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Abstract
Collective intelligence is a fundamental trait shared by many species that has allowed them
to thrive in diverse environmental conditions. From simple organisations in an ant colony
to complex systems in human groups, collective intelligence is vital for solving many survival
tasks. Such natural systems are flexible to changes in their structure: they generalize well
when the abilities or number of agents change, which we call Combinatorial Generalization
(CG). CG is a highly desirable trait for autonomous systems as it can increase their utility
and deployability across a wide range of applications. While recent works addressing
specific aspects of CG have shown impressive results on complex domains, they provide no
performance guarantees when generalizing to novel situations. In this work, we shed light on
the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically,
we study generalization bounds under a linear dependence of the underlying dynamics on
the agent capabilities, which can be seen as a generalization of Successor Features to MAS.
We then extend the results first for Lipschitz and then arbitrary dependence of rewards on
team capabilities. Finally, empirical analysis on various domains using the framework of
multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms
towards ensuring CG.

1 Introduction
Imagine attending a football summer camp. The coach decides to split the participating players into random
teams for practice. While each player has different capabilities (e.g., defending, dribbling, speed, and pace),
they quickly adapt to the other players in the team to facilitate the common objective of outscoring their
opponents. Furthermore, they smoothly adjust to unexpected events such as a player getting hurt and retiring
with substitution, which forces them to change their behaviours and adjust their roles. Similarly, they rapidly
adjust to changes in team size (as a result of a player being sent off or new players joining the team).

Such adaptations are typically possible for two reasons. First, the players understand each others’ capabilities,
including how a change in capabilities affects the underlying environment and chances of success. Second,
players have coordination protocols for adapting to the changes, both explicitly (e.g., communicating the
game plan) or implicitly (inferring capabilities from observations, e.g., passing the ball to a player going in for
an attack). This phenomenon, which we call Combinatorial Generalization (CG), is not specific to football or
humans, and organisms in general manifest abilities to adapt in almost every situation requiring team efforts
(Crozier et al., 2010; Nouyan et al., 2009; Anderson & McMillan, 2003).

In order to capture specific aspects of CG, recent methods in multi-agent reinforcement learning (MARL)
utilize advances in deep learning architectures, such as graph neural networks Ryu et al. (2020) and attention
mechanisms Iqbal et al. (2021), as well as extensively tuned training regimes, such as a mixture of human and
generated data, self-play, and population-based training (Vinyals et al., 2019; OpenAI et al., 2019). While
these methods show impressive empirical performance on complex domains, they provide little insight into
aspects of when and how much generalization to expect. These are crucial for deploying agents in the real
world due to practical considerations like tolerance and minimum expected performance in unseen settings.
Additionally, the problem of sample-efficient generalization, already hard for single-agent RL (Mahajan &
Tulabandhula, 2017; Du et al., 2020; Ghosh et al., 2021; Malik et al., 2021), is particularly challenging in the
multi-agent case. Specifically, even when the underlying task remains the same, agents in MARL typically need
to be trained from scratch for different team compositions. Moreover, across similar tasks with similar team
compositions, there is a lack of modularity for sharing knowledge to enable quick learning (Wang et al., 2020).
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Thus, we posit that a theoretical understanding of generalization in multi-agent systems (MAS) can help
address both of the above-mentioned issues: it can provide important performance guarantees for practical
deployment and can additionally inform better algorithm design to ensure sample efficiency.

We first highlight the key properties that make CG particularly difficult for MAS:

• P1: The capabilities of agents can come from infinite sets, e.g., maximum permissible torque for an
agent joint which can take values in a continuous set.

• P2: Combinatorial blow-up in the number of possible teams (w.r.t. agent capabilities) given a team
size.

• P3: The capabilities need to be grounded w.r.t. the dynamics of the environment, ie. the agent needs
to infer how the capability affects the long term utility in terms of joint rewards and transitions.
This becomes increasingly hard with team size (similar to credit assignment).

• P4: Team sizes can vary across different tasks.

• P5: Agents need to infer the capabilities of teammates in settings where it is hidden, in a potentially
non-stationary environment.

P2-P4 particularly distinguish CG from single-agent generalization, highlighting its combinatorial nature.
Furthermore, P5 requires agents to adapt to changing teammate policies, making the problem harder.

In this work, we analyse multi-agent generalization by modelling the dependence of underlying environment
rewards and transitions on agent capabilities. We first look at generalization bounds for the case when the
environment dynamics are linear with respect to the agent capabilities. We elucidate how this generalizes
the successor feature (SF) framework Barreto et al. (2016) to the multi-agent case. We provide theoretical
bounds for generalization between team compositions, transfer of optimal policy from one team to another
and changes to optimal values arising from agent addition and elimination under this framework. Next, we
bound the performance gap as a result of an error in estimating the agent capabilities, which covers scenarios
such as lossy or inaccurate communication. Furthermore, we provide bounds for optimal value deviation when
the dynamics themselves are approximately linear. Finally, we elucidate how the bounds can be extended to
Lipschitz rewards (Appendix A.6) and then extend this framework to study arbitrary dependence of rewards
on capabilities to shed light on when generalization can be difficult (Appendix A.7). Our results apply to
various training and deployment settings in MAS and are agnostic to the type of algorithm used (MARL
or other forms of policy search methods). Finally, we empirically analyse popular methods in MARL on
tasks of varying difficulty in terms of generalization and discuss important desiderata to be met for better
generalization.

2 Background and Formulation
Multi-Agent Reinforcement Learning
We model the cooperative multi-agent task as a decentralized partially observable MDP (Dec-
POMDP) Oliehoek & Amato (2016). A Dec-POMDP is formally defined as a tuple G =
⟨S, U, P, R, Z, O, n, ρ, γ⟩. S is the state space of the environment, ρ is the initial state distribution. At
each time step t, every agent i ∈ A ≡ {1, ..., n} chooses an action ui ∈ U which forms the joint action
u ∈ U ≡ Un. P (s′|s, u) : S × U × S → [0, 1] is the state transition function. R(s) : S → [0, 1] is the reward
function shared by all agents and γ ∈ [0, 1) is the discount factor. A Dec-POMDP is partially observable
(Kaelbling et al., 1998): each agent i does not have access to the full state and instead samples observations
z ∈ Z according to observation distribution O(s, i) : S × A → P(Z). Without loss of generality (WLOG), we
assume the state is a represented as a k-dimensional feature vector S ⊂ [0, 1]k and similarly observations
Z ⊂ [0, 1]l. When the observation function O is identity, the problem becomes a multi-agent MDP (MMDP).
Similarly, when the observations are invertible for each agent, so that the observation space is partitioned
w.r.t. S, i.e., ∀i ∈ A, ∀s1, s2 ∈ S, ∀zi ∈ Z, P (zi|s1) > 0 ∧ s1 ̸= s2 =⇒ P (zi|s2) = 0, we classify the problem
as a multi-agent richly observed MDP (M-ROMDP) Mahajan et al. (2021). The action-observation history
for an agent i is τ i ∈ T ≡ (Z × U)∗. We use u−i to denote the action of all the agents other than i and
similarly for the policies π−i. The value of a policy is defined as V π = Eπ,ρ [

∑∞
t=0 γtRT (st)]. Similarly, the
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joint action-value function given a policy π is defined as: Qπ(st, ut) = Eπ

[∑∞
k=0 γkR(st+k)|st, ut

]
. The goal

is to find the optimal policy π∗ corresponding to the optimal value function V ∗.

MARL with Agent Capabilities
We now extend the MARL problem setting for generalisation where agents can have different capabilities. To
this end, we assume that each agent in the task can be characterised by a d-dimensional capability vector c ∈ C,
which governs its contribution to rewards and transition dynamics (and thus its policy/behaviour denoted as
πi( . ; c)). Without loss of generality, we assume C ⊆ ∆d−1 (the d − 1 dimensional simplex). Intuitively, an
agent’s capability reflects the abilities of an agent along various properties that may be important for solving
the collective task (e.g., an agent’s speed, health recovery, and accuracy). We next assume an unknown
probability distribution M : Cn → R+ with support Sup(M) over a subset of the joint capability space Cn.
Any T sampled from M can be seen as a tuple of capability vectors T = (ci)n

i=1, one for each agent in the
team. We augment the Dec-POMDP with T : G = ⟨S, U, PT , RT , Z, O, n, ρ, γ, T ⟩ and call it a variation for
the MARL setting 1. Thus T defines the rewards and transition dynamics of the underlying MMDP (ie.
RT (s) = ⟨f(T ) · s⟩ where ⟨·⟩ is the dot product2 and f : Cn → Rk and similarly for transitions). Our goal is
then to find algorithms, which when trained on a small number of variations sampled from M : {T j}M

j=1,
generalise well to unseen team variations in M. i.e., we want to maximise the expected value over the team
variation distribution,

max
π

ET ∼M

[
Eπ(·;T ),PT ,ρ

[ ∞∑
t=0

γtRT (st)
]]

, (1)

where π = {πi}n
i=1 is a group of n agents. The challenge here arises because of two main factors. First, the

agents do not have any prior knowledge about what these capability vectors mean, and are thus required to
learn their semantics (also called grounding). Second, in the setting where the agents cannot observe the
capability vectors (including possibly their own), they have to infer and learn protocols for sharing them with
each other in order to generalize in a zero-shot setting.

Successor Features
Thus successor features (SF) framework Dayan (1993); Barreto et al. (2016; 2018; 2020) assumes that the
rewards in an MDP can be decomposed as r(s) = ϕ(s)⊤w, where ϕ(s) ∈ Rd are features of s and w ∈ Rd

are weights3. When no assumption is made about ϕ(s), any reward function can be recovered using this
representation. The value function then follows

V π(s) = Eπ [rt+1 + γrt+2 + ... | St = s]

= Eπ
[
ϕ⊤

t+1w + γϕ⊤
t+2w + ... | St = s

]
= ψπ(s)⊤w.

Here ψπ(s) is called the successor feature of s under policy π. The ith component of SF ψπ(s) provides the
expected discounted sum of ϕi when following policy π from s.

3 Analysis
As mentioned before, we are interested in understanding how the long term joint-utility of a cooperative group
changes with changes happening in the group. Our analysis here focuses on the generalisation properties
w.r.t. M. We focus on the case of MMDPs for ease of exposition, but similar results for the more general
cases can be obtained by suitable assumptions for identifiability of the state (e.g., M-ROMDP in Mahajan
et al. (2021)). Our results are applicable irrespective of whether agents can observe the capabilities. They are
also agnostic to the training and deployment regimes (e.g., centralized or decentralized) and the algorithm
being used to find the policy. All the proofs can be found in Appendix A. For the analysis we assume

1Agent capabilities can also be interpreted as the contexts, see Hallak et al. (2015)
2Note that this is still the most general form as states can be encoded as one-hot vectors, see Barreto et al. (2016).
3Similar formulations hold WLOG for ϕ(s,a),ϕ(s,a,s’)
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Figure 1: Combinatorial Generalization in MAS, various settings.

that the rewards and transitions depend linearly on the agents capabilities ci :

RT (s) =
n∑

i=1
ai⟨ci · WRs⟩ (2)

PT (s′|s, u) =
n∑

i=1
ai⟨ci · WP (s′, s, u)⟩ (3)

where WR ∈ Rdk is the reward kernel of the MMDP and defines the dependence of the rewards on each
capability component. Similarly in Eq. (3), WP : S × U × S × {1..d} → [0, 1] defines the transition kernel
of the MMDP so that Pj(·|s, u) ≜ WP (s, u, j) ∈ ∆|S|−1, j ∈ {1..d} give the next state distribution as
directed by the jth component of the capability and agent i’s propensity (unweighted) to make the state
transition to s′ is given by

〈
ci ·

[
P1(s′|s, u) . . . Pd(s′|s, u)

]〉
= ⟨ci · WP (s′, s, u)⟩. Finally (ai)n

i=1 ∈ ∆n−1

are the influence weights of agents which quantify the influence of agent i in determining the rewards and
transitions. Under the linear setting, given a policy π and capabilities T we have that value function satisfies
V π

T =
∑n

i=1 ai⟨ci · WRµπ
T ⟩ where µπ

T = Eρ,PT ,π[γtst] are the expected discounted state features and similarly
for a given state s, V π

T (s) =
∑n

i=1 ai⟨cT
i WR ·µπ

T (s)⟩ where µπ
T (s) = EPT ,π[γtst|s0 = s]. The linear formulation

for dynamics generalizes the successor feature Barreto et al. (2016) formulation to the MAS setting, this
can be seen by noting that when the dependence of transition dynamics on capabilities is dropped (Eq. (3))
and only single agent is considered (by considering a one-hot a), we get the successor feature formulation
with capability of the nonzero ai interpreted as the task weight in (Barreto et al., 2016)(see Section 2).
We now present the first result concerning the difference between the optimal values of two different team
compositions:

Theorem 1 (Generalisation between team compositions). Let team compositions T x, T y ∈ Cn with influence
weights ax, ay ∈ ∆n−1, smax = maxs ||WRs||1, Vmid = 1

2 maxs V ∗
T y (s), Then4:

|V ∗
T x − V ∗

T y | ≤ smax + γdVmid

γ(1 − γ) Ψ, where

Ψ =
[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
(4)

4for γ ∈ (0,
√

5−1
2 ) we can replace 1

γ(1−γ) by 1+γ
1−γ
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Theorem 1 gives an interesting decomposition of an upper bound to the difference of the optimal values
between the two team compositions. The first terms in the square brackets on the RHS denote contributions
arising purely from substituting the old capacities with the new one. The second term denotes the contribution
arising from a change in how much influence the agents have over the dynamics of the MMDP.

Corollary 1.1 (Change in optimal value as a result of agent substitution). Let T ∈ Cn be a team composition
with influence weights a ∈ ∆n−1. If agent i is substituted with i′ keeping ai unchanged such that |Ti′ −Ti|∞ ≤ ϵC

then the new team (T ′) optimal value follows:

|V ∗
T ′ − V ∗

T | ≤ (smax + γdVmid)aiϵC

γ(1 − γ)

We define an important policy concept which captures the absolute optimality for an oracle with access
to the capabilities. For the ease of exposition we consider fixed influence weights a and define a metric
on the joint capability space as da(T x, T y) = |

∑
i ai(T x

i − T y
i )|∞. We similarly generalize this metric to

distances between sets by taking the infimum of the distances between pairs of points in the cross product
da(Mx, My) ≜ infT x∈Mx,T y∈My da(T x, T y).

Definition 1 (Absolute Oracle). Let π∗
M be the oracle policy which optimizes Eq. (1) ie. π∗

M is the
multiplexer policy which given a team composition T behaves identically to the optimal policy for T j where
T j ∈ arg minT l∈Sup(M) da(T l, T ).

We now answer the question of what happens when agents are trained on specific capabilities but the
learnt policy is used on potentially unseen capabilities (this could occur, e.g., due to changes in hardware
components).

Theorem 2 (Transfer of optimal policy). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1, smax = maxs ||WRs||1, Vmid =
1
2 maxs V ∗

T y (s). Let π∗
y be the optimal policy for the team composed of agents with capabilities T y and influence

weights ay. Then:

V ∗
T x − V

π∗
y

T x ≤ 2smax + γdVmid

γ(1 − γ) Ψ,

where Ψ is defined as in Eq. (4).

Corollary 2.1 (Out of distribution performance). Let T /∈ Sup(M) be an out of distribution task, we then
have that the performance of the absolute oracle policy on T satisfies:

V ∗
T − V

π∗
M

T ≤ 2smax + γdVmid

γ(1 − γ) da(T , Sup(M)),

We now address the scenarios when the team population changes.

Theorem 3 (Population decrease bound). For the team composition T ∈ Cn with influence weights a ∈ ∆n−1.
If agent n is eliminated followed by a renormalization of influence weights, we have that for the remaining
team (T − ≜ (T )n−1

i=1 ):

|V ∗
T − − V ∗

T | ≤ an(smax + γdVmid)
γ(1 − γ)

∣∣∣ n−1∑
i=1

aiTi

1 − an
− Tn

∣∣∣
∞

.

The special case when
∑n−1

i=1
aiTi

1−an
= Tn for the linear dynamics formulation when an agent n can in principle

be rendered redundant if the rest of the agents in the team can effectively provide a perfect substitute. In
fact, this holds true as long as capacity Tn can be formed from a convex combination of the capabilities
Ti, i ∈ {1..n − 1}. The latter case however requires using the corresponding convex coefficients instead of
re-1normalization. A similar bound can be easily constructed for reusing the policy after an agent eliminated
to give the corresponding transfer bound along the lines of Theorem 2.
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Corollary 3.1 (Population increase bound). For the team composition T ∈ Cn with influence weights
a ∈ ∆n−1. If agent n + 1 is added with capability Tn+1 and weight an+1 (other weights scaled down by
λ = 1 − an+1) we have that for the new team (T + ≜ (T1..Tn, Tn+1)):

|V ∗
T + − V ∗

T | ≤ an+1(smax + γdVmid)
γ(1 − γ)

∣∣∣ n∑
i=1

aiTi − Tn+1

∣∣∣
∞

.

We next extend the generalization bound Theorem 1 to include the scenario where the reward and the transition
dynamics are not exactly linear but are approximately linear with deviation ϵ̂R,ϵ̂P respectively.

Theorem 4 (Approximate ϵ̂R,ϵ̂P dynamics). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1 and the dynamics be only
approximately linear so that |RT (s)−

∑n
i=1 ai⟨ci ·WRs⟩| ≤ ϵ̂R and |PT (s′|s, u)−

∑n
i=1 ai⟨ci ·WP (s′, s, u)⟩| ≤ ϵ̂P .

Then:
|V ∗

T x − V ∗
T y | ≤ smax + γdVmid

γ(1 − γ) Ψ + 2(ϵ̂R + γϵ̂P Vmid)
γ(1 − γ) ,

where Ψ is defined as in Eq. (4).

The other bounds for transfer and population change can similarly be obtained for the approximate dynamics
case.

We now consider the scenario when the capabilities are not directly observed but inferred using an approximator
which in turn introduces some errors in their estimation (this could happen due to noise in observations,
inaccurate implicit or explicit communication protocols, etc.).

Theorem 5 (Error from estimation of capabilities). For the team composition T ∈ Cn with influence weights
a ∈ ∆n−1. If the agent capabilities are inaccurately inferred as T̂ with maxi |Ti − T̂i|∞ ≤ ϵT and agents learn
the inexact policy π̂∗ then:

|V ∗
T − V π̂∗

T | ≤ 2ϵT (smax + γdVmid)
γ(1 − γ) ,

where Vmid = 1
2 maxs V ∗

T̂ (s).

All our results can be easily extended to the setting where rewards RT (s) = ⟨f(T ) · WRs⟩, f(T ) is not
linear in capabilities as in Eq. (2) but is Lipschitz with coefficient Li for i ∈ A. For example, Theorem 1
becomes:

Theorem 6. For rewards Li Lipschitz in the capabilities with respect to | · |∞ norm, the difference in optimal
values between team compositions T x, T y satisfy:

|V ∗
T x − V ∗

T y | ≤
smax

∑n
i=1 Li|T x

i − T y
i |∞

γ(1 − γ) .

See Appendix A.6 for the proof, which also provides a method for extending the other results in a similar
fashion. For the case of general dependence of f on T (as is common for dense capability embeddings),
see Appendix A.7. We also present an insight as to why generalization becomes harder in this setting. We
provide experiments elucidating the bounds stated above in Section 5.1.

4 Experimental Setup
We evaluate the ability of existing MARL algorithms to generalize to novel settings where the capabilities of
teammates change during the training. We are interested in evaluating the gap between settings encountered
during training and held-out agent configurations reserved for testing. Furthermore, we aim to study how well
algorithms ground privileged information about teammate capabilities and use that during unseen settings at
test time. Lastly, we evaluate the bounds derived in Section 3 on a simple multi-agent problem. Code for the
setup is provided in supplementary material.

6



Under review as submission to TMLR

4.1 Environments

4.1.1 Fruit Forage
We use the fruit forage task on a grid world to empirically demonstrate the generalisation bounds in Section 3.
On a 8 × 8 grid world we have n agents and d types of fruit trees. For each agent i, Ti(j), j ∈ {1..d}
represents the utility of fruit j for agent i. The state vector is appended with the d dimensional binary
vector representing whether each of the tree types has foraged at a given time step. The details for the team
compositions can be found in Appendix B.1.1.

4.1.2 Predator Prey
We consider the grid-world version of the multi-agent Predator Prey task where 4 agents have to hunt 4
prey in an 8 × 8 grid. Here, both predators and prey have certain capabilities. Specifically, each predator
has a parameter describing the hit point damage it can cause the prey. Similarly, the prey comes with
variations in health. For example, a prey with a capability of 5 can only be caught if the total capability of
agents taking the capture action simultaneously on it have capabilities ≥ 5 (such as [1,1,1,2]), otherwise, the
whole team receives a penalty p. Here, we test for generalization to novel team composition where test tasks
contain a team composition which has not been encountered during training (PP Unseen Team in Figure
4), and additionally test tasks where novel team compositions can also have agent types with capabilities
not encountered during training (PP Unseen Team, Agent in Figure 4). More details are provided in the
Appendix B.1.2.

4.1.3 StarCraft II
To assess the generalization capabilities of modern MARL approaches, we make use of a modified version of
StarCraft II unit micromanagement tasks of the SMAC benchmark Samvelyan et al. (2019). Particularly, we
consider novel scenarios featuring three unit types from each race of the game where the team composition
changes during training and testing, unlike standard SMAC which is static. The opponent’s team is always
identical to the ally team which ensures that we can directly compare the joint policy with the game AI
policy. In the simple cases (10_Protoss, 10_Zerg, and 10_Terran), agents are trained on various team
formations of 10 units that feature all combinations of one, two, and all three unit types, and is later tested
on held out team formations.

In the hard cases (10_Protoss_Hard, 10_Zerg_Hard, and 10_Terran_Hard), agents are exposed to various
team formations including two unit types during training. During testing, however, the agents encounter
held-out scenarios featuring scenarios with using all three unit types (see Appendix B.1.3 for more details).
Fig. 2 illustrates three episodes from the 10_Protoss_Hard environment. In these tasks, agent capabilities
are described as a one-hot encoding of agent types.

To test performance on continuously varying capabilities, we also use variants of the environment where
either the health or attack accuracy of certain units are reduced. We randomize these configurations for the
allied units during training and later test on held-out team configurations. We evaluate baselines on the 3m,
2s3z, 8m scenarios from the original benchmark with these modifications. The varying team size also helps
understand how grounding the capabilities becomes harder as team size increases. Here agent capabilities are
described as their accuracy or health coefficients. Further details are provided in the Appendix B.1.3.

4.2 Baselines

Our empirical evaluation is based on various types of MARL algorithms. We use two popular value-based
approaches, QMIX (Rashid et al., 2020) and VDN (Sunehag et al., 2017) that train fully decentralized policies
in a centralized fashion. We also use thus spacepolicy gradient method PPO (Schulman et al., 2017) that
has recently shown good results on various MARL domains, both with decentralised (Independent PPO)
(de Witt et al., 2020) and centralised critics (MAPPO) Yu et al. (2021). We assess the performance of all
baselines when the information about teammates capabilities are provided as observation (denoted with a ‘C’
in parentheses) and when it is not. The evaluation procedure, architectures and training details are
presented in Appendix B.2.
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Figure 2: Three episodes from the 10_Protoss_Hard task (a) Top-left featuring only Zealot and Stalkers
during training. (b) Bottom-left featuring only Zealot and Colossus during training. (c) Right: A held-out
episode featuring Zealot, Stalker, and Colossus encountered during testing.

(a) Theorem 1 (b) Theorem 2 (c) Theorem 3

Figure 3: Evaluating the bounds for QMIX on Fruit Forage domain. Dashed blue line indicates the setting
where agent capabilities are observable. The red dotted line indicates the corresponding upper bound for
each theorem.

5 Results and Discussion

5.1 Generalization Bounds

Fig. 3 provides empirical evaluation of bounds presented in Section 3 in the Fruit Forage domain. We present
the plots for training the agents for one million steps of training using QMIX. Fig. 3(a) shows that the policies
in both the domains converge quickly leading to a stable difference in performance thus comfortably satisfying
Theorem 1. Fig. 3(b) shows the gap between optimal and transferred policy and reveals interesting variations
as training proceeds (we posit this happens because the transferred policy becomes steadily specialized thus
getting less useful for the target task); the bound in Theorem 2 gives a tight fit despite these variations.
Finally, we see similarly good fit for the agent elimination scenario in Theorem 3 in Fig. 3(c).
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(a) PP Unseen Team (b) PP Unseen Team (c) PP Unseen Team, Agent (d) PP Unseen Team, Agent

Figure 4: Experimental results for the Predator Prey domain. Standard deviation is shaded.
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Figure 5: Experimental results on the SMAC benchmark. Standard deviation is shaded. Rows show win
rates and generalization gaps.

5.2 Utilizing Information of Agent Capabilities

Fig. 4 presents the results of the baselines on Predator Prey domain. Fig. 4(a) shows that providing additional
information on agent capabilities improves the test-time performance of the baselines with the maximal
effect seen on QMIX and VDN. Furthermore, Fig. 4(b) shows that when capabilities are observable to the
agents, baselines are able to generalize to new team compositions, thus successfully grounding the additional
information. This hypothesis is additionally supported by the fact that knowing agent capabilities results in a
lower generalization gap. Finally, the gap between the settings with known vs. unknown capabilities (dashed
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vs. solid) indicates that agents have likely not come up with any appropriate protocol to communicate their
capabilities during test time. Furthermore, the PPO variants do not perform as well as the value-based
approaches. Therefore, their low generalization gap Fig. 4(b) is unlikely representative of good grounding
of capability. We posit that this is just because PPO agents are ignoring the privileged information when
available.

For a harder scenario, where both new team composition and agent types appear during evaluation, Fig. 4(c)
shows that the situation is reversed from the previous setting as the agents that do not have access to each
other’s capabilities now perform slightly better. This is strongly indicative of insufficient grounding of the
privileged information given to them, which highlights the need for better grounding mechanisms to obtain
CG. We see a similar pattern on generalization gap in Fig. 4(d) where privileged information hurts the
performance and is likely perceived as observation noise.

On the more challenging domain of StarCraft, we see that for easier capability variations of health and
accuracy (as they are continuous and more readily usable for an agent’s immediate actions), knowing the
capabilities is advantageous to the agent during test time. Moreover, the relative gains of knowing the
privileged information go down as the task difficulty increases. The accuracy variations tend to be easier
as typical joint policies like ’focus fire’ where a group of units to attack a single target together remain
unchanged. Moreover, health variations on smaller teams make the task much harder than on bigger teams
due to relative loss in team hit points. In this regard, 8m, 3s5z accuracy versions show good grounding
and generalization. This changes as tasks get harder. On the harder tasks that involve swapping unit types
within Protoss, Zerg, Terran races, we observe that knowing the capabilities of other agents gives little
advantage. This is especially noticeable on the Hard versions where all unit types are never within a single
team during training. Furthermore, with win-rate performances on these maps being low, we hypothesise
that the agents do not successfully utilize the capability information. Thus, it is highly unlikely that they
learn any meaningful communication protocols for exchanging capability information. For full StarCraft II
results, including 8m_vs_9m & 10m_vs_11m scenarios, see Appendix C.

Compared to the relatively simple Predator Prey task, generalization in StarCraft proved to be more difficult
for the baselines. Although static versions of SMAC environments are comfortably solved by them Rashid
et al. (2020); de Witt et al. (2020); Yu et al. (2021), changing unit formations or unit health/accuracy
makes the tasks significantly difficult, even for configurations seen during the training. As observed in
Fig. 5, providing the capability information does not consistently improve the test-time performance. This
suggests the poor grounding abilities of the baseline algorithms, which reinforces the need for better grounding
mechanisms in MARL algorithms (e.g., forward dynamics prediction as in Jaderberg et al. (2016)). The
failure to generalize on index-based privileged information regarding agent types suggests using mechanisms
such as latent embeddings to compose and reason about capabilities. Finally, a low test performance gap
between agents having privileged information vs. those that do not, coupled with a low generalization gap,
suggests that these methods do not facilitate information sharing between the agents, which is another
desideratum towards attaining CG.

6 Related Work
Multi-agent systems (Claus & Boutilier, 1998; Busoniu et al., 2008) offer means to overcome theoretical
barriers like exponential blow up in state-action space and compute resource requirements for large problems.
MARL is a promising approach for training cooperative MAS. Recent progress in cooperative MARL (Lowe
et al., 2017; Sunehag et al., 2017; Rashid et al., 2020; Mahajan et al., 2021) has demonstrated impressive
applications in solving complex tasks in games such as StarCraft II (Samvelyan et al., 2019). Specialized
methods which improve exploration in MARL have been proposed using hierarchical learning Mahajan et al.
(2019) and successor features Gupta et al. (2021). Methods for factorizing the action space (Wang et al.,
2020) have shown improvement in sample complexity. Iqbal et al. (2021) regularize value functions to share
factors comprised of sub-groups of entities, in order to transfer knowledge across cooperative tasks. In
the competitive/general sum MARL space (Lowe et al., 2017; OpenAI et al., 2019) have shown impressive
performance on complex tasks. Vezhnevets et al. (2020) use an options framework to learn agents which
generalize against different opponents. Czarnecki et al. (2020); Tuyls et al. (2020); Piliouras et al. (2021)
explore the structural and theoretical properties of general payoff games. Mehta et al. (2023) provide domains

10



Under review as submission to TMLR

for social generalization in MARL, similarly Ellis et al. (2022) provide scenarios for procedural generation in
StarCraft.

Ad-hoc coordination was first formalised by Stone et al. (2010) by modelling the multi-agent problem as a
single-agent task and using competency scores to measure agent compatibility. Methods for using explicit
hard-coded protocols for adaptations were explored in Tambe (1997); Grosz & Kraus (1996). Opponent
modelling for general game was explored in Stone et al. (2000); Markovitch & Reger (2005); Ledezma et al.
(2004). Several approaches to the ad-hoc cooperation problem assume that the behaviour of other agents in
the ensemble are fixed Bowling & McCracken (2005). Planning methods like Monte Carlo tree search are used
for finding optimal adaptation policy from a fixed set of choices (Barrett et al., 2011; Albrecht et al., 2016;
Albrecht & Stone, 2019). Nikolaidis et al. (2014) develop over this by enabling learning a set of behaviours
for the adapting agent while performing the task with human agents instead of assuming that it is given
beforehand. Recent methods allow a change in the behaviour of the other agents to ones picked from a fixed
set and account for the possible non-stationarities using change point detection Hernandez-Leal et al. (2017);
Ravula (2019). However, these methods do not consider arbitrary learning for other agents. Furthermore,
they do not focus on generalization to unseen agent capabilities.

Generalization in RL aims to develop approaches that generalize well to the novel, unseen scenarios after
training (Kirk et al., 2022). Such methods avoid overfitting to seen tasks and can produce robust behaviour
when deployed to novel settings. Recent work on generalization in single-agent RL make use of techniques
such as data augmentation (Raileanu et al., 2021; Kostrikov et al., 2021), environment generation (Team
et al., 2021; Leibo et al., 2021), encoding inductive biases (Higgins et al., 2017), and regularization (Cobbe
et al., 2019). Methods in contextual MDPs Hallak et al. (2015); Zhang et al. (2020); Mahajan & Zhang (2023)
also provide generalization with guarantees. Recent work also elucidate some of the fundamental bounds
arising from computational complexity which prevents sample efficient generalization (Du et al., 2020; Ghosh
et al., 2021; Malik et al., 2021).
7 Conclusion and Future work
In this work, we studied the generalization properties in multi-agent systems (MAS) following Markovian
dynamics with a linear dependence of dynamics on the agent capabilities. We showed how the framework
extends the successor feature setting to MAS. We explored performance bounds for various interesting
scenarios arising in MAS including generalization, transfer, agent substitutions, approximate inference of
capabilities and deviations in environment dynamics. Furthermore, we showed how the bounds can be
extended to the Lipschitz reward setting and elucidated the most general form of rewards and how they make
generalization difficult. Finally, we extensively tested the popular MARL algorithms on domains presenting a
wide spectrum of hardness for CG. We saw that while some algorithms demonstrated preliminary CG on
easier domains, all of the algorithms are insufficient towards ensuring CG on the challenging domains. We
further highlighted how the first step towards ensuring CG should be ensuring proper grounding of agent
capabilities. For future work, we aim to provide tighter bounds for CG for more general dynamics and create
methods for better grounding of agent capabilities.
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A Proofs
A.1 Generalisation between team compositions
Theorem 1 (Generalisation between team compositions). Let team compositions T x, T y ∈ Cn with influence
weights ax, ay ∈ ∆n−1, smax = maxs ||WRs||1 , Vmid = 1

2 maxs V ∗
T y (s), Then5:

|V ∗
T x − V ∗

T y | ≤ smax + γdVmid

γ(1 − γ) Ψ, where

Ψ =
[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]

Proof. Let ϵR = maxs |RT x(s) − RT y (s)| and ϵP = maxs,u 2 · DT V

(
PT x(·|s, u), PT y (·|s, u)

)
where DT V is

the total variation distance. We have that:

|Q∗
T x(s, u) − Q∗

T y (s, u)|

= |RT x(s) − RT y (s) + γ
( ∑

s′

PT x(s′|s, u) max
u′

Q∗
T x(s′, u′) −

∑
s′

PT y (s′|s, u) max
u′

Q∗
T y (s′, u′))

)
|

≤ |RT x(s) − RT y (s)| + γ
{

|
∑

s′

PT x(s′|s, u)
[

max
u′

Q∗
T x(s′, u′) − max

u′
Q∗

T y (s′, u′)
]
|

+ |
∑

s′

[
PT x(s′|s, u) − PT y (s′|s, u)

]
(max

u′
Q∗

T y (s′, u′) − Vmid)|
}

≤ ϵR + γ
{ ∑

s′

PT x(s′|s, u)| max
u′

Q∗
T x(s′, u′) − max

u′
Q∗

T y (s′, u′)| +
∑

s′

|PT x(s′|s, u) − PT y (s′|s, u)|| max
u′

Q∗
T y (s′, u′) − Vmid|

}
≤ ϵR + γ

{ ∑
s′

PT x(s′|s, u) max
u′

|Q∗
T x(s′, u′) − Q∗

T y (s′, u′)| + 2 · DT V

(
PT x(s′|s, u), PT y (s′|s, u)

)
Vmid

}
≤ ϵR + γ

{
max
s′,u′

|Q∗
T x(s′, u′) − Q∗

T y (s′, u′)| + ϵP Vmid

}
Next taking max w.r.t. s, u of the above we get:

max
s,u

|Q∗
T x(s, u) − Q∗

T y (s, u)| ≤ ϵR + γϵP Vmid

1 − γ

We now bound the deviation quantities appearing above:

ϵR = max
s

|RT x(s) − RT y (s)|

= max
s

|
n∑

i=1
ax

i ⟨T x
i · WRs⟩ −

n∑
i=1

ay
i ⟨T y

i · WRs⟩|

≤ max
s

[
|

n∑
i=1

ax
i ⟨(T x

i − T y
i ) · WRs⟩| + |

n∑
i=1

(ax
i − ay

i )⟨T y
i · WRs⟩|

]
≤ max

s

[
|
∑

i

ax
i (T x

i − T y
i )|∞|WRs|1 + |

∑
i

(ax
i − ay

i )T y
i |∞|WRs|1

]
= smax

[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
Similarly,

ϵP = max
s,u

2 · DT V

(
PT x(·|s, u), PT y (·|s, u)

)
5for γ ∈ (0,

√
5−1
2 ) we can replace 1

γ(1−γ) by 1+γ
1−γ
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= max
s,u

∑
s′

|PT x(s′|s, u) − PT y (s′|s, u)|

= max
s,u

∑
s′

|
n∑

i=1
ax

i ⟨T x
i · WP (s′, s, u)⟩ −

n∑
i=1

ay
i ⟨T y

i · WP (s′, s, u)⟩|

≤ max
s,u

∑
s′

[
|

n∑
i=1

ax
i ⟨(T x

i − T y
i ) · WP (s′, s, u)⟩| + |

n∑
i=1

(ax
i − ay

i )⟨T y
i · WP (s′, s, u)⟩|

]
≤ max

s,u

∑
s′

[
|
∑

i

ax
i (T x

i − T y
i )|∞|WP (s′, s, u)|1 + |

∑
i

(ax
i − ay

i )T y
i |∞|WP (s′, s, u)|1

]
=

[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
max
s,u

∑
s′

|WP (s′, s, u)|1

= d
[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]

Thus, we get:

|Q∗
T x(s, u) − Q∗

T y (s, u)| ≤ smax + γdVmid

1 − γ

[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
Finally we get the value difference bound by considering a dummy state s# which always transitions according
to ρ and then using the Bellman equation. (Note that for γ ∈ (0,

√
5−1
2 ) we can replace 1

γ(1−γ) by 1+γ
1−γ for a

tighter bound without considering a dummy start state)

Corollary 1.1 (Change in optimal value as a result of agent substitution). Let T ∈ Cn be a team composition
with influence weights a ∈ ∆n−1. If agent i is substituted with i′ keeping ai unchanged such that |Ti′ −Ti|∞ ≤ ϵC

then the new team (T ′) optimal value follows:

|V ∗
T ′ − V ∗

T | ≤ (smax + γdVmid)aiϵC

γ(1 − γ)

Proof. Applying Theorem 1 on original task and a new task with same influence weights and agent i capability
replaced with Ti′ immediately gives the result.

A.2 Transfer of optimal policy
Theorem 2 (Transfer of optimal policy). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1, smax = maxs ||WRs||1, Vmid =
1
2 maxs V ∗

T y (s). Let π∗
y be the optimal policy for the team composed of agents with capabilities T y and influence

weights ay. Then:
V ∗

T x − V
π∗

y

T x ≤ 2smax + γdVmid

γ(1 − γ) Ψ,

where Ψ is defined as in Eq. (4).

Proof. We have that:

Q∗
T x(s, u) − Q

π∗
y

T x(s, u) ≤ |Q∗
T x(s, u) − Q∗

T y (s, u)| + |Q∗
T y (s, u) − Q

π∗
y

T x(s, u)| (5)

The first term on the RHS of Eq. (5) is taken care of by Theorem 1. We now focus on the second term:

|Q∗
T y (s, u) − Q

π∗
y

T x(s, u)|

= |RT y (s) − RT x(s) + γ
( ∑

s′

PT y (s′|s, u) max
u′

Q∗
T y (s′, u′) −

∑
s′

PT x(s′|s, u)Qπ∗
y

T x(s′, π∗
y(u′))

)
|

≤ ϵR + γ
{

|
∑

s′

PT x(s′|s, u)
[

max
u′

Q∗
T y (s′, u′) − Q

π∗
y

T x(s′, π∗
y(u′)

]
|
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+ |
∑

s′

[
PT y (s′|s, u) − PT x(s′|s, u)

]
(max

u′
Q∗

T y (s′, u′) − Vmid)|
}

≤ ϵR + γ
{

max
s′,u′

|Q∗
T y (s′, u′) − Q

π∗
y

T x(s′, π∗
y(u′)| + ϵP Vmid

}
Once again, taking max w.r.t. s, u of the above we get:

max
s,u

|Q∗
T y (s, u) − Q

π∗
y

T x(s, u)| ≤ ϵR + γϵP Vmid

1 − γ

Substituting for deviation expressions and using Theorem 1 in Eq. (5) we get:

|Q∗
T x(s, u) − Q

π∗
y

T x(s, u)| ≤ 2smax + γdVmid

1 − γ

[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
Note the absolute on LHS above can be dropped as Q∗

T x is optimal. Finally using the same technique as
above for Theorem 1 we get the statement of the theorem.

Corollary 2.1 (Out of distribution performance). Let T /∈ Sup(M) be an out of distribution task, we then
have that the performance of the absolute oracle policy on T satisfies:

V ∗
T − V

π∗
M

T ≤ 2smax + γdVmid

γ(1 − γ) da(T , Sup(M)),

Proof. For any task that belongs to arg minT l∈Sup(M) da(T l, T ), we have by application of Theorem 2 that
the result immediately holds given definition of π∗

M.

A.3 Population decrease
Theorem 3 (Population decrease bound). For the team composition T ∈ Cn with influence weights a ∈ ∆n−1.
If agent n is eliminated followed by a re-normalization of influence weights, we have that for the remaining
team (T − ≜ (T )n−1

i=1 ):

|V ∗
T − − V ∗

T | ≤ an(smax + γdVmid)
γ(1 − γ)

∣∣∣ n−1∑
i=1

aiTi

1 − an
− Tn

∣∣∣
∞

Proof. We use Theorem 1 with influence weights (ai)n
1 and (λ · ai : i = 1..n − 1, an = 0) where λ = 1

1−an

Corollary 3.1 (Population increase bound). For the team composition T ∈ Cn with influence weights
a ∈ ∆n−1. If agent n + 1 is added with capability Tn+1 and weight an+1 (other weights scaled down by
λ = 1 − an+1) we have that for the new team (T + ≜ (T1..Tn, Tn+1)):

|V ∗
T + − V ∗

T | ≤ an+1(smax + γdVmid)
γ(1 − γ)

∣∣∣ n∑
i=1

aiTi − Tn+1

∣∣∣
∞

Proof. Consider the team compositions T x = (T1..Tn, 0) with influence weights = (a1..an, 0) and T y =
(T1..Tn, Tn+1) with influence weights = (λa1..λan, an+1) where λ = 1 − an+1, we have that:

Ψ =
[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
= |

n∑
i=1

(1 − λ)aiT y
i − an+1T y

n+1|∞

= an+1|
n∑

i=1
aiT y

i − T y
n+1|∞

which on applying Theorem 1 yields the result.
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A.4 Approximate ϵ̂R,ϵ̂P dynamics
Theorem 4 (Approximate ϵ̂R,ϵ̂P dynamics). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1 and the dynamics be only
approximately linear so that |RT (s)−

∑n
i=1 ai⟨ci ·WRs⟩| ≤ ϵ̂R and |PT (s′|s, u)−

∑n
i=1 ai⟨ci ·WP (s′, s, u)⟩| ≤ ϵ̂P .

Then:
|V ∗

T x − V ∗
T y | ≤ smax + γdVmid

γ(1 − γ) Ψ + 2(ϵ̂R + γϵ̂P Vmid)
γ(1 − γ) ,

where Ψ is defined as in Eq. (4).

Proof. We begin as in proof of Theorem 1 to get:

max
s,u

|Q∗
T x(s, u) − Q∗

T y (s, u)| ≤ ϵR + γϵP Vmid

1 − γ

Next we apply the corrections to the relative differences:

ϵR = max
s

|RT x(s) − RT y (s)|

≤ max
s

[
|RT x(s) −

n∑
i=1

ax
i ⟨T x

i · WRs⟩| + |
n∑

i=1
ax

i ⟨T x
i · WRs⟩ −

n∑
i=1

ay
i ⟨T y

i · WRs⟩| + |RT y (s) −
n∑

i=1
ay

i ⟨T y
i · WRs⟩|

]
≤ 2ϵ̂R + max

s

[
|

n∑
i=1

ax
i ⟨(T x

i − T y
i ) · WRs⟩| + |

n∑
i=1

(ax
i − ay

i )⟨T y
i · WRs⟩|

]
≤ 2ϵ̂R + max

s

[
|
∑

i

ax
i (T x

i − T y
i )|∞|WRs|1 + |

∑
i

(ax
i − ay

i )T y
i |∞|WRs|1

]
= 2ϵ̂R + smax

[
|
∑

i

ax
i (T x

i − T y
i )|∞ + |

∑
i

(ax
i − ay

i )T y
i |∞

]
Proceeding similarly with the transition probabilities we get the desired result.

A.5 Error from estimation of capabilities
Theorem 5 (Error from estimation of capabilities). For the team composition T ∈ Cn with influence weights
a ∈ ∆n−1. If the agent capabilities are inaccurately inferred as T̂ with maxi |Ti − T̂i|∞ ≤ ϵT and agents learn
the inexact policy π̂∗ then:

|V ∗
T − V π̂∗

T | ≤ 2ϵT (smax + γdVmid)
γ(1 − γ)

where Vmid = 1
2 maxs V ∗

T̂ (s)

Proof. We have that for the actual and inferred team compositions with same influence weights:

Ψ =
[
|
∑

i

ai(Ti − T̂i)|∞ + |
∑

i

(ai − ai)T̂i|∞
]

= |
∑

i

ai(Ti − T̂i)|∞

≤
∑

i

ai|Ti − T̂i|∞

≤
∑

i

aiϵT

= ϵT

Now applying Theorem 2 gives the result
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A.6 Extending to Lipschitz rewards
We demonstrate how to extend the results in Section 3 to Lipschitz function of capabilities. For brevity
we consider only the setting where the rewards vary with capabilities. Thus, for the reward function form
RT (s) = ⟨f(T ) · WRs⟩ where f(T ) is Li Lipschitz with respect to the capability Ti for i ∈ A for the | · |∞
norm. We get that for two different team compositions T x, T y

ϵR = max
s

|RT x(s) − RT y (s)|

= max
s

|⟨f(T x) · WRs⟩ − ⟨f(T y) · WRs⟩|

= max
s

|
n∑

i=1
⟨f(T i) · WRs⟩ − ⟨f(T i+1) · WRs⟩|

≤ max
s

n∑
i=1

|⟨f(T i) · WRs⟩ − ⟨f(T i+1) · WRs⟩|

≤ max
s

n∑
i=1

|⟨f(T i) · WRs⟩ − ⟨f(T i+1) · WRs⟩|

≤ max
s

n∑
i=1

|f(T i) − f(T i+1)|∞|WRs|1

≤ smax

n∑
i=1

Li|T x
i − T y

i |∞

Where T i was the sequence satisfying T 1 = T x and T n+1 = T y and changing T x one index at a time. We
have thus proved that:

Theorem 6. For rewards Li Lipschitz in the capabilities with respect to | · |∞ norm, the difference in optimal
values between team compositions T x, T y satisfy:

|V ∗
T x − V ∗

T y | ≤
smax

∑n
i=1 Li|T x

i − T y
i |∞

γ(1 − γ)

A.7 General dependence of rewards on capabilities:
We now consider the dependence of rewards on the capabilities in the most general form. For this, we
introduce the notion of (α, k)-rewards where α ≥ 0, k ∈ N.

RT (s) =
〈 ∑

ki∈N,
∑

ki≤k

ak1..kn
Πn

i=1cki
i · WRs

〉
(6)

where N are non negative integers, |ak1..kn
| ≤ α and ck

i i represents element-wise exponentiation. . Rewards
in Eq. (2) can be seen as a special case belonging to Eq. (6) the choice α, k = 1. Similarly the union
∪α≥0,k∈N(α, k)-rewards cover all possible reward dependencies on capabilities. We have further relaxed the
assumption of influence weights belonging to a simplex here and replaced it with individual bounds on the
power series coefficients here. We next see that for this scenario, even a small change in the capability of a
single agent can shift the rewards massively. Let the capability of agent i be changed from Ti to Ti′ such
that |Ti − Ti′ |∞ ≤ δ. Then we have

Lemma 1. For substitution Ti to Ti′ such that |Ti − Ti′ |∞ ≤ δ under the (α, k)-rewards setting we have that

ϵR = max
s∈S

∣∣∣〈 ∑
ki∈N,

∑
ki≤k

ak1..kn
Πj ̸=iT

kj

j (T ki
i − T ki

i′ ) · WRs
〉∣∣∣

≤ max
s∈S

∣∣∣ ∑
ki∈N,

∑
ki≤k

ak1..kn
Πj ̸=iT

kj

j (T ki
i − T ki

i′ )
∣∣∣
∞

∣∣∣WRs
∣∣∣
1
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≤ αsmax

k∑
j=0

j∑
l=1

(
l

j

)
l|T ki

i − T ki

i′ |∞

≤ αδsmax

k∑
j=0

j2j−1 = O(αδsmaxk2k)

While this is not a lower bound, the above still suggests that even a small change in the capability of an agent
can cause the rewards to change by a lot, hence it is natural to expect that generalization becomes harder
as the problem start showing the needle in the haystack phenomenon where only the right combination of
capabilities gives a large optimal value.

B Experimental Setup
B.1 Environments
B.1.1 Fruit Forage
We use the fruit forage task on a grid world to empirically demonstrate the generalisation bounds in Section 3.
On a k × k grid world we have n agents and d types of fruit trees. For each agent i, Ti(j), j ∈ {1..d}
represents the utility of fruit j for agent i. The state vector is appended with the d dimensional binary
vector representing whether each of the tree types was foraged at a given time step. The details for the team
compositions can be found in Appendix B.1.1. We define three team compositions as follows:

Tx: [[0.05, 0.1, 0.6, 2.8], [0.05, 0.1, 2.1, 0.8], [0.05, 0.1, 1.8, 1.2], [0.05, 0.1, 0.9, 2.4]]

Ty: [[0.7, 0.4, 0.15, 0.2], [0.2, 1.4, 0.15, 0.2], [0.3, 1.2, 0.15, 0.2], [0.6, 0.6, 0.15, 0.2]]

Tz: [[0.1, 0.3, 0.6, 0.0], [0.4, 0.1, 0.5, 0.0], [0.05, 0.06, 0.89, 0.0], [0.0, 0.0, 0.0, 1.0]]

For proving bounds on Theorem-1, we compare the mean test returns achieved on tasks Tx and Ty using
V ⋆

Tx
− V ⋆

Ty
. For Theorem-2, we compare the mean test returns achieved on tasks Tx and optimal policies of

task Ty evaluated on task Tx i.e. V ⋆
Tx

− V
π⋆

Ty

Tx
. Finally, for Theorem-3, we compare the mean test returns

achieved on tasks Tz and optimal policies of task Tz evaluated on task Tz but removing the last agent i.e.
V ⋆

Tz−
− V ⋆

Tz
.

B.1.2 Predator Prey
We consider a complicated partially observable predator-prey (PP) task in an 8 × 8 grid involving four agents
(predators) and four prey that is designed to test coordination between agents. Specifically, each predator has
a parameter describing the hit point damage it can cause the prey. Similarly, the prey comes with variations
in health. For example, a prey with a capability of 5 can only be caught if the total capability of agents
taking the capture action simultaneously on it have capabilities ≥ 5 (such as [1,1,3]), otherwise, the whole
team receives a penalty p. On successful capture, agents get a reward of +1. Once prey is captured, another
prey is spawned at a random location. Therefore, agents have to collaborate and capture as many preys as
possible within 100 time steps.

Each agent can take 6 actions i.e. move in one of the 4 directions (Up, Left, Down, Right), remain still
(no-op), or try to catch (capture) any adjacent prey. The prey moves around in the grid with a probability
of 0.7 and remains still at its position with the probability of 0.3. Impossible actions for both agents and
prey are marked unavailable, for eg. moving into an occupied cell or trying to take a capture action with no
adjacent prey.

In this domain, we test for two types of generalization: (1) novel team composition where test tasks contain a
team composition which has not been encountered during training (PP Unseen Team in Figure 4), and second,
(2) test tasks where novel team compositions can also have agent types with capabilities not encountered
during training (PP Unseen Team, Agent in Figure 4).

For (PP Unseen Team), we train on preys with capabilities [2,2,2,3], and agents with capabilities
[2,3,2,3],[1,2,1,2], thereby having agent teams with total hit points of 10 and 6 respectively. We also
train on two separate penalties p for miscoordination i.e. p ∈ {0.0, −0.008}, this helps inject additional
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stochasticity in the environment as the agents don’t know the penalty value. For test tasks, we create novel
team compositions not encountered during training i.e. agents with capabilities [1,1,2,3],[1,1,1,3] having total
hit points of 7 and 6 respectively.

For (PP Unseen Team, Agent) we train on preys with capabilities [1,2,3,4], and agents with capabilities [1, 2,
2, 3], [1, 1, 2, 2], [1, 3, 2, 1], thereby having agent teams with total hit points of 8, 6 and 7 respectively. We
also train on two separate penalties p for miscoordination i.e. p ∈ {0.0, −0.008}. For test tasks, we create
novel team compositions with an unseen agent of capability 4 not encountered during training i.e. agents
with capabilities [1, 1, 1, 4], [1, 1, 3, 4], [1, 1, 2, 4] having total hit points of 7, 9, and 8 respectively.

Experimental Setup: For (PP Unseen Team, and PP Unseen Team, Agent) oracle baseline (leftmost), we
show the average difference in performance across all test tasks when capability information is included ((c)
for each method.

For testing the generalization gap in (PP Unseen Team), we show the difference in returns achieved by
training task [1,2,1,2] (hit point 6) and test task [1,1,1,3] (hit point 6). For testing the generalization gap in
(PP Unseen Team, Agent), we show the difference in returns achieved by training task [1,3,2,1] (hit point 7)
and test task [1,1,1,4] (hit point 7) with a new agent of capability 4. All PP experiments are based on 8
seeds.

B.1.3 StarCraft II

We use the standard set of actions and global state information included as part of the SMAC benchmark
Samvelyan et al. (2019). The sight range of the agent units has been increased to the fully observable setting.
In the oracle mode, agent capabilities are included as part of individual observations. Each agent always
observes its own capabilities. Furthermore, capabilities are always included in the global state.

10_Terran and 10_Terran_Hard environment includes Marine, Maradeur, and Medivac units. 10_Protoss
and 10_Protoss_Hard environments feature Stalker, Zealot, and Colossus units. 10_Zerg and 10_Zerg_Hard
environments include Zergling, Hydralisk and Baneling units.

In Accuracy and Health tasks, specific values reduced from full unit capabilities are chosen to be equivalent
to a loss of a single teammate. For example, if there three agents, their accuracy could be set to 0.75, 0.75
and 0.5 given that (1 − 0.5) + (1 − 0.75) + (1 − 0.75) = 1. Consequently, the overall reduction in accuracy
would be roughly equivalent to losing one ally unit. This was chosen to ensure that the difficulty of the tasks
was not too high.

All SMAC experiments are based on 5 seeds.

Table 1, 2, and 3 describe the training and evaluation distributions used in unit type swapping tasks.
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Table 1: Team formations in Terran tasks

10_Terran 10_Terran_Hard

Training Training
1 marine & 9 marauders 1 marine & 9 marauders
3 marines & 7 marauders 2 marines & 8 marauders
4 marines & 6 marauders 3 marines & 7 marauders
5 marines & 5 marauders 4 marines & 6 marauders
6 marines & 4 marauders 5 marines & 5 marauders
8 marines & 2 marauders 6 marines & 4 marauders
9 marines & 1 marauder 7 marines & 3 marauders
5 marauders & 5 medivacs 8 marines & 2 marauders
7 marauders & 3 medivacs 9 marines & 1 marauder
9 marauders & 1 medivac 5 marauders & 5 medivacs
7 marines & 3 medivacs 6 marauders & 4 medivacs
8 marines & 2 medivacs 7 marauders & 3 medivacs
9 marines & 1 medivac 8 marauders & 2 medivacs
10 marines 9 marauders & 1 medivac
10 marauders 7 marines & 3 medivacs
8 marines & 1 marauder & 1 medivac 8 marines & 2 medivacs
1 marine & 8 marauders & 1 medivac 9 marines & 1 medivac
5 marines & 3 marauders & 2 medivacs Testing
2 marines & 7 marauders & 1 medivac 10 marines
6 marines & 2 marauders & 2 medivacs 10 marauders
2 marines & 6 marauders & 2 medivacs 8 marines & 1 marauder & 1 medivac
4 marines & 4 marauders & 2 medivacs 1 marine & 8 marauders & 1 medivac
Testing 5 marines & 3 marauders & 2 medivacs
2 marines & 8 marauders 3 marines & 5 marauders & 2 medivacs
7 marines & 3 marauders 4 marines & 3 marauders & 3 medivacs
6 marauders & 4 medivacs 3 marines & 4 marauders & 3 medivacs
8 marauders & 2 medivacs 7 marines & 2 marauders & 1 medivac
3 marines & 5 marauders & 2 medivacs 2 marines & 7 marauders & 1 medivac
4 marines & 3 marauders & 3 medivacs 6 marines & 2 marauders & 2 medivacs
3 marines & 4 marauders & 3 medivacs 2 marines & 6 marauders & 2 medivacs
7 marines & 2 marauders & 1 medivac 4 marines & 4 marauders & 2 medivacs
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Table 2: Team formations in Zerg tasks

10_Zerg 10_Zerg_Hard

Training Training
1 zergling & 9 hydralisks 1 zergling & 9 hydralisks
2 zerglings & 8 hydralisks 2 zerglings & 8 hydralisks
4 zerglings & 6 hydralisks 3 zerglings & 7 hydralisks
5 zerglings & 5 hydralisks 4 zerglings & 6 hydralisks
6 zerglings & 4 hydralisks 5 zerglings & 5 hydralisks
7 zerglings & 3 hydralisks 6 zerglings & 4 hydralisks
9 zerglings & 1 hydralisk 7 zerglings & 3 hydralisks
4 hydralisks & 6 banelings 8 zerglings & 2 hydralisks
5 hydralisks & 5 banelings 9 zerglings & 1 hydralisk
6 hydralisks & 4 banelings 4 hydralisks & 6 banelings
8 hydralisks & 2 banelings 5 hydralisks & 5 banelings
9 hydralisks & 1 baneling 6 hydralisks & 4 banelings
4 zerglings & 6 banelings 7 hydralisks & 3 banelings
6 zerglings & 4 banelings 8 hydralisks & 2 banelings
7 zerglings & 3 banelings 9 hydralisks & 1 baneling
8 zerglings & 2 banelings 4 zerglings & 6 banelings
10 zerglings 5 zerglings & 5 banelings
10 hydralisks 6 zerglings & 4 banelings
10 banelings 7 zerglings & 3 banelings
8 zerglings & 1 hydralisk & 1 baneling 8 zerglings & 2 banelings
1 zergling & 8 hydralisks & 1 baneling 9 zerglings & 1 baneling
7 zerglings & 2 hydralisks & 1 baneling Testing
2 zerglings & 7 hydralisks & 1 baneling 10 zerglings
5 zerglings & 3 hydralisks & 2 banelings 10 hydralisks
3 zerglings & 5 hydralisks & 2 banelings 10 banelings
4 zerglings & 4 hydralisks & 2 banelings 8 zerglings & 1 hydralisk & 1 baneling
3 zerglings & 4 hydralisks & 3 banelings 1 zergling & 8 hydralisks & 1 baneling
Testing 7 zerglings & 2 hydralisks & 1 baneling
3 zerglings & 7 hydralisks 2 zerglings & 7 hydralisks & 1 baneling
8 zerglings & 2 hydralisks 6 zerglings & 2 hydralisks & 2 banelings
7 hydralisks & 3 banelings 2 zerglings & 6 hydralisks & 2 banelings
5 zerglings & 5 banelings 5 zerglings & 3 hydralisks & 2 banelings
9 zerglings & 1 baneling 3 zerglings & 5 hydralisks & 2 banelings
6 zerglings & 2 hydralisks & 2 banelings 4 zerglings & 4 hydralisks & 2 banelings
4 zerglings & 3 hydralisks & 3 banelings 4 zerglings & 3 hydralisks & 3 banelings
2 zerglings & 6 hydralisks & 2 banelings 3 zerglings & 4 hydralisks & 3 banelings
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Table 3: Team formations in Protoss tasks

10_Protoss 10_Protoss_Hard

Training Training
1 stalker & 9 zealots 1 stalker & 9 zealots
3 stalkers & 7 zealots 2 stalkers & 8 zealots
4 stalkers & 6 zealots 3 stalkers & 7 zealots
5 stalkers & 5 zealots 4 stalkers & 6 zealots
6 stalkers & 4 zealots 5 stalkers & 5 zealots
8 stalkers & 2 zealots 6 stalkers & 4 zealots
9 stalkers & 1 zealot 7 stalkers & 3 zealots
4 zealots & 6 colossi 8 stalkers & 2 zealots
5 zealots & 5 colossi 9 stalkers & 1 zealot
7 zealots & 3 colossi 4 zealots & 6 colossi
8 zealots & 2 colossi 5 zealots & 5 colossi
9 zealots & 1 colossus 6 zealots & 4 colossi
4 stalkers & 6 colossi 7 zealots & 3 colossi
5 stalkers & 5 colossi 8 zealots & 2 colossi
7 stalkers & 3 colossi 9 zealots & 1 colossus
8 stalkers & 2 colossi 4 stalkers & 6 colossi
10 stalkers 5 stalkers & 5 colossi
10 zealots 6 stalkers & 4 colossi
10 colossi 7 stalkers & 3 colossi
8 stalkers & 1 zealot & 1 colossus 8 stalkers & 2 colossi
1 stalker & 8 zealots & 1 colossus 9 stalkers & 1 colossus
2 stalkers & 7 zealots & 1 colossus Testing
6 stalkers & 2 zealots & 2 colossi 10 stalkers
5 stalkers & 3 zealots & 2 colossi 10 zealots
3 stalkers & 5 zealots & 2 colossi 10 colossi
4 stalkers & 4 zealots & 2 colossi 8 stalkers & 1 zealot & 1 colossus
4 stalkers & 3 zealots & 3 colossi 1 stalker & 8 zealots & 1 colossus
Testing 7 stalkers & 2 zealots & 1 colossus
2 stalkers & 8 zealots 2 stalkers & 7 zealots & 1 colossus
7 stalkers & 3 zealots 6 stalkers & 2 zealots & 2 colossi
6 zealots & 4 colossi 2 stalkers & 6 zealots & 2 colossi
6 stalkers & 4 colossi 5 stalkers & 3 zealots & 2 colossi
9 stalkers & 1 colossus 3 stalkers & 5 zealots & 2 colossi
7 stalkers & 2 zealots & 1 colossus 4 stalkers & 4 zealots & 2 colossi
3 stalkers & 4 zealots & 3 colossi 4 stalkers & 3 zealots & 3 colossi
2 stalkers & 6 zealots & 2 colossi 3 stalkers & 4 zealots & 3 colossi

B.2 Architecture, Training and Evaluation

The evaluation procedure is similar to the one in (Rashid et al., 2020). The training is paused after every
30k timesteps during which 16 test episodes are run with agents performing action selection greedily in
a decentralised fashion. The percentage of episodes where the agents defeat all enemy units within the
permitted time limit is referred to as the test win rate.

To speed up the learning, the agent networks are parameters are shared across all agents. A one-hot encoding
of the agent_id is concatenated onto each agent’s observations. All neural networks are trained using
RMSprop without weight decay or momentum.
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Value-based baselines
The architecture of all agent networks is a DRQN Hausknecht & Stone (2015) with a recurrent layer comprised
of a GRU with a 64-dimensional hidden state, with a fully-connected layer before and after. We sample
batches of 32 episodes uniformly from the replay buffer, and train on fully unrolled episodes, performing a
single gradient descent step after 8 episodes.

Table 4: Hyperparameters of QMIX and VDN

Method Name Value
QMIX & VDN learning rate 5 × 10−4

RMSprop α 0.99
replay buffer size 5000 episodes
target network update interval 200 episodes
γ 0.99
double DQN target True
initial ϵ 1
final ϵ 0.05
ϵ anneal period 50000 steps
ϵ anneal rule linear

QMIX mixing network hidden layers 1
mixing network hidden layer units 32
mixing network non-linearity ELU
hypernetwork hidden layers 2
hypernetwork hidden layer units 64
hypernetwork non-linearity ReLU

PPO baselines
We parameterize the actor and critic with two independent recurrent neural networks, each of which is
comprised of a GRU with a 64-dimensional hidden state, with a fully-connected layer as the input and
output.

Table 5: Hyperparameters of IPPO and MAPPO

Method Name Value
IPPO & MAPPO critic learning rate 0.001

actor learning rate 0.99
γ 0.99
λ 0.95
ϵ 0.2
clip range 0.1
normalize advantage True
normalize inputs True
grad norm 0.5
number of actors 8
critic coefficient 2
entropy coefficient 0
mini epochs for actor update 10
mini epochs for critic update 10
mini batch size 64
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C Full StarCraft II Results
Complete results for StarCraft II are as shown in Fig. 6, Fig. 7, Fig. 8.
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Figure 6: Experimental results on SMAC unit swapping tasks. Dashed lines indicate the inclusion of
information on capabilities as part of the agent observations. Standard deviation is shaded.
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Figure 7: Experimental results on SMAC unit accuracy tasks. Dashed lines indicate the inclusion of
information on capabilities as part of the agent observations. Standard deviation is shaded.
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Figure 8: Experimental results on SMAC unit health tasks. Dashed lines indicate the inclusion of information
on capabilities as part of the agent observations. Standard deviation is shaded.
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