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LLM-Analytica: Facilitating Large Language Models for Industrial
Analytics

Anonymous Author(s)
ABSTRACT
The rise of Industry 4.0 has led to significant advances in real-time
process monitoring and predictive maintenance, aided by machine
learning and deep learning tools developed over the past decade.
However, on account of a steep learning curve, usage of these tools
remains a prerogative of a limited set of users who are proficient
in programming. There is a need for good and easy to use analyt-
ics platforms that can be used by practitioners in manufacturing
industries. This need has unfortunately remained a challenge. The
tool handling capability of LLMs holds a new promise, but their
performance for manufacturing domain is often poor and largely
untested. We introduce LLM-Analytica, a framework for developing
end-to-end workflows for industrial analytics designed to perform
tasks like process optimization, fault detection and diagnosis, and
predictive maintenance for maintaining and improving the plant
KPIs such as efficiency, productivity, product quality, reliability, etc.
We have integrated 60+ expert-designed modules and used itera-
tive prompting for pipelining to help LLM-Analytica augment the
performance of LLMs for industrial analytics. The effectiveness of
LLM-Analytica for automating a wide array of industrial analytics
tasks is demonstrated and evaluated using expert feedback. This
work is expected to accelerate industrial analytics activities and
the development of digital twins thereby helping the industry in
improving efficiency.

CCS CONCEPTS
• Applied computing→ Engineering; Physical sciences and
engineering.
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1 INTRODUCTION
In the last few years, large language models (LLMs) have trans-
formed various sectors by augmenting natural language tasks [1, 3,
4, 8, 10, 17, 23, 24]. Recent research shows the potential of enhancing
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the problem-solving ability of LLMs across domains to handle com-
plex textual data and understand the context. But they struggle with
seemingly simple domain specific tasks [11, 15, 19]. This is because
most of the LLMs available focus on basic language tasks but ignore
the usage of domain specific tools. Tool learning, as described by
[20], aims to make LLMs more effective in using various tools to do
complex tasks. When the LLMs are combined with external tools,
they will be more useful and let them act as mediators between
end users and different applications [5]. [20] aimed to harness the
capabilities of LLMs for effectively interacting with various tools
(APIs) and accomplishing complex tasks. [18] combined text-only
and a self-play approaches for iterative bootstrap example of tool-
use with progressively higher quality. [21] introduced Toolformer,
which showed language models can teach themselves to use a range
of external tools, including a calculator, a Q&A system, a search
engine, a translation system, and a calendar for different tasks. Yao,
et al [25] proposed ReAct, Synergizing Reasoning and Acting in
Language Models, a method for prompting LLMs in a manner that
invokes their ability to reason about problems as well as execute
predefined actions which have external effects. For instance, these
actions may include interacting with a Wikipedia API or perform-
ing tasks within a simulated text-based environment. Bran, et al[2]
introduced ChemCrow, an LLM chemistry agent designed to ac-
complish tasks involved in organic synthesis, drug discovery and
materials design. [13] proposed GeneGPT augmenting web APIs
for biotechnology information using chain-of-thought approach.
Even though open-source LLMs like Llama [23] have become very
flexible through instruction tuning, they find it difficult to carry out
more advanced tasks, like properly using tools to follow complex
human domain specific instructions [7, 22]. Previous studies on
tool usage for complex tasks often focused on simulating tool-use
capabilities within LLMs, typically restricted to single-tool instruc-
tions and limited scenarios. However, real-world situations may
demand the integration of multiple tools with sequential or con-
current dependencies on the output of preceding tools to address
intricate tasks effectively.

The emergence of Industry 4.0 has revolutionized manufactur-
ing and process industries by integrating a plethora of sensors into
industrial processes, resulting in the generation of vast volumes
of real-time sensor data. This data holds invaluable insights into
the operational health and status of equipment, serving as a critical
resource for plant personnel. Industrial analytics workflows refer to
the systematic approach followed for applying artificial intelligence
(AI) techniques particularly machine learning (ML) or deep learning
(DL), to solve industrial problems such as predictive maintenance,
anomaly detection and diagnosis, health monitoring, forecasting
and more. They involves several steps that are typically followed to
develop and deploy AI solutions in an industrial setting. The typical
steps involved in solving industrial problems using AI include data
gathering, data preprocessing, feature selection, model training and
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evaluation, model optimization and tuning, deployment, continuous
monitoring, and maintenance. By following these systematically,
AI techniques for industrial analytics can be leveraged to tackle
complex problems, optimize operations, and drive innovation in
various industrial domains. Limited research has been conducted
on utilizing LLMs for industrial applications [6, 9, 12, 14, 16]. LLMs
face difficulties with industrial analytics tasks as they often lack the
specific knowledge or understanding of industrial processes and
terminology, making it difficult for them to accurately interpret
and analyze industrial data. Furthermore, industrial analytics tasks
often require more than just language understanding – they may
involve complex numerical calculations, data manipulation, and
domain-specific reasoning, which LLMs may not excel at without
specialized training or adaptation.To overcome this restriction, a
potential feasible approach involves enhancing LLMs by integrat-
ing them with dedicated external tools or modules developed for
executing industrial analytics workflows. These dedicated tools
offer precise solutions, which could help in mitigating the intrin-
sic limitations of LLMs for manufacturing industry domains and
improving their overall effectiveness and consistency, reliability,
and safety. By integrating LLMs with external tools, consistency
checks can be added to enforce uniformity in generated responses
and provide benchmarks and metrics to evaluate the consistency
of LLM outputs. Accuracy and reliability are critical in industrial
settings to maintain operational efficiency and prevent errors. Ex-
ternal tools like quality assurance systems or validation algorithms
can be combined with LLMs to validate the accuracy of generated
text. For example, LLM outputs can be compared against estab-
lished databases, specifications, or regulatory standards to ensure
compliance and reduce the likelihood of misinformation. Given
the presence of hazardous conditions or sensitive data in industrial
environments, LLM outputs can be assessed for potential risks or
regulatory infringements.

Inspired by the successful LLM based applications in other fields,
we propose LLM-Analytica, an LLM framework for industrial an-
alytics workflow orchestration. It is designed to streamline the
workflows for various industrial analytics tasks across areas such
as process optimization, predictive and preventive maintenance,
equipment health monitoring and fault detection and diagnosis, op-
timization etc. involving single-tool and multi-tool scenarios with
sequential dependencies on the output of preceding tools to cover
real-time complex scenarios using iterative prompting. Iterative
prompting allows refining the prompts used to interact with the
tools and facilitates transfer of output from one tool to another in
scenarios involving multiple tools, resulting in more accurate and
effective outcomes.

2 METHODOLOGY: COMBINING LANGUAGE
MODELS WITH EXTERNAL TOOLS

The industrial analytics engine, LLM-Analytica, represents a so-
phisticated framework empowered by LLMs harnesses the power
of multiple expert designed tools for manufacturing industry equip-
ment and process analytics. The objective is to empower the lan-
guage model with the capability to utilize various tools through the
mechanism of function calls. LLM-Analytica operates by providing
specific instructions to LLM instances (Claude-2 and Claude-3) to

carry out designated tasks. These instructions include a list of tool
names, descriptions of their functions, and details of the required in-
put. Once provided with these instructions, the LLM is tasked with
responding to user prompts using the provided tools as needed. We
have integrated over 60+ tools, spanning data preprocessing — such
as data cleaning, transformation, outlier analysis, and imputation
— to descriptive analytics, covering correlation analysis, statisti-
cal methods, data visualization, and feature selection. Additionally,
we’ve incorporated more than 20 regression and classification pre-
diction algorithms, along with semi-supervised and unsupervised
anomaly detection and diagnosis techniques like Mahalanobis dis-
tance, one-class SVM, Elliptic Envelope, and Autoencoders [26] etc.
Moreover, our tool repository includes root cause identification
methods [27] and process optimization algorithms. Each of these al-
gorithms has been expertly tailored to suit the unique requirements
of industrial datasets and analytics activities. The model follows a
systematic approach as shown in Fig. 1. The steps and dependencies
outlined in the prompt are identified first, followed by selecting
and utilizing appropriate tools for analytics. After identifying the
necessary steps, the LLM requests the corresponding tools and their
required inputs. The inputs and outputs of each function call can in-
clude flat files, past historic records and maintenance logs. They are
also not limited solely to text sequences. The program then attempts
to execute the requested functions by passing the provided input. If
multiple tools are required and have dependencies, the results are
combined with the original prompt and presented to the LLM for
further analysis as shown in Fig. 2. The process begins by initiating
a loop that involves calling LLM with a tool use prompt containing
tool specifications and user input. Upon receiving the completion
of one tool from LLM-Analytica, it is examined to determine if there
are other tools are identified. If another tools are identified, the
tool name and parameters are extracted from the prompt, and the
respective tool is invoked. Subsequently, the results are formatted
and appended to the prompt. This loop iterates, incorporating the
updated prompt, until the final output is generated, prompting the
termination of the loop. At this stage an Anthropic model, such as
claude-2.1 and claude-3-opus-20240229 is employed.

Figure 1: An overview of LLM-Analytica

Figure 3 illustrates an example of an outlier detection tool.Within
this function, outlier_detection is invoked upon querying outlier
analysis, and outlier_detection_description is supplied to the LLM
to indicate the availability of the outlier analysis tool.
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Figure 2: LLM-Analytica Inference Methodology

Figure 3: Outlier Detection Tool with Syntax

3 RESULTS AND DISCUSSION
We evaluated LLM-Analytica using two distinct types of prompts.
The first prompt is for providing textual descriptions of tasks, either
utilizing a single tool or multiple tools. The Claude model assesses
the necessity of using a tool, determining whether the request
requires invoking a tool or it can be handled without tool. If a tool
call is identified, then the tool name and parameters are extracted,
and the respective tool function is invoked. Figure4 depicts an
example of single tool usage using textual prompting. In this case,
input data was provided in a csv file and both the models were
able to read the input data and perform outlier analysis for all the
columns of data. Here, tools_list refers to the list of available tool
names and input_data_filename refers to the path and name of

input data file. Figure 5 depicts an example of multiple tool usage
using textual prompting. Even when prompted with multiple tool
requests, both models successfully identified dependencies and
invoked the necessary tools, seamlessly passing the output of the
previous tool to the next one.

Figure 4: Example of single tool use using textual description

Figure 5: Example of multiple tool use using textual descrip-
tion

In a scenario involving multiple tools, LLM-Analytica accurately
identified the steps and their dependencies and sequentially queried
the tools. It began with the outlier analysis tool, followed by the
imputation tool, the feature selection tool and model building tool,
effectively utilizing the output of each tool in the subsequent step.
The process begins by initiating a loop that involves calling Claude
model with a tool use prompt containing tool specifications and
user input. Subsequently, the results are formatted and appended to
the prompt. This loop iterates, incorporating the updated prompt,
until model generates a final output, prompting the termination of
the loop. LLM-Analytica effectively applied both Claude-2.1 and
Claude-3-opus-20240229 models to accurately utilize tools for ba-
sic user inputs, including outlier analysis, imputation, correlation
analysis, and visualization-related simple tasks described in a tex-
tual format. To the best of our understanding, given the absence
of a benchmark dataset, we conducted a manual evaluation of the
performance of both Claude models. However, we refrained from
comparing them with existing benchmark datasets mentioned in
cited literature due to the distinct nature of the current use case.
The model’s performance was evaluated on the basis of accuracy
in tool selection, precise identification of dependencies, and the
extent of successful workflow execution. The second type entails
presenting historical or maintenance reports and instructing the
LLM-Analytica to replicate the methodologies outlined in these
reports for other datasets. Prompts used in our experiments are as
shown in Fig. 6. The term report_file_path denotes the directory
path and filename where the historical report is stored.
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Figure 6: Example of multiple tool use using historical report
description

Claude models were able to handle simple tasks like data prepro-
cessing or descriptive analytics, as well as more complex tasks or
workflows with many steps that rely on each other. They could pick
out important analytics steps and their dependency from the input
report. Subsequently, these models could systematically execute
the corresponding tools for each identified step, showcasing their
proficiency in automating the analytics workflow. The report con-
tained details about XYZ product, but the workflow was tested on
weather_history dataset. The Claude-3 model accurately identified
the steps outlined in the input report and performed them on the
weather_history dataset. Actions identified from Claude-3 models
for the given sample input are shown in Fig. 7. The Claude-2 model
also identified the steps and dependency outlined in the report.
However, when applied to the weather_history dataset, Claude-2
overlooked the correlation analysis step.

Figure 7: LLM-Analytica Identified actions for sample input
using Claude-3 Model

After execution of identified tools, the output of each step is
stored in the specified output directory. In case of descriptive ana-
lytics basic statistics and correlation analysis were performed. In
basic statistics, mean, max, min, standard deviation, variance of
each variable were calculated and saved in a csv file as shown in

Fig 8(a). In correlation analysis, correlation between variables in
identified and correlation values are saved in csv file along with
the heatmap as shown in Fig. 8 (c). In data preprocessing, outlier
analysis, imputation of missing values and selection of important
features were performed. In outlier analysis, Outliers were removed
from the dataset and replaced with NaN values. Outlier removed
data along with Outliers summary was saved in csv files. It also
created the visualization of outliers for each variable. Sample vi-
sualization for one variable is shown in Fig 8(b). For Imputation,
data was imputed using the forward fill method and saved in csv
file. During the feature selection stage, significant features relevant
to the target variable were chosen using feature importance scores
derived using the Random Forest algorithm. The data of the se-
lected features was then stored in a CSV file. In predictive analytics,
the Random Forest regression model was built using the data for
selected features. The model’s performance on test data is recorded
in a JSON file, along with a parity plot illustrating the comparison
between actual and predicted values as shown in Fig 8 (d).

Figure 8: Final output obtained from LLM-Analytica with
tools

The performance of both Claude models was assessed without
additional tool augmentation. However, the models were incapable
of implementing the identified dependencies and producing the
anticipated output and visualizations. We have tasted other work-
flows related to fault detection and diagnosis and forecasting of
KPIs. While conventional LLMs possess significant code genera-
tion capabilities, their outputs often tend to be rudimentary and
inflexible, resulting in increased iteration to achieve desired results.
Conversely, integrating LLMs with augmented tools enhances the
efficiency of result generation by providing more refined and tai-
lored outputs, reducing the need for extensive iterations to achieve
desired results, meeting user requirements more efficiently. The ex-
ternal tools often provide domain-specific features and algorithms
that enhance the accuracy and relevance of the output. Also, by
leveraging the augmented tools, LLMs can identify patterns and
faults anomalies in real-time and improve process efficiency and
productivity. Overall, the synergy between LLMs and external tools
in industrial process analytics offers enhanced data insights, real-
time decision-making capabilities, and improved operational effi-
ciency, ultimately driving better outcomes and competitiveness in
industrial settings.
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4 FUTUREWORK
We are currently strategizing the implementation of fine tuning
of open-source large language models such as Llama and Mistral
as alternatives to commercial LLMs. Results of the fine tuning
evaluation will be added subsequently.

5 CONCLUSION
A framework, LLM-Analytica, for integrating industrial analytics
tools with language models was presented. It requires two types
of prompts: textual prompts to model tool usage and historical
reports from industrial processes. Given a historical report as an
input, Large Language Models (LLMs) retrieve intricate analytics
workflow details and identify appropriate tools and their dependen-
cies. Subsequently, they execute the workflow components in the
requisite order, resulting in systematic execution of the entire work-
flow and generation of precise results. LLM-Analytica consistently
surpassed non-augmented LLMs in producing the expected outputs.
This streamlined methodology indicates the potential of LLMs to
enhance efficiency and accuracy in carrying out complex analytics
activities. Our findings suggest that augmenting the language mod-
els with tools enables them to outperform larger non-augmented
models.
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