
A Comparison of Independent and Joint Fine-tuning Strategies for
Retrieval-Augmented Generation

Anonymous ACL submission

Abstract001

Retrieval augmented generation (RAG) is a002
popular framework for question answering003
that is powered by two large language mod-004
els (LLMs): an embedding model that retrieves005
context documents from a database that are rele-006
vant to a given question, and a generator model007
that uses the retrieved context to generate an008
answer to the question. Both the embedding009
and generator models can be fine-tuned to in-010
crease performance of a RAG pipeline on a011
new task, but multiple fine-tuning strategies012
exist with different costs and benefits. In this013
paper, we evaluate and compare several RAG014
fine-tuning strategies, including independent,015
joint, and two-phase fine-tuning. In our exper-016
iments, we observe that all of these strategies017
achieve about equal improvement in EM and F1018
generation quality metrics, although they have019
significantly different computational costs. We020
conclude the optimal fine-tuning strategy to021
use depends on whether the training dataset in-022
cludes context labels and whether a grid search023
over the learning rates for the embedding and024
generator models is required.025

1 Introduction026

Retrieval augmented generation (RAG) is a popu-027

lar framework for NLP tasks like question answer-028

ing. RAG is powered by two LLMs: an embed-029

ding model that retrieves context documents from030

a database that are relevant to a given question, and031

a generator model that uses the retrieved context032

documents to generate an answer to the question.033

Both the embedding model and generator model034

can be fine-tuned to improve the end-to-end per-035

formance of a RAG pipeline. Given a dataset of036

(question, context) pairs, the embedding model can037

be fine-tuned to retrieve more relevant context docu-038

ments for a given question. This requires a training039

dataset with context labels, i.e., where each ques-040

tion is paired with one or more relevant context041

documents from the database. Given a dataset of042

(question, context, answer) triplets, where the con- 043

text is either provided as part of the training dataset 044

as context labels or retrieved from the database 045

using a baseline embedding model, the generator 046

model can be fine-tuned to increase the likelihood 047

of generating the correct answer given the question 048

and relevant context documents. 049

Although the embedding and generator mod- 050

els can be fine-tuned independently, fine-tuning 051

both models jointly with an end-to-end fine-tuning 052

method such as RAG-Token or RAG-Sequence 053

(Lewis et al., 2020) may yield equal or better end- 054

to-end performance without the need for context 055

labels. Additionally, we consider a two-phase fine- 056

tuning strategy that uses RAG-Token to first fine- 057

tune the generator model while holding the embed- 058

ding model frozen, then fine-tunes the embedding 059

model while holding the generator model frozen. 060

The choice of learning rate used for fine-tuning 061

may significantly affect the end-to-end perfor- 062

mance of the RAG pipeline, and the optimal choice 063

of learning rate for the embedding and generator 064

models may be different. We use a grid search to 065

find a suitable choice of learning rates. 066

In this paper, we compare independent, joint, and 067

two-phase fine-tuning and find they all achieve sim- 068

ilar end-to-end performance when using a suitable 069

choice of learning rates. Based on our experimental 070

results, we make the following conclusions: 071

• Independent fine-tuning is the least compu- 072

tationally expensive strategy, and so should 073

be used when possible. However, this strat- 074

egy can only be used if the training dataset 075

includes context labels. 076

• If context labels are not available, but a suit- 077

able choice of learning rate for the embed- 078

ding and generator models is already known, 079

then joint fine-tuning should be used since it 080

is less computationally expensive than two- 081

phase fine-tuning. 082

1

E CQ

(a) Fine-tune the embedding model using context labels.

AQ

Docs

E(Q)

Q,C

C

E G

(b) Freeze the generator model while fine-tuning the embed-
ding model with either RAG-Token or RAG-Sequence.

AQ

Docs

E(Q)

Q,C

C

E G

(c) Freeze the embedding model while fine-tuning the gener-
ator model with RAG-Token or RAG-Sequence.

AQ

Docs

E(Q)

Q,C

C

GE

(d) Fine-tune the embedding and generator models jointly
with RAG-Token or RAG-Sequence.

Figure 1: RAG fine-tuning strategy subprocesses. Each of the RAG fine-tuning strategies discussed in this paper
uses a combination of these subprocesses. Key: Question, Context, Answer, Embedding model, Generator model.

• If context labels are not available and a suit-083

able choice of learning rates for the embed-084

ding and generator models is unknown, then085

two-phase fine-tuning should be used while086

performing independent grid searches over the087

learning rates for the embedding and genera-088

tor models.089

2 Fine-tuning Strategies090

2.1 Embedding Model Fine-tuning091

The embedding model of a RAG pipeline can be092

fine-tuned to retrieve more relevant context docu-093

ments given a dataset of (question, context) pairs094

by minimizing the distance (or maximizing the095

similarity) between the embedding vectors of each096

(question, context) pair. This method is illustrated097

in Figure 1a. Note that the embedding vectors of098

the context documents are held frozen in the pre-099

computed vector database, so that only the embed-100

ding vectors of the questions are updated. There101

are many different options for the choice of loss102

function to minimize, including contrastive loss103

(Hadsell et al., 2006), multiple negatives ranking104

loss (Henderson et al., 2017), and the GISTEmbed105

loss (Solatorio, 2024) using either cosine similar-106

ity or L2 distance as the distance metric. Cached107

variants (Gao et al., 2021) of these methods exist108

that allow for effectively much larger batch sizes109

without increased GPU memory usage. In our ex-110

periments, we use cosine similarity as the distance 111

metric and multiple negatives ranking loss without 112

caching with batch size 8 as the loss function. 113

2.2 Generator Model Fine-tuning 114

The generator model can be fine-tuned by minimiz- 115

ing the negative log-likelihood of the answer given 116

the question and relevant context documents. In 117

our experiments, we always fine-tune the generator 118

model using context retrieved by a baseline embed- 119

ding model rather than context labels. This is equiv- 120

alent to the "frozen embedding" fine-tuning process 121

illustrated in Figure 1c. In our experiments, we fine- 122

tune the generator model with QLoRA (Dettmers 123

et al., 2023; Hu et al., 2022) using LoRA rank 16 124

and 4-bit quantization. 125

2.3 Joint Fine-tuning 126

The embedding and generator models can be fine- 127

tuned jointly by fine-tuning the RAG pipeline end- 128

to-end with either RAG-Token or RAG-Sequence 129

(Lewis et al., 2020), illustrated in Figure 1d. Both 130

these methods optimize an objective that is fully 131

differentiable with respect to both the embedding 132

model and generator model’s parameters by ap- 133

proximating the RAG pipeline with a simplified 134

probability model; the two methods differ only in 135

the approximation they make. Instead of using 136

context labels, these methods use context retrieved 137

by the embedding model to fine-tune the generator 138

2

model, and reward the embedding model for retriev-139

ing context documents that actually improve the140

generator model’s prediction for the answer. In our141

experiments, we use full fine-tuning for the embed-142

ding model and QLoRA for the generator model.143

We fine-tune using two learning rates: one for the144

embedding model’s parameters, and the other for145

the generator model’s parameters.146

2.4 Two-Phase Fine-tuning147

We also consider a two-phase fine-tuning strategy148

that uses RAG-Token to first fine-tune the generator149

model while holding the embedding model frozen150

as in Figure 1c, then fine-tunes the embedding151

model while holding the generator model frozen as152

in Figure 1b. As in joint fine-tuning, we fine-tune153

using two learning rates.154

2.5 Learning Rate Grid Search155

Using a suitable choice of learning rate is important156

for maximizing end-to-end performance for each157

fine-tuning strategy. In order to find a near-optimal158

choice of learning rate, we perform a grid search159

over the learning rate for each experiment. Perform-160

ing this grid search is computationally inexpensive161

for strategies that fine-tune only either the embed-162

ding model or generator model: we simply repeat163

the experiment for each grid value, then keep only164

the result that achieves the best end-to-end valida-165

tion performance. The grid search is also computa-166

tionally inexpensive when fine-tuning both models167

independently or with the two-phase strategy, since168

the grid search can be performed independently for169

the embedding and generator models. However,170

jointly optimizing over the learning rates for the171

embedding and generator models is much more172

computationally expensive. Instead, in our joint173

fine-tuning experiments, we use the same learning174

rates as those discovered by the grid search for the175

two-phase fine-tuning strategy.176

3 Experiments177

Here we evaluate and compare the performance178

of the RAG fine-tuning strategies described in the179

previous section for four RAG pipelines, each con-180

sisting of either an MPNet (Reimers and Gurevych,181

2019) or MiniLM (Reimers and Sanseviero, 2021)182

embedding model and either a LLaMA-3-8b-183

Instruct (AI@Meta, 2024) or Mistral-7b-Instruct-184

v0.1 (Jiang et al., 2023) generator model. We185

fine-tune and evaluate on two datasets: HotPotQA186

(Yang et al., 2018) and PopQA (Mallen et al., 2022).187

Our retrieval system uses the embedding model to 188

retrieve the top k = 5 most relevant documents 189

from Wikipedia1. We use the same chunking of 190

Wikipedia as Xiong et al. (2024), which contains 191

29.9M chunks. We construct a vector database 192

from the corpus using a FAISS index (Johnson 193

et al., 2019). Each experiment was conducted on a 194

node with 8 NVIDIA A10 GPUs. 195

To minimize the computational expense of our 196

experiments, in each experiment we fine-tune for 197

only 1 epoch (for the two-phase strategy, each 198

model is fine-tuned for 1 epoch). To find near- 199

optimal choices of learning rates, we perform a 200

grid search over values between 10−8 and 10−4, 201

with grid values separated roughly by factors of 3: 202

specifically, 10−8, 3×10−8, 10−7, 3×10−7, 10−6, 203

3× 10−6, 10−5, 3× 10−5, and 10−4. 204

3.1 Results 205

The results of our experiments are in Table 3 and 206

illustrated in Figure 2. Each cell shows the valida- 207

tion exact match (EM), F1 metric, and Recall@5 208

for each experiment, averaged over the four RAG 209

pipelines described at the beginning of this section. 210

"No Ft." is the baseline RAG pipeline with no fine- 211

tuning. "Ft. Embed." fine-tunes only the embed- 212

ding model using context labels and the multiple 213

negatives ranking loss. "Ft. Gen." fine-tunes only 214

the generator model. "Indp." combines the indepen- 215

dently fine-tuned embedding and generator models 216

from "Ft. Embed." and "Ft. Gen." "2-Phase" is the 217

two-phase fine-tuning strategy. "RAG-Seq." and 218

"RAG-Tok." fine-tune the embedding and genera- 219

tor models jointly with RAG-Sequence and RAG- 220

Token, respectively. 221

Comparing the "Baseline", "Ft. Embed.", and 222

"Ft. Gen." experiments, we observe that fine-tuning 223

the generator model alone significantly improves 224

EM and F1 scores and that fine-tuning the embed- 225

ding alone significantly improves Recall@5, with 226

downstream benefits for EM and F1. We also ob- 227

serve that fine-tuning the generator model is much 228

more computationally expensive than fine-tuning 229

the embedding model using context labels. This is 230

because the generator model is much larger than 231

the embedding model, and so the latency of a sin- 232

gle forward pass is much higher for the generator 233

model than for the embedding model. 234

Comparing "Ft. Embed." to "2-Phase", "RAG- 235

Seq.", and "RAG-Tok.", we observe that fine- 236

1https://huggingface.co/datasets/legacy-
datasets/wikipedia

3

0

10

20

30

40

50

No Ft. Ft. Embed. Ft. Gen. Indp. 2-Phase RAG-Seq. RAG-Tok.

EM F1 Recall@5 Time (h)

Figure 2: Validation performance metrics and time to fine-tune for different fine-tuning strategies, averaged across
all four RAG pipelines and both HotPotQA and PopQA datasets.

Method
HotPotQA PopQA

EM F1 Recall@5 Time (h) EM F1 Recall@5 Time (h)
No Ft. 10.3 19.8 19.1 0.0 12.6 18.6 17.4 0

Ft. Embed. 11.1 20.8 21.4 3.5 18.2 26.6 30.8 0.4
Ft. Gen. 28.4 39.4 19.1 23.8 32.1 34.7 17.4 2.9

Indp. 29.3 40.2 21.4 27.4 40.6 43.2 30.8 3.2
2-Phase 30.0 41.3 25.1 61.0 41.0 43.7 33.3 9.4

RAG-Seq. 29.1 40.2 24.0 49.2 41.4 44.1 32.8 7.9
RAG-Tok. 29.5 40.8 24.3 49.3 41.6 44.4 33.1 8.0

Figure 3: HotPotQA and PopQA validation performance metrics after fine-tuning and time to fine-tune for different
fine-tuning strategies, averaged across all four RAG pipelines.

tuning the embedding model using context labels237

may achieve worse Recall@5 compared to the end-238

to-end methods that do not use context labels. How-239

ever, it may be possible to improve the results for240

our "Ft. Embed." experiment by using the cached241

variant of the multiple negatives ranking loss and242

increasing the batch size.243

We observe that "Indp.", "2-Phase", "RAG-244

Sequence", and "RAG-Token" all achieve about the245

same EM and F1 scores. This suggests these strate-246

gies are about equally effective for fine-tuning a247

RAG pipeline. However, the strategies have signif-248

icantly different computational cost: independent249

fine-tuning is the least expensive, followed by joint250

fine-tuning with RAG-Sequence or RAG-Token,251

followed by the two-phase fine-tuning strategy.252

4 Conclusion 253

In this paper, we compared various strategies for 254

fine-tuning the embedding and generator models 255

of a RAG pipeline. From our experiments with 256

four different RAG pipelines on HotPotQA and 257

PopQA, we observed that independent, joint, and 258

two-phase fine-tuning are all about equally effec- 259

tive for fine-tuning a RAG pipeline. While indepen- 260

dent fine-tuning is computationally less expensive, 261

joint fine-tuning and two-phase fine-tuning have the 262

benefit of not requiring context labels to perform 263

fine-tuning. In addition, two-phase fine-tuning al- 264

lows for a more efficient hyperparameter search for 265

the embedding and generator model learning rates 266

compared to joint fine-tuning. 267

4

Limitations268

In order to maximize the end-to-end performance269

of each fine-tuning strategy, we used a grid search270

to find near-optimal choices of the learning rates271

for the embedding and generator models. However,272

it may be possible to further increase end-to-end273

performance by additionally performing hyperpa-274

rameter optimizations over the number of training275

epochs and the training batch size. In particular, it276

may be possible to improve the end-to-end perfor-277

mance achieved in the "Ft. Embed." experiments,278

which fine-tune the embedding model by optimiz-279

ing the multiple negatives ranking loss, by increas-280

ing the training batch size to a number much larger281

than 8.282

We perform our fine-tuning experiments using283

a basic RAG pipeline setup. However, more com-284

plex RAG pipelines are common in practice, e.g.,285

pipelines that perform context document re-ranking286

after the document retrieval step, or pipelines that287

perform multiple document retrieval steps to an-288

swer multi-hop questions. It remains unclear how289

introducing these complexities to the RAG pipeline290

might impact the effectiveness of each of the fine-291

tuning strategies discussed in this paper.292

References293

AI@Meta. 2024. Llama 3 model card.294

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and295
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning296
of quantized llms. Advances in neural information297
processing systems, 36:10088–10115.298

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.299
2021. Scaling deep contrastive learning batch300
size under memory limited setup. arXiv preprint301
arXiv:2101.06983.302

Raia Hadsell, Sumit Chopra, and Yann Lecun. 2006.303
Dimensionality reduction by learning an invariant304
mapping. pages 1735 – 1742.305

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-306
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-307
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-308
cient natural language response suggestion for smart309
reply. arXiv preprint arXiv:1705.00652.310

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan311
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,312
Weizhu Chen, and 1 others. 2022. Lora: Low-rank313
adaptation of large language models. ICLR, 1(2):3.314

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-315
sch, Chris Bamford, Devendra Singh Chaplot, Diego316

de las Casas, Florian Bressand, Gianna Lengyel, Guil- 317
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 318
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 319
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 320
and William El Sayed. 2023. Mistral 7b. Preprint, 321
arXiv:2310.06825. 322

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 323
Billion-scale similarity search with GPUs. IEEE 324
Transactions on Big Data, 7(3):535–547. 325

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 326
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 327
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 328
täschel, and 1 others. 2020. Retrieval-augmented 329
generation for knowledge-intensive nlp tasks. Ad- 330
vances in Neural Information Processing Systems, 331
33:9459–9474. 332

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, 333
Daniel Khashabi, and Hannaneh Hajishirzi. 2022. 334
When not to trust language models: Investigating 335
effectiveness of parametric and non-parametric mem- 336
ories. arXiv preprint arXiv:2212.10511. 337

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 338
Sentence embeddings using siamese bert-networks. 339
In Proceedings of the 2019 Conference on Empirical 340
Methods in Natural Language Processing. Associa- 341
tion for Computational Linguistics. 342

Nils Reimers and Omar Sanseviero. 2021. Sen- 343
tence transformers in the hugging face hub. 344
https://huggingface.co/blog/sentence-transformers- 345
in-the-hub. 346

Aivin V Solatorio. 2024. Gistembed: Guided in-sample 347
selection of training negatives for text embedding 348
fine-tuning. arXiv preprint arXiv:2402.16829. 349

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and 350
Aidong Zhang. 2024. Benchmarking retrieval- 351
augmented generation for medicine. arXiv preprint 352
arXiv:2402.13178. 353

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 354
William Cohen, Ruslan Salakhutdinov, and Christo- 355
pher D. Manning. 2018. HotpotQA: A dataset for 356
diverse, explainable multi-hop question answering. 357
In Proceedings of the 2018 Conference on Empiri- 358
cal Methods in Natural Language Processing, pages 359
2369–2380, Brussels, Belgium. Association for Com- 360
putational Linguistics. 361

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

A Prompt362

In all experiments, we use the following prompt for363

the generative model to generate an answer given a364

question and concatenated context documents.365

prompt = """You are a helpful general \366

knowledge expert. Answer the following \367

question using the relevant context. Use \368

as few words as possible.369

370

Context:371

{context}372

373

Question:374

{question}375

376

Answer:377

"""378

6

Model Name # Params
MiniLM 22.7M
MPNet 109M

Mistral-7b 7.24B
LLaMA3-8b 8.03B

Figure 4: Number of parameters in each model used in this paper.

Embed. Gen.
Method

HotPotQA
Model Model EM F1 Recall@5 Time(h) Embed. LR Gen. LR

MiniLM LLaMA3-8b

No Ft. 15.3 24.6 19.5 0.0 N/A N/A
Ft. Embed 16.5 26.0 21.3 1.5 1E-06 N/A

Ft. Gen 29.9 41.2 19.5 21.8 N/A 1E-05
Indp. 30.5 41.7 21.3 23.3 1E-06 1E-05

2-Phase 30.8 42.4 23.7 35.2 3E-08 1E-05
RAG-Seq. 27.8 38.5 22.9 45.9 3E-08 1E-05
RAG-Tok. 30.0 41.4 23.2 46.0 3E-08 1E-05

MiniLM Mistral-7b

No Ft. 5.5 15.2 19.5 0.0 N/A N/A
Ft. Embed 6.2 15.7 21.3 1.5 1E-06 N/A

Ft. Gen 26.8 37.5 19.5 24.6 N/A 1E-05
Indp. 27.9 38.5 21.3 26.1 1E-06 1E-05

2-Phase 27.7 38.7 23.0 36.6 3E-08 1E-05
RAG-Seq. 27.5 38.4 22.6 49.9 3E-08 1E-05
RAG-Tok. 26.8 37.3 22.3 49.8 3E-08 1E-05

MPNet LLaMA3-8b

No Ft. 15.1 24.5 18.6 0.0 N/A N/A
Ft. Embed 16.0 25.9 21.5 5.5 1E-06 N/A

Ft. Gen 29.8 41.0 18.6 22.9 N/A 3E-06
Indp. 30.7 41.8 21.5 28.4 1E-06 3E-06

2-Phase 30.8 42.4 23.7 35.2 3E-08 3E-06
RAG-Seq. 31.8 43.7 25.7 48.7 3E-08 3E-06
RAG-Tok. 31.9 44.0 26.4 49.1 3E-08 3E-06

MPNet Mistral-7b

No Ft. 5.4 15.0 18.6 0.0 N/A N/A
Ft. Embed 5.7 15.6 21.5 5.5 1E-06 N/A

Ft. Gen 27.2 37.8 18.6 26.0 N/A 1E-05
Indp. 27.9 38.5 21.3 26.1 1E-06 1E-05

2-Phase 27.7 38.7 23.0 36.6 3E-08 1E-05
RAG-Seq. 31.8 43.7 25.7 48.7 3E-08 1E-05
RAG-Tok. 31.9 44.0 26.4 49.1 3E-08 1E-05

Figure 5: HotPotQA validation performance metrics after fine-tuning, time to fine-tune, and learning rates used for
different fine-tuning strategies and RAG pipelines.

7

Embed. Gen.
Method

PopQA
Model Model EM F1 Recall@5 Time(h) Embed. LR Gen. LR

MiniLM LLaMA3-8b

No Ft. 17.3 23.4 17.9 0.0 N/A N/A
Ft. Embed 23.6 31.1 28.5 0.1 1E-05 N/A

Ft. Gen 34.6 37.4 17.9 2.5 N/A 1E-05
Indp. 40.8 43.7 28.5 2.6 1E-05 1E-05

2-Phase 41.1 44.0 30.7 6.3 3E-07 1E-05
RAG-Seq. 40.6 43.6 30.1 7.2 3E-07 1E-05
RAG-Tok. 41.8 44.3 30.9 7.3 3E-07 1E-05

MiniLM Mistral-7b

No Ft. 8.9 15.3 17.9 0.0 N/A N/A
Ft. Embed 12.1 20.4 28.5 0.1 1E-05 N/A

Ft. Gen 30.9 33.4 17.9 2.7 N/A 3E-05
Indp. 37.5 40.5 28.5 2.8 1E-05 3E-05

2-Phase 38.6 41.5 31.3 6.5 3E-08 3E-05
RAG-Seq. 39.5 42.3 30.6 7.7 3E-08 3E-05
RAG-Tok. 39.9 42.4 31.4 7.8 3E-08 3E-05

MPNet LLaMA3-8b

No Ft. 16.0 21.6 16.9 0.0 N/A N/A
Ft. Embed 25.1 33.4 33.1 0.6 3E-05 N/A

Ft. Gen 33.6 36.1 16.9 3.0 N/A 1E-04
Indp. 43.0 45.5 33.1 3.5 3E-05 1E-04

2-Phase 41.1 44.0 30.7 6.3 3E-07 1E-04
RAG-Seq. 44.0 46.5 35.4 8.1 3E-07 1E-04
RAG-Tok. 42.4 46.1 35.2 8.1 3E-07 1E-04

MPNet Mistral-7b

No Ft. 8.2 14.2 16.9 0.0 N/A N/A
Ft. Embed 12.0 21.2 33.1 0.6 3E-05 N/A

Ft. Gen 29.2 31.9 16.9 3.3 N/A 3E-05
Indp. 37.5 40.5 28.5 2.8 3E-05 3E-05

2-Phase 38.6 41.5 31.3 6.5 3E-07 3E-05
RAG-Seq. 44.0 46.5 35.4 8.1 3E-07 3E-05
RAG-Tok. 42.4 46.1 35.2 8.1 3E-07 3E-05

Figure 6: PopQA validation performance metrics after fine-tuning, time to fine-tune, and learning rates used for
different fine-tuning strategies and RAG pipelines.

8

	Introduction
	Fine-tuning Strategies
	Embedding Model Fine-tuning
	Generator Model Fine-tuning
	Joint Fine-tuning
	Two-Phase Fine-tuning
	Learning Rate Grid Search

	Experiments
	Results

	Conclusion
	Prompt

