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ABSTRACT

Multimodal large language models are typically trained in two stages: first
pre-training on image-text pairs, and then fine-tuning using supervised vision-
language instruction data. Recent studies have shown that large language mod-
els can achieve satisfactory results even with a limited amount of high-quality
instruction-following data. In this paper, we introduce InstructionGPT-4, which
is fine-tuned on a small dataset comprising only 200 examples, amounting to ap-
proximately 6% of the instruction-following data used in the alignment dataset
for MiniGPT-4 (Zhu et al., 2023). To achieve this, we first propose several metrics
to access the quality of multimodal instruction data. Based on these metrics, we
present an effective and trainable data selector to automatically identify and filter
low-quality vision-language data. By employing this method, InstructionGPT-4
outperforms the original MiniGPT-4 on various evaluations. Overall, our find-
ings demonstrate that less but high-quality instruction tuning data is efficient in
enabling multimodal large language models to generate better output.

1 INTRODUCTION

GPT-4 (OpenAI, 2023) has showcased its powerful prowess in generating highly detailed and pre-
cise descriptions of images, signaling a new era of language and visual processing. Thus, GPT-4
like Multimodal Large Language Models (MLLMs) have recently emerged as a prominent research
area, harnessing powerful Large Language Models (LLMs) as a cognitive framework for conduct-
ing multimodal tasks. The remarkable and unexpected capabilities exhibited by MLLMs surpass
those of traditional methods, indicating a potential pathway towards artificial general intelligence.
To achieve this, massive image-text pairs and vision-language instruction tuning data have been em-
ployed to train simple connectors (e.g., MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu et al., 2023b))
between frozen LLMs (e.g., LLaMA (Touvron et al., 2023a) and Vicuna (Chiang et al., 2023)) and
visual representations (e.g., CLIP (Radford et al., 2021) and BLIP-2 (Li et al., 2023b)).

MLLMs are usually trained in two stages: pre-training and fine-tuning (Zhu et al., 2023; Liu et al.,
2023b; Gao et al., 2023; Dai et al., 2023). Pre-training on image-text pairs helps MLLMs gain a
large amount of knowledge while fine-tuning teaches models to better understand human intentions
and generate accurate responses. Recently, instruction tuning on large-scale datasets has served as
a powerful fine-tuning technique to empower MLLMs with enhanced vision-language understand-
ing and instruction-following abilities (Zhao et al., 2023; Zhang et al., 2023b; Liu et al., 2023a).
It facilitates the alignment of models with human preferences, enabling the generation of desired
outputs in response to various instructions. Recent state-of-the-arts, including InstructBLIP (Dai
et al., 2023) and Otter (Li et al., 2023a), have shown promising results by leveraging a collection of
vision-language datasets for visual instruction tuning.

However, it has been observed that commonly used instruction-tuning datasets surprisingly contain
numerous low-quality instances with incorrect or irrelevant responses (Zhou et al., 2023; Chen et al.,
2023; Cao et al., 2023). Such data can mislead and negatively impact the performance of the model.
This issue has prompted researchers to delve into the possibility of achieving robust performance
using a small quantity of high-quality instruction-following data. Encouragingly, recent studies
have substantiated the promising potential of this approach. Zhou et al. (2023) introduce LIMA,
a language model fine-tuned with carefully curated high-quality data, selected by human experts.
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This study has shown that LLMs can achieve satisfactory results even with a limited amount of
high-quality instruction-following data. The proposed idea “Less is More” tells that data quality is
more important than data quantity to improve model performance, which does not conflict with the
Scaling Law (Kaplan et al., 2020). Building upon these foundations, our objective is to determine if
using less instruction data can yield better alignment results in multimodal large language models.
Nevertheless, there is a challenge that the process of collecting appropriate high-quality vision-
language datasets for fine-tuning multimodal language models lacks clear guidelines.

Figure 1: Comparison of MME evalua-
tion (InstructionGPT-4 vs. MiniGPT-4).

Different from LIMA (Zhou et al., 2023) that requires
manually constructed dataset, we aim to propose a robust
and effective data selector that automatically identifies
and filters low-quality vision-language data from existing
datasets, ensuring that our model is trained on the most
relevant and informative samples. The key focus of our
study lies in exploring the efficacy of reduced but high-
quality instruction-tuning data in fine-tuning MLLMs.
Another challenge is the current lack of comprehensive
methods for evaluating the quality of vision-language
data. Therefore, we introduce several novel metrics tai-
lored for assessing the quality of multimodal instruction
data, including CLIP Score (Radford et al., 2021), GPT
Score (Chen et al., 2023), Reward Score (OpenAssistant,
2023), Length Score and Multimodal Features of each
vision-language data.

To investigate the metrics’ relationship with the real instruction data quality, we first split a range of
distinct subsets from the original fine-tuning data. Subsequently, we record each fine-tuned model’s
performance on the validation set as the labels of data quality. We then compute the metrics and
multimodal data features and combine them as an embedding across each subset. After that, we
apply a self-attention network as the data selector to determine the relationship between the genuine
quality labels and embeddings. We perform spectral clustering (Ng et al., 2001), which aims to
ensure the diversity of data distribution, on the original 3.4K data used to fine-tune MiniGPT-4.
Finally, we apply the data selector on each cluster to predict its quality label and sort. Through this
series of procedures, InstructionGPT-4 is fine-tuned on a much smaller but carefully selected subset
following the same training configuration of MiniGPT-4.

Our evaluations focus on a wide range of complex open-domain multimodal large language model
benchmarks, including MME (Fu et al., 2023), MMBench (Liu et al., 2023c), VQA datasets
from LVLM-eHub (Xu et al., 2023), etc. Through rigorous experimentation, we demonstrate that
200 pieces of data used for fine-tuning, which is 6% of the original scale, are enough to help
InstructionGPT-4 achieve comprehensive superiority over MiniGPT-4 across these diverse multi-
modal tasks, with a +23 score enhancement on MME, a +1.55 score improvement on MMBench,
and a +1.76% increase in performance on VQA datasets compared to MiniGPT-4. Specifically,
InstructionGPT-4 outperforms MiniGPT-4 in 8 out of 14 tasks within MME, 13 out of 20 abilities in
MMBench, and excels in all four VQA datasets included in LVLM-eHub. This discovery is inspir-
ing, as it demonstrates that the data quality in vision-language instruction tuning can outweigh the
quantity. In addition, this shift towards prioritizing data quality presents a new and more efficient
paradigm that can generally improve the fine-tuning stage of MLLMs.

Our contributions are summarized as follows:

• We are the first to demonstrate that less instruction data for better alignment is also suitable
for multimodal large language model, by showing that fine-tuning MiniGPT-4 with only 6%
instruction-following data can achieve better performance.

• We introduce the concept of genuine quality labels along with a set of indicators for evaluating
the quality of multimodal instruction-following data, and propose a learnable data selector to
obtain high-quality vision-language data for fine-tuning.

• Our InstructionGPT-4 fine-tuned with 200 instructions consistently outperforms the original
MiniGPT-4 in various popular benchmarks such as MME, MMBench and VQA datasets.
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Indicators Explanation

CLIP Score

The cosine similarity between image embedding and response text embedding. The CLIP
Score serves as a measure of the alignment between the provided image and its accompanying
caption. This score quantifies how well the caption accurately describes the visual content,
ensuring that the image and text are in concordance.

Length Score
The length of every answer in the multimodal dataset. The length metric gauges the extent
of information encapsulated within the caption. A balanced and informative answer length is
crucial to convey the desired instruction without being excessively verbose or overly concise.

Reward Score
Score from a reward model (OpenAssistant, 2023) that judges the human likeness to a re-
sponse. The reward model is trained from human feedback to predict which generated answer
is better judged by a human, given a question.

GPT Score

Score from GPT4 (OpenAI, 2023) to evaluate the quality of response. The GPT Score reflects
the LLM’s assessment of the caption’s quality. This score is indicative of how effectively the
generated caption adheres to the model’s language proficiency, considering factors such as
grammar, semantics, and fluency.

Multimodal Features
Vision-language features in low dimensional space obtained by encoding images with ViT
from CLIP (Radford et al., 2021) and text with Llama2 (Touvron et al., 2023b), followed by
conducting unsupervised dimensionality reduction.

Table 1: Quantitative indicators and explanations for evaluating instruction-following data quality.
CLIP Score measures the suitability between the image and caption. Length Score, Reward Score,
and GPT Score measure the comprehensive quality of the caption. Multimodal Features represent
the essential characteristics of vision-language data.

2 INSTRUCTIONGPT-4

In this paper, we present InstructionGPT-4, a multimodal large language model fine-tuned on a set of
200 high-quality instructions carefully chosen from the dataset utilized in the second-stage training
(comprising 3.4K instructions) of MiniGPT-4 (Zhu et al., 2023). The core of InstructionGPT-4 is
the selection of high-quality instructions. In particular, we want to find out if there exists a subset
making InstructionGPT-4 achieve better performance. Thus, in this section, we begin by defining
genuine quality labels and presenting indicators for assessing the quality of multimodal instruction-
following data. Subsequently, we train a learnable data selector to align these indicators with the
genuine labels. An overall procedure of the data selector is illustrated in Figure 2.

2.1 SELECTING PRINCIPLE

Selecting useful multimodal instruction data is crucial for effectively training MLLMs. Following
LIMA (Zhou et al., 2023), we propose two key principles for selecting optimal instruction data:
diversity and quality.

Diversity. As most of the knowledge is obtained during the pre-training stage for MLLMs, it is
necessary to gain better alignment abilities by training on diverse vision-language instruction data.
We adopt spectral clustering on the image embeddings encoded to divide the data into ten categories.
Our ablation study is detailed in Section 4.4.

Quality. Vision-language instruction data teaches the multimodal model to follow a certain pattern
when interacting with users. Hence, the quality of these instruction-following data could be viewed
as its ability to efficiently steer multimodal language models in learning to generate responses in
a particular manner closely related to the instruction data style. In Section 2.2, we present our
multimodal instruction selection process. We introduce the concept of genuine quality labels along
with several related indicators designed for a quantitative assessment of data quality. The specific
indicators used for this quantitative evaluation of data quality are outlined in Table 1, while the
genuine quality labels are presented in Table 7.

2.2 INDICATORS AND GENUINE QUALITY LABELS

Inspired by Instruction Mining (Cao et al., 2023) which estimates the data quality by the loss pro-
duced by the fine-tuned model, we propose that assessing the real quality of a set of data is contingent
on its effectiveness in training a model, i.e., whether the model performs well when trained on this
dataset. Therefore, we assert that the metrics (e.g., accuracy, F1 score (Sasaki et al., 2007)) obtained
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Figure 2: Overall procedures of the data selector. We first split the vision-language dataset into
n subsets. Subsequently, we train the MLLM on each subset and record the evaluation scores as
genuine quality labels. Additionally, we concatenate various indicators generated from these subsets
to form embeddings. These embeddings were then used to train the data selector, with the objective
of aligning the embeddings with the quality labels.

when evaluating the model after training on this dataset can be considered genuine labels for evalu-
ating the quality of this dataset. However, training an MLLM for evaluation in various datasets can
be inefficient. To conveniently assure the quality of the selected multimodal instruction data, we
formulate a set of indicators for assessment in Table 1 and train a neural network as a data selector
to fit the indicators to the genuine quality labels. Thus, the data selector can be applied to other
different multimodal datasets directly. Here we introduce how to obtain genuine quality labels and
indicators for vision-language data.

Given a small set of vision-language instruction data D, it is used to fine-tune a pre-trained MLLM,
and the fine-tuned model is subsequently evaluated on a series of validation datasets to obtain an
average score, which serves as a genuine quality label yD in Appendix A.2 for the set.

For the triplets x containing images, instructions, and responses in D, we employ CLIP Score (Rad-
ford et al., 2021) C(x) to measure the matching degree between the image and the response. We
also apply the length of responses L(x), and take the Reward Score (OpenAssistant, 2023) into con-
sideration, which is R(x). We prompt GPT-4 (OpenAI, 2023) as an auto-grader rating each sample
x ∈ D with a GPT Score G(x, pG) wherein pG is the rating instruction that is designed based on the
prompt from Alpagasus (Chen et al., 2023) shown in Appendix A.1. These four scores in Table 1
are intuitive and clear, and they can more completely cover the various aspects of multimodal data
quality. Using a single score to filter data can be useful, but it may not provide a comprehensive
measure of data quality. Therefore, it is necessary to combine multiple indicators as an embedding
to assess data quality collectively. By concatenating the four scores with the image-text features,
the created embeddings can more comprehensively represent the characteristics of multimodal data.
The high dimensionality of image-text features, which come from a frozen visual encoder f (e.g.,
ViT (Ilharco et al., 2021)) and a frozen textual encoder g (e.g., Llama2 (Touvron et al., 2023b)),
can indeed lead to a large number of parameters that need to be learned during the fitting process,
making the task potentially prone to overfitting. Using an unsupervised dimensionality reduction
method P (e.g., Principal Component Analysis) separately to the image and text features that can
preserve important information without training is a sensible approach to address this issue. Conse-
quently, each piece of multimodal data can be assigned an embedding e based on these indicators in
Table 1, i.e.,

e(x) = Concat [C(x), L(x), R(x), G(x, pG), P (f(ximage), g(xresponse))]. (1)

Our framework is general and not limited to these indicators. Other metrics to measure the quality
of multimodal data can also be considered, such as perplexity and Error L2-Norm (Paul et al., 2021).
We leave exploring possibly more effective and sophisticated architectural designs as future work.
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2.3 DATA SELECTOR

Training. Given a vision-language instruction dataset, a reasonable and straightforward strategy
to obtain the genuine quality labels is to divide the original multimodal dataset into n subsets of
equal size through clustering (e.g., K-means++). For each subset i, we now obtain the embedding
of every triplet in subset i, along with the quality label yi, as detailed in Section 2.2. We combine
these embeddings into a single composite batch denoted as ei, paired with its corresponding quality
label yi. Having gathered a collection of such pairs (ei, yi) from all n subsets, we can then proceed
to learn a data selector F to fit the batches {ei}ni=1 to quality labels {yi}ni=1. The data selector could
take various forms, such as a linear layer, an MLP, or a self-attention.

Testing. Given a multimodal dataset D of triplets x = (image, instruction, answer) with x ∈ D and
a pre-trained MLLM (e.g., MiniGPT-4), our ultimate objective is to identify a high-quality subset
S ⊂ D that, when utilized for fine-tuning, leads to the improvement of the pre-trained MLLM.

In order to select S from D and ensure its diversity, we first use a clustering algorithm (e.g., spectral
clustering) to separate the images in D into K groups. The clustering algorithm is supposed to be
different from the previous one because each of the former clusters shares the same quality label.
Suppose that the total amount of D is |D| and the i-th group’s amount is |Di|. We set |S| = α as
the size of the target subset.

For each x in D, we gain an embedding e(x) in Equation equation 1. We sort x according to the
predicted label F (e(x)) and select Si from each group Di. Each Si contains top |Si| triplets x based
on F (e(x)) from Di, i.e.,

|Si| =
α · |Di|
|D|

, Si = arg max
V⊂Di,|V |=|Si|

∑
x∈V

F (e(x)) (2)

At last, we combine these K subgroups:

S = S1 ∪ S2 ∪ . . . ∪ SK , (3)

where S is the final high-quality dataset selected by the data selector. The whole and detailed
selection procedure in the training testing stage is shown in Appendix A.3.

3 EXPERIMENTAL SETUP

3.1 IMPLEMENTATION DETAILS

Our data selector training and subsequent data selection are both on the cc sbu align dataset (Zhu
et al., 2023), which is used for the second stage fine-tuning in MiniGPT-4 and contains 3439 triplets
comprising instructions, images, and responses.

For the training process, we apply the K-means++ (Arthur & Vassilvitskii, 2007) to split the vision-
language dataset into 30 subsets, each containing 114 data points, for acquiring genuine quality
labels (detailed in Table 7). This subset count balances sufficient samples for data selector training
and good alignment results for the multimodal model on each subset. Furthermore, K-means++
is employed to ensure that indicators within each subset are similar and differ between subsets.
This division strategy guarantees label differentiation for each subset when adjusting the indicators,
aiding in data quality assessment. To acquire genuine quality labels (which necessitate training a
multimodal model on each cluster group for evaluation) without letting the quantity of data impact
the capabilities of the trained multimodal models, we employ a simple post-processing technique
in K-means++ clustering. This involves identifying clusters with either excessively high or low
sample counts, and redistributing some samples from the larger clusters to the smaller ones based
on their distance to different cluster centroids, thereby equalizing the number of samples in each
cluster. The data selector is implemented using a self-attention architecture, comprising 2 layers
with residual connections. The size of multimodal features concated in the embedding is set to 6.
The size of the final subset S selected by the data selector is set to α = 200, which contains 6% of
the original vision-language instruction data. Each fine-tuned model is evaluated on the evaluation
dataset mentioned in Section 3.2. More experimental setting details can be found in Appendix A.4.
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(a) Comparison of 6 dimension levels. (b) Comparison of 20 ability dimensions.

Figure 3: Comparison of MMBench evaluation (InstructionGPT-4 vs. MiniGPT-4).

3.2 EVALUATION

MLLMs are capable of capturing a wide range of multimodal patterns and relationships. Most are
evaluated on publicly available datasets or judged by GPT-4 (OpenAI, 2023). Following this trend,
we select several popular benchmarks as follows.

We first choose GQA (Hudson & Manning, 2019), IconQA (Lu et al., 2021), ScienceQA (Lu et al.,
2022) and OKVQA (Marino et al., 2019) to evaluate the MLLMs tuned from different subsets and
treat each metrics as the genuine quality labels mentioned in Section 2.2.

Additionally, we test the zero-shot ability of MLLMs on various VQA datasets, including
DocVQA (Mathew et al., 2021), TextVQA (Singh et al., 2019), STVQA (Biten et al., 2019) and
VizWiz (Bigham et al., 2010). We also evaluate the vision and language capabilities in complex mul-
timodal tasks of different models on the recently developed benchmarks including MMBench (Liu
et al., 2023c) and MME (Fu et al., 2023). Furthermore, we choose GPT-4 (OpenAI, 2023) as a judge
to compare the responses from MiniGPT-4 and InstructionGPT-4 given the images and instructions
from LLaVA-Bench (Liu et al., 2023b). The score from GPT-4 is measured by comparing two
MLLMs’ outputs against a reference answer. Detailed description of these evaluation benchmarks
are shown in Section A.5.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARK SCORES

In this section, we conduct quantitative evaluations of InstructionGPT-4 on several datasets using a
zero-shot approach. The comparisons of InstructionGPT-4 with the model tuned from 200 random
selected samples and MiniGPT-4 are presented in Table 2, Table 3, and Table 4. This assessment
offers a valuable perspective on the efficacy of the data selector in enhancing zero-shot performance
across a range of tasks.

We observe that InstructionGPT-4 provides the leading performance on average scores in MME
(Table 2) and MMBench (Figure 3 and Table 4), and realizes transcendence in all aspects of
VQA datasets (Table 3). Specifically, InstructionGPT-4 demonstrates a +23 score improvement
over MiniGPT-4 on MME, +1.55 score on MMBench, and +1.76% on VQA datasets. In addition,
InstructionGPT-4 outperforms MiniGPT-4 in 8 out of 14 tasks in MME, 4 out of 6 levels as well as 13
out of 20 abilities in MMBench (detailed in Appendix B.1), and all 4 VQA datasets in LVLM-eHub.
Moreover, InstructionGPT-4 exceeds the model trained from random samples on all other tasks.

By evaluating and contrasting these models in a range of tasks, we aim to ascertain the efficacy of
our proposed data selector that can effectively identify high-quality data. Though our data selector
is trained on a list of VQA validation sets, InstructionGPT-4 still demonstrates a strong genera-
tion ability to out-domain evaluation datasets such as MME and MMBench. This comprehensive
analysis sheds light on the benefits of informed multimodal data selection in enhancing zero-shot
performance across diverse and complex tasks.
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Evaluation Tasks
MiniGPT-4 Random Selection InstructionGPT-4

(3439 samples) (200 samples) (200 samples)

Pe
rc

ep
tio

n

Existence 75.00 56.67 ± 10.00 73.33
Count 30.00 23.89 ± 0.96 31.67

Position 36.67 33.33 ± 3.33 38.33
Color 38.33 30.00 ± 13.64 36.67
Poster 35.71 32.99 ± 1.56 36.05

Celerity 62.06 50.69 ± 1.79 59.71
Scene 52.75 46.00 ± 2.78 57.75

Landmark 22.25 18.92 ± 3.55 29.25
Artwork 23.50 16.91 ± 2.27 50.50

OCR 57.50 55.00 ± 4.33 50.00

Total Score 433.77 364.40 ± 34.92 463.26

C
og

ni
tio

n

Commonsense Reasoning 46.43 34.52 ± 2.70 40.00
Numerical Calculation 47.50 45.00 ± 2.50 50.00

Text Translation 50.00 44.17 ± 1.44 47.50
Code Reasoning 47.50 40.17 ± 3.82 47.50

Total Score 191.43 162.85 ± 1.29 185.00

Score of MME 625.20 527.26 648.26

Table 2: Performance comparison on MME.

Datasets MiniGPT-4 Random Selection InstructionGPT-4
(3439 samples) (200 samples) (200 samples)

STVQA 13.71 13.51 ± 0.73 14.55
VizWiz 46.60 44.47 ± 0.86 51.02

DocVQA 2.77 2.58 ± 0.23 3.01
TextVQA 19.06 18.92 ± 0.31 20.62

Average Score 20.54 19.87 22.30

Table 3: Performance comparison on VQA tasks.
Dimension Level MiniGPT-4 Random Selection InstructionGPT-4

(3439 samples) (200 samples) (200 samples)

LR 12.50 17.23 ± 1.76 16.48
AR 41.87 35.41 ± 5.09 41.87
RR 12.68 9.23 ± 2.11 11.74

FP-C 17.60 13.20 ± 3.39 21.20
FP-S 35.75 26.92 ± 4.14 34.25
CP 38.30 29.29 ± 5.55 42.55

Score of MMBench 29.87 23.95 31.42

Table 4: Performance comparison on MMBench.

4.2 GPT-4 EVALUATION

Figure 4: GPT-4 Eval-
uation Comparison
(InstructionGPT-4 vs.
MiniGPT-4).

Given the presence of inherent position bias within LLMs as
evaluators, wherein certain positions are favored over others
(Wang et al., 2023), we have undertaken measures to address
this concern. To mitigate such bias, we conduct evaluations us-
ing both response orders – placing InstructionGPT-4’s generated
response before and after MiniGPT-4’s response. To establish
a definitive judgment criterion, we introduce the “Win-Tie-Fail”
framework, characterized as follows:

1) Win: InstructionGPT-4 is deemed the winner in two in-
stances, or secures victory once and achieves a draw once; 2) Tie:
InstructionGPT-4 achieves a draw twice, or prevails in one in-
stance and succumbs in another; 3) Fail: InstructionGPT-4 faces
defeat in two instances, or experiences a loss once and attains a
draw once.

The results of this evaluation are depicted in Figure 4. Win, Fail, and Tie in this figure denote com-
parative outcomes when the generation results of InstructionGPT-4 are evaluated against those of
MiniGPT-4. Throughout 60 questions, InstructionGPT-4 emerges victories in 26 instances, experi-
ences failure in 16, and achieves a tie in 18. This evidence underscores the notable superiority of
InstructionGPT-4’s response quality in comparison to MiniGPT-4.

4.3 DEMONSTRATIONS

We conducted a comparative assessment of image understanding and conversation abilities between
InstructionGPT-4 and MiniGPT-4, focusing on a challenging instance described in Table 11 and
Table 12. This highlights InstructionGPT-4’s exceptional ability for advanced reasoning, emphasiz-
ing its prowess in image comprehension and executing instruction-following tasks. The comparison
between several selected samples versus original samples is showcased in Appendix C.

4.4 ABLATION STUDY

Through a series of ablation studies, we elucidate the contributions of various factors to the overall
effectiveness of our data selection approach. Our experimental analyses serve as empirical verifica-
tion of the theoretical foundations we have put forward.

Analysis of Different Indicators. To comprehensively evaluate the impact of distinct indicators on
the data selection process, we conduct another ablation study. Each individual indicator is isolated
and its effect on 200 data selection is scrutinized. As showcased in the left part of Table 5, the models
fine-tuned using data selected based on CLIP Score, Length Score, Reward Score, GPT Score used
in Alpagasus (Chen et al., 2023), and Multimodal Features consistently outperform those generated
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(a) Comparison of MME evaluation. (b) Comparison of VQA evaluation.

Figure 5: Ablation study to investigate the impact of clustering in the testing stage and different
types of network structures utilized in the data selector. Note that self-attention with clustering
consistently yields leading performance.

through random sampling. This illustrates that employing each separate indicator yields positive
effects on the data selection process, thus they are suitable for data quality assessment.

Benchmark
Indicators Self-Attention Layers

Random CLIP Reward Length GPT Features 1 2 3

MME 527.26 95.79 ↑ 33.36 ↑ 90.76 ↑ 59.69 ↑ 20.82 ↑ 521.10 648.26 594.84

VQA 19.87 2.57 ↑ 1.47 ↑ 2.39 ↑ 2.11 ↑ 0.63 ↑ 22.08 22.30 21.74

Table 5: MME and VQA scores under different indicators used separately (left) and different self-
attention layers (right).

Analysis of the Data Selector Architecture. In this ablation study, we try three different structures
for data selector, including linear regression used in Instruction Mining (Cao et al., 2023), MLP,
and self-attention. Compared to MLP or linear models that can only achieve global awareness,
self-attention mechanisms enable internal information interaction within embeddings. The results
depicted in Figure 5 indicate the self-attention structure achieves the highest performance. In addi-
tion, we conduct experiments with different numbers of attention layers, as summarized in the right
part of Table 5. Notably, we find that employing 2 layers is the most suitable configuration.

Analysis of Clustering. The application of spectral clustering within the data selector mechanism
ensures the diversity of the chosen vision-language instruction data. We conduct an ablation study
by removing the clustering mechanism. The results are presented in Figure 5 by comparing the
two bars for each data selector structure. Incorporating clustering into data selectors with different
structures consistently yields improved performance, highlighting the significance of clustering in
enhancing the fine-tuning procedure.

Analysis of Multimodal Feature Size. We also explore various sizes of multimodal features after
conducting unsupervised dimensionality reduction. The results presented on the left side of Fig-
ure 6 demonstrate that setting this size to 6 consistently yields the best performance. Our analysis
indicates that when dimensionality reduction is configured with a low value, it may excessively
compress multimodal features. Conversely, if dimensionality reduction is set too high, it can lead to
an expansion in the embedding’s dimensionality, thereby increasing the number of training parame-
ters in data selector. This heightened dimensionality can make the data selector more susceptible to
overfitting or underfitting issues.

Analysis of Selected Data Size. We aim to identify the minimum amount of data required to make
InstructionGPT-4 surpass MiniGPT-4. From the right side of Figure 6, we discover that selecting 50
data points is sufficient when considering the VQA dataset for evaluation. However, due to the gap
between the datasets used for evaluation, such as MME and MMBench, 200 data points are needed
for fine-tuning the model to comprehensively outperform MiniGPT-4. This observation underscores
the strong transferability of our designed data selector. Further analysis is provided in Appendix B.2.

Analysis of Different Data Pruning Methods. We conduct additional experiments on two state-
of-the-art data pruning methods including EL2N (Paul et al., 2021) and prototypicality (Sorscher
et al., 2022). We represent our experiment results in Appendix B.3. We observe that these previous
methods can’t achieve competitve performance for multimodal LLM compared to our data selector,
which showcases that our novel multimodal data selection method is quite necessary.
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Figure 6: The left part denotes different multimodal feature sizes. The right part denotes different
curated data sizes. The red dotted lines represent the performance of MiniGPT-4.

Analysis of the Stability and Generalizability of Data Selector. We try multiple random seeds for
our data selector’s training detailed in Appendix B.4 and achieve consistent superior performance,
which shows the stability and robustness of our selection method. We also extend our investigation to
include additional multimodal LLMs and vision-language datasets. Based on MiniGPT-4 (Zhu et al.,
2023) and Qwen-VL (Bai et al., 2023), we select subsets of the detail 10k (Liu et al., 2023b) dataset
without retraining the data selector. By comparing the performance between models tuned from
selected subsets and the whole dataset, we observe that less instruction data for better performance
still work for various MLLMs. Our experimental results in Appendix B.5 showcase that our data
selector is suitable for different types of MLLMs and multimodal datasets.

5 RELATED WORKS

Visual Instruction Tuning. Instruction tuning is a learning paradigm that fine-tunes pre-trained
LLMs on datasets described by natural language instructions, through which the zero-shot abilities
of LLMs can be significantly enhanced. The effectiveness of instruction tuning has been demon-
strated by a set of research, including FLAN (Wei et al., 2021), InstructGPT (Ouyang et al., 2022),
and ChatGPT. Inspired by this, several recent works aim at enabling LLMs to handle multimodal
tasks with visual instruction tuning, such as MiniGPT-4 (Zhu et al., 2023), LLaVA (Liu et al., 2023b)
and InstructBLIP (Dai et al., 2023). These works choose simple projection layers as the bridges
between image encoders and LLMs, and perform visual instruction tuning either on self-instruct
datasets (Zhu et al., 2023; Liu et al., 2023b) or on existing multimodal datasets (Zhang et al., 2023a;
Dai et al., 2023).

Instruction Curation. To improve model performance after instruction tuning, some relevant works
manage to filter low-quality instruction data or construct carefully curated examples during the fine-
tuning stage, thereby enhancing model capabilities. Previous works (Ghorbani & Zou, 2019; Se-
hwag et al., 2020; Meding et al., 2021; Sorscher et al., 2022; Paul et al., 2021) have proposed
data pruning metrics in vision modal, especially in classification tasks. Meta-Weight-Net (Shu
et al., 2019) involves generating weights for selected training samples based on meta learning.
Recently, LIMA (Zhou et al., 2023) shows that fine-tuning LLaMA (Touvron et al., 2023b) on
1000 human curated and high-quality examples can produce remarkable results. Several following
works (Cao et al., 2023; Chen et al., 2023) have developed instruction quality evaluation meth-
ods for measuring the quality of language datasets. Unlike the aforementioned works in a single
modal, InstructionGPT-4 is the first multimodal large language model that achieves better perfor-
mance through effective data selection in generative tasks.

6 CONCLUSION

In this paper, we provide a thorough analysis of the data selector’s effectiveness in curating valuable
multimodal instruction data for generative tasks. We also extensively evaluate InstructionGPT-4’s
performance on various datasets, confirming its excellence in alignment. InstructionGPT-4’s success
underscores that inducing instruction data by proper selection can lead to significant advancements
for multimodal LLMs, fostering improved instruction understanding and generation capabilities.
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Appendix

A IMPLEMENTATION DETAILS OF INSTRUCTIONGPT-4

In this section, we first present the design of our GPT-4 prompt for rating scores and the genuine
quality labels for training the data selector. We then provide an implementation of our data selection
algorithm and further experimental settings.

A.1 GPT PROMPT

We provide the detailed prompt to GPT-4 used for rating scores in Table 6. It is similar to the prompt
for rating and filtering training data in Alpagasus (Chen et al., 2023).

GPT Prompt

System Prompt

We would like to request your feedback on the performance of an AI assistant. The assistant provides
a caption based on an image and an instruction.
Instruction: [Instruction]
Caption: [Caption]

User Prompt

Please rate according to the quality and variety of the caption to the instruction. Each assistant
receives a score on a scale of 0 to 100, where a higher score indicates higher level of the quality and
variety. Please first output a single line containing the value indicating the scores. In the subsequent
line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias.
The instruction and caption are displayed following without image.

Table 6: Prompt pG to GPT-4 for rating multimodal data.

A.2 GENUINE QUALITY LABELS

To acquire genuine quality labels for the data, we choose to partition the cc sbu align dataset into
30 subsets using clustering techniques such as K-means++ (Arthur & Vassilvitskii, 2007). Each
of these subsets, denoted as i ∈ {1, 2, . . . , 30}, comprises 114 data points. Subsequently, each
subset is employed to fine-tune a pre-trained Multimodal Language Model (MLLM). These fine-
tuned models are then evaluated on a validation set, including GQA (Hudson & Manning, 2019),
IconQA (Lu et al., 2021), OKVQA (Marino et al., 2019) and ScienceQA (Lu et al., 2022), to generate
scores in Table 7, which serves as genuine quality labels for the respective subset. We choose
these four VQA datasets to produce genuine quality labels because they are sufficiently diverse and
contain various question-answer pairs. In particular, GQA focuses on reasoning skills and combined
language understanding skills; IconQA requires perceptual skills such as object recognition and text
understanding; OKVQA is a large-scale dataset requiring external knowledge; ScienceQA can well
diagnose whether the multimodal LLM has multi-step reasoning capabilities and interpretability.
These four datasets are wide enough to cover multiple aspects of multimodal tasks.

A.3 SELECTION ALGORITHM IMPLEMENTATION DETAILS

In the training stage, assume that each data point in our dataset is represented by a d-dimensional
feature vector. When we form a cluster of q data points, these d-dimensional vectors are concate-
nated to create a feature vector with a shape of (q, d). In training the data selector F , we utilize
these (q, d) shape vectors. Each cluster, represented by its (q, d) vector, is associated with a genuine
quality label that reflects the collective quality of all q data points within the cluster. This approach
allows us to train the data selector on a rich and detailed representation of data clusters. Regarding
the application of F on a single data point as discussed in Section 2.3, it’s important to clarify that
F is trained on clusters but is capable of evaluating individual data points as well. When applied
to a single data point, F operates on its (1, d) feature vector. This flexibility is a key aspect of F ,
allowing it to function effectively both at the cluster level during training and at the individual data
point level during testing.
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Subset GQA IconQA OKVQA ScienceQA Average

1 28.48 35.88 37.11 21.98 30.86
2 29.17 37.78 35.85 21.29 31.02
3 27.21 35.35 33.83 21.63 29.51
4 28.13 35.64 36.77 21.75 30.57
5 28.25 35.75 36.26 23.56 30.95
6 28.72 35.92 35.67 22.46 30.69
7 28.08 35.18 36.24 22.28 30.45
8 28.20 35.71 36.21 22.06 30.55
9 28.49 36.79 37.42 23.32 31.51
10 27.40 37.89 35.71 23.78 31.20
11 27.84 37.57 36.39 23.65 31.36
12 30.68 35.36 36.49 21.60 31.03
13 27.68 38.64 36.78 23.65 31.69
14 29.00 37.23 36.69 23.85 31.69
15 28.31 38.03 36.00 23.90 31.56
16 28.82 34.91 35.24 21.40 30.09
17 27.10 35.14 35.02 22.44 29.93
18 27.70 35.76 36.02 22.03 30.38
19 29.33 37.04 35.98 23.19 31.38
20 28.75 36.58 35.92 22.59 30.96
21 29.67 36.33 36.52 22.91 31.36
22 27.68 36.67 36.27 22.05 30.67
23 28.68 36.54 36.47 23.63 31.33
24 29.45 37.31 35.98 22.74 31.37
25 26.77 35.50 34.69 22.71 29.92
26 28.62 34.90 35.00 22.08 30.15
27 26.52 35.71 34.21 23.00 29.86
28 27.48 36.53 35.58 22.97 30.64
29 27.93 34.54 36.00 22.79 30.31
30 28.53 36.98 37.34 23.68 31.64

Table 7: 30 genuine quality labels.

In the testing stage, we proceed to split the multimodal dataset for fine-tuning into K = 10 groups
for data selection. This division is achieved by employing spectral clustering on the image embed-
dings, which have been encoded using ViT from CLIP (Radford et al., 2021). The purpose of this
clustering step is to ensure diversity within our selected data, as it helps capture a wide range of data
distribution patterns. It’s important to note that the clustering algorithm used here (denoted as Λ)
is distinct from the one used earlier (denoted as Γ) for dividing the subsets and obtaining genuine
quality labels. Each subset created using Γ shares the same genuine quality labels.

Besides, to acquire genuine quality labels (which necessitate training a multimodal model on each
cluster group for evaluation) without letting the quantity of data impact the capabilities of the trained
multimodal models, we employ a simple post-processing technique for Γ. This involves identifying
clusters with either excessively high or low sample counts, and redistributing some samples from
the larger clusters to the smaller ones based on their distance to different cluster centroids, thereby
equalizing the number of samples in each cluster.

By introducing this differentiation between Λ and Γ for data selection after training the data selector,
we ensure that predicted labels for data points within each cluster maintain their distinctiveness,
preventing potential label confusion. The whole algorithm for testing stage is shown in Algorithm 1.

A.4 EXPERIMENTAL SETTING DETAILS

When computing the indicators for each triplet containing images, instructions, and responses, we
do not take instructions into consideration because they have fixed formats in the dataset (e.g., “De-
scribe this image in detail.”).

To generate multimodal features, we employ Principal Component Analysis (PCA) to reduce the
dimensionality of the multimodal features generated by frozen ViT (Ilharco et al., 2021) and
Llama2 (Touvron et al., 2023b).
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Algorithm 1 DATA SELECTION

Require: Dataset D, Trained Data Selector F , number of clusters K, subset size factor α
1: Compute clusters D1, D2, . . . , DK using a clustering algorithm λ on images in D
2: for i = 1 to K do
3: for x in Di do
4: Compute CLIP Score C(x), Length Score L(x), Reward Score R(x), GPT Score G(x, pG)

and Multimodal Features P (f(ximage), g(xresponse))
5: Concat the indicators as embedding e(x) in Equation equation 1
6: Compute predicted label F (e(x))
7: end for
8: Compute |Si| = α·|Di|

|D|
9: Select top |Si| samples from Di based on F (e(x)) to form Si

10: end for
11: Combine S1, S2, . . . , SK to form S
12: return S

For the data selector training, we set the number of training epochs to 20 and the learning rate to
0.01. We conduct all instruction tuning on pre-trained 7B MiniGPT-4 (Zhu et al., 2023) and use the
same fine-tuning hyperparameters as the original MiniGPT-4.

For the ablation study of different indicators, we follow the testing stage of the data selector and sort
each data point after conducting clustering. We sort each data point based on CLIP Score, Reward
Score, and GPT Score respectively. Additionally, we select a length range to evaluate the length
effect. Besides, we train another self-attention network with multimodal features as inputs for data
selection.

A.5 EVALUATION BENCHMARKS

MME (Fu et al., 2023). It is an MLLM evaluation benchmark that measures both perception and
cognition abilities on a total of 14 subtasks. The full score for the overall tasks is 2800, while for
the subtasks is 200. For each test image, MME adopts an instruction of a question and a description
“Please answer yes or no” to prompt MLLMs. Such a concise instruction-answer evaluation allows
for a fair comparison of MLLMs without the impact of prompt engineering.

MMBench (Liu et al., 2023c). This benchmark is collected from multiple sources, including public
datasets and Internet, and currently, contains 2974 multiple-choice questions, covering 20 ability
dimensions. The existing 20 ability dimensions are structured into 6 dimension levels. Each ques-
tion is a multiple-choice format with a single correct answer. For a more reliable evaluation, it
employs ChatGPT to match a model’s prediction with the choices of a question, and then output the
corresponding label (A, B, C, D) as the final prediction.

VQA Datasets. LVLM-eHub (Xu et al., 2023) is a comprehensive evaluation benchmark for pub-
licly available MLLMs. Based on this platform, we choose GQA (Hudson & Manning, 2019),
IconQA (Lu et al., 2021), ScienceQA (Lu et al., 2022) and OKVQA (Marino et al., 2019) to eval-
uate the MLLMs tuned from different subsets and treat each metrics as the genuine quality labels
mentioned in Section 2.2. We also test the zero-shot ability of MLLMs on various datasets, includ-
ing DocVQA (Mathew et al., 2021), TextVQA (Singh et al., 2019), STVQA (Biten et al., 2019) and
VizWiz (Bigham et al., 2010). Top-1 accuracy is employed for these tasks.

LLaVA-Bench (Liu et al., 2023b). It collects a diverse set of 24 images with 60 questions in total,
including indoor and outdoor scenes, memes, paintings, sketches, etc. It associates each image
with a highly detailed and manually curated description and a proper selection of questions that
are categorized into conversation (simple QA), detailed description, and complex reasoning. We
choose GPT-4 as a judge to compare the responses from MiniGPT-4 and InstructionGPT-4 given
the images and instructions from LLaVA-Bench. The score from GPT-4 is measured by comparing
two MLLMs’ outputs against a reference answer. Such a design assesses the model’s robustness to
different prompts.
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B MORE EXPERIMENTAL RESULTS

B.1 MMBENCH RESULTS

MMBench (Liu et al., 2023c) gathers approximately 3000 questions spanning 20 ability dimensions
in 6 levels. The detailed assessment of 20 abilities is illustrated in Table 8.

Ability Dimension MiniGPT-4 Random Selection InstructionGPT-4
(3439 samples) (200 samples) (200 samples)

Action Recognition 37.50 28.03 ± 6.84 44.32
Attribute Comparison 5.00 3.75 ± 2.04 6.25
Attribute Recognition 51.00 41.33 ± 2.87 48.00
Celebrity Recognition 34.75 22.03 ± 7.22 35.59
Function Reasoning 34.58 29.91 ± 6.05 42.06

Future Prediction 18.92 34.23 ± 2.78 31.08
Identity Reasoning 69.51 56.91 ± 6.40 62.20

Image Emotion 35.71 38.89 ± 1.48 41.67
Image Quality 3.49 1.94 ± 1.45 3.49
Image Scene 66.15 49.74 ± 11.17 70.00
Image Style 31.76 19.22 ± 9.72 37.65
Image Topic 40.00 26.27 ± 4.93 45.88

Nature Relation 17.28 6.17 ± 1.01 7.41
Object Localization 16.19 12.38 ± 0.78 9.52

OCR 44.16 35.50 ± 6.12 48.05
Physical Property Reasoning 27.00 23.67 ± 3.09 25.00

Physical Relation 13.46 14.10 ± 3.27 15.38
Social Relation 7.50 9.17 ± 4.13 13.75
Spatial Relation 8.54 6.50 ± 1.52 10.98

Test Structuralized Imagetext Understanding 7.84 4.90 ± 1.60 5.88

Score of MMBench 29.87 23.95 31.42

Table 8: Performance comparison on MMBench.

B.2 FURTHER ANALYSIS IN SELECTED DATA SIZE

Our findings reveal that our data selection method outperforms random selection in all cases except
the size of 1000 in the right side of Figure 7. Through our observation, there is an interesting trend
as the size of the selected subset increases: the performance gap between our method and random
selection begins to narrow.

This decrease in the performance differential can be attributed to the nature of our data selection
process. As the size of the subset selected by our method increases, it inevitably starts to include
more data points of lower quality. This inclusion of lower-quality data diminishes the overall effec-
tiveness of the selected subset, thereby reducing the gap in performance compared to a randomly
selected subset.

Despite this trend, it is important to note that our data selection method continually maintains a
performance advantage over random selection in most cases. This finding underscores the efficacy
of our approach, particularly when working with smaller subsets. It also highlights a key insight:
the quality of data, not just the quantity, is crucial for improving model performance.

B.3 COMPARISON OF DIFFERENT DATA PRUNING METHODS

Since the evaluation tasks have different data distributions and different task types from the training
task (e.g., the evaluation task is yes/no question, while the selector training task is general VQA), the
smaller training loss does not directly indicate better performance on the evaluation task. However,
previous data pruning method mainly rely on the model loss from the training dataset, which would
be unfair to them if they were used directly. Alternatively, a small number of data pruning methods
requires access to the evaluation metric, which involve such extensive computations that they are
impractical for use with large models. Thus, we design a learning-based method by formulating a
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(a) Comparison of MME evaluation. (b) Comparison of VQA evaluation.

Figure 7: Comparison between data selector and random selection over different data sizes.

set of indicators for assessment and train a neural network as a data selector to fit the indicators to
the genuine quality labels for selection.

Moreover, previous data pruning methods have several important differences from our proposed
method. While data pruning is a model performance driven method, we adopt a learning-based
method by training a data selector, which can be applied to new datasets independent of certain
models. Besides, most of data pruning methods focus on optimizing models based on the loss,
while we extract the multimodal data indicators to train the selector based on MLLM performance,
which can reduce the gap of data distribution in evaluation set. Furthermore, data pruning aims at
cutting off bad data for training, while we concentrate on data mining for selecting a subset with
least and best data.

To demonstrate the superiority of our data selection method, we also compare our proposed selector
with two state-of-the-art data pruning methods including EL2N (Paul et al., 2021) and prototypical-
ity (Sorscher et al., 2022). In detail for EL2N, we compute for every training example in cc sbu align
dataset the average L2 norm of the error vector (EL2N score). We conduct data pruning by retaining
only the 200 hardest examples with largest error on the pre-trained model. As for prototypicality,
we perform k-means clustering in the embedding space of a pre-trained model (here: ViT (Ilharco
et al., 2021)), and select 200 hardest data based on the difficulty of each data point by the Euclidean
distance to its nearest cluster centroid, or prototype. The reults in the left side of Table 9 showcases
that data selected by our multimodal selector works much better than these two methods.

B.4 RESULTS OVER MULTIPLE RANDOM SEEDS WITH REGARDS TO THE DATA SELECTION

We conduct additional experiments to try different random seeds. These experiments help us evalu-
ate the stability and generalizability of our selection method under different initialization conditions.
According to the right part of Table 9, we observe that the performance variance across different
seeds is not obvious. This consistency of the performance underscores the effectiveness of our data
selection method, suggesting that it is not overly sensitive to the initial random seed and can reliably
identify high-quality data subsets across different scenarios.

Benchmark
Different Data Pruning Methods Multiple Random Seeds

Random EL2N Prototypicality Seed 1 Seed 2 Seed 3 Seed 4 Average

MME 527.26 627.27 569.46 648.26 637.58 628.99 649.25 641.02± 8.32

VQA 19.87 20.62 21.83 22.30 21.78 22.14 21.98 22.05± 0.19

Table 9: MME and VQA scores under different data pruning methods (left) and multiple random
seeds (right).

B.5 SCALABILITY AND GENERALIZABILITY OF THE DATA SELECTOR

We apply our data selection method to Qwen-VL (Bai et al., 2023) and the detail 10k (Liu et al.,
2023b) dataset without retraining the data selector. We select different sizes of subsets, including
1K and 2K, from the detail 10k dataset and compare their performance of the models tuned from
them.

Qwen-VL is a strong pre-trained multimodal model uses Qwen-7B as the initialization of the LLM,
and ViT as the initialization of the visual encoder. It connects them with a randomly initialized
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cross-attention layer, which is trained with alignment techniques. Qwen-VL supports more flexible
interaction, such as multiple image inputs, multi-round question answering, and creative capabilities.
Detail 10k dataset includes a rich and comprehensive description for each image. The description is
created by prompting GPT-4.

Given the detail 10k dataset, we extract the indicators of each data point to feed into the trained
data selector for selection. Our findings in Table 10 indicate promising results, suggesting that
multimodal instruction data curated by our data selector directly works well on different MLLMs.
Thus, our method is not only effective with MiniGPT-4 and cc sbu align dataset but also exhibits
potential for broader applicability.

Detail 10K Dataset
Qwen-VL MiniGPT-4

1K 2K 10K 1K 2K 10K

MME 1802.50 1806.81 1769.28 614.04 608.54 604.47

Perception 1423.57 1426.10 1398.92 434.04 431.04 430.74

Cognition 378.93 380.71 370.36 180.00 177.50 173.93

Table 10: MME (including Perception and Cognition) scores under different types of Multimodal
LLMs and different sizes of selected data from detail 10k dataset.

B.6 ADDITIONAL DEMONSTRATIONS

We display both InstructionGPT-4 and MiniGPT-4 multimodal chatbot demos below.

Table 11 and Table 12 distinctly indicate that InstructionGPT-4 possesses the capacity to generate
responses that are not only more comprehensive but also exhibit a higher level of fluency when
compared to those produced by MiniGPT-4.

The story presented by InstructionGPT-4 in Table 11 is vivid and detailed, which involves the key
information from the image. Furthermore, when tasked with writing a recipe based solely on a food
image in Table 12, InstructionGPT-4 demonstrates a notably superior ability in chain-of-thought
by generating robust and effective responses step by step. These findings collectively emphasize
the enhanced language generation prowess of InstructionGPT-4 as it is trained on higher-quality
instruction dataset with better image-text alignment and more fluent captions, which contributes to
generate more detailed, expressive, and contextually appropriate responses in various scenarios.

C SELECTED SAMPLES VERSUS ORIGINAL SAMPLES

We compare the selected 200 data points with the original dataset and find that the selected 200 data
points exhibit higher quality. Since we extract the image-text pair’s multiple indicators for selection,
the selected data have higher quality for MLLM’s fine-tuning. This is reflected by Figure 8 in the
more comprehensive, detailed, and error-free language representation of the selected textual data,
with no apparent grammatical or syntactical errors. The data with short, incomplete and inaccurate
captions has been filtered out since we apply length, GPT Score and Reward Score as indicators for
data selection. Besides, the alignment degree between images and responses becomes better as we
include CLIP Score into the indicators. It demonstrates that the data selector can effectively choose
data aligned with human preferences.

D LIMITATION AND FUTURE WORKS

While achieving promising performance, the proposed framework also has some inherent limita-
tions. Developing a more generalized version of the data selector, such as considering more indi-
cators for evaluation, is a potential avenue for exploration. Additionally, undertaking multimodal
instruction mining may provide further insights and unveil new opportunities in this domain. This
could enable a broader and more comprehensive understanding of this field.
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Demos

User Can you write a story around this image for my child?

InstructionGPT-4

Yes, I can write a story around this image.
Once upon a time, there was a group of animals who lived in a forest together. The animals were a bear, a rabbit, and a cat. They
all loved to sit down to a meal together, especially for breakfast.
One morning, the bear woke up early and decided to make breakfast for his friends. He went to the stream and caught some fish,
then returned to the table to cook them in a pan with butter. The rabbit helped him by bringing him some eggs, and the cat helped
by bringing him some cream.
They all sat down at the table under the shade of a tree and enjoyed their breakfast together. The bear said, “This is the best
breakfast I’ve ever had!” The rabbit said, “I’m glad you like it, Bear. This is my favorite too.” The cat said, “Meow, meow! This
is delicious.”
The animals enjoyed their meal and their friendship. They promised to have breakfast together every morning for as long as they
lived in the forest. And so they did, until the day they all had to say goodbye to each other, as they each had to go their own way.
But the memories of their breakfasts together remained, and they were always happy to think back on the good times they had in
the forest.

MiniGPT-4

Once upon a time, there was a bear, a rabbit, and a cat who lived in the forest. They spent their days exploring the forest, playing
games, and having picnics together. One day, they decided to have a picnic at a table in the middle of the forest. They sat around
the table, enjoying their meal and the beautiful scenery around them. The bear ate his share of the food, the rabbit ate her share,
and the cat drank some milk. They were all happy and content.

Table 11: An Story Generation Example.

Figure 8: Data selector can filter out low-quality data (e.g., inappropriate grammar and incomplete
expressions).
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Demos

User What are the meals that I can cook with these?

InstructionGPT-4

There are various meals that can be cooked with the ingredients shown in the refrigerator. Here are some ideas:
* Yogurt parfait: Place yogurt in a bowl and top with fruit, granola, or nuts.
* Fruity smoothies: Combine yogurt with frozen fruit and blend until smooth. Add honey or sugar to taste.
* Cottage cheese and fruit: Serve cottage cheese with fresh fruit or berries.
* Breakfast smoothie: Combine yogurt, milk, fruit, and protein powder in a blender.
* Grilled cheese sandwich: Spread butter on two slices of bread and add cheese. Grill until golden brown.
* Oatmeal and fruit: Cook oatmeal according to package directions and top with fruit and honey or sugar.
* Spinach and cheese quiche: Mix spinach with cheese and eggs, then pour into a pie crust. Bake until golden brown.
These are just a few ideas to get started. You can also mix and match ingredients to create your own recipes.

MiniGPT-4 This refrigerator contains various types of food, including milk, yogurt, cereal, fruits, and vegetables.

User I would like to do the fruit salad. Show me the recipe.

InstructionGPT-4

Sure, here’s a recipe for a simple fruit salad:
Ingredients:
* 1 kg of mixed fruit (such as apple, banana, grapes, pineapple, and watermelon)
* 1 cup of yogurt
* 1 tablespoon of honey
* 1 tablespoon of lime juice
* 1/4 cup of raisins
Instructions:
1. Wash and slice the fruit. 2. In a large bowl, mix the yogurt, honey, and lime juice. 3. Add the fruit to the bowl and mix
everything together until the fruit is evenly coated in the yogurt mixture. 4. Add the raisins to the bowl and stir. 5. Serve the fruit
salad chilled.
You can adjust the amount of fruit and yogurt to your liking. You can also add other ingredients such as granola, nuts, or even
chia seeds for added texture and nutrition. Enjoy!

MiniGPT-4

Sure, here’s a recipe for a simple fruit salad:
Ingredients:
* Bananas, peeled and sliced
* Apples, peeled and sliced
* Grapes
* Strawberries
* Blueberries
* Rice
* Sugar
* Lemon juice
Instructions:
1. In a large bowl, mix together the sliced bananas, apples, grapes, strawberries, blueberries, and rice. 2. In a separate bowl, mix
together the sugar and lemon juice until the sugar is fully dissolved. 3. Pour the sugar mixture over the fruit mixture and toss to
coat everything evenly. 4. Serve the fruit salad cold or chilled, garnished with lemon wedges or mint leaves if desired.
That’s it! This simple fruit salad is a great way to get in some healthy fruits and veggies while satisfying your sweet tooth. Enjoy!

Table 12: Generating chain-of-thought responses.
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