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Abstract

Though Transformers have achieved promising re-
sults in many computer vision tasks, they tend to
be over-confident in predictions, as the standard
Dot Product Self-Attention (DPSA) can barely pre-
serve distance for the unbounded input domain. In
this work, we fill this gap by proposing a novel
Lipschitz Regularized Transformer (LRFormer).
Specifically, we present a new similarity function
with the distance within Banach Space to ensure
the Lipschitzness and also regularize the term by a
contractive Lipschitz Bound. The proposed method
is analyzed with a theoretical guarantee, providing
a rigorous basis for its effectiveness and reliability.
Extensive experiments conducted on standard vi-
sion benchmarks demonstrate that our method out-
performs the state-of-the-art single forward pass
approaches in prediction, calibration, and uncer-
tainty estimation.

1 INTRODUCTION

Deep learning (DL) has achieved remarkable performance,
making it widely employed in various inference and
decision-making systems. However, DL models still make
mistakes, making trust and safety an increasingly important
topic [Amodei et al., 2016, Jiang et al., 2018], especially in
critical applications like self-driving cars [Huang and Chen,
2020] and medical diagnosis [Esteva et al., 2017]. One so-
lution to this problem is for models to not only achieve
high accuracy but also refrain from making overly confident
predictions.

Transformer [Vaswani et al., 2017] and its variants, such
as BERT [Devlin et al., 2019], have made significant ad-
vances in Natural Language Processing (NLP), especially
with large pre-trained models [Gillioz et al., 2020]. Simi-
larly, Vision Transformers (ViT) [Dosovitskiy et al., 2021]

and its variants, such as Swin-Transformer [Liu et al., 2021],
have recently achieved state-of-the-art performance on a va-
riety of computer vision tasks. In spite of this, their propen-
sity for overconfident predictions is cause for concern, espe-
cially as they become the one of the foundation architectures
of deep learning. To address this issue, we investigate the
under-explored problem of overconfidence issue in Trans-
formers, which can aid subsequent tasks in the construction
of reliable models.

Overconfidence is a common problem in many machine
learning models for both in- and out-of-distribution inputs,
including deep neural networks [Wei et al., 2022, Kristiadi
et al., 2020]. When a model is overconfident, it tends to
make highly confident predictions even when it is uncertain
about the true label of a given input. This can lead to poor
performance and inaccurate results, especially in real-world
settings where uncertainty is prevalent. Uncertainty estima-
tion is a promising approach for addressing the issue of
overconfidence in machine learning models. By estimating
uncertainty, a model can make more informed predictions
and provide a measure of confidence for each prediction.
This can help to improve the robustness and reliability of
the model and enable it to perform more effectively in a
variety of applications, including decision-making and risk
assessment.

Previous techniques to estimating model’s predictive un-
certainty include Bayesian deep learning [Wilson and Iz-
mailov, 2020, Blundell et al., 2015] and ensemble tech-
niques[Lakshminarayanan et al., 2017, Gal and Ghahramani,
2016]. However, multiple forward passes at the test time are
required by most of these methods. In other words, these
methods suffer heavy memory and computation cost, which
limits their adoption in real-world applications.

Recently, uncertainty quantification via single forward-pass
neural networks, which has similar latency as a single de-
terministic network, has recently received lots of attention
[Liu et al., 2020, van Amersfoort et al., 2021, Gillioz et al.,
2020]. SNGP [Liu et al., 2020] replaces the dense output
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Figure 1: Uncertainty heat map of LRFormer and baseline approaches on the two moons 2D classification benchmark.
Orange and blue points are positive and negative training samples respectively. Background color visualizes the predictive
uncertainty of each model, where yellow stands for confidence and blue indicates uncertainty. The proposed LRFormer
(Figure 1(d)) achieves the closest to ideal uncertainty quantification on this benchmark. Detail refer to Subsection 4.4.

layer with a Gaussian Process (GP) layer and applies Spec-
tral Normalization (SN) [Miyato et al., 2018] to the hidden
residual layers. DUE [van Amersfoort et al., 2021] builds
upon GPDNN [Bradshaw et al., 2017] and introduces ad-
ditional constraints to the feature extractor in the form of
residual connections in combination with SN [Miyato et al.,
2018]. These methods perform well on uncertainty estima-
tion. However, they only focus on bounding the Lipschitz
constants of certain CNN modules i.e., convolution and
batch normalization [Ioffe and Szegedy, 2015] layers. More-
over, according to Lee et al. [2021], Transformer blocks are
very sensitive to the magnitude of Lipschitz constant, and
if SN is employed in self-attention modules, training will
progress extremely slowly. Although some newest proposed
Transformer architectures have been proved to be Lipschitz
continuous [Qi et al., 2023, Kim et al., 2021, Dasoulas et al.,
2021, Xu et al., 2023, Gupta and Verma, 2023], they still
have not solved the overconfidence problem of Transformer.

To address the aforementioned issues, we contribute as fol-
lows:

• We propose a novel regularization technique, termed
Lipschitz Regularized Self-Attention (LRSA), that ad-
dresses distance awareness in both Lipschitzness and
Contraction. LRSA replaces the dot product similarity
with the distance within Banach Space and normalizes
the term by a theoretical bound of the Lipschitz con-
stant. Furthermore, we provide the theoretical analysis
of how our method achieves these properties.

• We develop the LRSA based Transformer called LR-

Former1, which integrates distance-preserving hidden
mappings in transformer blocks via LRSA and utilizes
an optional Gaussian Process (GP) distance-aware out-
put layer for high-quality uncertainty estimation.

• We conduct extensive experiments on widely used
OOD benchmarks, including CIFAR-10/-100 versus
SVHN and CIFAR-10/-100 versus CIFAR-100/-10.
Compared to state-of-the-art approaches, our exper-
imental results demonstrate that the proposed LR-
Former model is superior in terms of prediction, cali-
bration, and uncertainty estimation, with minimal time
complexity penalty.

2 PROBLEM STATEMENT

In the supervised multi-class classification setting, assume a
data sample (x, y) ∈ X × Y is sampled from an unknown
distribution, where Y = {1, . . . ,K} denote the label space
with K classes and X = Rd denote the feature space. A
learned classifier fθ: X → ∆K can produce a probability
distribution for x on K classes, where ∆K is the K − 1
dimensional unit simplex. In this context, we introduce a
former definition of overconfidence for a general classifier.

Definition 2.1 (Overconfidence). Assume fθ as a com-
position of a non-probabilistic K-way classifier hθ and
a softmax function σ, i.e. fθ = hθ ◦ σ. Given a test
data sample x,fθ provides its probability of assigning it

to label i as
exp(hθ

i (x))∑K
k=1 exp(hθ

k(x))
, where hθ

i (x) denotes the

1https://github.com/SZCHAI/LRFormer

https://github.com/SZCHAI/LRFormer
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Figure 2: By breaking down a Transformer Layer into its
fundamental components, including GeLU Activation, MLP
Layer, LayerNorm, and the Attention Module, we gain a
comprehensive understanding of their individual contribu-
tions to the analysis of Lipschitzness in Transformers. De-
tailed analysis can be found in Section 3.3.

i-th element of the logit vector produced by hθ. Then,
ŷ := argmaxi f

θ
i (x) can be returned as the predicted label

and p̂ := maxj ̸=y f
θ
j (x) can be treated as the confidence

score. Overconfidence appears when the prediction is wrong
with high probability.

Based on Definition 2.1, the logit vector can be decom-
posed into two components: h(x) = ||h(x)|| · ˆh(x), where
||h(x)|| is the L2-norm of the logit vector and ˆh(x) is the
unit vector in the same direction as h(x). These two terms
represent the magnitude and direction of the logit vector,
respectively. It is evident that if argmaxk(hk) = c, then
argmaxk(γhk) = c always holds for any given constant
value γ > 1. This indicates that the magnitude of the logit
vector does not affect the predicted class c. Additionally,
for any given scalar γ > 1, if c = argmaxk(hk), then
σc(γh) ≥ σc(h). From the above claims, we observe that
increasing the magnitude ||h(x)|| will lead to a higher soft-
max confidence score while leaving the final prediction

unchanged.

During optimization, the cross-entropy loss is given as:

LCE(h(x; θ), y) = − log p(y | x) = − log
e∥h∥·ĥy∑k
i=1 e

∥h∥·ĥi

While the direction ˆh(x) remains constant, increasing the
magnitude will lead to a smaller p(y | x). In the standard
Transformer, optimization on the training loss leads to an
increase in the magnitude of the network output to produce
a higher softmax confidence score, resulting in a smaller
loss.

Lipschitzness can help a classifier tackle the overconfidence
issue by limiting the amount of change in the classifier’s out-
put when the input is perturbed slightly. When a classifier is
overconfident, it tends to assign high confidence to incorrect
predictions, which can result in poor performance on unseen
data. However, if the classifier is Lipschitz continuous, then
the amount of change in its output is limited when the input
is perturbed, which can prevent the classifier from making
overly confident predictions on Out-of-Distribution (OOD)
samples.

Definition 2.2 (Lipschitz Continuity). Lipschitz constant of
a function f is an upper bound on the ratio between the out-
put and the input variations of a function f . If L ∈ [0,+∞)
is such that, for every input x ∈ Rd and perturbation
∆x ∈ Rd,

∥f(x+∆x)− f(x)∥p ⩽ L∥∆x∥p (1)

then L is a Lipschitz constant of f . ∥ · ∥p denotes the p-
norm. If X is defined as the ϵ-ball at point x, i.e., X ′ =
{x′ | ∥x− x′∥ ⩽ ϵ}, then L is the local Lipschitz constant
of f at x.

Furthermore, the Lipschitz condition can be extended to
the Bi-Lipschitz condition. Given any two input samples
x1, x2 and a non-probabilistic K-way classifier hθ, the Bi-
Lipschitz condition can be defined as:

L1∥x1 − x2∥ ≤ ∥hθ(x1)− hθ(x2)∥ ≤ L2∥x1 − x2∥ (2)

where ∥.∥ is a semantically meaningful distance for the
data manifold for positive and bounded Lipschitz constants
0 < L1 < 1 < L2. These bounds L1, L2 represent sensi-
tivity and smoothness conditions which prevents the hidden
representations hθ(x) from being unnecessarily invariant to
the semantically meaningful changes in the input manifold
or being overly sensitive to the semantically meaningless
perturbations respectively.

Dot-Product Self-Attention is a fundamental building block
of the Transformer model. It enables the model to focus



on the most relevant parts of the input sequence by weigh-
ing the contribution of each input vector to the output, as
given by the equation Attention(X) = S(X) · V (X) =

softmax
(

Q·K⊤
√
dk

)
· V (X). This mechanism can be further

generalized by incorporating a similarity function that mea-
sures the relevance between input vectors [Katharopoulos
et al., 2020]. While several similarity functions, such as the
cosine similarity [Qi et al., 2023] or the scaled dot product,
have been used in the original formulation, they may not
be optimal for all scenarios. Therefore, in this paper, we
explore the use of a Lipschitz similarity function to miti-
gate overconfidence issues in the Transformer. We present
a method for constructing a suitable Lipschitz similarity
function and demonstrate its effectiveness in improving the
robustness and accuracy of the model.

Attention(xi,xj) = softmax

(
sim(xi,xj)√

dk

)
· V (3)

Our method aims to maintain a reasonable Lipschitz con-
stant at the block level in order to address the issue of over-
confidence in neural networks. While other methods, such
as Bayesian approaches and label smoothing [Müller et al.,
2019], have been proposed to tackle overconfidence, our
method incorporates block-wise control. By constraining
the Lipschitz constant at each block in the Transformer,
we can limit the growth of the magnitude of the network
output and reduce overconfidence. This block-wise design
also allows our method to be easily integrated into various
Transformer-based architectures, including those that have
undergone large-scale pretraining. As a result, our method
can be scaled up to handle a wide range of tasks and datasets.

3 OUR METHOD

3.1 NOTATIONS AND SETUP

• S(i) := diag (Si:)− S⊤
i: , Si: ∈ RN×N .

• Binary Matrix with one in the (i, j) the entry and zeros
elsewhere: Eij ∈ RN×N

• Kronecker delta: δij ∈ {0, 1}

• (∞, 2)-norm: ∥M∥(∞,2) = maxi

(∑
j M

2
ij

)1/2

• Frobenius norm: ∥M∥F =
(∑

i,j M
2
ij

)1/2

• Lipschitz constant LX,Y(f): for a function f : X → Y,
LX,Y(f) = supX∈X ∥∂f(X)

∂X ∥X,Y

3.2 LIPSCHITZ REGULARIZATION ON SELF
ATTENTION

Kim et al. [2021] proved that the Scaled Dot-Product Self-
Attention does not satisfy the bi-Lipschitz condition. To

extend the generality of self-attention with high-quality
uncertainty estimation, we propose a new regularization
method Lipschitz Regularized on Self Attention (LRSA)
by replacing the self-attention function with a contractive
Bi-Lipschitz expression without losing the original ability
of representation. We will explicitly discuss separate aspects
to see how to achieve both Lipschitzness and Contraction in
our method.

3.2.1 Lipschitzness

Given that Dot-Product Self-Attention is not Lipschitz, sup-
pose there exists such mapping f(X), X ∈ RN :

f(X) = S ·X = softmax(aX ·X⊤) ·X =

 f1(X)
...

fN (X)


Its Jacobian Matrix is Jf = [Jij ]N×N , each entry can be
written as:

Jij = aX⊤S(i) [EjiX + δijX] + SijI ∈ RN×1

Thus for i = j:

Jii = aX⊤S(i)EiiX + aX⊤S(i)X + Sii (4)

X⊤S(i)X is in the form of a variance of a discrete distribu-
tion. When xi = 0 for some i, some entries of the Jacobian
of f grow proportionally to the sample variance of x ̸=i.(The
softmax probabilities Si: are constant with respect to x ̸=i

when xi = 0.) This will lead to an unbounded Jacobian
matrix.

To avoid this pathology, we replace Q · K⊤ by
sim(xi,xj) = −∥x⊤

i Q− x⊤
j K∥22 in Attention(X). Here,

the new similarity measurement lies on the Banach Space
(complete vector space with norm ∥ · ∥), which is a more
generalized space over Hilbert Space (complete inner prod-
uct space) [Megginson, 2012]. This modification also gives
a strong theoretical guarantee on Lipschitzness with easy
matrix multiplications during training.

3.2.2 Contraction

Contraction of the Scaled Dot-Product Self-Attention is
another crucial issue for achieving well-calibrated uncer-
tainty. Deriving such contraction scalar requires a theoretical
lower bound of Lipschitz constant on the Dot-Product Self-
Attention function. A desirable contraction scalar could be
non-strict but easy to compute during training.

Theorem 3.1 (Dasoulas et al. [2021]). For α ≥ 0, if g̃ is
Lipschitz and for all X ∈ Rd×n, and g̃ satisfy the following
conditions:

1. ∥g̃(X)∥∞ ⩽ αc(X),



2. ∥X⊤∥(∞,2)∥∂g̃(X)
∂X ∥F,(2,∞) ⩽ αc(X),

3. ∥X⊤∥(∞,2)∥∂c(X)
∂X ∥F,1∥g̃(X)∥(2,∞) ⩽ αc(X)2,

where c is a scalar function c : Rd×n → R+. Then g(X) is
Lipschitz:

g(X) =
αg̃(X)

max
{
∥g̃(X)∥(2,∞), ∥X⊤∥(∞,2) LF,(2,∞)(g̃)

}
(5)

Inspired by 3.1, we introduce a proper regularization scalar
function with a Scalar Factor α by replacing g̃(X) with
Q ·K⊤:

c(X) =
α

∥Q∥F · ∥X⊤∥(∞,2)
(6)

Here, we assign it as a hyperparameter in control of the
corresponding Lipschitz constants for proper contraction of
the attention block. Small alpha results in a loss of infor-
mation while a large alpha causes the model tending to be
non-Lipschitz.

3.2.3 Summary

Here is the formal definition of the similarity function:

Sij := b · c(X) = −
α∥x⊤

i WQ − x⊤
j WK∥22

∥Q∥F · ∥X⊤∥(∞,2)
(7)

This pair-wise operation can alternatively be implemented
as a matrix version for improved computational efficiency:

S(X) = softmax(−α· ∥Q∥2row − 2QK⊤ + ∥K∥2⊤col

∥Q∥F · ∥X⊤∥(∞,2)
) (8)

LRSA Attention can be represented by the expression
LRSA(X) = S(X) · V (X), where S(X) denotes the simi-
larity scores and V (X) represents the value embeddings. In
the following section, we define the Lipschitz Constant of
S(X) as LLRSA. From Supplementary Material, we can con-

clude that LLRSA is bounded by 6α
∥X∥F

· (∥WQ∥2+∥WK∥2)

∥WQ∥F

2
.

3.3 BOTTOM-UP ANALYSIS ON LRFORMER

Analysis on Lipschitzness of GeLU Activation

GeLU [Hendrycks and Gimpel, 2016] is the most commonly
used activation function in Transformers, especially the GPT
series of models and Vision Transformers. GeLU’s activa-
tion function form is GeLU(x) = xΦ(x), where Φ(x) is
the standard Gaussian cumulative distribution function. The
derivative of GeLU is given as:

Figure 3: GeLU g(x) and the derivative of GeLU g′(x).

GeLU′(x) =
xe−

x2

2

√
2π

+
erf( x√

2
)

2
+

1

2
(9)

,where erf(x) = 2√
π

∫ x

0
e−t2dt. The second derivative of

GeLU is:

GeLU′′(x) =
1√
2π

((1 +
√
2) · e− x2

2 − x2e−
x2

2 ) (10)

Compared with ReLU, GeLU is differentiable at zero and
keeps the Lipschitz continuous. The Lipschitz constant
of GeLU is the value of x from max(GeLU′(x)). Let
GeLU′′(x) = 0, we can verify max(GeLU′(x)) ≈ 1.129.

Analysis on Lipschitzness of LayerNorm

The raw LayerNorm operation (LN(x) = x−µ(x)√
σ2(x)

∗ γ +

β) [Ba et al., 2016] is not Lipschitz continuous because the
ill-defined input with zero variance will lead to a Jacobian
matrix filled with infinity.

However, the LayerNorm operation can be changed to a
Lipschitz continuous form, which is the LayerNorm used in
our models. The form can be expressed as:

LayerNorm(x) =
x− µ(x)√
σ2(x) + ϵ

∗ γ + β (11)

where x,β,γ ∈ RN , µ(x) = 1
N

∑N
i=1 xi, σ2(x) =

1
N

∑N
i=1(xi − µ(x))2.

From Supplementary Material, we can conclude that Layer-
Norm is Lipschitz with the constant η = ϵ−

1
2 maxi |γi|N .

Analysis on Lipschitzness of MLP Layer

In each Transformer block, the Attention Module is typically
followed by the Multi-Layer Perceptron (MLP) Layer. The
MLP layer consists of two Fully Connected (FC) Layers, a
Dropout Layer and a GeLU activation function. Since the
Dropout Layer has no impact on the Lipschitz constance, it
can be simplified as:

MLP(x) = FC2 ◦GeLU ◦FC1(x) (12)



The upper bound on the Lipschitz constant of a fully-
connected layer can be derived by analyzing the effect of
each layer independently and considering a product of the
resulting spectral norms σ(·) [Miyato et al., 2018].

LMLP = 1.129 · σ(W1) · σ(W2) (13)

Lipschitz Constant of LRFormer Layer

In the LRFormer, we analyze the LRFormer Layer to demon-
strate our method follows the Lipschitzness. Each LRFormer
Layer can be expressed as:

LRFormeri(x) = LayerNorm(LayerNorm(x+ LRSA(x))

+MLP(LayerNorm(x+ LRSA(x))))
(14)

Combined with the previous analysis, we conclude the fol-
lowing Lipschitz bound of a single LRFormer layer:

LLayer = η1 · η2 · ((1 + LLRSA)

+ 1.129 · σ(W1) · σ(W2) · (1 + LLRSA))
(15)

, where η1, η2 are the Lipschitz Constant of two Layer-
Norms.

4 EXPERIMENTS

In this section, we verify the effectiveness of LRFormer
in OOD detection with several benchmark datasets. We
also design ablation experiments including attention mod-
ule comparison, searching for a proper scalar factor α and
validating the reliability of pretrained models.

4.1 SETUP

4.1.1 Benchmarks

We evaluate the performance of the proposed LRFormer
model on the OOD benchmark [Miyato et al., 2018] using
SVHN [Netzer et al., 2011] as the OOD dataset for the
model trained on CIFAR-10/-100 [Krizhevsky et al., 2009].
OOD data is never seen during training, whereas ID sam-
ples are semantically similar to training samples. We also
show LRFormer’s performance on the Two Moons dataset
in Figure 1.

4.1.2 Baselines

Our baselines included the deterministic model and two
ensemble models: MC Dropout (with 10 dropout samples)
and deep ensembles (with 10 models) [Lakshminarayanan
et al., 2017]. All models were trained with a dense output
layer and no spectral regularization. Besides, we also com-
pared with three single-model approaches: MCD-GP (with

10 samples), DUQ [Van Amersfoort et al., 2020], DUE [van
Amersfoort et al., 2021], and SNGP series [Liu et al., 2020]
including DNN-SN and DNN-GP. For models that use a
GP layer, we kept DL = 1024 and computed the predictive
distribution using Monte Carlo averaging with 10 samples.
For fair comparison, we set the backbone with the same
parameter magnitude (19.9M parameters for LRFormer, and
36.5M for SNGP series).

4.1.3 Evaluation Metrics

Expected Calibration Error (ECE) [Guo et al., 2017] quanti-
fies the difference between a model’s expected confidence
(e.g., the maximum probability score) and its actual accu-
racy. It achieves this by partitioning all the samples, with n
representing the total number of samples, into M equally
sized bins based on their confidence scores, then calculating
the expected difference between accuracy and the average
confidence in each bin. In our task, ECE can indicate the
effectiveness of the model in dealing with overconfidence.

In addition to ECE, we employ Negative Log Likelihood
(NLL), OOD Area Under the Receiver Operating Character-
istic Curve (AUROC), and OOD Area Under the Precision-
Recall Curve (AUPR) to evaluate the model’s performance
in overconfidence and uncertainty estimation ability.

4.1.4 Implementation Details

In the following experiments, we resize input image to
224 × 224 pixels and set the patch size of LRFormer to
16. We employ AdamW [Loshchilov and Hutter, 2017] as
the optimizer with a weight decay of 0.05. We use a cosine
learning rate scheduler [Loshchilov and Hutter, 2016] with
the base learning rate set to 5×10−5. All models are trained
for 100 epochs with 10 different random seeds on NVIDIA
A100 GPUs.

4.2 COMPARISON WITH STATE-OF-THE-ART
MODELS

Following Touvron et al. [2022], we adopt an existing train-
ing setup, namely the A3 procedure of Wightman et al.
[2021]. We adjust the learning rate of the A3 procedure
when training LRFormer. In our experiments, we set the
learning rate to 0.006 for LRFormer when pretraining and
0.004 while finetuning on CIFAR-10/-100. Besides, Differ-
ent from previous unfair comparison methods [Fort et al.,
2021, Xue et al., 2022, Cao and Zhang, 2022], pretrained
models from the extra datasets and few-shot outlier exposure
settings are not used during training.

To evaluate the model’s OOD detection performance, we
adopt the two OOD tasks suggested by SNGP: (1) using
SVHN as the OOD dataset for a model trained on CIFAR-



Method Accuracy (↑) ECE (↓) NLL (↓) OOD AUPR (↑)
SVHN CIFAR-100

Deterministic∗ 96.0 ± 0.01 0.023 ± 0.002 0.158 ± 0.01 0.781 ± 0.01 0.835 ± 0.01
MC Dropout∗ 96.0 ± 0.01 0.021 ± 0.002 0.173 ± 0.01 0.971 ± 0.01 0.832 ± 0.01

MCD-GP∗ 95.5 ± 0.02 0.024 ± 0.004 0.172 ± 0.01 0.960 ± 0.01 0.863 ± 0.01
DNN-SN∗ 96.0 ± 0.01 0.025 ± 0.004 0.171 ± 0.01 0.974 ± 0.01 0.859 ± 0.01
DNN-GP∗ 95.9 ± 0.02 0.029 ± 0.002 0.221 ± 0.02 0.976 ± 0.01 0.887 ± 0.01

DUQ∗ 94.7 ± 0.02 0.034 ± 0.002 0.239 ± 0.02 0.973 ± 0.01 0.854 ± 0.01
DUE∗ 95.6 ± 0.04 0.018 ± 0.002 0.187 ± 0.01 - -

SNGP∗ 95.9 ± 0.01 0.018 ± 0.001 0.138 ± 0.01 0.990 ± 0.01 0.905 ± 0.01
Deep Ensemble∗† 96.6 ± 0.01 0.010 ± 0.001 0.114 ± 0.01 0.964 ± 0.01 0.888 ± 0.01

LRFormer 97.2 ± 0.01 0.012 ± 0.001 0.100 ± 0.01 0.993 ± 0.01 0.911 ± 0.01

Table 1: Comparison between proposed LRFormer and SOTA methods on CIFAR-10 vs SVHN/CIFAR-100 benchmarks,
averaged over 10 seeds. The best method among single-network approaches is highlighted in bold. ∗Results from the
original papers. † with 10 models.

Method Accuracy (↑) ECE (↓) NLL (↓) OOD AUPR (↑)
SVHN CIFAR-10

Deterministic∗ 79.8 ± 0.02 0.085 ± 0.004 0.872 ± 0.01 0.882 ± 0.01 0.745 ± 0.01
MC Dropout∗ 79.6 ± 0.02 0.050 ± 0.003 0.825 ± 0.01 0.832 ± 0.01 0.757 ± 0.01

MCD-GP∗ 79.5 ± 0.04 0.085 ± 0.005 0.937 ± 0.01 0.873 ± 0.01 0.754 ± 0.01
DNN-SN∗ 79.9 ± 0.02 0.098 ± 0.004 0.918 ± 0.01 0.879 ± 0.03 0.745 ± 0.01
DNN-GP∗ 79.2 ± 0.03 0.064 ± 0.005 0.885 ± 0.01 0.876 ± 0.01 0.746 ± 0.02

DUQ∗ 78.5 ± 0.03 0.119 ± 0.001 0.980 ± 0.02 0.878 ± 0.01 0.732 ± 0.01
SNGP∗ 79.9 ± 0.03 0.025 ± 0.012 0.847 ± 0.01 0.923 ± 0.01 0.801 ± 0.01

Deep Ensemble∗† 80.2 ± 0.01 0.021 ± 0.004 0.666 ± 0.02 0.888 ± 0.01 0.780 ± 0.01

LRFormer 85.2 ± 0.03 0.018 ± 0.005 0.538 ± 0.01 0.955 ± 0.01 0.777 ± 0.01

Table 2: Comparison between proposed LRFormer and the SOTA methods on CIFAR-100 vs SVHN and CIFAR-100 vs
CIFAR-10 benchmark, averaged over 10 seeds. The best method among single-network approaches is highlighted in bold.
∗Results from the original papers. † with 10 models.

Method ECE (↓) NLL (↓)

DP Attention [Vaswani et al., 2017] 0.066 0.580
L2 Attention [Kim et al., 2021] 0.048 0.582

SCSA [Qi et al., 2023] 0.028 0.626
LRSA 0.018 0.538

Table 3: Overconfident evaluation comparison among dif-
ferent attention module. The backbone are the same except
for the kernel. We compare the checkpoint when the accu-
racy achieve 0.85± 0.01 with CIFAR-100. Note, we select
the best hyper-parameter for SCSA (ν = 1.0, τ = 12, ϵ =
1e− 8)

10/-100; (2) using CIFAR-100/-10 as the OOD dataset for
a model trained on CIFAR-10/-100, respectively. Table 1
and Table 2 show the main comparison results. LRFormer
outperforms the other single forward pass approaches in all
the metrics of CIFAR-10 and most of the metrics of CIFAR-
100. Moreover, LRFormer also achieves similar results to
Deep Ensemble, which contains 10 models and requires

α Accuracy (↑) NLL (↓)

1 0.5637 ± 0.01 1.7063 ± 0.02
100 0.6601 ± 0.02 1.3712 ± 0.01
500 0.6404 ± 0.01 1.4041 ± 0.03
1000 0.6212 ± 0.02 1.4259 ± 0.01

Table 4: Effect of α in LRSA with CIFAR-100

around 10× as much time to execute as LRFormer and
other single forward pass approaches.

4.3 ABLATION STUDY

4.3.1 Attention Blocks

To validate the ability to solve overconfidence issues of
Transformer, we compare the LRSA with the scale dot-
product attention, L2 attention and the scaled cosine sim-
ilarity attention (SCSA) using overconfidence evaluation
metrics. In Table3, we show the best Test ECE and NLL



Dataset Pretained Accuracy (↑) NLL (↓) OOD AUROC (↑) OOD AUPR (↑)

CIFAR-10
W/O 0.8528 ± 0.01 0.4447 ± 0.02 0.8500 ± 0.01 0.9078 ± 0.02
W/ 0.8616 ± 0.01 0.4193 ± 0.01 0.9125 ± 0.02 0.9499 ± 0.01

CIFAR-100
W/O 0.6404 ± 0.01 1.4041 ± 0.03 0.8421 ± 0.01 0.9165 ± 0.01
W/ 0.6679 ± 0.01 1.2122 ± 0.02 0.8689 ± 0.01 0.9319 ± 0.01

Table 5: Ablation study between with (W/) and without (W/O) pre-trained weights from ImageNet-1K dataset. The best
method among single-network approaches is highlighted in bold. ↓ means lower is better. ↑ means higher is better.

Dataset Method Accuracy (↑) NLL (↓) OOD AUROC (↑) OOD AUPR (↑)

CIFAR-10

Transformer 0.8592 ± 0.01 0.6972 ± 0.02 0.7552 ± 0.05 0.8521 ± 0.02
DUE + Transformer 0.8556 ± 0.03 0.5337 ± 0.02 0.8348 ± 0.04 0.8921 ± 0.01

SNGP + Transformer 0.8542 ± 0.02 0.4933 ± 0.01 0.8275 ± 0.03 0.8960 ± 0.01

LRFormer 0.8528 ± 0.02 0.4447 ± 0.01 0.8500 ± 0.05 0.9078 ± 0.01

CIFAR-100

Transformer 0.6304 ± 0.02 1.7862 ± 0.01 0.7831 ± 0.02 0.8701 ± 0.02
SNGP + Transformer 0.6298 ± 0.03 1.5413 ± 0.01 0.8134 ± 0.01 0.8929 ± 0.01

LRFormer 0.6404 ± 0.02 1.4041 ± 0.02 0.8421 ± 0.01 0.9165 ± 0.01

Table 6: Ablation study between the proposed LRFormer and existing uncertainty quantification methods with the same
training backbone on the CIFAR-10/-100 vs SVHN benchmark. The best method among single-network approaches is
highlighted in bold. ↓ means lower is better. ↑ means higher is better.

across training for each of the Transformer models. The gen-
eralisation performance of the best model for each setting
of self-attention is similar.

We find that L2 attention, SCSA, LRSA works well under
Lipschitz guarantee. Meanwhile, LRSA works better than
the SCSA and L2 attention.

4.3.2 Hyperparameter Analysis

The Scalar Factor α in Equation (6) controls the scale
of the Lipschitz constant of the Transformer blocks. In
general, we propose running a grid search for α ∈
{..., 100, 500, 1000, ...} to find the highest possible value of
α while retaining the predictive performance of LRFormer.
In our experiments (Table5), we set scalar factor α = 1000
in CIFAR-10, and α = 500 in CIFAR-100. The model’s per-
formance is not very sensitive to the parameters in the GP
output layer, we follow Liu et al. [2020]’s suggestion and
set the number of random features to 1024, the length-scale
for the RBF kernel to 2, and the L2 regularization to 0. A
proper α value, i.e. 100, can preserve both the Lipschitzness
and Contraction properties in the model. Small alpha will
cause loss of information while large alpha will cause the
model tending to be non-Lipschitz, leading to degenerate
performance.

4.3.3 Module Comparison

In this section, we compare LRFormer and other OOD de-
tection methods (using Transformer backbone) under the
uncertainty estimation setting. We use a depth 6 shallow
layer Transformer to conduct this experiments. For Trans-
former baseline model, we take the predictive entropy as
uncertainty. For SNGP + Transformer, the entropy of the
average of the Monte Carlo softmax samples is used as un-
certainty. We do not compare with DUE for the CIFAR-100
dataset, as its training does not converge. SGD is used as
the optimizer with the initial learning rate set to 0.01. All
models are trained with batch size 128.

The accuracy, NLL, AUROC, AUPR results are shown in
Table 6. The AUROC metric indicates the quality of uncer-
tainty, since it measures the probability that in-distribution
(ID) and OOD samples can be separated [Mukhoti et al.,
2021]. From the results, we have the following observations:

(1) For OOD detection, The proposed LRFormer model out-
performs all other methods with Transformer backbone on
both CIFAR-10 vs SVHN and CIFAR-100 vs SVHN bench-
marks. This superior OOD detection performance bene-
fits from the proposed LRSA regularization method, which
solves both Lipschitzness and contraction problems in dot-
product self attention layers, and enables distance preserving
mapping in Transformer blocks.

(2) Notably, the superior performance in OOD is achieved
without sacrificing LRFormer’s predictive performance. On
the contrary, LRFormer even outperforms standard Trans-



former baseline in terms of classifications accuracy on the
CIFAR-10 dataset, making LRFormer achieve the best per-
formance in terms of all the metrics compared with all other
single-network methods.

(3) Furthermore, the proposed LRSA self-attention can be
computed efficiently using matrix operations, with minimal
overhead compared to the original dot-product self-attention.
This ensures LRFormer’s performance gains come without
compromising computation cost.

4.3.4 Pre-training

The recent work Plex [Tran et al., 2022] comprehensively
validated the reliability of the large pretrained models. The
high performance of Transformer results from pre-training
on large-size datasets such as ImageNet-21K, and LAION-
5B[Schuhmann et al., 2022]. It performs worse than CNNs
if trained from scratch on small-size dataset. We use a depth
6 shallow layer Transformer to conduct pretrained weight
experiments. The pretrained weights are loaded from stan-
dard Transformer, sharing the same weight schemes of MLP
layers and position embedding layer. This is because these
layers in LRFormer have the same structure as the standard
Transformer, so pre-trained weights can be directly applied
to them. Our experiments in Table 5 show that LRFormer
can also benefit from these pre-trained weights.

In summary, pre-trained weights of models can be directly
transferred to LRFormer, which is very convenient for real-
world applications.

4.4 VISUALIZATION

In order to show the interpretability of our model, we visu-
alize the uncertainty heat map generated by LRFormer to-
gether with the baseline methods on the two moons 2D clas-
sification benchmark, which consists of two moon-shaped
data clusters separable by a non-linear decision boundary.
We employ a tiny Transformer architecture for this task, in
which the depth is set to 9, the hidden dimension is set to
24 and the number of heads is set to 8.

The uncertainty heat map comparisons are shown in Figure
1. Background color visualizes the predictive uncertainty of
each model, where yellow stands for confidence and blue
indicates uncertainty. All methods achieve 100% test accu-
racy. From the results, we can observe that Deep Ensemble
(Figure 1(a)) estimates its uncertainty based on how far
away test samples are from the decision boundary, with-
out take the data distribution into consideration. In Figure
1(b), we can see that DUE without restrictions in the fea-
ture extractor, produces similar predictive uncertainty to
Deep Ensemble which is heavily influenced by the distance
from the decision boundary. Although SNGP can make al-
lowances for data distribution, the decision boundary still

has an impact on the uncertainty estimation. The proposed
LRFormer model, on the other hand, achieves near-ideal
uncertainty quantification of this benchmark thanks to its
bi-Lipschitz constraint in the LRSA self-attention layers,
which allows it to maintain better distance awareness.

5 CONCLUSION

In this paper, we present LRSA, a regularization method
designed to address overconfidence issues in Transformer
structure models. By enforcing Bi-Lipschitz constraints and
self-attention mapping contractions with theoretical guaran-
tees, LRSA encourages the model to generate conservative
predictions for out-of-distribution (OOD) inputs, thereby
improving its ability to separate in-distribution (ID) data.

Our approach primarily focuses on the attention mechanism
of the Transformer architecture, which is a powerful and
widely-used component in various natural language process-
ing and vision tasks. Moving forward, it would be beneficial
to extend our approach to incorporate these other modules
within the Transformer architecture. Exploring how differ-
ent combinations of modules can be leveraged to enhance
performance across various tasks represents a promising
avenue for future research. Additionally, investigating the re-
lationship between Lipschitz regularity and other regulariza-
tion techniques, including weight decay, dropout, and label
smoothing, would provide valuable insights. Although these
techniques have demonstrated effectiveness in preventing
overfitting and improving generalization, their connection
to Lipschitz regularity is not yet well-understood. Gaining
a deeper understanding of this relationship could unlock
insights into the inner workings of deep learning models
and potentially lead to further performance improvements.

In conclusion, our proposed LRSA method addresses over-
confidence issues in Transformer structure models by en-
couraging conservative predictions for OOD inputs. While
our focus has been on the attention mechanism, future re-
search directions involve incorporating other modules, ex-
ploring the relationship between Lipschitz regularity and
other regularization techniques, and expanding LRFormer’s
applicability to diverse models and domains. These efforts
contribute to advancing the field of deep learning and im-
proving the robustness and performance of state-of-the-art
models.
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