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ABSTRACT

Consistency Training (CT) has recently emerged as a promising alternative to
diffusion models, achieving competitive performance in image generation tasks.
However, non-distillation consistency training often suffers from high variance
and instability, and analyzing and improving its training dynamics is an active
area of research. In this work, we propose a novel CT training approach based on
the Flow Matching framework. Our main contribution is a trained noise-coupling
scheme inspired by the architecture of Variational Autoencoders (VAE). By training
a data-dependent noise emission model implemented as an encoder architecture,
our method can indirectly learn the geometry of the noise-to-data mapping, which
is instead fixed by the choice of the forward process in classical CT. Empirical
results across diverse image datasets show significant generative improvements,
with our model outperforming baselines and achieving the state-of-the-art (SoTA)
non-distillation CT FID on CIFAR-10, and attaining FID on par with SoTA on
ImageNet at 64 x 64 resolution in 2-step generation. Our code is available at
https://github.com/sony/vctl
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Figure 1: Comparison of 1-step generation on toy data for independent and variational coupling. The
data is sampled from a 2-d mixture of Gaussians with means g1 = (0,0.5) and g2 = (0, —0.5). On
the right-hand side plot (our approach), we show the posterior probabilities learned by the encoder (in
blue and green) corresponding to p(z | p1) and p(z | p2), and their cumulative sum approximately
recovers the prior distribution. The gray lines connect the samples from the trained models to the
corresponding input noise. More details about the toy experiments are given in Appendix E}

*Work done during an internship at Sony Al
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1 INTRODUCTION

Generative Models are deep learning algorithms designed to learn the underlying probability distri-
bution of a given dataset, in order to then generate samples coming from such a distribution. Some
widely used models are Generative Adversarial Networks (Goodfellow et al., 2014}, Variational
Autoencoders (VAE; Kingma, [2013; Rezende et al., 2014)), and Normalizing Flows (Chen et al., 2018}
Papamakarios et al.|[2021; |Kobyzev et al.,[2020). More recently, Diffusion Models (Sohl-Dickstein
et al., 2015} [Ho et al., 2020; Song et al., [2021b)) have achieved state-of-the-art (SoTA) results in
several domains, including images, videos, and audio (Dhariwal & Nichol, [2021; Rombach et al.}
2022} Karras et al.||2022; 2024} Ho et al.| 2022} |[Kong et al.,2021). However, a weakness of diffusion
models is the need for an iterative sampling procedure, which can require hundreds of network
evaluations. Therefore, substantial effort has been made to develop methods that can maintain similar
generation quality while requiring fewer sampling iterations (Song et al., 2021a; Jolicoeur-Martineau
et al.,[2021; Salimans & Hol 2022; |Liu et al.,[2022; [Lu et al., 2022). Among such methods, a recent
and promising direction is given by Consistency Models (CMs) (Song et al., 2023). CMs, while
sharing many similarities with DMs, use a different training procedure as they directly learn the
probability flow equations rather than the score function. CMs can be either trained by distilling
the ODE trajectories of a pre-trained diffusion model (Consistency Distillation, CD), or completely
from scratch through a bootstrap loss (Consistency Training, CT), which results in a novel generative
modeling framework. However, the CT objective can be subject to high variance, making it difficult
to train. A follow-up work (Song & Dhariwal, |2024) analyses the training dynamics of CMs and
proposes several improvements which result in a more stable CT procedure, achieving SoTA results
in few-step image generation. Since then, several works have proposed additional strategies to further
improve CT (Geng et al.| 2024; Wang et al.| 2024; Lee et al., 2024b} |Yang et al.| 2024). A possible
source of instability of CT training comes from the fact that different noise masks are applied to the
same data point, creating ambiguity the target corresponding to the given noisy state, especially early
during training with coarse discretization steps. From a more mathematical perspective, training can
be destabilized by sharp boundaries in the ODE flow mapping, which can be hard to learn for the
model and give raise to high variance in the stochastic gradient estimator. For example, the ODE flow
for mixture of delta distributions is defined by a tessellation of the initial noise space, with disconti-
nuities along all the borders. Since the standard CT approach with fixed forward process cannot alter
the target ODE flow, the optimum of the standard CT training can potentially be highly singular. The
existence of these singularities depend on topological reasons (i.e. non-injectivity of the ODE flow
mapping at ¢ — 0 (Cornish et al.l 2020)). However, the issue can likely be ameliorated by altering
the forward process during training, which can be used to change the location of the singularities. A
way to implement this approach is to sample noise using a conditional coupling function between
data and noise. The concept of using a coupling function to reduce variance during training was
successfully used in Flow Matching, with works such as (Pooladian et al., 2023} [Tong et al., [2023};
Lee et al.,|2023), with the main objective of obtaining straighter ODE trajectories for faster sampling.
Forms of coupling in CMs were proposed in works such as (Dou et al., 2024 [ssenhuth et al.,[2024),
but their formulations do not match the performance of standard CMs. In this work, we introduce
a variational training of the forward transition kernel with a coupling function between data and
noise, which results in a loss function similar to the one used in VAEs. By learning a data-dependent
probability distribution over the noise, regularized with an additional Kullback-Leibler divergence
loss, we develop an end-to-end training procedure and show how the resulting coupling is effective at
improving generation performance and is scalable to high-dimensional data. A simple and intuitive
example is shown in Figure |1} where with the same settings, the model trained with the learned
coupling generates samples closer to the data distribution. From this figure, we can see how the
learned coupling partitions the data differently from how the standard CT does, effectively changing
the form of the underlying ODE, likely resulting in an easier training objective as the prior noise is
partitioned according to the learned the data-dependent coupling distribution.

The reminder of the paper is organized as follows: we first formulate CT from the Flow Matching
perspective, which is a generalization of the diffusion framework and it offers a more natural way to
introduce the noise-coupling distribution. Finally, we describe our method, deriving similarities with
Variational Autoencoders, and report our experimental results on common image benchmarks. For
the related relveant literature, we refer the reader to Appendix [A]
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2 BACKGROUND

Flow Matching provides a general framework that generalizes diffusion and score-matching models
(Lipman et al} 2023 |Albergo & Vanden-Eijnden, 2023). In the Flow Matching formalism, a deter-
ministic flow function 1; with initial condition x( is used to build an interpolating map between
two distributions 1, (o) = @, such that the data distribution py(x¢) is mapped into a distribution
p1(x1), commonly chosen to be Gaussian noise distribution p; (x1) := N (x1; 0, I), by the pushfor-
ward operator. From this quantity, we can define the vector field w;(a;) as the infinitesimal generator

of y:

%U’t(iﬂo) = us(xy) = ui(Pi(x0)) 5

In a diffusion model, the flow 1, (x¢) is the inverse of the probability ODE flow determined by the
forward SDE. Instead, in standard Flow Matching, the mapping is specified as a conditional flow
¢ (xo; x1), which is typically taken as a simple linear interpolation between samples from the two
densities py(xo) and p1 (x1). Some common examples are 1, (xo; x1) = &, = (1 — t)xo + ta; as
seen in (Lipman et al. 2023), and v (xo; x1) = ®: = @ + ta; as in (Karras et al.| [2022). This
conditional flow is analogous to the formal solution kernel of the forward process at time ¢ in the
generative diffusion framework. While it is difficult to directly obtain the flow function ¥, (x¢) from
the conditional flow ) (xo; x1), it is possible to give a formal expression for the resulting vector
field:

ui () = Eg, o, [ue(Te521)] (D

where u;(@; 1) = %@bt(mo; x1) is the vector field that generates the conditional flow ¥ (xq; x1).
In the case of the simple interpolation conditional flows ¥ (xo; 1) = (1 — t)xo + tx1, the formula
specializes as follows:

ut(wt) = Ezl|mt [wl - CBO] . (2)

Readers who are familiar with generative diffusion will immediately recognize that this expression is
directly related to the standard expression for the score function. From this connection, it is clear that
the conditional vector field can be estimated with a regression objective

Bt zo,a || fo (W (@o; 1), 1) — we(u(wo; 1); 1) |3

2.1 NOISE COUPLING

An advantage of the Flow Matching formalism over SDE diffusion is that, as shown in (Pooladian
et al.,|2023; Tong et al., 2023), it is straightforward to introduce a probabilistic coupling 7(x; | xo)
between the data and the noise distribution. In this case, we require that [ 7(x1 | @)dao should
follow a standard normal distribution, at least approximately. The use of a non-trivial noise coupling
does not alter the form of the conditional velocity fields u.(x; 1) as far as the coupling is time-
independent. However, it does alter the total velocity field w;(x;) since it affects the conditional
distribution p(x, ;) , which determines the expectation in Eq.

3  CONTINUOUS CONSISTENCY MODELS FROM A FLOW MATCHING
PERSPECTIVE

As explained above, the flow function 1, (x¢) maps a noiseless state xg to the noisy state ;. Its
inverse ¢, 1(a:t) can then be interpreted as a denoiser, as it maps each noisy state to a uniquely
defined noiseless state . This function is often referred to as a consistency map, and it follows the
identity:

%%ﬂw@m:m on t€l0,1], 3)

together with the boundary condition 1) Y(xo) = . Eq. is a consequence of the fact that all noisy
states in an ODE trajectory 1); (2o ) share the same initial point &g, which implies that 15, * (1;(x0))
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is constant along the trajectory. This property can be used to define a continuous loss for a network
fo(x:,t), trained to approximate the inverse flow ¥ * (2;):

£9.(6) = [ Hf (u(@o), 1)

2
dt] )

where A(t) is a positive-valued function that weights the loss for different time points. This loss should
be used together with the identity boundary condition fg (o, 0) = @, which we will discuss later. In
distillation training, the deterministic trajectories &; = 1;(x() are obtained by integrating the ODE
flow obtained from a pre-trained diffusion or flow matching model. Alternatively, the consistency
network can be trained directly by re-writing the total derivative in terms of the conditional flow:

%¢f1(¢t($o))zv¢t_ (xt)%‘Faﬂbt (1) = VO, H(24)Eg, o, [wr (s @1)] + Op3p; ' (24)
B (V0 o)1) + 0 (@1)] = oo | 0 o)

&)

From this equality, together with the fact that the squared Euclidean norm is a convex function, it
follows that

2

dt] |

where we moved the expectation outside of the squared norm using Jensen’s inequality. Therefore,
we can optimize the tractable “conditional loss” £ (8) instead of £, (6), which contains the
unknown flow function 1 (xo).

1
d
£50,(0) < £(0), with L5(0) = Eay g [ 30| §sotwntenian.o
0

4 DISCRETIZED CONSISTENCY TRAINING

The continuous loss can be directly minimized in e)épectatlon by sampling the time ¢ from a uniform
distribution and by computing the total derivative o (Y (xo; x1),t) by automatic differentiation.
However, in practice it is often more convenient to 1nstead optimize a time-discretized loss with a
finite difference approximation for the total derivative:

tci(l)sncd Z)‘ m0~P0(=E(>),E1~7T(m1Iwo) [HA-fGHQ] )

with Afe=f9(1/)ti+1($o;931) tiv1) — fo- (Y1, (zo; 1), t3) -

where 1 | @ are sampled according to the noise-coupling 7(x; | xo). In this expression, 6~
denotes a frozen copy of the parameters which does not require gradients. This loss is in fact unbiased
for At — 0, as it was shown in[Song et al.| (2023). The boundary condition can be enforced through
the parametrization introduced in (Karras et al.||2022):

fo(x,t) = cokip () + cout () Fo(x, t),

where Fy is a neural network and cgyip and ¢y, are specified such that cqyip (0) = 1 and cout(0) = 0.

(6

5 CONSISTENCY MODELS WITH LEARNED VARIATIONAL COUPLING

Our method consists in learning a conditional coupling g (21 | o) with a neural network g ()
parametrized by ¢, which we refer to as the encoder in the following given its analogy with VAEs.
During training, we can sample noise conditionally from 7 (21 | o) = q¢ (21 | o)po(xo) instead
of the independent noise commonly used in CT, and obtain noisy states for a given time step ¢ as
follows:

= Pi(zo; T1), Ty ~ gyl | @o) = N(21; 94 (20), 95(20)°T),
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where we express the corresponding coupled noise & using the Gaussian reparameterization formula:
x1 = gh(z0) + g4(z0) €, €~ N(&0,1)

Here, we restricted our attention to linear forward models of the form ;(xo; 1) = arxo + b1,
which encompasses most models used in the diffusion and flow-matching literature. Moreover
g(’;(wo) and gg (o) denote the mean and scale output of the encoder, which define the signal-noise
coupling (see Appendix [H|for a visual representation). Both gf;(aso) and gg,(aco) preserve the same
dimensionality of the input signal. The encoder network that produces the coupling distribution
g¢(x1 | xo) can be trained end-to-end alongside the consistency model (see Appendix . This
results in a joint optimization where the consistency network adjusts its constancy to minimize its
total derivative along the trajectories while the encoder implicitly moves the trajectories towards
the space of constancy of the model. In fact, the velocity field u;(x;) depends on the coupling,
since m(x1 | o) affects the expectation in Eq. . This formulation results in a viable generative
model as long as the noise at time 1 remains approximately p; (x1), since severe deviation from the
prior induced by the coupling would result in improper initialization for the sampling procedure
and consequently in reduced sample quality. We therefore add a Kullback-Leibler divergence as a
regularizer, Dxr,(ge||p1), resulting in a loss resembling the Evidence Lower Bound loss of Variational
Autoencoders Kingma) (2013)):

L0, ) = L3 (0, $) + Ex, [Dkr(dg (1 | 0)||N (21;0,1))] . @)

While using an encoder to learn the data-noise coupling requires additional computation during
training, we empirically find that a relatively small encoder is enough to learn an effective coupling,
which results only in a minor increase of training time (see Appendix [F.2). At sampling, the speed
and computational requirements are identical to vanilla CMs for the one-step procedure, while for
multistep sampling we need to account for additional forward passes of the encoder (see Appendix

5.1 CONNECTION WITH VARIATIONAL AUTOENCODERS

In this section, we will consider the special case with constant unit time weighting A.¢(¢) = 1, Vt.

ELBO perspective. First, we demonstrate the relationship between our model and VAE in terms
of their objective functions. Specifically, our loss function in Eq.[/|serves as an upper bound on a
standard VAE loss, where the latent vector x; is regularized to be close to the prior p;. Using the

triangle inequality and the Cauchy-Schwarz inequality, we can establish the following bound for

cond.
Edisc .

N
|lzo — fo(z1, 1)||” < N> | fo(r, (o @1), tiva) — fo- (bt (wo; 1), ti)H2 : (®)
i=0
Given that the KL terms in Eq. [/]and the VAE loss are identical, our loss function serves as an upper
bound on the loss of a VAE with an encoder (g} (o). g5 (o)) and a prior N'(z1; 0, I). Since the
VAE loss corresponds to an evidence lower bound (ELBO), the consistency loss similarly provides
a lower bound on the model evidence. Furthermore, we establish a connection between Eq. B]
and the Continuous-time CM (Lu & Song, 2024); additional details are provided in Appendix
Compared to traditional VAEs, our method can be viewed as a time-dependent modification where
the transition kernel smoothly interpolates between delta distributions centered at datapoints and a
Gaussian distribution.

Varying 8. In both our model and VAE, the latent vector needs to approximately follow a normal
distribution to avoid deviating from the prior. However, previous studies (Hoffman & Johnson, |2016;
Rosca et al} 2018} |Aneja et al., [2021) have observed that VAE’s aggregated posterior fails to match
the prior. The same problem could occur in our model without additional tricks (see Sec. [E). To
mitigate this prior-posterior mismatch, we introduce a scalar hyperparameter 3 to control the strength
of the KL regularization. This was first introduced by Higgins et al.|(3-VAE[2022) for a different
purpose (inducing disentangled latent representation) in the VAE context.

nin L0, ¢) + By [Drr(ap (@1 | o)V (21;0,1))]. )
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By carefully selecting the value of 3, we can achieve a proper balance between flexibility and
proximity to the prior. To understand the effect of 5 in our model, we present an alternative form of
our objective function. Formally, we can view the minimization of Eq. [0 as the relaxed Lagrangian
problem of the following optimization problem:

rgglﬁﬁil’éd(e,@ st Dir(ge (@1 | o)V (21;0,1)) <,

As ¢ approaches 0, the coupling becomes 7(x1 | g) = po(@o)p1 (1), indicating that our model
encompasses the standard CT. In VAE, selecting appropriate values of (5 to achieve reasonable
generation performance is generally challenging. Values too close to zero result in strong deviation
from the prior, while extremely large values cause over-smoothed decoders (Takida et al., [2022]),
leading to blurry samples. However, our model does not suffer from this over-regularization issue.
While tuning S remains crucial in our model, as demonstrated in Section unlike VAE, increasing
values of 3 does not cause the oversmoothing problem but simply reduces our model to the standard
CT. Consequently, the CT training objective enables sharp sample generation even when the posterior
approximation is nearly a normal distribution.

5.2 CHOOSING THE 3 PARAMETER

The most common weighting function A (¢) for CMs is an adaptive weighting scheme that changes
over training based on how fine grained the discretization is, or equivalently the distance between
consecutive time steps in ECM. At a given training iteration, for two adjacent time steps ¢; and ¢, 1,
we have:

1
Ay

it+1

At (tig1) =

Ay =ty —

For the models trained with such an adaptive weighting function, we found it hard to tune 3 to a single
scalar value. The magnitude of the weights increases during training as the discretization scheme
becomes more fine-grained and Ay, , becomes smaller, changing the balance between consistency
loss and KL regularization, resulting in a very strong regularization at the early stages of training, or
a too weak one at the later stages. A simple yet effective solution is to use an adaptive scaling for
the KL regularization that changes according to the discretization scheme. To do so, we take as a
reference the weighting of the consistency loss at the last step ¢y = omax, and define the adaptive
KL weighting as:

B
Ay

This way, we only need to specify the scalar hyperparameter /3, and it will have a consistent
regularization strength over training, as it increases whenever the discretization scheme is changed,
which reflects in A, becoming smaller. For ECM models trained on ImageNet, which use the
EDM-style weighting function A (t) = 1/t? 4+ 1/02,,,, we simply select a fixed 3 scalar for the
whole training, as the discretization scheme does not affect the magnitude of the weights.

Ak = At (tn) =

6 EXPERIMENTS

In the following, we show that learning the data-noise coupling with our method is a simple yet
effective improvement for CT. We pair our Variational Coupling with two established methods as
baselines, namely improved Consistency Training (iCT) from (Song & Dhariwal, |2024) and Easy
Consistency Tuning (ECM) from (Geng et al., [2024)). Note that for the latter, the model is initialized
with the weights of a pretrained score model from (Karras et al., 2022), while in the former the
weights are initialized at random. More details about the baselines are provided in Appendix [FI] In
this work, we consider only the framework of CT, where the unbiased vector field estimator w;(x+)
from equation [2)is used to approximate the noisy states a, during training, as opposed to Consistency
Distillation that uses a pretrained score model as a teacher. We evaluate the models on the image
datasets Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), FFHQ 64 x 64
(Karras, |2019) and (class-conditional) ImageNet 64 x 64 (Deng et al.,[2009). To learn the coupling,
we add a smaller version of the neural network used for CT, without time conditioning and with
weights always initialized at random. For all the models, we use the variance exploding transition
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kernel (iCT-VE and ECM-VE) used in (Karras et al., 2022) and (Song & Dhariwall, [2024)), with
at = 1, by = t, and the linear interpolation kernel (iCT-LI and ECM-LI) commonly used in Flow
Matching (Lipman et al., 2023)), with a; = 1 — t/0max and by = t/0max (details in Appendix |C).
For both kernels, we set op,i, = 0.002 and oy,,x = 80. More experimental details can be found in
Appendix [F.2] while samples obtained with our best models are shown in[}

6.1 BASELINES AND MODELS

As baselines, we re-implement the iCT and ECM models, corresponding to our iCT-VE and ECM-VE.
As an additional model, we add CT with the minibatch Optimal Transport Coupling (-OT) proposed
in (Pooladian et al., 2023} [Tong et al., [2023)) and used in (Issenhuth et al., [2024)), to compare the
effectiveness and scalability of the OT coupling with the learned one. Finally, we combine the
baselines with our proposed Variational Coupling (-VC). For the models with learned coupling, we
use gradient clipping with a large value (200 in all the experiments) to avoid instabilities at the early
stages of training.

Model Fashion-MNIST CIFARI10

iCT-VE* - 2.83/2.46
iCT-VE 4.79/3.54 3.61/2.79
iCT-LI 4.75/3.46 3.81/2.87
iCT-VE-OT 4.4212.82 3.28 /2.66
iCT-LI-OT 4.41/2.91 3.42/2.77

iCT-VE-VC (ours) 3.88/2.37 2.86/2.32
iCT-LI-VC (ours) 3.62/2.22 2.94/2.32

Table 1: FID (1-step / 2-step) for iCT-based Models. * Baseline from (Song & Dhariwal, 2024). Ours
are re-implementations. Bold indicates best.

Model CIFAR10  FFHQ (64 x 64) ImageNet (64 x 64)
ECM-VE* 3.60/2.11 - 5.51773.18"
ECM-VE 3.68/2.14 5.99/439 5.26/3.22

ECM-LI 3.65/2.14 6.42/4.73 5.13/3.20
ECM-VE-OT 3.46/2.13  6.11/4.68 6.02/4.27
ECM-LI-OT 3.49/2.13  6.19/4.73 5.63/4.09
ECM-VE-VC (ours) 3.26/2.02 5.47/4.16 5.08/3.15
ECM-LI-VC (ours)  3.39/2.09 5.57/4.29 4.93/3.07

Table 2: Comparison of FID (lower is better, reported as 1-step / 2-step performance) for different
models based on ECM. The model marked with a * is the baseline as reported in (Geng et al., 2024).
All the other models are from our re-implementation. The best entries are highlighted in bold. For
ImageNet, the results marked with t are obtained with models trained for 100k iterations, while the
others use 200k iterations.

6.2 RESULTS

In tables [I] and 2] we report the 1 and 2 step sample quality evaluated with Frechet Inception
Distance (FID) (Heusel et al., 2017), for both the results reported in the original papers and our
re-implementations. For high-dimensional data, we only use models based on ECM, as they require
lower computational budget, while for FashionMNIST we only use models based on iCT as there is
no available pretrained EDM model.

FashionMNIST: We choose FashionMNIST as a first benchmark to test the performance of iCT.
On this dataset, we use a small version of DDPM++, with 64 model channels instead of 128 and
no attention, and batch size 128. Our variant with Variational Coupling outperforms both iCT and
iCT-OT, with best performance obtained with the LI transition kernel, showing the benefit of the
learned coupling.

CIFAR-10: For all the CIFAR-10 experiments, we use the DDPM++ architecture from (Song et al.,
2021b)) as implemented in (Karras et al., [2022)), with EMA rate 0.9999 as in (Geng et al., [2024)).
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L

(a) 1-step (FID=5.13, left) and 2-step (FID=3.20, right) (b) 1-step (FID=4.93, left) and 2-step (FID=3.07,
samples from ECM-LI. right) samples from ECM-LI-VC.

Figure 2: Visual comparison of generated class-conditional samples on ImageNet 64 x 64.

While this differs from the settings in (Song & Dhariwal, [2024), we found it to work better in our
re-implementation. The remaining hyperparameters are the same as used in the respective baselines.
From the results, we can see how using the learned coupling results in improved performance for
both one and two steps generation, outperforming all the re-implemented baselines. The 1-step result
from the original iCT is superior to our model. However, to the best of our knowledge, there is
no open-source implementation that can reproduce the results reported in the paper. The learned
coupling outperforms the minibatch OT coupling in all cases, as it is less affected by the effective
(per device) batch size and the data dimensionality. Finally, our 2-step sampling performance for
ECM-VE-VC is on par with the current SOTA achieved by other methods with similar settings
let all} 2024} [Lee et al, 2024b} [Lu & Song| [2024).

FFHQ 64 x 64: We use FFHQ 64 x 64 as an additional dataset to assess our method on higher-
dimensional data. We reuse the same training settings used for CIFAR 10, without additional tuning,
and with the same network architecture used in EDM. While the results are worse than current SoTA
generative models (e.g. 2.39 FID from EDM), they confirm the benefit of using the learned coupling
over the baselines. Moreover, the results highlight the limits of using the minibatch OT coupling,
which scales poorly with increased data dimensionality and in some cases performs worse than the
independent coupling.

ImageNet 64 x 64 (class conditional): As a baseline, we reuse the settings from ECM with the
EDM2-S architecture and batch size 128. While the baseline is trained for 100k iteration, we found
that our models with Variational Coupling needed more time to converge properly, as the encoder
weights are not pretrained and initialized at random. We therefore train our re-implemented baselines
and models for 200k iterations instead. In this case, the models with Variational Coupling outperform
the other models, with the LI kernel obtaining the best overall FID, while the OT coupling performs
poorly due to the small batch size and high data dimensionality. In Figure 2] we compare samples
from ECM-LI and ECM-LI-VC, where we can see how the images generated with VC are more clear
and detailed.

7 CONCLUSIONS

In this work, we introduced a novel approach to Consistency Training (CT) by incorporating a
variational noise coupling mechanism. Our method leverages an encoder-based coupling function
to learn a data-dependent noise distribution, which results in improved generative performance.
By framing CT within the Flow Matching perspective, we provided a principled way to introduce
adaptive noise coupling while maintaining the efficiency of standard CT. Empirical results on multiple
image benchmarks, demonstrate that our approach consistently outperforms baselines in one and
two-step generation settings. Our findings highlight the potential of learned coupling in CT and
suggest several promising directions for future work. These include exploring more expressive
posterior distributions, extending our method to the continuous-time CT formulation, and integrating
variational consistency training with other recent CT improvements. We hope this work contributes
to the broader understanding of the effect of coupling in CT and inspires further advancements in
efficient generative sampling techniques.
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A RELATED WORK

Since the introduction of Consistency Models in (Song et al., 2023} [Song & Dhariwal, 2024)), several
strategies have been proposed to improve training stability. The work from (Geng et al., [2024))
proposes Easy Consistency Models (ECM) a novel training strategy where time steps are sampled in
a continuous fashion and the discretization step is adjusted during training, as opposed to the discrete
time grid used in iCT. It further shows the benefits of initializing the network weights with the ones
from a pretrained score model, achieving superior performance with smaller training budget. (Wang
et al., |2024) builds on top of ECM, introducing additional improvements and framing consistency
training as value estimation in Temporal Difference learning (Sutton, 2018)). Truncated consistency
models, introduced in (Lee et al.,[2024b), proposes to add a second training stage on top of ECM,
to allow the model to focus its capacity on the later time steps, resulting in improved few-steps
generation performance. Other recent contributions to the consistency model literature are works such
as (Kim et al.,|2024b}; [Heek et al., 2024) where the focus is on improving multistep sample quality,
(Lee et al., 2024a) which trains a model with both consistency and score loss to reduce variance,
and (Lu & Song| 2024), which proposes several improvements to the continuous-time training of
consistency models. Our work can be seen as a parallel contribution to the aforementioned methods,
as we focus on learning the data-noise coupling, which can be used as drop-in replacement to the
standard independent coupling.

There are several works showing the benefit of using coupling in Flow Matching (Pooladian et al.}
2023} [Tong et al., 2023} [Liu et al., 2023} |Lee et al., 2023} |Albergo et al.| 2024} |Kim et al., 2024al).
Among these, (Lee et al.| 2023 shares the most similarities with our method, as they also use an
encoder to learn a probability distribution over the noise conditioned on the data. Their method
results in improved performance compared to equivalent Flow Matching models, while requiring
less function evaluations. Our method consists of a similar procedure but applied to CT, resulting in
improved few-steps generation performance and confirming the effectiveness of learning the data-
noise coupling. A different coupling strategy for CT is proposed in (Issenhuth et al.| |2024)), where
the data-noise coupling is extracted directly from the prediction of the consistency model during
training. Compared to our method, they do not need the additional encoder to learn the coupling, but
their generator-induced coupling needs to be alternated with the standard independent coupling to
avoid instabilities. The Flow Matching formulation in Consistency Models with linear interpolation
kernel was previously used in (Dou et al.,|2024; Yang et al., 2024}, where the former also explores
the use of minibatch OT coupling, while the latter trains the model to learn the velocity field and
adds a regularization term to enforce constant velocity. In our work, we use the Flow Matching
formulation, but keep most of the CT building blocks, resulting in a simpler formulation with superior
performance.

12
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B PSEUDOCODE

In this section we report the pseudocode for training and sampling with our learned coupling, in
Algorithms [T) and 2] respectively.

Algorithm 1 Variational Consistency Training

Input: data distribution pgata., initial model parameter 6, initial encoder parameter ¢, learning
rate 77, EMA rate p, distance function d(-, ), consistency weighting A.(-), KL weighting Ay
BEMA «— 0, ¢)EMA — ¢>andk ~0
repeat

Sample &g ~ Pdata, t ~ p(t), r =t — At

Sample € ~ N(0,I)

T1 < gy(xo) + gg(o)e

Ty — axo + by

T, < a,xy + b

ﬁﬁ(i)sncd(eﬂ d)) — )\ct (t)d(fO (a:tv t)v .fg_ (a:rv 7’))

Li(¢) + DL (N (gl (20), 95(x0)*DIIN(0,1))

L0, $) + L0, ¢) + NaLi(e)

0+ 0—nVeL(0,0)

¢ P —nVeLl(0,0)
Orna < stopgrad(ubepma + (1 — p1)0)
¢rMA  stopgrad(udrma + (1 — p)@)
k+—k+1

until convergence

Algorithm 2 Multistep Variational Consistency Sampling

Input: Consistency model fg, encoder g4, sequence of time points 73 > 75 > --- > T_1, initial
noise &
T < .fe(jTa T)
forn=1to N —1do
Sample € ~ N(0,1)
21 gl()+ g(w)e
Ly, a0, c+b 21
T < fe(fan,Tn,)
end for
Output: =

13
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C CONSISTENCY MODELS WITH FLOW MATCHING KERNEL

In addition to the variance exploding forward process commonly used in CT, here we propose to use
the linear interpolation kernel commonly used in Flow Matching:
Ty = (1—t)mo+t:c1. (10)

We reuse all of the building blocks from iCT and ECM and make only the necessary adjustments.
Accounting for the boundary conditions, the transition kernel becomes:

t t
Ty = (1 - o ) xo + <0_ ) L10max- (11)

Other crucial components for stability during training are the scaling factors ciy, cekip and cout, and
we derive them for the linear interpolation kernel following the same procedure used in (Karras et al.,
2022)), also accounting for the boundary conditions when oy,;, # 0O:

1

Cin(0) = 12)

Vol = 72+ 02

2 O —Omi

Udata(l - ﬁ)

Carin(0) = max min . 13
kip (0) (0 — Oamin)? + 03 (1 =~ 2 (13)
Cout (O') = (O' - Urnin)adatacin(a) (14)

C.1 DERIVATIONS

We report the derivations for the scaling factors used for the linear interpolation transition kernel. We
follow the same derivations from (Karras et al.| [2022) (Appendix B.6), where the score matching
objective is written as:

E||Dg(y +mn;0) — y|l3 (15)

Where y is data sampled from the data distribution with standard deviation 0 4,¢, and n is a sample
from noise distribution with standard deviation o. Given this objective, they propose to derive the
scaling factors ¢in(0), Cskip(0), Cous (o) as follows:

1
in = 16
¢in(0) V/ Vary |y + n] (10
Cout(0)? = Vary [y — csip(0) (y + 1)) (17)
Cskip(0) = argmin, _ (,)Cout (o) (18)

In our formulation, we only need to rescale y by 1 — —>— and perform the same derivations. For
simplicity, we define & = 1 — —7— (omitting the dependence on o), and proceed as follows:

Omax

1
Cin (CT) = (19)
\/Vary nlay + n
Cout(0)% = Vary n[y — cukip(0)(ay + n)] (20)
Cskip(0) = argmincskip(a)cout(U)Q. 21
The factor ¢, (o) simply becomes:
1
(22)

cin(0) = }
in(0) N T

14
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To derive cout (o) we can proceed as:

Cout(0)2 = Vary [y — csip(0) (ay + )]
Cout (0)2 = Vary n[(1 — acsip(9))y + csiip(0)n]

Cout (0)2 =(1- acskip(”))Qoﬁata + Cskip (0)202'

We can use this result to solve for cgip (0):

0 = dleout(0)?]/desiip (o)
0= d[(1 — acskip(0))?03ata + Csip(07) 0] /desiip (o)
0 = 03aadl(1 — askip(0))?]/desiip (0) + 0% deskip(0)?] /desiap (o)
0= UgataBO‘QCskip (0) —2a] + 02[2cskip(0)}
0= (02 + azagata)cskip( ) — ag?iata
Csip(0) = A0 3aa/ (07 + 020G ,1a)-
Finally, we can compute oyt (0):

Cout(‘j)2 =(1- acskip(g))zgcziata + Cskip(0)2‘72

5 a20(21 2 5 ao?l 2 9
ta ata

Cout(0)*=[1— | ——522 o 4+ |22 | ¢

out(7) ( {(02 + oz%rgata)}) data (0% +a?03,,,)

(o) = {( 0% data r . [( 00 + 0 )]2

2 2.2 2 2
oft+a adata) o ta Udata
2

(‘72‘7'data)2 + (Uagﬁata)
(02 + OZ?O’?iata)2

Cout (0)? =

c (0,)2 _ (O—Udata)Q + (O‘QJ(tha to )
out (02 + 202, )2
data

(UUdata)2
(0% +0%03,.,)
00data

R
ata

Cout(o')2 =

(23)
(24)
(25)

(26)
27)
(28)
(29)
(30)
€1y

(32)

(33)

(34)

(35)

(36)

(37)

(38)

If we want to use the boundary conditions for omin 7 0, then we can modify csiip (o) and cout (o) as:

O —Omin )

Omax —9min

J?iata (1 -

(0 - Umin)Z + U?iata(l -

Cskip(g) = O —Omin )2

Omax —Omin

Cout (0') = (O' - O'min)o'datacin(o')a

which satisfy the condition cekip (0min) = 1 and cout(Omin) = 0.

D CONSISTENCY LOWER BOUND

Proposition 1. The following upper bound for negative log-density holds:
1

~logpo(o) < 5 E%(mmnwo ~ fol@1, DII* + KL(gs(= | @0) | p(2))

20

2
[er ¢t7 H

202 dt + KL(%(z | o) Hp(z))

(39)

(40)

This proposition establishes the connection between the minimization objective of VCT and that of

the continuous-time CM.
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Proof. For the triangle inequality, we have:

||1'0 — fo(z1,1)[| < 41

Zer i,y (03 1), tig1) — o (P, (o3 1), 1) -

=0

We can now square both sides, obtaining:

@0 — fo(z1,1)])* < (42)

(Zer 1/%1“ (xo; 1), tiv1) — fo- (s, (xo; 1), ||>

=0

Now, for the Cauchy-Schwarz Inequality, we can write the right hand side as:

(Zer 1/%1“ (@o; 1), tit1) — fo- (Y, (xo; 1), H) (43)

=0

NZer Yi, (To; 1), tiv1) — fo- (d’n(wo%%)»ti)HQ-

1=0
Since:
1
log py (o | 1) & —5—5lwo = fo(@1, 1)[1%, (44)

we can write a lower bound on the log density as:

10g Po(20) = —5 5 By s o) 20 = fol@r, DI = KL(gs(@1 | @0) | pl@1)). @)

1
202

In summary, the ELBO bound for the Gaussian VAE is given by

Ego@ajoo |20 = fo(@r, DI? + KL(gs(@1 | 20) | pl@1)) = Liwo:0, 0).
(46)

1
—1 < _—
og po(To) < 952

Combining the inequalities we derived in Eq. 2] and 3] below we consider the case when N — oc.

First, we define:

N

Sn = NZ]Eq(zl\zo),p(ti) [||f9(¢ti+1 (x0;$1)7ti+1) - fe(wti (xo;xl)vti)HQ} . 47)

=0

We assume that ¢; is a partition of the interval [0, 1] of:

At =t —t; =0 <1> . (48)

N
For small At = O (%), we approximate the squared difference in function values using a first-order
Taylor expansio

d
| fo(Vtsy,tivt) — fo(te,, t:)|* ~ %fﬂ(d’t»t) AR (49)

t=t;

"Here, we assume vy, , — ¥r, = O(tiy1 — t;)
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Since At = O (4), we substitute:
2

1 || d
| fo(tr, \stiv1) — f9(¢ti,ti)||2 ~ e %fe(iﬁt»t) (50)
Multiplying by NV:
N | X
SN = NZE [[1fo (W, 1s i) — Fo(tr,, t)|I°] = NZE er Py, t) ] . (5D
i=0 1=0
As N — oo,
| X
N;E Mdtfo tirt) ] er ) ] : (52)
Thus, multiplying by IV, we obtain:
lim Sy = er Y, 1) ] . (53)
N —oc0
Combining the above limit with the ELBO bound:
1
~ log po(0) < ;E (@ la |20 — fo(@, 1>||2 + KL (g5(= | @0) || (=) (54)
< E d KL
<o NZ 2 fatwnt)| | + KL (a2 | 20) | 2)) (55)
202 U‘fa best) dt+KL(q¢(z | o) Hp(z)), as N — oo, (56)

O

E ABLATION FOR DIFFERENT [

To see the effect of 3 on the generation performance, we compare the results for different values
on the FashionMNIST dataset for iCT-VE-VC in Table 3] As expected, with small values of /3, the
coupling distribution deviates from the sampling distribution and the performance degenerates, while
increasing 3 to high values reduces the benefits of the learned coupling.

FID for different 3
1step 2 steps
B=5 1253 5.69
B=15 497 2.34
8=30 3.88 237
8 =60 3.90 2.67

Table 3: Comparison of FID performance (lower is better) for one and two sampling steps, for varying
values of 8. The models are iCT-VE-VC and trained on the FashionMNIST dataset with the same
settings described in appendix -2} Best entries in bold.

F EXPERIMENTAL DETAILS

F.1 BASELINES

Here we recap the detials about the two baselines used in this work, the Improved Consistency
Training from (Song & Dhariwal, [2024)) and Easy Consistency Models from (Geng et al., [2024)).
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iCT: the training procedure uses a discretization of time steps between two values o, = 0.002 and
Omax = 80, with the equation from (Karras et al., [2022):

s 1 p
0 = (U,ln/iﬁ + W (Urln/;x — aiﬁﬁ)) , where i € [[1, N(k)]], (57)
where p = 7 and N (k) is a scheduler that defines the number of discretization steps at the k-th
training iteration. N (k) is chosen to be an exponential schedule which starts from sy = 10 steps and
reaches s; = 1280 steps at the end of the training, and is defined as:

/ K
N(k) = min(2*/ 51 s) +1, K’:{] 58
(k) ( ) log,(s1/s0) +1 (58)
During training, time steps t; (or equivalently o;) are sampled following a discrete lognormal
distribution:
p(Ui) o erf (1Og(0i+1) - Pmean) _erf <10g(0z) - Rnean) , (59)
\/ipstd ‘/ipsld
with Ppean = —1.1 and Pyg = 2.0. Then, the steps ¢; and ¢, ; are used in the loss:
Ect (07 (b) — Act (tl)d(fe (mti+1 ) t + 1)7 .fe— (mtia t?))v (60)
whith the time dependent weighting function A (¢;) = Hﬁ’ and d(., .) is the Pseudo-Huber loss:

d(z,y) = \/|lz —yll5 + 2 —c (61)

ECM: ECM aims to simplify and improve the training procedure from iCT. We report here the main
differences. Instead of using a discretized grid of time steps, it samples time steps ¢ from a continuous
lognormal distribution with Pye,n = —1.1 and Pyy = 2.0 (—0.8 and 1.6 for ImageNet). The second
time step r used in the discretized training objective is then obtained with a mapping function

. 1 1
p(rftiters) =1 — —n(t) =1 - Wﬂ(t),

q

(62)

where n(t) = 1+ ko(—bt) = 1+ ﬁ o(.) is the sigmoid function, iter is the current training
iteration, k = 8, b = 1, and ¢ = 2 for all the models but ImageNet, where ¢ = 4. The discretization
step is made smaller for eight times over training (four times for ImageNet). The loss function is a
generalization of the Pseudo-Huber loss, which consists of the L2 loss and an adaptive weighting
function w(A). The models are initialized with the weights of pretrained diffusion models, which is

shown to greatly improve stability during training and generation performance.

F.2 TRAINING DETAILS

We report the training details for our models in Tables [4] and [5] Note that the baselines are the
ones from our reimplementation. The models have the same number of parameters and training
hyperparameters regardless of the transition kernel used. In the following, we report additional
information important for reproducing out experiments:

ECM-LI: In ECM, the time steps ¢ ar sampled from a lognormal distribution, as done in (Karras
et al.| [2022). This means that time steps ¢ > oy,ax can be sampled during training. While this works
well when using the variance exploding Kernel, in the linear interpolantion case the time step ¢ cannot
exceed oy ax, and we therefore clip ¢ to be at most gy ax.

Random seeds: All the training runs are initialized with random seed 42. For sampling and FID
computation, we always set the random seed to 32, which was randomly chosen. This differs from
what commonly done in EDM, where three different seeds are used to evaluate FID and the best
result is reported. While our evaluation can lead to slightly worse results, the evaluation is consistent
between our models and reimplemented baselines.

2-steps generation: Like in the original iCT baseline, all the models use ¢ = 0.821 for CIFAR10 and
all the other datasets but ImageNet, where ¢ = 1.526 is used insetad.
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Data augmentation: We scale all the images to have values between —1 and 1. For CIFAR10 we
apply random horizontal flip with 50% probability.

Differences for ImageNet: The training procedure for ECM on ImageNet differs slightly from the
one for the other datasets. The Adam optimizer is used instead of RAdam, with betas= (0.9, 0.99),
and inverse square root learning rate decay defined as a function of the current training iteration ¢:

. Qeref
al) = —————— 63
Q max (i /ief, 1) ’ (63)

with s = 0.001 (the initial learning rate) and ¢,y = 2000 iterations. The Exponential Moving
Average uses the power function averaging profile introduced in (Karras et al., [2024). In ECM,
three different EMA profiles are tracked during training, with rates 0.01, 0.05, and 0.1. In our
reimplementation, we only use the rate 0.1. The number of times in which the discretization interval
changes is reduced from 8 to 4, and the loss constant c is set to 0.06.

Model Setups FashionMNIST CIFAR10
Model Architecture DDPM++ DDPM++
Model Channels 64 128
N° of ResBlocks 4 4
Attention Resolution - 16
Channel multiplyer 12,2,2] [2,2,2]
Model capacity 13.6M 55.7M
Training Details

Minibatch size 128 1024
Batch per device 128 512
Iterations 400k 400k
Dropout probability 30% 30%
Optimizer RAdam RAdam
Learning rate 0.0001 0.0001
EMA rate 0.9999 0.9999
Training Cost

Number of GPUs 1 2
GPU types H100 H100
Training time (hours) 28 92
Training time with OT (hours) 29 95
Encoder Details

Model Architecture DDPM++ DDPM++
Model Channels 32 32

N° of ResBlocks 1 1
Attention Resolution - 16
Channel multiplyer [2,2,2] [2,2,2]
S regularizer 30 30
Encoder Params 1.5M 1.6M
Training time with Encoder (hours) 34 102

Table 4: Model Configurations and Training Details for iCT on FashionMNIST and CIFAR10
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Model Setups CIFAR10 FFHQ 64 x 46 ImageNet 64 x 64
Model Architecture DDPM++ DDPM++ EDM2-S
Model Channels 64 128 192

N° of ResBlocks 4 4 3
Attention Resolution [16] [16] [16, 8]
Channel multiplyer [2,2,2] [1,2,2,2] [1,2,3,4]
Model capacity 55.7M 61.8M 280M
Training Details

Minibatch size 128 128 128
Batch per device 128 128 128
Iterations 400k 400k 200k
Dropout probability 20% 20% 40% (res < 16)
Optimizer RAdam RAdam Adam
Learning rate 0.0001 0.0001 0.001
EMA rate 0.9999 0.9999 0.1
Training Cost

Number of GPUs 1 1 1

GPU types H100 H100 H100
Training time (hours) 37 95 51
Training time with OT (hours) 38 96 52
Encoder Details

Model Architecture DDPM++ DDPM++ EDM2-S
Model Channels 32 32 32

N° of ResBlocks 1 1 2
Attention Resolution [16] [16] [16, 8]
Channel multiplyer [2,2,2] (1,2,2,2] (1,2,3,4]

B regularizer 10 10 100 (VE), 90 (LI)
Encoder Params 1.6M 1.6M 6M
Training time with Encoder (hours) 49 110 58

Table 5: Model Configurations and Training Details for ECM on CIFAR10 , FFHQ 64 x 46 and
ImageNet 64 x 64
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G ToY EXPERIMENTS

To gain a visual understanding of the benefits of the variational coupling, we use the model to learn
the distribution of a mixture of two Gaussians, with means p; = (0,0.5) and pe = (0, —0.5), and
standard deviation o = 0.05. We use iCT-LI so that the perturbed data reaches the prior even with
small 0,5, With opin = 0.002, 0max = 0.1 and og4at, = 0.05. The models are trained for 40k
iterations, with sg = 10 and s; = 80, and EMA rate 0.999. We use a simple four-layers MLP with
GeLU activation and Positional time embedding, with batch size 256 and learning rate 1e~*. For
iCT-LI-VC we use 3 = 0.001. The results are shown in figures[[|and [3| (one and two step generation
respectively).

Independent coupling
0.8

Noise b Generated
0.6 Data
0.4 H,," =
P -
0.2
= 0.0
—0.2
—04 e
~0.6 [*aj
—0.8
—0.5 0.0 0.5 —0.5 0.0 0.5
xr r
Variational coupling
0.8
Noise » Generated
0.6 Data

0.4 g -

0.2

= 0.0

—0.2

—0.4 > >
e
—0.6 5
-0.8
—0.5 0.0 0.5 —0.5 0.0 0.5
& €

Figure 3: 2-step generation result on the toy data, with ¢ = 0.07.
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H MODEL DIAGRAM

In figure ] we show the difference between the forward process for standard Consistency Training and
for our method with learned noise coupling, for a given time step ¢ and transition kernel characterized
by the coefficients a; and b;.

Independent Coupling Variational Coupling

e~ N(0,I)
!
zo 21 ~ N(0,1) zo ——> golm)) ——> @1 = gl(zo) + g5 (zo)e
Ty = apwo + by Ty = apwg + by
' '
fo(@e,t) Fo(@e,t)

Figure 4: Diagram for Consistency Training with independent coupling (left) and variational coupling
(right).

I QUALITATIVE RESULTS

Here we report samples from our best models, iCT-LI-VC for FashionMNIST (figure[7), iCT-VE-VC
and ECM-VE-VC on CIFARI10 (figures [8|and [9), ECM-VE-VC on FFHQ 64 x 64 (figure[I0) and
ECM-LI-VC on class conditional Imagenet 64 x 64 (figure[IT)). In figure[5] we show the mean and
standard deviation learned by the encoder for some images from the CIFAR10 dataset. While the
values are very close to a standard Gaussian, the model still retains information from the original
input. We empirically compare the variance of the gradients for iCT-VE and iCT-VE-VC trained
on CIFAR10, and show in Figure [6] how the resulting reduced variance corresponds to improved
FID score. In particular, in early training the model with VC exhibits higher variance, which can be
attributed to the fact that the encoder is still learning the coupling. As training continues, the coupling
becomes effective at providing better data-noise pairs to the model, which results in reduced gradient
variance and improved generative performance.
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Input image

Figure 5: Visualization of the predicted mean and standard deviation for a trained iCT-VE-VC model
for different input images. For visualization purpose, we perform min-max rescaling for the predicted
mean and standard deviation, as they tend to have most values close to zero and one respectively. We
also turn the predicted 3 channels standard deviations to a single channel with grayscale transform.
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(b) FID Comparison

Figure 6: The left-hand side graph shows a comparison of gradient variance during training for iCT-
VE and iCT-VE-VC on CIFAR10. We plot the variance for each epoch (shaded) and its exponential
moving average with smoothing factor 0.9. Especially later during training, the model with learned
coupling exhibits lower variance, which results in improved performance, shown in terms of 1-step
FID in the right-hand side graph. For a fair comparison, we did not use gradient clipping for iCT-VC

in this run.
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Figure 9: 1-step (FID=3.26, left) and 2-step (FID=2.02, right) generation from ECM-VE-VC trained
on CIFARI10.

Figure 10: 1-step (FID=5.47, left) and 2-step (FID=4.16, right) generation from ECM-VE-VC trained
on FFHQG64 x 64.
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Figure 11: 1-step (FID=4.93, left) and 2-step (FID=3.07, right) generation from ECM-LI-VC trained
on class conditional ImageNet 64 x 64.
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