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Abstract

Retrieval augmented generation (RAG) is a
popular framework for question answering
that is powered by two large language mod-
els (LLMs): an embedding model that retrieves
context documents from a database that are rele-
vant to a given question, and a generator model
that uses the retrieved context to generate an
answer to the question. Both the embedding
and generator models can be fine-tuned to in-
crease performance of a RAG pipeline on a
new task, but multiple fine-tuning strategies
exist with different costs and benefits. In this
paper, we evaluate and compare several RAG
fine-tuning strategies, including independent,
joint, and two-phase fine-tuning. In our exper-
iments, we observe that all of these strategies
achieve about equal improvement in EM and F1
generation quality metrics, although they have
significantly different computational costs. We
conclude the optimal fine-tuning strategy to
use depends on whether the training dataset in-
cludes context labels and whether a grid search
over the learning rates for the embedding and
generator models is required.

1 Introduction

Retrieval augmented generation (RAG) is a popu-
lar framework for NLP tasks like question answer-
ing. RAG is powered by two LLMs: an embed-
ding model that retrieves context documents from
a database that are relevant to a given question, and
a generator model that uses the retrieved context
documents to generate an answer to the question.
Both the embedding model and generator model
can be fine-tuned to improve the end-to-end per-
formance of a RAG pipeline. Given a dataset of
(question, context) pairs, the embedding model can
be fine-tuned to retrieve more relevant context docu-
ments for a given question. This requires a training
dataset with context labels, i.e., where each ques-
tion is paired with one or more relevant context
documents from the database. Given a dataset of

(question, context, answer) triplets, where the con-
text is either provided as part of the training dataset
as context labels or retrieved from the database
using a baseline embedding model, the generator
model can be fine-tuned to increase the likelihood
of generating the correct answer given the question
and relevant context documents.

Although the embedding and generator mod-
els can be fine-tuned independently, fine-tuning
both models jointly with an end-to-end fine-tuning
method such as RAG-Token or RAG-Sequence
(Lewis et al., 2020) may yield equal or better end-
to-end performance without the need for context
labels. Additionally, we consider a two-phase fine-
tuning strategy that uses RAG-Token to first fine-
tune the generator model while holding the embed-
ding model frozen, then fine-tunes the embedding
model while holding the generator model frozen.

The choice of learning rate used for fine-tuning
may significantly affect the end-to-end perfor-
mance of the RAG pipeline, and the optimal choice
of learning rate for the embedding and generator
models may be different. We use a grid search to
find a suitable choice of learning rates.

In this paper, we compare independent, joint, and
two-phase fine-tuning and find they all achieve sim-
ilar end-to-end performance when using a suitable
choice of learning rates. Based on our experimental
results, we make the following conclusions:

* Independent fine-tuning is the least compu-
tationally expensive strategy, and so should
be used when possible. However, this strat-
egy can only be used if the training dataset
includes context labels.

¢ If context labels are not available, but a suit-
able choice of learning rate for the embed-
ding and generator models is already known,
then joint fine-tuning should be used since it
is less computationally expensive than two-
phase fine-tuning.



@=>{gf>®

(a) Fine-tune the embedding model using context labels.
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(c) Freeze the embedding model while fine-tuning the gener-
ator model with RAG-Token or RAG-Sequence.
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(b) Freeze the generator model while fine-tuning the embed-
ding model with either RAG-Token or RAG-Sequence.
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(d) Fine-tune the embedding and generator models jointly
with RAG-Token or RAG-Sequence.

Figure 1: RAG fine-tuning strategy subprocesses. Each of the RAG fine-tuning strategies discussed in this paper
uses a combination of these subprocesses. Key: Question, Context, Answer, Embedding model, Generator model.

* If context labels are not available and a suit-
able choice of learning rates for the embed-
ding and generator models is unknown, then
two-phase fine-tuning should be used while
performing independent grid searches over the
learning rates for the embedding and genera-
tor models.

2 Fine-tuning Strategies

2.1 Embedding Model Fine-tuning

The embedding model of a RAG pipeline can be
fine-tuned to retrieve more relevant context docu-
ments given a dataset of (question, context) pairs
by minimizing the distance (or maximizing the
similarity) between the embedding vectors of each
(question, context) pair. This method is illustrated
in Figure 1a. Note that the embedding vectors of
the context documents are held frozen in the pre-
computed vector database, so that only the embed-
ding vectors of the questions are updated. There
are many different options for the choice of loss
function to minimize, including contrastive loss
(Hadsell et al., 2006), multiple negatives ranking
loss (Henderson et al., 2017), and the GISTEmbed
loss (Solatorio, 2024) using either cosine similar-
ity or Lo distance as the distance metric. Cached
variants (Gao et al., 2021) of these methods exist
that allow for effectively much larger batch sizes
without increased GPU memory usage. In our ex-

periments, we use cosine similarity as the distance
metric and multiple negatives ranking loss without
caching with batch size 8 as the loss function.

2.2 Generator Model Fine-tuning

The generator model can be fine-tuned by minimiz-
ing the negative log-likelihood of the answer given
the question and relevant context documents. In
our experiments, we always fine-tune the generator
model using context retrieved by a baseline embed-
ding model rather than context labels. This is equiv-
alent to the "frozen embedding" fine-tuning process
illustrated in Figure 1c. In our experiments, we fine-
tune the generator model with QLoRA (Dettmers
et al., 2023; Hu et al., 2022) using LoRA rank 16
and 4-bit quantization.

2.3 Joint Fine-tuning

The embedding and generator models can be fine-
tuned jointly by fine-tuning the RAG pipeline end-
to-end with either RAG-Token or RAG-Sequence
(Lewis et al., 2020), illustrated in Figure 1d. Both
these methods optimize an objective that is fully
differentiable with respect to both the embedding
model and generator model’s parameters by ap-
proximating the RAG pipeline with a simplified
probability model; the two methods differ only in
the approximation they make. Instead of using
context labels, these methods use context retrieved
by the embedding model to fine-tune the generator



model, and reward the embedding model for retriev-
ing context documents that actually improve the
generator model’s prediction for the answer. In our
experiments, we use full fine-tuning for the embed-
ding model and QLoRA for the generator model.
We fine-tune using two learning rates: one for the
embedding model’s parameters, and the other for
the generator model’s parameters.

2.4 Two-Phase Fine-tuning

We also consider a two-phase fine-tuning strategy
that uses RAG-Token to first fine-tune the generator
model while holding the embedding model frozen
as in Figure lc, then fine-tunes the embedding
model while holding the generator model frozen as
in Figure 1b. As in joint fine-tuning, we fine-tune
using two learning rates.

2.5 Learning Rate Grid Search

Using a suitable choice of learning rate is important
for maximizing end-to-end performance for each
fine-tuning strategy. In order to find a near-optimal
choice of learning rate, we perform a grid search
over the learning rate for each experiment. Perform-
ing this grid search is computationally inexpensive
for strategies that fine-tune only either the embed-
ding model or generator model: we simply repeat
the experiment for each grid value, then keep only
the result that achieves the best end-to-end valida-
tion performance. The grid search is also computa-
tionally inexpensive when fine-tuning both models
independently or with the two-phase strategy, since
the grid search can be performed independently for
the embedding and generator models. However,
jointly optimizing over the learning rates for the
embedding and generator models is much more
computationally expensive. Instead, in our joint
fine-tuning experiments, we use the same learning
rates as those discovered by the grid search for the
two-phase fine-tuning strategy.

3 Experiments

Here we evaluate and compare the performance
of the RAG fine-tuning strategies described in the
previous section for four RAG pipelines, each con-
sisting of either an MPNet (Reimers and Gurevych,
2019) or MiniLM (Reimers and Sanseviero, 2021)
embedding model and either a LLaMA-3-8b-
Instruct (AI@Meta, 2024) or Mistral-7b-Instruct-
v0.1 (Jiang et al., 2023) generator model. We
fine-tune and evaluate on two datasets: HotPotQA
(Yang et al., 2018) and PopQA (Mallen et al., 2022).

Our retrieval system uses the embedding model to
retrieve the top & = 5 most relevant documents
from Wikipedia'. We use the same chunking of
Wikipedia as Xiong et al. (2024), which contains
29.9M chunks. We construct a vector database
from the corpus using a FAISS index (Johnson
et al., 2019). Each experiment was conducted on a
node with 8 NVIDIA A10 GPUs.

To minimize the computational expense of our
experiments, in each experiment we fine-tune for
only 1 epoch (for the two-phase strategy, each
model is fine-tuned for 1 epoch). To find near-
optimal choices of learning rates, we perform a
grid search over values between 10~® and 1074,
with grid values separated roughly by factors of 3:
specifically, 1078,3x1078,1077,3x 1077, 107,
3x107%,107°,3 x 1075, and 10~%.

3.1 Results

The results of our experiments are in Table 3 and
illustrated in Figure 2. Each cell shows the valida-
tion exact match (EM), F1 metric, and Recall@5
for each experiment, averaged over the four RAG
pipelines described at the beginning of this section.
"No Ft." is the baseline RAG pipeline with no fine-
tuning. "Ft. Embed." fine-tunes only the embed-
ding model using context labels and the multiple
negatives ranking loss. "Ft. Gen." fine-tunes only
the generator model. "Indp." combines the indepen-
dently fine-tuned embedding and generator models
from "Ft. Embed." and "Ft. Gen." "2-Phase" is the
two-phase fine-tuning strategy. "RAG-Seq." and
"RAG-Tok." fine-tune the embedding and genera-
tor models jointly with RAG-Sequence and RAG-
Token, respectively.

Comparing the "Baseline", "Ft. Embed.", and
"Ft. Gen." experiments, we observe that fine-tuning
the generator model alone significantly improves
EM and F1 scores and that fine-tuning the embed-
ding alone significantly improves Recall @5, with
downstream benefits for EM and F1. We also ob-
serve that fine-tuning the generator model is much
more computationally expensive than fine-tuning
the embedding model using context labels. This is
because the generator model is much larger than
the embedding model, and so the latency of a sin-
gle forward pass is much higher for the generator
model than for the embedding model.

Comparing "Ft. Embed." to "2-Phase", "RAG-
Seq.", and "RAG-Tok.", we observe that fine-

"https://huggingface.co/datasets/legacy-
datasets/wikipedia
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Figure 2: Validation performance metrics and time to fine-tune for different fine-tuning strategies, averaged across
all four RAG pipelines and both HotPotQA and PopQA datasets.

Method HotPotQA PopQA
EM F1 Recall@5 Time(h) | EM F1 Recall@5 Time (h)
No Ft. 10.3 198 19.1 0.0 12.6 18.6 17.4 0
Ft. Embed. | 11.1 20.8 214 3.5 18.2 26.6 30.8 0.4
Ft. Gen. 284 394 19.1 23.8 32.1 347 17.4 2.9
Indp. 29.3 40.2 214 27.4 40.6 43.2 30.8 32
2-Phase 30.0 41.3 25.1 61.0 41.0 43.7 33.3 94
RAG-Seq. | 29.1 40.2 24.0 49.2 414 44.1 32.8 7.9
RAG-Tok. | 29.5 40.8 24.3 49.3 41.6 444 33.1 8.0

Figure 3: HotPotQA and PopQA validation performance metrics after fine-tuning and time to fine-tune for different
fine-tuning strategies, averaged across all four RAG pipelines.

tuning the embedding model using context labels
may achieve worse Recall@5 compared to the end-
to-end methods that do not use context labels. How-
ever, it may be possible to improve the results for
our "Ft. Embed." experiment by using the cached
variant of the multiple negatives ranking loss and
increasing the batch size.

We observe that "Indp.", "2-Phase", "RAG-
Sequence", and "RAG-Token" all achieve about the
same EM and F1 scores. This suggests these strate-
gies are about equally effective for fine-tuning a
RAG pipeline. However, the strategies have signif-
icantly different computational cost: independent
fine-tuning is the least expensive, followed by joint
fine-tuning with RAG-Sequence or RAG-Token,
followed by the two-phase fine-tuning strategy.

4 Conclusion

In this paper, we compared various strategies for
fine-tuning the embedding and generator models
of a RAG pipeline. From our experiments with
four different RAG pipelines on HotPotQA and
PopQA, we observed that independent, joint, and
two-phase fine-tuning are all about equally effec-
tive for fine-tuning a RAG pipeline. While indepen-
dent fine-tuning is computationally less expensive,
joint fine-tuning and two-phase fine-tuning have the
benefit of not requiring context labels to perform
fine-tuning. In addition, two-phase fine-tuning al-
lows for a more efficient hyperparameter search for
the embedding and generator model learning rates
compared to joint fine-tuning.



Limitations

In order to maximize the end-to-end performance
of each fine-tuning strategy, we used a grid search
to find near-optimal choices of the learning rates
for the embedding and generator models. However,
it may be possible to further increase end-to-end
performance by additionally performing hyperpa-
rameter optimizations over the number of training
epochs and the training batch size. In particular, it
may be possible to improve the end-to-end perfor-
mance achieved in the "Ft. Embed." experiments,
which fine-tune the embedding model by optimiz-
ing the multiple negatives ranking loss, by increas-
ing the training batch size to a number much larger
than 8.

We perform our fine-tuning experiments using
a basic RAG pipeline setup. However, more com-
plex RAG pipelines are common in practice, e.g.,
pipelines that perform context document re-ranking
after the document retrieval step, or pipelines that
perform multiple document retrieval steps to an-
swer multi-hop questions. It remains unclear how
introducing these complexities to the RAG pipeline
might impact the effectiveness of each of the fine-
tuning strategies discussed in this paper.
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A Prompt

In all experiments, we use the following prompt for
the generative model to generate an answer given a
question and concatenated context documents.

prompt = """You are a helpful general \
knowledge expert. Answer the following \
question using the relevant context. Use \
as few words as possible.

### Context:
{context}

### Question:
{question}

### Answer:

nnn



Model Name # Params
MiniLM 22.7TM
MPNet 109M
Mistral-7b 7.24B
LLaMA3-8b 8.03B

Figure 4: Number of parameters in each model used in this paper.

Embed. Gen. Method HotPotQA
Model Model EM F1 Recall@5 Time(h) Embed. LR Gen. LR
No Ft. 153 24.6 19.5 0.0 N/A N/A
Ft. Embed | 16.5 26.0 21.3 1.5 1E-06 N/A
Ft. Gen | 299 412 19.5 21.8 N/A 1E-05
MiniLM | LLaMA3-8b Indp. 30.5 41.7 21.3 23.3 1E-06 1E-05
2-Phase | 30.8 42.4 23.7 35.2 3E-08 1E-05
RAG-Seq. | 27.8 38.5 22.9 459 3E-08 1E-05
RAG-Tok. | 30.0 414 23.2 46.0 3E-08 1E-05
No Ft. 55 152 19.5 0.0 N/A N/A
Ft. Embed | 6.2 15.7 21.3 1.5 1E-06 N/A
Ft. Gen | 26.8 37.5 19.5 24.6 N/A 1E-05
MiniLM | Mistral-7b Indp. 279 385 21.3 26.1 1E-06 1E-05
2-Phase | 27.7 38.7 23.0 36.6 3E-08 1E-05
RAG-Seq. | 27.5 384 22.6 499 3E-08 1E-05
RAG-Tok. | 26.8 37.3 22.3 49.8 3E-08 1E-05
No Ft. 15.1 245 18.6 0.0 N/A N/A
Ft. Embed | 16.0 25.9 21.5 5.5 1E-06 N/A
Ft. Gen | 29.8 41.0 18.6 22.9 N/A 3E-06
MPNet | LLaMA3-8b Indp. 30.7 41.8 21.5 28.4 1E-06 3E-06
2-Phase | 30.8 42.4 23.7 35.2 3E-08 3E-06
RAG-Seq. | 31.8 43.7 25.7 48.7 3E-08 3E-06
RAG-Tok. | 31.9 44.0 26.4 49.1 3E-08 3E-06
No Ft. 54 15.0 18.6 0.0 N/A N/A
Ft. Embed | 5.7 15.6 21.5 5.5 1E-06 N/A
Ft. Gen | 27.2 37.8 18.6 26.0 N/A 1E-05
MPNet Mistral-7b Indp. 279 38.5 21.3 26.1 1E-06 1E-05
2-Phase | 27.7 38.7 23.0 36.6 3E-08 1E-05
RAG-Seq. | 31.8 43.7 25.7 48.7 3E-08 1E-05
RAG-Tok. | 31.9 44.0 26.4 49.1 3E-08 1E-05

Figure 5: HotPotQA validation performance metrics after fine-tuning, time to fine-tune, and learning rates used for
different fine-tuning strategies and RAG pipelines.



Embed. Gen. Method PopQA
Model Model EM F1 Recall@5 Time(h) Embed. LR Gen. LR
No Ft. 17.3 234 17.9 0.0 N/A N/A
Ft. Embed | 23.6 31.1 28.5 0.1 1E-05 N/A
Ft. Gen | 34.6 374 17.9 2.5 N/A 1E-05
MiniLM | LLaMA3-8b Indp. 40.8 43.7 28.5 2.6 1E-05 1E-05
2-Phase | 41.1 44.0 30.7 6.3 3E-07 1E-05
RAG-Seq. | 40.6 43.6 30.1 7.2 3E-07 1E-05
RAG-Tok. | 41.8 44.3 30.9 7.3 3E-07 1E-05
No Ft. 89 153 17.9 0.0 N/A N/A
Ft. Embed | 12.1 20.4 28.5 0.1 1E-05 N/A
Ft. Gen | 309 334 17.9 2.7 N/A 3E-05
MiniLM | Mistral-7b Indp. 37.5 40.5 28.5 2.8 1E-05 3E-05
2-Phase | 38.6 41.5 31.3 6.5 3E-08 3E-05
RAG-Seq. | 39.5 423 30.6 7.7 3E-08 3E-05
RAG-Tok. | 399 424 314 7.8 3E-08 3E-05
No Ft. 16.0 21.6 16.9 0.0 N/A N/A
Ft. Embed | 25.1 33.4 33.1 0.6 3E-05 N/A
Ft. Gen | 33.6 36.1 16.9 3.0 N/A 1E-04
MPNet | LLaMA3-8b Indp. 43.0 455 33.1 3.5 3E-05 1E-04
2-Phase | 41.1 44.0 30.7 6.3 3E-07 1E-04
RAG-Seq. | 44.0 46.5 354 8.1 3E-07 1E-04
RAG-Tok. | 42.4 46.1 35.2 8.1 3E-07 1E-04
No Ft. 82 142 16.9 0.0 N/A N/A
Ft. Embed | 12.0 21.2 33.1 0.6 3E-05 N/A
Ft. Gen | 29.2 319 16.9 33 N/A 3E-05
MPNet Mistral-7b Indp. 37.5 405 28.5 2.8 3E-05 3E-05
2-Phase | 38.6 41.5 31.3 6.5 3E-07 3E-05
RAG-Seq. | 44.0 46.5 354 8.1 3E-07 3E-05
RAG-Tok. | 42.4 46.1 35.2 8.1 3E-07 3E-05

Figure 6: PopQA validation performance metrics after fine-tuning, time to fine-tune, and learning rates used for

different fine-tuning strategies and RAG pipelines.
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