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Abstract
Machine unlearning is the process of removing the influence of some subset of the
training data from the parameters of a previously-trained model. Existing methods
typically require direct access to the “forget set" – the subset of training data to be
forgotten by the model. This limitation impedes privacy, as organizations need to
retain user data for the sake of unlearning when a request for deletion is made, rather
than being able to delete it immediately. We introduce RELOAD, an approximate
unlearning algorithm that leverages ideas from gradient-based unlearning and
neural network sparsity to achieve blind unlearning in settings of tabular data. The
method serially applies an ascent step with targeted parameter re-initialization and
fine-tuning, and on empirical unlearning tasks, RELOAD often approximates the
behaviour of a from-scratch retrained model better than approaches that leverage
the forget set. Empirical results highlight how RELOAD has the potential to improve
privacy-preserving machine learning in the tabular setting.

1 Introduction
Machine unlearning poses the problem of removing the influence of certain instances in the training
data on a given statistical model [4]. Motivated by “right to be forgotten" provisions [7], methods
in machine unlearning aim to provide efficient means to “forget" specific data points from a trained
model without requiring that it be retrained from scratch. Machine unlearning in the tabular data
regime remains under-explored – to our knowledge having been studied only in Warnecke et al. [23] –
despite being a common data modality on which effective unlearning may be desirable [13, 27]. As
larger models for tabular data become more prevalent [26, 14, 11], the need to unlearn specific data
instances without retraining from scratch is increasingly important.

Contemporary unlearning methods generally require explicit access to the so-called “forget set” – the
subset of training data to be forgotten by the model. For example, one approach entails performing
steps of gradient ascent on the loss landscape characterized by the forget set in order to remove
its influence on the model weights [22]. However, the reliance of these methods on the forget
set introduces a tension in the context of preserving user privacy: in order to enable unlearning,
organizations must retain the complete original set of user data on which the model was trained.
Retaining this data, even for the purpose of unlearning, can expose organizations and individuals to
risks associated with data breaches or unauthorized access. To bridge this gap, there is a clear need
for unlearning methods that operate without requiring access to the forget set.

This work presents an algorithm for tabular machine unlearning in the absence of an explicitly
defined forget set; a setting we establish as “blind unlearning.” Our method, RELOAD, assumes that
the modeller only has access to (a) a model trained on a dataset D, (b) the “retain set," Dretain ≜
D\Dforget, and (c) cached gradients from the last iteration of training on D. Notable in its absence
from these requirements is the forget set – this means that RELOAD allows the modeller to delete
instances in Dforget at the conclusion of model training without compromising his or her ability to
perform machine unlearning downstream.

Our work makes the following contributions. (1) We first introduce RELOAD, an algorithm for
machine unlearning that does not require access to the “forget set." (2) Using an established model of
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tabular data [1], we then demonstrate that RELOAD permits effective unlearning of data instances
in the tabular regime. (3) We extend our method to consider feature unlearning – e.g., sensitive
attributes that pertain to all samples in the data. We show how RELOAD permits feature unlearning,
and employ TabNet’s saliency weights to showcase how feature unlearning with RELOAD changes
the features to which the model attends at each decision step.

2 Background and Related Work
Let D = {(Xi, Yi)}i=1,...,N represent a collection of i.i.d. data, where X ∈ X represents input
covariates and Y ∈ Y represents labels for supervised learning. Then, for some class of models
M, let θ∗ represent the parameters that minimize the empirical loss with respect to training data D.
We denote an instantiation of M trained on D as M(θ∗). After M(θ∗) is trained, assume that some
information is removed from D to yield Dretain (e.g., deleting instances or features from D). Then,
θ∼ represents the parameters that minimize the empirical loss with respect to Dretain.

The goal of approximate unlearning methods like RELOAD is to efficiently learn an approximation
of M(θ∼). The classical setting assumes that the modeller has access to the trained model M(θ∗),
the training dataset D, the remaining data Dretain, and the forget set Dforget [5], whereas RELOAD
aims to remove the dependence on Dforget.

Machine Unlearning. Many existing approximate unlearning algorithms perform an optimization
procedure on M(θ∗) using the forget set Dforget and the retain set Dretain. One simple standard
approach applies gradient ascent on the loss with respect to Dforget, in order to undo the parameter
updates induced by those instances during training [12, 22]. Another gradient-based approach
leverages a teacher-student method: SCalable Remembering and Unlearning unBound (SCRUB)
distills a student model from a teacher trained on D, but the student learns to selectively disobey the
teacher by directly maximizing the loss on Dforget [16].

Weight Saliency-Based Approximate Unlearning. Another class of approximate unlearning meth-
ods derives from the hypothesis that identifiable substructures in neural networks often correspond
to different subsets of the training data [18]. These methods leverage ideas from neural sparsity
[10, 6] to perform unlearning on specific parameters. Saliency unlearning (SalUn) uses a threshold on
∇θL(Dforget) to identify parameters containing the most signal about Dforget and focuses model
updates on these parameters [8]. Selective Synaptic Dampening (SSD) [9] avoids gradient steps by
scaling parameters based on their Fisher Information Matrix importance scores.

3 The RELOAD Algorithm
RELOAD implements unlearning by using the gradients of the entire training set to identify weights
that most strongly correspond to items in the forget set. By selectively retraining these parameters,
RELOAD permits machine unlearning without requiring explicit access to the forget set. We argue
that preserving the summed gradients of the entire training set – which includes those of the forget
set – is a modest operation that can be performed at the conclusion of model training. Moreover, we
propose that these gradients do not permit recoverability of the data in question (see Appendix A.3).
Intuition for the algorithm is provided in Appendix A.2.

Direction of Movement. The challenge of blind unlearning is that taking repeated gradients of
L(Dforget) is impossible without access to Dforget. However, from cached gradients of D at the
conclusion of model training, ∇θL(D), we infer ∇θL(Dforget) by the linearity of differentiation,
∇θL(Dforget) = ∇θL(D) − ∇θL(Dretain). Therefore, a gradient-based descent update in the
direction of ∇θL(Dforget) moves the model parameters such that they better fit to Dforget; because
our goal is unlearning Dforget, RELOAD instead begins with a single ascent update in this direction.

Targeted Parameter Adjustments. As a single ascent step is not sufficient, we subsequently
re-initialize selected network parameters that contain a disproportionate amount of the necessary
information to characterize instances in Dforget. Consider the gradient ∇θkL(Dforget), the gradient
of the loss with respect to instances in Dforget and with respect to a particular parameter θk. If
this gradient is small, it means that θk is well-optimized for instances in Dforget. The relative
magnitude of ∇θkL(Dforget) to ∇θkL(D) is a meaningful representation of the extent to which
θk is responsible for characterizing information about Dforget. We call this the knowledge value

of parameter θk, and write KVθk ≜
|∇θk

L(Dforget)|+ϵ

|∇θk
L(D)|+ϵ =

|∇θk
L(D)−∇θk

L(Dretain)|+ϵ

|∇θk
L(D)|+ϵ , where ϵ is
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Figure 1: The RELOAD algorithm marries a gradient-based unlearning step modified for the blind unlearning
setting (Steps (1) through (3)) with a weight saliency-based selective re-initialization (Step (4)) and subsequent
fine-tuning (Step (5)). Because the blind unlearning setting prohibits taking gradients with respect to Dforget,
RELOAD exploits the linearity of differentiation to treat ∇θ(L(D)−L(Dretain)) as a proxy for ∇θL(Dforget)
at the location in parameter space corresponding to θt. This allows us to apply one ascent step in this direction.
Intuitively, this update in Step (3) removes information about Dforget from all network parameters, while the
re-initialization in Step (4) re-initialises those parameters with a uniquely strong correspondence to Dforget (for
which a single ascent step will not fully remove this information).

a small Laplace smoothing constant. A small knowledge value characterizes a parameter that is
knowledgeable about Dforget; it is these parameters that we reinitialize.

4 Experimental Configuration

Algorithm 1 The RELOAD Algorithm for Blind Unlearning

1: Input:M(θ∗), cached∇θL(D),Dretain

2: Parameters: ηp: priming step learning rate, ϵ: noise parameter, α: reset proportion
3: Output: Trained model approximatingM(θ∼)

4:
5: procedure RELOAD(M(θ∗),∇θL(D;M(θ∗)),Dretain)
6: θ′ ← θ∗ + ηp∇θ(L(D)− L(Dretain)) ▷ Step (2 – 3) (Fig. 1)

7: KV←
{

|∇θk
L(D)−∇θk

L(Dretain)|+ϵ

|∇θk
L(D)|+ϵ

}
θk∈θ

▷ Step (3) (Fig. 1)

8: for θk ∈ θ′ do
9: θ′

k ← INITIALIZE(·) if QUANTILEKV (KVθk
) ≤ α ▷ Step (4) (Fig. 1)

10: end for
11: TrainM(θ′) to convergence onDretain ▷ Step (5) (Fig. 1)
12: end procedure

We consider a selection of tasks
to demonstrate RELOAD. We
first randomly assign 30% of
samples in the training data to
Dforget to highlight item un-
learning. Next, we study the
unlearning of a feature from
the training data. We com-
pare RELOAD against several
baselines from the machine un-
learning literature (discussed in
greater detail in Appendix A.1).
All our our experiments (both
with RELOAD and with the base-
lines) use a TabNet model con-
figured and trained according to reference implementation. All models were trained on the standard
Adult Census Income dataset used to benchmark the original TabNet model [15, 3]. All models were
trained (or retrained) for 60 epochs on the training set. Evaluation metrics are shown in Table 1.

5 Results
Table 2 presents an empirical evaluation of RELOAD in the tabular setting. The item unlearning
results (Left) show that RELOAD yields a model that is close to the gold-standard retrained model
in ∆FA, ∆FE, and ∆FMIA. Furthermore, our method achieves high RA, indicating that the model
keeps utility on the retain set. In the feature unlearning setting, (Right) we observe that the original
model exhibits a significant drop in accuracy (from 0.84 to 0.73); however, applying RELOAD largely
corrects for this, returning training-set and and test-set accuracies comparable to those of a model
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Statistic Abbr. Description

Retain-Set
Accuracy (↑)

RA Model accuracy on the retain-set. A higher accuracy indicates that the unlearning process did not
negatively impact the model’s performance on the retained data.

Diff. in
Forget-Set
Accuracy (↓)

∆FA The change in accuracy on the forget set between the current model and a baseline model retrained from
scratch without the forget set. A smaller difference, approaching the accuracy of the retrained model,
indicates that the unlearning method has been more effective in "forgetting" the forget set.

Diff. in
Forget-Set Error
(↓)

∆FE The reduction in error on the forget set between the current model and a baseline model retrained
from scratch without the forget set. A smaller difference, approaching the error of the retrained model,
signifies that the unlearning method has been more effective at "forgetting" the forget set.

Diff. in
Forget-Set MIA
Success Rate (↓)

∆FMIA Difference in success rate of a membership inference attack (MIA) on the forget set between the current
model and a baseline model retrained from scratch without the forget set. In this work, we use the attack
and implementation from Kurmanji et al. [16]. A success rate close to the retrained model’s implies the
forgotten data is indistinguishable to an MIA on in-distribution data that the model was not trained on.

Cost (↓) Cost Ratio of the runtime of the unlearning method to the runtime of retraining a baseline model from scratch
without the forget set. A lower cost indicates a more computationally efficient method.

Original Acc.
(↑)

OA Accuracy of the model on the original training setD containing all samples including the ones that are
to be forgotten.

Test Acc. (↑) TA Accuracy of the model on a test dataset.

Table 1: Summary of evaluation statistics that we use in comparing RELOAD to baseline algorithms.

naively retrained from scratch. Interestingly, we observe that Fine-Tuning achieves higher accuracy
than RELOAD on the retain-set. More broadly, in contrast with preliminary experiments we have
conducted on image data (omitted for brevity), we observe that naive fine tuning appears to yield far
better performance in both item unlearning and feature unlearning in the tabular setting. We find
this intriguing phenomenon worthy of further study – perhaps there are unique elements within the
structure of tabular data that explains this dynamic.

We next visualise the feature dependence from the models yielded by all of these algorithms in Figure
2, which shows that, when viewed from the perspective of the feature importance weights in TabNet,
RELOAD cleanly removes the influence of the target feature on model prediction.

Forgetting a Random 30% of the Data Forgetting a Random Feature

Method RA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) OA (↑) RA (↑) TA (↑) Cost (↓)

Original N/A N/A N/A N/A N/A 0.84±0.00 0.73±0.07 0.82±0.01 N/A
Retrain 0.84±0.01 0.82±0.01 0.48±0.00 0.51±0.13 1.00±0.00 0.77±0.09 0.84±0.01 0.75±0.09 1.00±0.00

RELOAD 0.84±0.01 0.02±0.01 0.00±0.00 0.00±0.00 0.29±0.18 0.78±0.03 0.81±0.01 0.77±0.03 0.40±0.27

GA 0.38±0.22 0.54±0.04 0.55±0.04 0.06±0.07 0.13±0.02 0.35±0.16 0.48±0.17 0.35±0.16 0.30±0.12

FT 0.83±0.01 0.01±0.01 0.01±0.00 0.05±0.06 0.53±0.07 0.77±0.09 0.84±0.00 0.76±0.09 0.79±0.20

GA FT 0.77±0.03 0.06±0.02 0.05±0.02 0.13±0.08 0.71±0.09 0.77±0.03 0.79±0.02 0.76±0.03 1.09±0.31

Table 2: Results highlighting the performance of RELOAD on the tabular Census Income dataset. (Left) Observe
how, when used to forget a random 30% of the data, RELOAD achieves comparable performance to a model
retrained on Dretain, and outperforms several baseline methods that rely on Dforget. (Right) When used
to forget a randomly selected feature from the dataset, RELOAD largely corrects for the drop in accuracy
experienced by the original model. Each of the numbers in this table corresponds to the mean value over five
randomly-reinitialized experiments (wherein the 30% of data, and feature to be forgotten, may vary).

Figure 2: Feature importance masks obtained from the first decision step of TabNet, under various unlearning
schemes. Observe how naive Gradient Ascent (undesirably) retains the influence of this feature within the model,
while Retraining, RELOAD, Gradient Ascent (with Fine Tuning), and Fine Tuning do not. This highlights how
from the perspective of feature importance, RELOAD enables effective, efficient feature unlearning.
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6 Conclusion
We introduce RELOAD, a novel algorithm for machine unlearning that effectively removes data
influence in tabular models without requiring access to a "forget set." Our experiments with the
TabNet model illustrate its efficiency and effectiveness, paving the way for further exploration of
unlearning in the oft-unexplored tabular setting. Future research can build on these findings by
exploring additional architectures and datasets, or by designing novel unlearning methods to more
directly exploit the unique structure of tabular data in the unlearning process.
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A Appendix

A.1 Baseline Algorithm Description

In our evaluations we show 3 additional unlearning algorithms alongside RELOAD. These algorithms
are Gradient Ascent (GA), Finetuning (FT), and Gradient Ascent with Finetuning (GA FT).

Gradient Ascent [22] is a naive unlearning algorithm in which the forget dataset is optimized on,
taking the negative of the typical loss function in order to perform gradient ascent instead of gradient
descent.
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Finetuning [24] utilises the concept of catastrophic forgetting [17] from the field of Continual
Learning. By performing gradient descent optimisation on the retain set, this method aims to induce
catastrophic forgetting of the forget set which is no longer being optimized over.

Gradient Ascent with Finetuning is an enhanced version of GA. The typical issue with GA is that it
forgets well but destroys performance on the retain set, yielding an unlearned but poor performing
model. Thus, this method adds additional steps of gradient descent optimisation on the retain set post
the gradient ascent procedure to repair the damaged performance.

A.2 Reload Main Intuition and Justification

Before defining the steps of our algorithm, we discuss the motivating factors and justifications
for this design. Existing evidence [19] [2] suggests that deep neural networks (DNNs), especially
over-parameterized DNNs, tend to memorize parts of the training dataset. Thus it stands to reason
that particular parameters in a neural network have learned disproportionately more about different
parts of the training data, or have even memorized parts of it. The work by Xu et al. [25] even
suggests that memorizing parts of the training set is a necessary component for DNNs to achieve
optimal performance. Therefore, given a sufficiently trained model, parts of the training set are
memorized in its parameters. Thus, if parameters that are particularly knowledgeable about or have
memorized the difference between the D and Dretain can be identified, selectively retraining them
should approximate a model that was trained with Dretain in the first place.

Consider a gradient descent update on a model Mθ, over some data x. This gradient points in the
direction of steepest descent on the loss landscape, and taking a step in this direction moves θ towards
the setting of parameters that allows M to perfectly fit the data x. Thus, intuitively, one can say that
the parameters that are being updated the least (those with the lowest magnitude gradients) are those
which know the most about x. We can measure this by considering the parameters with the lowest
absolute gradients across x.

In the context of unlearning, we can extend this notion to consider the summed gradients over
the entire forget set Dforget. Consider the lower the magnitude of the parameter’s gradient across
Dforget, implies the parameter knows more about Dforget. This notion is motivated by gradient-
based input saliency maps [20] [21] and the existing work on saliency unlearning by ? ]. We can
extend this notion to D, and by taking the ratio of these gradients, derive a measure for how much a
parameter knows specific to the numerator dataset (Dforget) that is not general to the denominator
(entire) dataset D. Letting ∇L(D) denote the gradients with respect to D, we can define this measure
as so, which we call the knowledge-value:

|∇L(Dforget)|+ ϵ

|∇L(D)|+ ϵ
=

|∇L(D)−∇L(Dretain)|+ ϵ

|∇L(D)|+ ϵ
(1)

In this equation, ϵ is a small value (around 1−10) to prevent divide-by-zero situations and so that
in the case where the numerator gradient is 0 and the denominator gradient is not, this ratio still
measures relative importance to a dataset.

By the linearity of differentiation, since Dretain is D with Dforget removed, ∇L(Dforget) =
∇L(D)−∇L(Dretain). Thus access to Dforget in the unlearning case, is not required to compute
this ratio, as long as the accumulated gradients on D are stored and available.

A.3 Justification of Non-Recoverability

Storing the gradients does not consitute a privacy breach in the softmax classification setting, because
this choice does not not permit recovery of the instances within Dforget in this common setting.

Definition 1 (Recoverability). Consider some data, D ∈ D , and consider a transformation f : D →
Q that maps D into an arbitrary output space Q. D is recoverable if f is injective.

By the linearity of differentiation, we write ∇θL(D)−∇θL(Dretain) as ∇θL(Dforget).
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Note that from the gradients alone we cannot tell how many items were in Dforget when it was
removed.

Then, if there was more than one item in Dforget, then ∇θL(Dforget) =∑
(Xi,Yi)∈Dforget

∇θkL((Xi, Yi), Ŷi). Given that this is a summation, and addition is not an
injective operation - we cannot recover the gradients of the individual datapoints from this sum.

In the case that there was a single datapoint in Dforget, then ∇θL(Dforget) = ∇θL((X1, Y1), Ŷ1)
where Dforget = {(X1, Y1)}. Given this gradient, and the setting of cross-entropy loss and softmax
activation, we know that the gradient expands to −∇θk

∑C
i=1 Y1i log Ŷ1i = ∇θk log Ŷ1j = 1

Ŷ1j

assuming Y is onehot encoded and this sample belongs to class j.

Then from this gradient we have obtained the j’th output of the model, which is Ŷ1j = eZ1j∑C
i=1 eZ1i

where Z1 are pre-softmax logits. For any element of Z1, Z1k of Z1, eZ1k = Ŷ1k ·
∑C

i=1 e
Z1i which

cannot be calculated without knowing all of the other elements of Y1. Thus, given a single output,
none of Z1 can be calculated, and thus the gradient cannot identify the input from which it was
calculated.
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