 0.78
DetectLLM 88.54% 80.77% 84.66% 0.91
FastDetectGPT 87.25% 54.08% 70.67% 0.76
Binoculars 80.80% 62.07% 71.44% 0.77
BiScope 91.78% 95.27% 93.53% 0.94
DivEye 92.22% 96.88% 94.55% 0.99

Arbitrary-domains & Arbitrary-models

LogRank 84.91% 44.47% 64.69% 0.68
Entropy 75.68% 50.04% 62.86% 0.67
DetectLLM 64.74% 69.02% 66.88% 0.75
FastDetectGPT 93.65% 41.73% 67.69% 0.7
Binoculars 76.1% 54.89% 65.49% 0.71
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88

Testbed 5,6,8: Out-of-distribution detection

Unseen Models (BLOOM-7B [30])

LogRank 85.84% 19.82% 52.89% 0.52
Entropy 77.56% 34.74% 56.15% 0.59
DetectLLM 67.85% 58.5% 63.18% 0.68
FastDetectGPT 94.57% 13.81% 54.19% 0.54
Binoculars 76.10% 54.89% 65.50% 0.71
BiScope 76.72% 50.47% 63.60% 0.72
DivEye 74.75% 77.06% 75.91% 0.86

Unseen Domains (WP [34])

LogRank 88.57% 49.8% 69.19% 0.74
Entropy 78.5% 58.16% 68.33% 0.74
DetectLLM 74.15% 71.52% 72.34% 0.79
FastDetectGPT 95.99% 47.17% 71.58% 0.74
Binoculars 78.93% 67.8% 73.37% 0.8
BiScope 80.1% 78.3% 79.2% 0.86
DivEye 94.64% 84.53% 89.59% 0.97

Unseen Domains & Unseen Models

LogRank 83.87% 43.95% 63.91% 0.68
Entropy 74.93% 50.18% 62.55% 0.66
DetectLLM 63.66% 67.40% 65.53% 0.73
FastDetectGPT 93.38% 41.50% 67.44% 0.70
Binoculars 77.85% 69.39% 73.62% 0.81
BiScope 86% 82.58% 84.24% 0.92
DivEye 69.75% 83.22% 76.49% 0.87

is the RAID dataset (Dugan et al., 2024), which consists of carefully crafted adversarial examples
designed to evade standard detectors. To assess robustness under diverse generation conditions, we
also evaluate on the MAGE benchmark (Li et al., 2024), which spans eight distinct testbeds target-
ing various domains (e.g., Yelp (Zhang et al., 2015), XSum (Narayan et al., 2018), SciXGen (Chen
et al., 2021a), CMV (Tan et al., 2016)) and generator families (e.g., GPT (Radford et al., 2019), OPT
(Zhang et al., 2022), Bloom (et al., 2023)). This granular evaluation allows us to isolate and quantify
the contribution of diversity metrics across specific domains and model types. Details about each
testbed in RAID & MAGE are discussed in Appendix H.

Additionally, we incorporate HC3 (Guo et al., 2023), a large-scale, heterogeneous corpus of human
and machine text, which includes both English and Chinese instances of human and AI-generated
Q&A data. The inclusion of HC3 enables us to probe cross-linguistic generalization of our method.

Baselines. We compare DivEye with various baselines, including both traditional statistical detec-
tors and recent fine-tuned models. These include RADAR (Hu et al., 2023), LogRank (Ghosal et al.,
2023), Entropy (Lavergne et al., 2008), FastDetectGPT (Bao et al., 2024), DetectLLM (Su et al.,
2023), Binoculars (Hans et al., 2024), RAiDAR (Mao et al., 2024), OpenAI Detector (Solaiman
et al., 2019), Longformer (Beltagy et al., 2020), and BiScope (Guo et al., 2024). These baselines
cover a range of techniques, from token-level likelihood-based ranking to transformer-based classi-
fication. Additionally, we evaluate our framework against several other open-source detectors listed
on the RAID leaderboard, ensuring a fair and broad comparison with state-of-the-art public tools
across multiple detection paradigms.

Implementation Details & Metrics. Unless stated otherwise, we use GPT-2 to compute all
DivEye feature vectors. Regardless, we studied the effect of DivEye with different LLMs as base

6
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Figure 3: (a) Performance of DivEye across different domains, generated by GPT-J-6B. (b) Per-
formance of DivEye across various generator models. Results are based on the MAGE benchmark.

Table 2: Performance of zero-shot and open-source fine-
tuned methods on RAID. Results are aggregated over 8
domains, 12 models, and 4 decoding strategies. δ de-
notes difference in AvgAcc from benchmark leader.

Frameworks Type AvgAcc δ

Desklib AI [27] Fine-tuned 94.9% 0%
e5-small-lora [29] Fine-tuned 93.9% -1%

DivEye (Ours) Classifier
(zero-shot) 93.63% -1.27%

Binoculars [45] Zero-shot 79.0% -15%
SuperAnnotate [89] Fine-tuned 70.3% -24.6%
RADAR [47] Fine-tuned 65.6% -29.3%
GLTR [38] Zero-shot 59.7% -35.2%

DivEye GLTR OpenAI-Detector
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0.4

0.6

0.8

1.0

F1
 S

co
re

0.943

0.816
0.8850.895
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Figure 4: F1 scores on HC3 show that
DivEye outperforms GLTR [38] and
OpenAI-Detector [87], with strong re-
sults across English and Chinese.

models and summarized the results in Section 4.6. In score-only detection scenarios, predictions are
based solely over concatenated DivEye features. For both standalone and boosted setups, we train
a lightweight XGBoost (Chen & Guestrin, 2016) classifier as a meta-model, using only DivEye
features in the former, and concatenating them with the original detector’s prediction scores in the
latter. Each testbed in MAGE & RAID provides predefined training and test sets, which we use for
model training and evaluation. We evaluate all models using Average Accuracy (AvgAcc), AUROC,
and F1 score to capture overall, threshold-independent, and balanced performance, respectively.

4.2 PERFORMANCE OF DIVEYE

We evaluate DivEye across a wide range of challenging testbeds to assess its robustness and
adaptability to both domain and model shifts. Table 1 presents the performance of DivEye on
six distinct testbeds from the MAGE benchmark (Li et al., 2024): three in-distribution and three
out-of-distribution. Across all testbeds, DivEye consistently achieves superior AUROC of 0.92 on
average and AvgAcc compared to existing zero-shot baselines, showcasing its ability to generalize
effectively to both seen and unseen generation settings. We demonstrate that human-written and
machine-generated text can be distinguished based on the hypothesis outlined in Section 3.

Table 2 benchmarks DivEye on the RAID dataset (Dugan et al., 2024), which includes a suite of
diverse models, domains, attacks, and decoding strategies. DivEye outperforms a diverse set of
zero-shot methods by 13.73% and matches the performance of generative detection baselines, reaf-
firming its robustness to evasive generation strategies. Figures 3, 6 & 7 demonstrate the performance
of DivEye across different domains and generator models, achieving competitive AUROC of 0.98
and 0.93, respectively. These results highlight DivEye’s stability and high performance across
heterogeneous scenarios, underscoring its domain and model-agnostic nature.

Moreover, Appendix D.5 reports DivEye’s detection rates on all major models, including GPT-
3.5-Turbo (Brown et al., 2020) and GPT-4o (et al., 2024b), Claude-3-Opus and Sonnet (Anthropic),
as well as Gemini-1.0-Pro (et al., 2025), demonstrating highly competitive accuracies across the
board. Collectively, these results confirm that DivEye provides a robust and adaptable foundation
for detecting AI-generated text.
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Table 4: Integration with DivEye consistently boosts performance across detectors, particularly on
diverse domains (Testbed 4) and paraphrasing attacks (Testbed 7).

Methods HumanAcc MachineAcc AvgAcc AUROC δ: Boost

Testbed 4: Arbitrary Domains & Arbitrary Models

RADAR 47.74% 74.86% 61.30% 0.62 -
DetectLLM 64.74% 69.02% 66.88% 0.75 -
FastDetectGPT 93.65% 41.73% 67.69% 0.7 -
Binoculars 76.1% 54.89% 65.49% 0.71 -
BiScope 91.54% 58.70% 75.12% 0.86
DivEye 73.72% 82.57% 78.15% 0.88 -
DivEye + RADAR 74.69% 85.31% 80% 0.90 18.7%
DivEye + DetectLLM 75.44% 84.23% 79.34% 0.9 12.96%
DivEye + FastDetectGPT 79.42% 83.90% 81.66% 0.91 13.97%
DivEye + Binoculars 69.81% 83.47% 76.64% 0.87 11.15%
DivEye + BiScope 80.69% 88.31% 84.5% 0.93 9.38%

Testbed 7: Paraphrasing Attacks

BiScope 48.80% 89.79% 69.30% 0.81 -
DivEye 69.75% 83.22% 76.49% 0.87 -
DivEye + BiScope 65.38% 90.84% 78.11% 0.89 8.81%

4.3 ROBUSTNESS TO ADVERSARIAL ATTACKS AND MULTILINGUAL TEXT

To evaluate robustness, we assess DivEye on a diverse set of adversarial attacks, including para-
phrasing attacks from the MAGE dataset and transformation-based jailbreak attacks from the RAID
benchmark. Table 3 shows that DivEye consistently achieves strong detection performance un-
der these challenging settings. On the MAGE benchmark, DivEye outperforms the fine-tuned
Longformer baseline in both average accuracy and AUROC by 10.15% and 0.11 respectively. On
the RAID benchmark, which reports only accuracy, DivEye achieves competitive results across
a range of adversarial perturbations, outperforming several zero-shot detectors, most notably sur-
passing Binoculars by 11.2%. A more detailed breakdown of performance by individual attack
type is provided in Appendix E.1. We also test DivEye’s robustness to diverse adversarial scenar-
ios, including character- and word-level perturbations, paraphrasing via commercial tools, prompt
obfuscations, and distributional shifts, and find that it consistently achieves exceptional detection
performance; a consolidated overview is provided in Appendix E.

Table 3: Performance of DivEye and baselines on
adversarial benchmarks, MAGE & RAID. The RAID
benchmark, which independently tests each model,
does not report an AUROC score.

Settings Methods AvgAcc AUROC

[MAGE] Testbed 8: Paraphrasing Attack

Paraphrased via
GPT-3.5-Turbo

Longformer [10] 69.34% 0.76
BiScope [44] 69.30% 0.81
DivEye (Ours) 76.49% 0.87

[RAID] Adversarial Attacks

Paraphrase, Whites-
pace, Misspelling,
Homoglyph, Article
Deletion & more

Desklib AI [27] 91.2% -
e5-small-lora [29] 85.7% -
DivEye (Ours) 80.52% -
Binoculars [45] 69.32% -
RADAR [47] 63.9% -
GLTR [38] 51.5% -

We further evaluate DivEye’s multilin-
gual generalizability using both English
and Chinese splits of the HC3 dataset. Fig-
ure 4 illustrates that DivEye performs
consistently well and has higher F1 scores
across both languages using GPT-2 (Rad-
ford et al., 2019) & GPT-2-Chinese
(CKIPLAB, 2024) for English and Chi-
nese respectively. This suggests that
surprisal-based statistical features are not
heavily language-specific and can general-
ize across languages.

4.4 EFFICIENCY ANALYSIS

In addition to accuracy, we analyze the
computational efficiency of DivEye. Fig-
ure 5b illustrates the latency of our
method, showing that DivEye requires as
little as 0.01 seconds per sample while out-
performing several fine-tuned and zero-shot detectors, achieving up to a 2971× speedup compared to
RAiDAR. Because DivEye only requires a single forward pass through a small GPT-2 model and
performs lightweight statistical computations, it is significantly faster and more resource-efficient
than larger fine-tuned transformers. This enables deployment in latency-sensitive environments
without compromising performance.
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Figure 5: (a) Performance of DivEye across different base models (GPT-2, GPT-2-XL, Falcon-7B).
(b) Inference time (in sec) comparison of various methods.

4.5 EFFECTIVENESS OF BOOSTING BY DIVEYE

We empirically verify that DivEye-based diversity features can act as performance boosters for a
wide range of detection models. To integrate DivEye, we concatenate its feature vector with the
original model’s prediction scores and train a lightweight XGBoost classifier as a meta-model. Table
4 illustrates improvements in AUROC and AvgAcc when diversity metrics are appended to exist-
ing frameworks such as RADAR, Binoculars, DetectLLM, BiScope and FastDetectGPT. Across all
evaluated baselines, the inclusion of diversity features consistently leads to better detection scores by
over 18.7%. Additionally, existing frameworks in combination with DivEye demonstrate substan-
tial performance gains when evaluated against paraphrasing attacks. This validates the hypothesis
that static and dynamic surprisal-based features capture orthogonal information to traditional heuris-
tics, making them a valuable addition to any detection pipeline. We further explore the relative
importance of DivEye and the base detector during prediction in Appendix D.4.

4.6 ABLATION STUDIES

DivEye’s Performance on Different Base Models. To assess the adaptability of DivEye across
different language model backbones, we evaluate its performance, on Testbed 4 of the MAGE bench-
mark, when instantiated with various base LLMs used to compute token-level surprisal. As shown
in Figure 5a, DivEye consistently performs well across all models, achieving an AUROC of 0.88
with GPT2, 0.91 with Llama-3.1-8B, and 0.90 with Falcon-7B. Notably, even the small-
est model, GPT2, performs competitively, and human classification accuracy improves with larger
models, suggesting that higher-capacity LMs better capture stylistic diversity. These results high-
light DivEye’s robustness and efficiency across scales, making it suitable for resource-constrained
settings. Appendix D.3 further reports baseline performance across various base models.

Relevance of DivEye’s Features. DivEye’s feature set (Equation 6) captures token-level
surprisal patterns across multiple orders, including distributional moments, first-order shifts, and
second-order dynamics. To assess the contribution of each group, we compute feature importances
from a trained XGBoost model. On average, second-order features contribute the most (39.4%),
followed by distributional features (34.2%) and first-order differences (23.7%). The prominence of
second-order features suggests that abrupt or unnatural shifts in predictability are strong indicators
of machine-generated text. While traditional distributional statistics remain informative, they are
insufficient on their own. These findings support DivEye’s central claim about second-order fea-
tures: modeling the evolution of surprisal yields stronger detection capabilities than relying solely
on static measures. Additionally, a detailed analysis of each feature’s importance is provided in
Appendix D.6.

5 CONCLUSION

We introduce DivEye, a lightweight classifier for AI-text detection that leverages zero-shot diver-
sity features from token-level surprisal. Our method is model-agnostic, computationally efficient,
and demonstrates strong generalization across detectors and datasets. Appendix J discusses limita-
tions, broad impacts, and ethical considerations.
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David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations – democratizing large language model align-
ment, 2023. URL https://arxiv.org/abs/2304.07327.

13

https://arxiv.org/abs/2301.07597
https://openreview.net/forum?id=Hew2JSDycr
https://arxiv.org/abs/2401.12070
https://arxiv.org/abs/2307.03838
https://aclanthology.org/2020.acl-main.164/
https://aclanthology.org/2020.acl-main.164/
https://aclanthology.org/D19-1259/
https://aclanthology.org/D19-1259/
https://doi.org/10.1162/tacl_a_00674
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.03697
https://arxiv.org/abs/2303.03697
https://arxiv.org/abs/2502.01615
https://arxiv.org/abs/2502.01615
https://arxiv.org/abs/2304.07327


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative entropy
scoring. In Proceedings of the 2008 International Conference on Uncovering Plagiarism, Au-
thorship and Social Software Misuse - Volume 377, PAN’08, pp. 27–31, Aachen, DEU, 2008.
CEUR-WS.org.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang, Longyue Wang, Linyi Yang, Shuming Shi,
and Yue Zhang. Mage: Machine-generated text detection in the wild, 2024. URL https:
//arxiv.org/abs/2305.13242.

Gongbo Liang, Jesus Guerrero, and Izzat Alsmadi. Mutation-based adversarial attacks on neural
text detectors, 2023a. URL https://arxiv.org/abs/2302.05794.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. Gpt detectors are biased
against non-native english writers, 2023b. URL https://arxiv.org/abs/2304.02819.

Yuqing Liang, Jiancheng Xiao, Wensheng Gan, and Philip S. Yu. Watermarking techniques for large
language models: A survey, 2024. URL https://arxiv.org/abs/2409.00089.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip S. Yu. A survey of text watermarking in the era of large language models,
2024a. URL https://arxiv.org/abs/2312.07913.

Zeyan Liu, Zijun Yao, Fengjun Li, and Bo Luo. On the detectability of chatgpt content: Bench-
marking, methodology, and evaluation through the lens of academic writing, 2024b. URL
https://arxiv.org/abs/2306.05524.

Yuxuan Lu, Jing Huang, Yan Han, Bennet Bei, Yaochen Xie, Dakuo Wang, Jessie Wang, and Qi He.
Llm agents that act like us: Accurate human behavior simulation with real-world data, 2025. URL
https://arxiv.org/abs/2503.20749.

Brady D Lund, Ting Wang, Nishith Reddy Mannuru, Bing Nie, Somipam Shimray, and Ziang Wang.
Chatgpt and a new academic reality: Artificial intelligence-written research papers and the ethics
of the large language models in scholarly publishing. Journal of the Association for Information
Science and Technology, 74(5):570–581, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and
Rada Mihalcea (eds.), Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL https://aclanthology.org/
P11-1015/.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via
rewriting, 2024. URL https://arxiv.org/abs/2401.12970.

Jesse G Meyer, Ryan J Urbanowicz, Patrick CN Martin, Karen O’Connor, Ruowang Li, Pei-Chen
Peng, Tiffani J Bright, Nicholas Tatonetti, Kyoung Jae Won, Graciela Gonzalez-Hernandez, et al.
Chatgpt and large language models in academia: opportunities and challenges. BioData mining,
16(1):20, 2023.

George Mikros, Athanasios Koursaris, Dimitrios Bilianos, and George Markopoulos. Ai-writing
detection using an ensemble of transformers and stylometric features. CEUR Workshop Proceed-
ings, 3496, September 2023. ISSN 1613-0073. Publisher Copyright: © 2023 Copyright for
this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0).; 2023 Iberian Languages Evaluation Forum, IberLEF 2023 ; Conference
date: 26-09-2023.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature, 2023. URL
https://arxiv.org/abs/2301.11305.

NLP Team MosaicML. Introducing mpt-30b: Raising the bar for open-source foundation models,
2023. URL www.mosaicml.com/blog/mpt-30b. Accessed: 2023-06-22.

14

https://arxiv.org/abs/2305.13242
https://arxiv.org/abs/2305.13242
https://arxiv.org/abs/2302.05794
https://arxiv.org/abs/2304.02819
https://arxiv.org/abs/2409.00089
https://arxiv.org/abs/2312.07913
https://arxiv.org/abs/2306.05524
https://arxiv.org/abs/2503.20749
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://arxiv.org/abs/2401.12970
https://arxiv.org/abs/2301.11305
www.mosaicml.com/blog/mpt-30b


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 839–849, San Diego, Califor-
nia, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1098. URL
https://aclanthology.org/N16-1098/.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don‘t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1797–1807, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1206. URL https://aclanthology.org/D18-1206/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Eleftheria Papageorgiou, Christos Chronis, Iraklis Varlamis, and Yassine Himeur. A survey on the
use of large language models (llms) in fake news. Future Internet, 16(8):298, 2024.

Bumjin Park and Jaesik Choi. Identifying the source of generation for large language models, 2024.
URL https://arxiv.org/abs/2407.12846.

Sayak Paul and Soumik Rakshit. arxiv paper abstracts. https://www.kaggle.com/
datasets/spsayakpaul/arxiv-paper-abstracts, 2021.

Jiameng Pu, Zain Sarwar, Sifat Muhammad Abdullah, Abdullah Rehman, Yoonjin Kim, Parantapa
Bhattacharya, Mobin Javed, and Bimal Viswanath. Deepfake text detection: Limitations and
opportunities. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1613–1630, 2023.
doi: 10.1109/SP46215.2023.10179387.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI, 2019. URL https:
//cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf. Accessed: 2024-11-15.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing, 2024. URL
https://arxiv.org/abs/2311.08721.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected?, 2025. URL https://arxiv.org/abs/2303.
11156.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted
training enables zero-shot task generalization. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

15

https://aclanthology.org/N16-1098/
https://aclanthology.org/D18-1206/
https://arxiv.org/abs/2407.12846
https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts
https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/D16-1264/
https://arxiv.org/abs/2311.08721
https://arxiv.org/abs/2303.11156
https://arxiv.org/abs/2303.11156
https://openreview.net/forum?id=9Vrb9D0WI4


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dietmar Schabus, Marcin Skowron, and Martin Trapp. One million posts: A data set of german
online discussions. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17, pp. 1241–1244, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450350228. doi: 10.1145/3077136.
3080711. URL https://doi.org/10.1145/3077136.3080711.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1073–1083, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1099. URL https://aclanthology.org/P17-1099/.

Sanidhya Madhav Shukla, Chandni Magoo, and Puneet Garg. Comparing fine tuned-lms for detect-
ing llm-generated text. In 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DEL-
CON), pp. 1–8. IEEE, 2024.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
Blazakis, Kris McGuffie, and Jasmine Wang. Release strategies and the social impacts of language
models, 2019. URL https://arxiv.org/abs/1908.09203.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank infor-
mation for zero-shot detection of machine-generated text, 2023. URL https://arxiv.org/
abs/2306.05540.

SuperAnnotate. SuperAnnotate: AI-Detector. https://huggingface.co/
SuperAnnotate/ai-detector.

Chenhao Tan, Vlad Niculae, Cristian Danescu-Niculescu-Mizil, and Lillian Lee. Winning argu-
ments: Interaction dynamics and persuasion strategies in good-faith online discussions. In Pro-
ceedings of the 25th International Conference on World Wide Web, WWW ’16. International
World Wide Web Conferences Steering Committee, April 2016. doi: 10.1145/2872427.2883081.
URL http://dx.doi.org/10.1145/2872427.2883081.

Amalio Telenti, Michael Auli, Brian L Hie, Cyrus Maher, Suchi Saria, and John PA Ioannidis.
Large language models for science and medicine. European journal of clinical investigation, 54
(6):e14183, 2024.

Irina Tolstykh, Aleksandra Tsybina, Sergey Yakubson, Aleksandr Gordeev, Vladimir Dokholyan,
and Maksim Kuprashevich. Gigacheck: Detecting llm-generated content. arXiv preprint
arXiv:2410.23728, 2024.

Petter Törnberg, Diliara Valeeva, Justus Uitermark, and Christopher Bail. Simulating social me-
dia using large language models to evaluate alternative news feed algorithms. arXiv preprint
arXiv:2310.05984, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,

16

https://doi.org/10.1145/3077136.3080711
https://aclanthology.org/P17-1099/
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://huggingface.co/SuperAnnotate/ai-detector
https://huggingface.co/SuperAnnotate/ai-detector
http://dx.doi.org/10.1145/2872427.2883081
https://arxiv.org/abs/2302.13971


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Brian Tufts, Xuandong Zhao, and Lei Li. A practical examination of ai-generated text detectors for
large language models, 2025. URL https://arxiv.org/abs/2412.05139.
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A MORE DETAILS ON RELATED WORK

In recent years, the challenge of identifying AI-generated text has garnered significant attention,
giving rise to a variety of detection approaches. These methods largely fall into two categories:
watermark-based techniques and zero-resource detection.

Watermarking. Watermarking embeds traceable patterns in a model’s outputs during training or
generation, enabling downstream identification of machine-generated content (Ren et al., 2024; Liu
et al., 2024a). While watermarking can be effective in controlled environments, it relies on access
to or cooperation from the model’s developers, an assumption that frequently fails in real-world
or adversarial scenarios. Furthermore, it is inherently unsuitable for practical situations where AI-
generated text lacks any embedded watermark. This limitation has led to growing interest in zero-
resource detection methods, which make no assumptions about access to the model’s internals or
training data. Instead, these methods analyze the output text alone, offering a more flexible and
broadly applicable approach. Within this space, techniques can be further categorized into fine-
tuned methods, which rely on labeled datasets, and zero-shot methods, which generalize to unseen
models without task-specific training.

Fine-tuned Detection. Fine-tuned detection methods represent a major strand of zero-resource
detection, often leveraging fine-tuned classifiers built atop pre-trained language models (PLMs). A
pivotal development was the Grover model, which demonstrated that models trained on text from
specific generators can achieve high accuracy on in-distribution data, particularly when integrating
Grover-specific layers. This inspired a wave of PLM-based detectors, most notably OpenAI’s GPT-2
detector (Solaiman et al., 2019), which uses a RoBERTa classifier trained on GPT-2 outputs. How-
ever, such detectors often struggle to generalize across models, especially as newer LLMs introduce
more fluent and coherent outputs.

To improve generalization and robustness, recent work has focused on feature augmentation. Stylo-
metric approaches, for instance, introduce handcrafted features that capture writing style discrepan-
cies between humans and machines (Mikros et al., 2023). These include measures of phraseology,
punctuation, linguistic diversity, and journalistic standards, which have proven useful for detecting
AI-generated tweets and news articles. Additional features such as perplexity statistics, sentiment,
and error-based cues like grammatical mistakes further enrich detection pipelines (Kumarage et al.,
2023).

Parallel efforts have explored structural features, incorporating models that explicitly account for
the factual or contextual structure of text. Techniques such as TriFuseNet combine stylistic and con-
textual branches with fine-tuned BERT models, while others employ attentive-BiLSTMs to replace
standard feedforward layers, enhancing interpretability and robustness (Liu et al., 2024b).

Despite these advancements, fine-tuned detectors still require labeled training data and model-
specific tuning of PLMs, which can limit their scalability to novel or proprietary LLMs. Although
these detectors perform exceptionally well on data similar to their training sets, they face significant
drawbacks, most notably, a tendency to overfit to specific domains and a reliance on retraining for
every newly emerging AI model, which is unsustainable in light of the fast-paced evolution of gen-
erative technologies. This motivates the development of methods, that leverage zero-shot features,
such as DivEye, that aim to detect AI-generated text without relying on supervised learning or
access to model internals.

Zero-shot Detection. Recent research has focused on zero-shot detection strategies that require
no fine-tuning on labeled examples from the target generator. These methods typically leverage
statistical cues from PLM’s output distributions or repurpose LLMs themselves as detectors.

A prominent class of zero-shot detectors exploits the probability structure of text under language
models. DetectGPT (Mitchell et al., 2023) detects machine-generated text by measuring how
strongly the log-likelihood drops under small semantic perturbations, leveraging the hypothesis that
AI text lies in regions of higher negative curvature than human text. On the other hand, FastDetect-
GPT (Bao et al., 2024) eliminates the need for explicit perturbations by directly measuring curvature
in conditional probabilities, observing that AI text typically exhibits sharper transitions between to-
kens compared to human writing. These observations are refined in DetectLLM (Su et al., 2023),
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Figure 6: AUROC performance profiles of seven AI-detection tools evaluated on text generated
by ten diverse domains generated by arbitrary LLMs. Each spider plot corresponds to a specific
domain, with radial axes representing the AUROC score (ranging from 0 to 1) and angular axes
representing the detection tools: RADAR, Entropy, LogRank, FastDetectGPT, DetectLLM, OpenAI
Detector, and DivEye.

which introduces the Log-Likelihood Log-Rank Ratio (LRR) and Normalized Perturbed log-Rank
(NPR) metrics to quantify the distinguishability of AI-generated content using statistical features
derived from token rankings.

Another line of work focuses on token predictability and entropy. LogRank (Ghosal et al., 2023)
investigates the use of token rank distributions and demonstrates that log-rank statistics, such as the
frequency of top-ranked tokens, are reliable signals of AI authorship. This builds on early work
such as entropy-based detection (Lavergne et al., 2008) and GLTR (Gehrmann et al., 2019), which
showed that humans tend to use more surprising and diverse tokens, while LLMs often fall back on
high-probability continuations.

Moving beyond single-directional statistics, BiScope (Guo et al., 2024) proposes a bi-directional
cross-entropy framework that measures how well a model’s predicted logits align both with the
ground truth next token (forward loss) and with the previous token (backward loss). The key insight
is that AI-generated text often exhibits predictable forward progression but weaker backward asso-
ciation due to its autoregressive nature. A shallow classifier trained on the joint distribution of these
losses can reliably detect AI text with zero-shot generalization.

Finally, Binoculars (Hans et al., 2024) offers a model-agnostic strategy by comparing the statistical
disagreement between two LLMs on the same input. By contrasting the outputs of two diverse
LLMs, the method detects anomalies in token distributions that are characteristic of synthetic text.
This ensemble-based disagreement is found to correlate strongly with model-generated samples,
providing a powerful signal without the need for training data from either model.

Collectively, these techniques demonstrate that zero-shot detection can be achieved by carefully
analyzing how text aligns with the inductive biases and statistical signatures of language models,
without any finetuning or access to the original generator. They lay the foundation for our proposed
method, DivEye, which further capitalizes on diversity-based statistical properties to robustly dif-
ferentiate AI- and human-written content.
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Figure 7: AUROC performance profiles of seven AI-detection tools evaluated on text generated by
six different LLMs. Each spider plot corresponds to a specific language model, with radial axes
representing the AUROC score (ranging from 0 to 1) and angular axes representing the detection
tools: RADAR, Entropy, LogRank, FastDetectGPT, DetectLLM, OpenAI Detector, and DivEye.

Remark 1: Proof Sketch

Consider a text sequence X = (x1, x2, . . . , xn) generated either by a human or by a language
model M . The language model defines a probability distribution PM (X) =

∏n
t=1 PM (xt | x<t)

where each token is chosen to maximize overall likelihood.
Humans, however, produce language through a complex, multi-layered cognitive process that
balances informativeness, creativity, and contextual appropriateness, rather than strictly maxi-
mizing statistical likelihood.
Formally, the surprisal of token xt under model M is defined as:

SM (xt) = − logPM (xt | x<t)

Since M is trained to assign high probability to plausible continuations, its outputs tend to mini-
mize surprisal on average, implying that maximum likelihood generation compresses diversity:

EX∼PM
[SM (xt)] ≤ EX∼PH

[SM (xt)]

where PH denotes the distribution of human-generated text.
Similarly, human language exhibits higher variance in surprisal due to spontaneous creative
choices, idiomatic expressions, and stylistic variation, causing:

VarX∼PM
[SM (xt)] < VarX∼PH

[SM (xt)]

We validate this theoretical intuition through empirical experiments detailed below, which con-
firm statistically significant differences in surprisal and diversity metrics between human-written
and AI-generated texts.
We collect 200 human-written essays and 200 GPT-4-Turbo-generated essays on comparable
topics, provided by BiScope (Guo et al., 2024). For each essay, we computed the token-level
surprisal scores using a fixed language model evaluator (GPT-2) and then calculated the mean
and variance of these surprisal values per essay. Figure 8a shows the histogram of mean sur-
prisal scores across the two sets, while Figure 8b displays the histogram of surprisal variances.
The human-written texts exhibit a noticeably wider spread and heavier tails in both metrics, in-
dicating greater unpredictability and stylistic variability. In contrast, the AI-generated essays
cluster around lower mean surprisal and exhibit significantly lower variance. These results em-
pirically confirm our theoretical claim: human language inherently reflects higher diversity
and surprise, whereas AI-generated language, optimized for likelihood, tends toward more
predictable and homogeneous patterns.
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Figure 8: Distribution of token-level surprisal metrics for human-written vs. GPT-4-Turbo-generated
essays. The left plot shows the histogram of mean surprisal per essay, while the right plot shows
the histogram of surprisal variance. Human-written texts exhibit higher dispersion and heavier tails
in both distributions, suggesting greater linguistic unpredictability and stylistic diversity. In con-
trast, GPT-4-Turbo outputs are more concentrated and predictable, aligning with the likelihood-
maximization objective of language models.
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Figure 9: Ablation results on Testbed 4 of the MAGE benchmark showing the impact of temporal
surprisal features. Adding temporal dynamics to static surprisal statistics improves both accuracy
(from 74.25% to 78.15%) and AUROC (from 0.82 to 0.88), demonstrating their complementary
value for robust AI-generated text detection.

B MOTIVATION BEHIND TEMPORAL FEATURES

While static surprisal statistics such as mean, variance, skewness, and kurtosis provide useful sum-
maries of token-level unpredictability, they overlook the evolution of this unpredictability over time,
a dimension critical to distinguishing human and AI-generated text. Human authors naturally em-
bed stylistic variability through temporal fluctuations, such as abrupt topic shifts, tonal changes, and
bursts of creativity, which manifest as distinctive temporal dynamics in surprisal sequences.

Intuitively, these temporal features, as listed in Section 3, expose rhythmic and non-stationary pat-
terns characteristic of human creativity and coherence, typically absent in the more uniform output
of large language models.

Furthermore, through an ablation study on Testbed 4 of the MAGE benchmark (Figure 9), we em-
pirically show that augmenting static surprisal features with temporal metrics leads to a measurable
improvement in classification accuracy. This highlights the complementary value of temporal dy-
namics in enhancing the robustness of AI-generated text detection. Moreover, an analysis of feature
importance (Appendix D.6) reveals that temporal features collectively contribute more than static
features, consistently ranking among the most informative signals for distinguishing between hu-
man and AI-generated text.
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Overall, these findings motivate the inclusion of temporal surprisal features as integral components
of our DivEye framework.

C IMPLEMENTATION OF DIVEYE

We provide a detailed description of our DivEye implementation in Algorithm 1. This includes all
steps from surprisal computation to feature extraction and final classification. We use an XGBoost
classifier for binary classification as a preliminary choice, without extensive comparison to other
classifiers, leaving exploration of alternative models for future work. For completeness and repro-
ducibility, we include all additional implementation details, such as hyperparameter configurations,
model architectures, and experimental testbeds, in Appendix I and Appendix H.

Algorithm 1 DivEye: Algorithm for Feature Extraction & Training

Require: Text datasetD = {(xi, ℓi)}Ni=1, where xi is a text input and ℓi ∈ {0, 1} indicates whether
it is human-written (ℓi = 1) or machine-generated (ℓi = 0)

Require: Pretrained auto-regressive language model gϕ (e.g., GPT-2)
Require: XGBoost classifier with hyperparameters Θ
Ensure: Trained binary classifier fθ

1: Initialize an empty feature matrix F ← [ ]
2: for each (xi, ℓi) ∈ D do
3: Compute token-level log-likelihoods: yi ← gϕ(xi)
4: Convert to token-level surprisals: si ← −yi
5: Compute diversity features DivEye(xi) ∈ R9 as described in Equation 6 using si
6: Append (DivEye(xi), ℓi) to F
7: end for
8: Train binary classifier fθ on feature set F using XGBoost with hyperparameters Θ
9: return fθ

D ADDITIONAL RESULTS

In this section, we present additional supporting experiments that demonstrate the generalizability,
robustness, and complementary strengths of DivEye through various ablation studies.

D.1 DOMAIN-SPECIFIC PERFORMANCE OF DIVEYE

Figure 6 presents the AUROC performance of seven detection methods evaluated across ten text
domains (Testbed 3 of the MAGE benchmark). DivEye consistently achieves the highest AUROC
scores in every domain - reaching up to 0.99 in WP, 0.97 in CMV, and 0.95 in SciXGen, outper-
forming other detectors by a notable margin. This highlights DivEye’s adaptability and robustness
in capturing domain-specific writing patterns that other methods frequently miss. These results re-
inforce the advantage of leveraging surprisal features for more generalizable and context-sensitive
detection of AI-generated text.

D.2 MODEL-SPECIFIC PERFORMANCE OF DIVEYE

Figure 7 compares the AUROC performance of seven detection methods across text on generated
by six different large language models (Testbed 5 of the MAGE benchmark). DivEye achieves
the highest AUROC scores across all six models, demonstrating strong robustness (0.95 on GLB-
130B, 0.89 on GPT-J, 0.85 on GPT-3.5-Turbo). This consistent performance highlights DivEye’s
effectiveness in capturing temporal surprisal patterns that generalize well across different language
model architectures, making it broadly applicable for reliable AI-generated text detection.

D.3 PERFORMANCE AGAINST OTHER BASE MODELS

We evaluate the robustness of all detectors across different backbone models and report results in
Table 5. These backbone models include GPT-2 (Radford et al., 2019), GPT-2-XL (Radford et al.,
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Figure 10: Feature importance of DivEye when integrated with various existing detectors. The
plot shows how much DivEye contributes to the overall detection model when combined with
BiScope, OpenAI Detector, RADAR, DetectLLM, and Binoculars. Higher values indicate stronger
complementary impact from DivEye’s diversity-based features.

2019), Falcon-7B (Almazrouei et al., 2023), Llama-3.2-1B (et al., 2024a), Llama-3.1-8B
(et al., 2024a) and Mistral-7B-v0.3 (Jiang et al., 2023). Competing methods such as Binoc-
ulars, BiScope, and DetectLLM show moderate variation with backbone choice, while FastDetect-
GPT and LogRank generally underperform. These results highlight that DivEye maintains strong
and stable detection capability regardless of the underlying base model.

Table 5: Performance of different detectors across backbone models.

Backbone Model DivEye Binoculars BiScope LogRank DetectLLM FastDetectGPT
GPT-2 0.88 0.71 0.86 0.68 0.75 0.69
GPT-2-XL 0.89 0.73 0.86 0.68 0.76 0.70
Falcon-7B 0.90 0.73 0.89 0.70 0.80 0.72
Llama-3.2-1B 0.87 0.71 0.87 0.70 0.76 0.71
Llama-3.1-8B 0.91 0.77 0.90 0.72 0.81 0.73
Mistral-7B-v0.3 0.90 0.76 0.90 0.71 0.80 0.72

D.4 RELATIVE IMPORTANCE OF DIVEYE IN A BOOSTED MODEL

Figure 10 illustrates the relative feature importance of DivEye when integrated into boosted en-
sembles with five existing AI detectors: BiScope (Guo et al., 2024), OpenAI Detector (Solaiman
et al., 2019), RADAR (Hu et al., 2023), DetectLLM (Su et al., 2023), and Binoculars (Hans et al.,
2024). DivEye contributes significantly to the overall model, with particularly high importance
when combined with RADAR (91.92%), OpenAI Detector (90.26%), and Binoculars (89.71%).
Even in ensembles with more advanced detectors like BiScope, DivEye still adds valuable signal
(32.93%). These results affirm the standalone strength of DivEye and its utility in hybrid detection
frameworks.

D.5 RESULTS WITH DIFFERENT PROPRIETARY LLMS

Table 6 reports AUROC scores of DivEye on text generated by five proprietary LLMs, Claude-3
Opus, Claude-3 Sonnet, Gemini 1.0-pro, GPT-3.5 Turbo, and GPT-4 Turbo, using data provided in
the BiScope paper (Guo et al., 2024) across five domains. DivEye achieves consistently strong per-
formance on the Normal dataset (e.g., 1.000 on GPT-3.5 Turbo for Essay) and remains robust under
paraphrased inputs, with AUROC scores generally above 0.95. These results highlight DivEye’s
ability to generalize across diverse generation models and domains, even under text transformations.

D.6 FEATURE IMPORTANCE OF DIVEYE

Figure 11 presents the relative importance of each of the nine diversity-based features incorporated
in DivEye, which are derived from surprisal statistics as detailed in Equation equation 6. The fea-
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Table 6: AUROC scores achieved by DivEye on five commercial LLMs across various domains.
Results are shown for both the Normal and Paraphrased datasets.

Domain Normal Dataset Paraphrased Dataset
Claude-3 Opus Claude-3 Sonnet Gemini 1.0-pro GPT-3.5 Turbo GPT-4 Turbo Claude-3 Opus Claude-3 Sonnet Gemini 1.0-pro GPT-3.5 Turbo GPT-4 Turbo

Arxiv 0.9942 0.9770 0.9795 0.9658 0.9793 0.9778 0.9552 0.9616 0.9689 0.9558
Code 0.7528 0.8557 0.7824 0.9577 0.9044 0.8456 0.9053 0.7521 0.9279 0.9302
Creative 0.9888 0.9773 0.9835 0.9951 0.9608 0.9930 0.9900 0.9957 0.9917 0.9949
Essay 0.9950 0.9988 0.9972 1.0000 0.9823 0.9975 0.9877 0.9814 0.9895 0.9559
Yelp 0.8855 0.8813 0.9220 0.8384 0.8942 0.9543 0.9780 0.9683 0.8524 0.9571
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Figure 11: Relative feature importances for the nine diversity-based features used in DivEye. The
features, as listed in Equation equation 6, represent distinct surprisal-based statistics. Higher per-
centages indicate greater influence in model decisions when combined with existing detectors.

ture importances, ranging from approximately 8.1% to 13.0%, indicate that all features contribute
meaningfully to model decisions, with temporal features such as, ∆µ, entropy of second derivatives
H∆2 , and autocorrelation ρ∆2 exhibiting the highest influence. This balanced contribution under-
scores the complementary nature of these statistical descriptors in enhancing DivEye’s detection
capability when combined with existing baseline detectors.

D.6.1 STATISTICAL RELEVANCE OF DIVEYE

To evaluate the individual contribution of each component in our diversity vectorD (Equation 6), we
perform a leave-one-out ablation study. Each feature is removed individually from the 9-dimensional
vector, the classifier is retrained, and the resulting performance is measured by the drop in AUC
on Testbed 4 of the MAGE benchmark. To also assess statistical significance, we conduct a paired
bootstrap test, resampling the test set to compute p-values under the null hypothesis that both models
perform equally well. Table 7 summarizes both the AUC drop and the p-value for each feature.

Table 7: Leave-one-out feature ablation and statistical significance for DivEye. Each feature’s
removal leads to a measurable drop in AUC and is statistically significant (p < 0.05).

Feature Category AUC Drop p-value
H∆2 2nd-Order -0.0263 0.001
γ1 Distribution -0.0239 0.004
ρ∆2 2nd-Order -0.0152 0.012
σ2
s Distribution -0.0115 0.016

∆σ2 1st-Order -0.0103 0.017
γ2 Distribution -0.0091 0.019
∆µ 1st-Order -0.0056 0.027
µs Distribution -0.0013 0.032
σ∆2 2nd-Order -0.0008 0.034

Several key insights emerge from this analysis:

• Second-order features are the most impactful. Removing second-order entropy H∆2

results in the largest decline in AUC, followed by the second-order autocorrelation ρ∆2 ,
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highlighting the importance of modeling higher-order dependencies in token-level surprisal
dynamics.

• Distributional features are significant. Skewness (γ1) and variance (σ2
s ) contribute mean-

ingfully, indicating that asymmetry and dispersion in surprisal values enhance DivEye’s
discriminative performance.

• First-order features contribute consistently. The mean and variance of first-order differ-
ences (∆µ, ∆σ2) produce measurable gains, reflecting local variation in surprisal between
adjacent tokens.

Even features with small absolute AUC drops, such as µs and σ∆2 , are statistically significant (p <
0.05). This demonstrates that each feature contributes non-redundant information, supporting our
core hypothesis that diversity in token-level surprisal; capturing both distributional asymmetries and
temporal patterns is essential for detecting machine-generated text.

D.7 PERFORMANCE AGAINST SAME MODEL

To investigate whether DivEye’s detection ability relies on a distributional mismatch between the
generator and the surprisal model, we conducted a controlled experiment using the same model for
both purposes. Specifically, we computed diversity-based features and trained the DivEye classifier
using three different LLMs: Falcon-7B, Llama-3.1-8B, and GPT-2-XL.

We further evaluated generalization by performing an out-of-distribution test using generations from
500 prompts drawn from the OASST (Köpf et al., 2023) and Self-Instruct (Wang et al., 2023)
datasets. Table 8 reports the resulting AI detection accuracies.

Table 8: DivEye performance when using the same model for both generation and surprisal com-
putation.

Model AI Accuracy (%)
Falcon-7B 98.2
Llama-3.1-8B 96.1
GPT-2-XL 98.8

Despite using the same model for both generation and surprisal estimation, DivEye maintains high
classification accuracy across all settings. This demonstrates that DivEye’s effectiveness stems
from intrinsic statistical patterns in the generated text rather than artifacts arising from a model
mismatch.

D.8 PERFORMANCE AGAINST LONGFORMER

Table 9: AUROC comparison of DivEye, DivEye (w/ BiScope), and Longformer across MAGE
test settings.

Setting Longformer DivEye DivEye (w/ BiScope)
Fixed-domain, Model-specific 0.990 0.994 1.000
Arbitrary-domains, Model-specific 0.990 0.972 0.991
Fixed-domain, Arbitrary-models 0.990 0.993 0.998
Arbitrary-domains, Arbitrary-models 0.990 0.880 0.934
OOD: Unseen Models 0.950 0.859 0.952
OOD: Unseen Domains 0.930 0.975 0.989
OOD: Unseen Domains & Models 0.940 0.924 0.986
Paraphrasing Attacks 0.750 0.870 0.923

Longformer, being a fine-tuned detector, was not included in Table 1 since its setup differs fun-
damentally. Nonetheless, for completeness, we provide a detailed AUROC-based comparison of
DivEye against Longformer across the 8 challenging MAGE testbeds.
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Table 10: Performance of DivEye and open-source baselines on all listed adversarial attacks on the
RAID benchmark.

Settings Methods AvgAcc

[RAID] Adversarial Attacks

Whitespace Attack

Desklib AI 94.9%
e5-small-lora 93.9%
DivEye (Ours) 79.8%
Binoculars 68.7%
RADAR 61.1%
GLTR 43.1%

Upper-Lower Attack

Desklib AI 87.2%
e5-small-lora 93.9%
DivEye (Ours) 85.3%
Binoculars 72.8%
RADAR 65.1%
GLTR 45.3%

Synonym Attack

Desklib AI 80.6%
e5-small-lora 85.6%
DivEye (Ours) 67.1%
Binoculars 42.1%
RADAR 62.7%
GLTR 28.7%

Paraphrase Attack

Desklib AI 83.7%
e5-small-lora 85.5%
DivEye (Ours) 74.4%
Binoculars N/A
RADAR 62.4%
GLTR 43.0%

Perplexity Misspelling

Desklib AI 92.9%
e5-small-lora 92.5%
DivEye (Ours) 90.6%
Binoculars 77.2%
RADAR 64.3%
GLTR 57.0%

Settings Methods AvgAcc

Number Attack

Desklib AI 93.0%
e5-small-lora 93.5%
DivEye (Ours) 92.1%
Binoculars 76.4%
RADAR 65.7%
GLTR 57.3%

Insert Paragraph

Desklib AI 94.9%
e5-small-lora 93.9%
DivEye (Ours) 92.2%
Binoculars 70.7%
RADAR 68.2%
GLTR 58.3%

Homoglyph Attack

Desklib AI 99.7%
e5-small-lora 11.1%
DivEye (Ours) 61.6%
Binoculars 36.1%
RADAR 44.8%
GLTR 20.3%

Article Deletion

Desklib AI 90.5%
e5-small-lora 92.0%
DivEye (Ours) 88.0%
Binoculars 73.3%
RADAR 63.0%
GLTR 48.9%

Alt. Spelling Attack

Desklib AI 94.3%
e5-small-lora 93.4%
DivEye (Ours) 92.01%
Binoculars 77.6%
RADAR 65.5%
GLTR 58.2%

Zero Width Space

Desklib AI 87.5%
e5-small-lora 93.9%
DivEye (Ours) 92.0%
Binoculars 98.4%
RADAR 78.4%
GLTR 97.9%

As shown in Table 9, DivEye consistently matches or outperforms Longformer in most settings.
Even under OOD scenarios and paraphrasing attacks, DivEye demonstrates strong generaliza-
tion, often exceeding Longformer’s performance. DivEye (w/ BiScope) further improves AUROC
across nearly all testbeds, highlighting the benefits of incorporating diverse zero-shot features.

E ADDITIONAL ADVERSARIAL ATTACKS ON DIVEYE

We evaluate DivEye under a range of adversarial settings, including character-level perturbations,
word- and phrase-level edits, paraphrasing, prompt obfuscations, and distribution shifts (temperature
changes and degenerate sampling), to comprehensively assess its robustness.

E.1 ADVERSARIAL ATTACK ANALYSIS OF DIVEYE

We evaluate DivEye against a wide range of adversarial attacks using the RAID benchmark, re-
porting average classification accuracies across all attack categories listed in Table 10. DivEye
achieves performance on par with the top-performing fine-tuned models reported by the benchmark.
Notably, it consistently surpasses all zero-shot detectors by a significant margin across every attack
type, demonstrating strong robustness against both diverse adversarial attacks.
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Table 11: Detection performance of DivEye against paraphrased outputs generated by three com-
mercial tools. Each model was tested on 21 samples per paraphraser.

Paraphraser MAGE Testbed 4 Model Claude-3.5-Sonnet Model

Claude-3.5-Sonnet (original) 20 / 21 21 / 21
GPTinf 18 / 21 19 / 21
ZeroGPT 20 / 21 17 / 21
QuillBot 20 / 21 17 / 21

E.2 DETECTION AGAINST OTHER DIVERSE ONLINE PARAPHRASERS

To evaluate the robustness of DivEye against paraphrasing attacks intended to ”humanize” AI-
generated text, we curate a set of 21 arXiv abstracts generated by Claude-3.5-Sonnet and paraphrase
each using three widely used commercial tools: ZeroGPT2, GPTinf3, and QuillBot4. This results in
63 paraphrased texts (21 per tool), each aiming to evade AI detectors through stylistic and lexical
variation. We provide this smaller dataset in the supplementary materials and in our anonymous
repository.

We assess detection performance using two XGBoost classifiers trained exclusively on DivEye
features: one trained on MAGE’s Testbed 4 (Arbitrary Models & Arbitrary Domains), and another
trained on 280 Claude-3.5-Sonnet generated arXiv abstracts (from BiScope (Guo et al., 2024)). The
results, presented in Table 11, highlight DivEye’s ability to maintain detection accuracy even in
the presence of strong paraphrasing transformations.

E.3 DEPENDENCE OF DIVEYE ON GENERATION TEMPERATURE

We investigate the influence of generation temperature on DivEye’s detection performance to eval-
uate its robustness against variations in text predictability. Specifically, we conduct two experiments
on the MAGE benchmark: intra-model temperature variation and cross-model variable-temperature
detection.

E.3.1 INTRA-MODEL TEMPERATURE VARIATION

Using GPT-2 as the zero-shot feature generator, we evaluate DivEye across a wide range of sam-
pling temperatures (default T = 1.0). AUROC results for selected MAGE testbeds are presented in
Table 12.

Table 12: DivEye AUROC across different temperatures for GPT-2 generated texts.

Testbeds / Temperatures T = 0.1 T = 0.3 T = 0.5 T = 0.7 T = 1.0 T = 1.2 T = 1.4 T = 1.6

Arbitrary Domains & Arbitrary Models 0.8784 0.8760 0.8776 0.8886 0.8825 0.8767 0.8842 0.8698
Unseen Models (GPT-3.5-Turbo, OOD) 0.8473 0.8432 0.8595 0.8619 0.8617 0.8583 0.8488 0.8567

Results indicate that DivEye’s AUROC remains consistently high across all temperatures. Even
at extreme sampling regimes, performance does not degrade, suggesting DivEye captures stable
distributional signals across different entropy levels within the same generator.

E.3.2 CROSS-MODEL, VARIABLE-TEMPERATURE DETECTION

We further test DivEye on Llama-3.1-8B, generating 50 samples per temperature (ranging
T = 0.1 to 1.6) using OASST prompts. This simulates an adversarial generator varying sampling
temperature to evade detection. Table 13 summarizes AI detection accuracy.

These experiments demonstrate that DivEyemaintains strong performance across both intra-model
and cross-model temperature variations, consistently achieving high AUROC and detection accu-
racy. Even at high temperatures (T = 1.6), where generations are more diverse, DivEye remains

2https://www.zerogpt.com/
3https://app.gptinf.com/
4https://quillbot.com/paraphrasing-tool
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Table 13: DivEye AI detection accuracy for Llama-3.1-8B across different temperatures.

Temperature AI Accuracy (%)
T = 0.1 94.0
T = 0.3 96.0
T = 0.5 100.0
T = 0.7 96.0
T = 1.0 96.0
T = 1.2 98.0
T = 1.4 94.0
T = 1.6 96.0

robust, highlighting its resilience against temperature-based evasion strategies in real-world deploy-
ment.

E.4 ROBUSTNESS OF DIVEYE TO LOW-QUALITY LMS AND PROMPT-BASED ATTACKS

We further evaluate DivEye’s robustness against two challenging conditions raised by the reviewer:
degenerate or less predictable generators, and prompt-level adversarial obfuscations.

E.4.1 PERFORMANCE ON LESS PREDICTABLE GENERATORS

While DivEye’s primary focus is detecting outputs from realistic, high-quality LLMs, we also
assess its behavior on weaker or degenerate text sources to explore the method’s boundaries. The
RAID benchmark already includes a variety of degenerate and obfuscation-style perturbations - such
as synonym replacement, paraphrasing, number swaps, homoglyph substitutions, and zero-width
spaces - which DivEye handles effectively (see Table 10 for results).

To complement these benchmark results, we evaluate two baseline degenerate generators producing
500 samples each:

1. Random Token Generator: uniformly samples tokens from GPT-2’s vocabulary to gen-
erate incoherent sequences without semantic structure.

2. Keyword-Stuffing Generator: repeats high-frequency topical keywords in ungrammati-
cal, repetitive patterns.

Using GPT-2 and Testbed 4 of the MAGE benchmark, DivEye achieves near-perfect AI detection:
99.99% on the random token set and 99.95% on the keyword-stuffed set. These results indicate
that DivEye confidently flags incoherent or low-quality text as non-human-written, suggesting that
it is sensitive to general non-human-likeness rather than relying solely on repetition or frequency
patterns.

E.4.2 ROBUSTNESS TO PROMPT-BASED ADVERSARIAL ATTACKS

We also assess DivEye under adversarial prompt-based obfuscation, designed to disrupt GPT-2’s
predictability patterns. Specifically, we generated 250 texts from GPT-4o and Llama-3.1-8B
using the following system prompt to encourage unusual and unpredictable writing styles:

”You are a highly creative and unconventional writer. Your goal is to respond with
original, imaginative, and surprising ideas that avoid clichés, common phrases,
or predictable completions. Do not repeat yourself or follow standard templates.
Instead, embrace novelty, abstract connections, and lateral thinking. Unusual
metaphors, unexpected analogies, and rare vocabulary are encouraged.”

These generations were sampled from different models and prompts, constituting a fully out-of-
distribution evaluation. Table 14 shows DivEye’s detection performance compared to Binoculars.

Despite these obfuscation strategies, DivEye maintains high accuracy, substantially outperforming
Binoculars. This demonstrates that DivEye’s diversity-based signals remain robust under both low-
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Table 14: AI detection accuracy under prompt-based adversarial attacks.

Model DivEye Accuracy (%) Binoculars Accuracy (%)
Llama-3.1-8B 90.8 72.4
GPT-4o 92.4 78.0

quality generators and adversarial prompting, highlighting its resilience in real-world deployment
scenarios.

Overall, these experiments confirm that DivEye effectively detects both degenerate text and highly
unpredictable LLM outputs, providing strong evidence of its general robustness.

F ADDITIONAL DISCUSSIONS

F.1 ROBUSTNESS OF BINOCULARS UNDER OOD CONDITIONS

While Binoculars achieves high performance in its original paper, with AUROC values consistently
above 0.99 (Tables 3 and 4), its robustness under out-of-distribution (OOD) conditions is substan-
tially weaker. For example, Tufts et al. (2025) (Table 13) shows a noticeable drop in AUROC when
Binoculars is applied to datasets with distributions different from its training set, despite remaining
competitive. Similarly, in the Voight-Kampff Generative AI Authorship Verification Challenge 2024
(Ayele et al., 2024), Binoculars underperformed significantly under highly OOD conditions, failing
to replicate its originally reported accuracy and AUROC.

These findings are consistent with our observed AvgAcc of 79%, reflecting Binoculars’ sensitivity
to domain shift. Importantly, our evaluation deliberately includes diverse scenarios to rigorously
test generalization beyond training conditions. This approach better reflects real-world deployment,
where robustness to OOD tasks is critical. Our results do not contradict prior work; rather, they
reinforce the understanding of Binoculars’ limitations under distribution shifts.

F.2 PRACTICAL CONSTRAINTS ON ADVERSARIAL ATTACKS AGAINST DIVEYE

The possibility of targeted attacks that attempt to evade DivEye by steering autoregressive models
to generate tokens falling in low-probability regions under GPT-2’s distribution seems like a plau-
sible idea to evade detection. While such attacks are theoretically conceivable, implementing them
in practice is extremely challenging.

Autoregressive models do not natively support fine-grained constraints that enforce divergence from
another model’s token-level distribution without compromising fluency or coherence. Even for large
models such as GPT-4o, generating text that is simultaneously plausible and systematically unpre-
dictable to a specific detector like DivEye is highly nontrivial.

Furthermore, DivEye is designed to generalize across diverse model backbones. Our best-
performing variant, for example, uses Llama-3.1-8B as the surprisal scorer, which has a larger
vocabulary and greater expressive capability than GPT-2. This substantially increases the difficulty
for an adversary to generate text that appears unpredictable to the detector while remaining coherent
and human-like.

Taken together, these considerations suggest that although targeted, detector-specific attacks are
theoretically possible, they are rare and practically hard to execute in realistic generation pipelines.

G FAILURE OF OTHER MOTIVATIONAL METHODS: LOOKFORWARD

A natural hypothesis we considered was that LLMs, being autoregressive in nature, lack global
sentence-level planning due to their left-to-right generation paradigm. Unlike humans who often
write with a sense of the sentence’s future, autoregressive models generate one token at a time
conditioned only on the preceding context. Based on this, we hypothesized that detection features
relying on this ”lack of foresight” could effectively identify machine-generated text.
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This suggests that the model never observes x>t when predicting xt, whereas human writing may
implicitly reflect awareness of future tokens. Our idea was to define a LookForward discrepancy by
comparing model likelihoods under forward-only conditioning vs. bidirectional context.

However, our empirical evaluations demonstrate that this feature is ineffective, achieving 0̃.50 AU-
ROC on diverse testbeds. As LLMs undergo extensive training and optimization, they appear to
develop strong internal planning capabilities, even in an autoregressive setting. Despite the absence
of access to future tokens during generation, LLMs approximate global coherence and structure re-
markably well. This aligns with recent literature suggesting that transformers internalize hierarchical
and global sentence structure across layers, even when trained autoregressively.

While this method is theoretically appealing, its failure in practice highlights the difficulty of quan-
tifying planning behavior in black-box LLMs. We hope this limitation can be better understood in
the future through more fine-grained interpretability analyses of autoregressive models, which may
reveal how planning and coherence emerge despite the lack of explicit future context.

H TESTBED DETAILS

We evaluate DivEye on a comprehensive testbed spanning three major AI-text detection bench-
marks, MAGE (Li et al., 2024), HC3 (Guo et al., 2023) & RAID (Dugan et al., 2024), covering a
diverse range of domains, language models, and adversarial attacks. These benchmarks allow us
to assess the generalizability and robustness of our method across realistic deployment scenarios.
This section provides a comprehensive overview of the testbeds used in our evaluation, including all
domains, language models, and adversarial attacks featured in the MAGE and RAID benchmarks,
along with relevant configuration details.

Details about MAGE Benchmark. The MAGE benchmark (Li et al., 2024) comprises eight
diverse testbeds designed for evaluating machine-generated text detection. Testbeds 1 through
4 include standard train, validation, and test splits, while Testbeds 5 through 8 serve as out-of-
distribution (OOD) datasets, evaluated using models trained on Testbed 4. Notably, Testbed 4, Arbi-
trary Domains & Arbitrary Models, is the most comprehensive, enabling evaluation across the full
range of domains and language models listed in the MAGE paper. Detailed information regarding
dataset splits and sample counts is available in the original benchmark documentation.

MAGE covers a wide array of domains, including CMV (Tan et al., 2016), Yelp (Zhang et al.,
2015), XSum (Narayan et al., 2018), TLDR, ELI5 (Fan et al., 2019), WP (Fan et al., 2018), ROC
(Mostafazadeh et al., 2016), HellaSwag (Zellers et al., 2019), SQuAD (Rajpurkar et al., 2016),
and SciXGen (Chen et al., 2021a). The OOD domains include CNN/DailyMail (See et al., 2017),
DialogSum (Chen et al., 2021b), PubMedQA (Jin et al., 2019), and IMDb (Maas et al., 2011).

MAGE also incorporates text generated from over 27 different LLMs (Brown et al., 2020; Chung
et al., 2022; et al., 2023; Sanh et al., 2022; Touvron et al., 2023a; Zeng et al., 2023; Zhang et al.,
2022), enabling rigorous and varied evaluations. For further implementation specifics, readers are
encouraged to consult the MAGE paper.

Details about RAID Benchmark. The RAID benchmark (Dugan et al., 2024) comprises over
6.2 million samples, offering extensive coverage across domains, language models, sample sizes,
and adversarial attacks. It provides a clear separation into training, validation, and testing splits to
support rigorous evaluation. The benchmark spans a wide range of domains, including scientific
abstracts (Paul & Rakshit, 2021), book summaries (Bamman & Smith, 2013), BBC News articles
(Greene & Cunningham, 2006), poems (Arman, 2020), recipes (Bień et al., 2020), Reddit posts
(Völske et al., 2017), movie reviews (Maas et al., 2011), Wikipedia entries (Aaditya Bhat, 2023),
Python code, Czech news (Boháček et al., 2022), and German news articles (Schabus et al., 2017).

RAID employs text generated from 11 diverse LLMs (Radford et al., 2019; MosaicML, 2023; Jiang
et al., 2023; Cohere, 2024; Ouyang et al., 2022; Touvron et al., 2023b; et al., 2024b), ensuring
broad model representation. Additionally, it includes over 11 adversarial attack strategies (Liang
et al., 2023b;a; Wolff & Wolff, 2022; Bhat & Parthasarathy, 2020; Krishna et al., 2023; Pu et al.,
2023; Gagiano et al., 2021; Guerrero et al., 2022), designed to test the robustness of detectors under
challenging settings. Comprehensive descriptions and detailed results of these attacks are provided
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in Appendix E.1, with all results reported as of April 2025. For further implementation specifics,
readers are encouraged to consult the RAID paper.

Details about HC3 Benchmark. The HC3 benchmark (Guo et al., 2023) offers a large-scale,
multilingual dataset designed to evaluate the effectiveness of detectors in distinguishing human-
written text from AI-generated responses. It encompasses both English and Chinese content, cov-
ering a wide variety of domains and question types. This bilingual setup facilitates cross-linguistic
performance analysis and underscores the difficulties of achieving generalization across different
languages and cultural contexts. In our experiments, we adopt an 80-20 train-test split. For compre-
hensive dataset numbers, we refer readers to the original HC3 paper.

I HYPERPARAMETER SETTINGS

Table 15 outlines the hyperparameter configurations used for our experiments. We utilize the XG-
Boost classifier with standard but tuned settings to handle class imbalance and optimize detection
performance. For our proposed method DivEye, we set the number of bins for entropy computa-
tion to 20 and truncate input sequences at a maximum length of 1024 tokens. All experiments were
run on a single NVIDIA DGX A100 (40 GB), and reported results reflect the median of three runs.

Table 15: Hyperparameters used for the XGBoost Classifier and DivEye.

XGBoost Hyperparameter Value
random state 42
scale pos weight (len(Ytrain)−

∑
Ytrain)/

∑
Ytrain

max depth 12
n estimators 200
colsample bytree 0.8
subsample 0.7
min child weight 5
gamma 1.0

DivEye Parameter Value
Entropy bins 20
Tokenizer Max Length 1024 + Truncation

J LIMITATIONS, BROAD IMPACTS, REPRODUCIBILITY & ETHICAL
CONSIDERATIONS

Future Work & Limitations. While DivEye demonstrates strong generalization across domains
and models in zero-shot settings, several limitations suggest promising directions for future work.
Our approach relies on features derived from LLM token-level behavior, which may vary across
model sizes, architectures, and tokenization schemes. Although our current performance is robust,
it is unclear whether we are approaching an optimal limit for AI-text detection. Moreover, our di-
versity metrics are less effective on very short texts, where statistical patterns are inherently limited.
We hope to address these challenges in future work by exploring more adaptive teacher selection
strategies and improving robustness in diverse text lengths.

Broad Impacts. This work introduces DivEye, a model-agnostic, and scalable framework for de-
tecting AI-generated text that remains robust across models, domains, and decoding strategies. By
leveraging purely intrinsic statistical features, without requiring fine-tuning or access to the internals
of large language models, DivEye is broadly applicable and easy to deploy in real-world settings.
We envision this framework as a practical tool to support responsible AI usage, aiding in the detec-
tion of synthetic text across domains such as education, journalism, and online content moderation.
However, we emphasize that detection results should be interpreted with care and recommend using
DivEye as one component within a broader, multi-layered content verification pipeline.
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We deliberately restrict DivEye to nine features, each of which is theoretically motivated and cap-
tures a distinct aspect of surprisal diversity. While additional features could be engineered, our
preliminary experiments indicated diminishing returns beyond this set. This preserves interpretabil-
ity, efficiency, and robustness, while still providing strong empirical performance. We also discuss
certain concerns about our results and the practicality of adversarial attacks in Appendix F.

Reproducibility. We release all code and evaluation scripts to ensure full reproducibility. Detailed
training, testing and hyperparameter configurations are included in Appendices H and C.

Ethical Considerations. As with all AI-text detectors, DivEye is not infallible and may produce
incorrect classifications. We emphasize that detection outputs should be treated as probabilistic sig-
nals rather than definitive evidence. When used in high-stakes settings, such as academic integrity
or content moderation, additional human review and validation are essential. We encourage respon-
sible deployment of DivEye to support large-scale analysis, but caution against its use in critical
decision-making.

K ILLUSTRATIVE CASES OF DIVEYE WITH PROBABILITIES

We provide a few representative examples for readers in Table 16, showcasing the probability scores
assigned by DivEye to different text sources.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Source Text ProbabilityAI (DivEye)
GPT-4-Turbo For centuries, the pursuit of immortality was the ultimate

quest, a beacon drawing the brilliant and the mad alike.
I, Dr. Elara Mendoza, fell somewhere in between, tee-
tering on the precipice of genius and insanity. And af-
ter countless sleepless nights, fueled by an obsession that
bordered on madness, I finally did it. I unlocked the se-
cret to immortality. In my laboratory bathed in the cold,
metallic gleam of artificial light, the hum of machinery
breathed life into my creation, a serum, translucent and
iridescent, a potion promising eternity. As the final drop
fell into the vial, a silence descended, thick with anticipa-
tion. But in this moment of triumph, a chill swept through
the room, frosting over the warmth of victory. From the
shadows emerged a figure, neither entirely present nor en-
tirely absent, cloaked in the ephemeral garments of obliv-
ion. Death, in all its enigmatic glory, stood before me.
Not the reaper of lore, but a being more complex, more
human, yet not. D̈r. Elara Mendoza,D̈eath’s voice was
neither male nor female, but a melody of both, whisper-
ing through the void. In its skeletal hand, a business card
materialized, extended towards me. The card was black,
etched with silver that seemed to swirl in patterns too in-
tricate for mortal eyes.

0.97035

Claude-3-Opus Dressing for Success: Budgeting for Interview Attire and
Work Uniforms as a Medical Office Assistant - As a med-
ical office assistant, presenting a professional image is
crucial for success in both the job interview process and
daily work life. Dressing appropriately demonstrates re-
spect for the healthcare setting, instills confidence in pa-
tients, and showcases a commitment to the role. How-
ever, building a wardrobe suitable for the medical of-
fice can be a financial challenge, especially for those just
starting in the field. By developing a strategic budget
plan, aspiring medical office assistants can ensure they
have the appropriate attire for interviews and work with-
out breaking the bank. When preparing for job inter-
views, it is essential to invest in a few key pieces that ex-
ude professionalism and confidence. A well-fitting, con-
servative suit in a neutral color such as navy, charcoal, or
black is a versatile choice that can be paired with differ-
ent blouses or shirts for multiple interview opportunities.
Opting for a classic, timeless style ensures the suit will re-
main relevant for years to come, making it a wise invest-
ment. To complete the look, candidates should budget
for comfortable, closed-toe dress shoes in a coordinating
color. Once hired, medical office assistants must adhere
to the specific dress code of their employer. Many health-
care facilities require staff to wear scrubs, which can be a
significant expense.

0.96279

Human-Written Loved this tour! I grabbed a groupon and the price was
great. It was the perfect way to explore New Orleans for
someone who’d never been there before and didn’t know
a lot about the history of the city. Our tour guide had
tons of interesting tidbits about the city, and I really en-
joyed the experience. Highly recommended tour. I actu-
ally thought we were just going to tour through the ceme-
tery, but she took us around the French Quarter for the
first hour, and the cemetery for the second half of the
tour. You’ll meet up in front of a grocery store (seems
strange at first, but it’s not terribly hard to find, and it’ll
give you a chance to get some water), and you’ll stop at
a visitor center part way through the tour for a bathroom
break if needed. This tour was one of my favorite parts
of my trip!

0.09172

Table 16: Representative examples of texts from various sources with their predicted probability of
being AI-generated according to DivEye.
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