
Efficient and Light-Weight Federated Learning
via Asynchronous Distributed Dropout

Chen Dun
Rice University

Mirian Hipolito
Microsoft Research

Chris Jermaine
Rice University

Dimitrios Dimitriadis
Microsoft Research

Anastasios Kyrillidis
Rice University

Abstract
We focus on dropout techniques for asynchronous distributed computations in
federated learning (FL) scenarios. We propose AsyncDrop, a novel asynchronous
FL framework with smart (i.e., informed/structured) dropout that achieves better
performance compared to state of the art asynchronous methodologies, while result-
ing in less communication and training time costs. The key idea revolves around
sub-models out of the global model, that take into account the device heterogeneity.
We conjecture that such an approach can be theoretically justified. We implement
our approach and compare it against other asynchronous baseline methods, by
adapting current synchronous FL algorithms to asynchronous scenarios. Empiri-
cally, AsyncDrop significantly reduces the communication cost and training time,
while improving the final test accuracy in non-i.i.d. scenarios.

1 Introduction
Background on Federated Learning (FL). Federated Learning (FL) [21, 17, 15] is a distributed
learning protocol that has witnessed fast development the past demi-decade, as it deviates from
the traditional distributed learning paradigms and allows the integration of small computing (edge)
devices —such as smartphones [30], drones [25], and IoT devices [22]— in the learning procedure.
Such real-life, edge devices though are extremely heterogeneous [33]: they have drastically different
specifications in terms of compute power, device memory and communication bandwidths. Directly
applying common synchronized FL algorithms –such as FedAvg and FedProx [17, 21] that require
full model broadcasting and global synchronization– results often in a “stragglers” effect [23, 13, 31].

The dominant use of synchronous computations. One way to handle such issues is by utilizing
asynchrony instead of synchrony in the learning process. To explain the main differences, let us
first set up the background. In a synchronous distributed algorithm, a global model is usually stored
at a central server and is broadcast periodically to all the participating devices. Then, each device
performs some local training steps on its own model copy, before the device sends the updated model
to the central server. Finally, the central server updates the global model by aggregating the received
updated model copies. This protocol is followed in most FL protocols, including the most well-known
baselines like FedAvg [21], FedProx [17], FedNova [34] and SCAFFOLD [15]. The main criticism
against synchronous learning could be that it often results in heavy communication-/computation-
overheads when mobile devices are used, long idle/waiting times for workers and stragglers effects.

Main dispute in asynchronous learning. While asynchrony in computations seems a favorable
alternative, the development of a asynchronous learning method, however, is often convoluted. In
the past decade, HogWild! [24, 20] has emerged as a general asynchronous distributed methodology,
and has been applied initially in basic ML problems like sparse linear/logistic regression [42, 41, 12].
Ideally, based on sparsity arguments, each edge device can independently update parts of the global
model –that overlap only slightly with the updates of other workers– in a lock-free fashion [24, 20].
This way, faster, more powerful edge workers do not suffer from idle waiting due to slower stragglers.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

Yet, the use of asynchrony has been a topic of dispute in distributed neural network training [5, 2].
Asynchronous training often inherently suffers from lower accuracy as compared to synchronized
SGD, which results in the domination of synchronized SGD in neural network training [2].

Resurgence in asynchrony. Recently, asynchronous methods have regained popularity, mainly
due to the interest in applying asynchronous motions within FL on edge devices. Yet, traditional
off-the-self asynchronous algorithms still have issues, which might be exacerbated in the FL setting.
As slower devices take longer local training time before updating the global model, this might result
in inconsistent update schedule of the global model, compared to that of faster devices. This might
have negative ramifications: i) For FL on i.i.d. data, this will cause the gradient staleness problem
and result in convergence rate decrease; and, ii) on non-i.i.d. data, this will result in significant drop
in global model final accuracy.

To overcome such problems, fresh proposals on asynchronous FL develop weighted global aggregation
techniques that take into consideration the heterogeneity of the devices [38, 3, 28]; yet, these methods
often place a heavy computation/communication burden, as they rely on broadcasting the whole
model’s updates to all the clients and/or the server. Other works monitor client speed to help training
assignment [18, 1]. Finally, recent efforts propose semi-asynchronous methods, where participating
devices are selected and buffered in order to complete a semi-synchronous global update periodically
[13, 37]. A thorough discussion on asynchronous methods in FL can be found in [39].

What is different in this work? As most algorithms stem from directly adapting asynchrony in
synchronous FL, one still needs to broadcast full model to all devices, following a data parallel
distributed protocol [9, 26], regardless of device heterogeneity. This inspire us to ask a key question:

“Can we select sub-models out of the global model and send these to each device, taking into
account the device heterogeneity? Potentially, this could further reduce the negative effect of
gradient staleness and overfitting problem in asynchronous FL.”

We answer this question affirmatively, by proposing a novel distributed dropout method for FL. We
dub our method AsyncDrop. Our approach assigns different sub-models to each device1; empirically,
such a strategy decreases the required time to converge to an accuracy level, while preserving
favorable final accuracy. This work reinstitutes the dispute between synchrony and asynchrony and
focuses on asynchronous computations should in heterogeneous distributed scenarios, as in FL. Our
idea is based on the ideas of HogWild! [24, 20] –in terms of sparse sub-models– and Independent
Subnetwork Training (IST) [40, 8, 19, 36] –where sub-models are deliberately created for distribution,
in order to decrease both computational and communication requirements.

Yet, we deviate from these works in the following sense: i) To the best of our knowledge, we are not
aware of any fully asynchronous FL implementations; the combination of HogWild! and IST ideas
was not stated and tested before this work. ii) While HogWild!-line of work provides optimization
guarantees, we are the first to consider the non-trivial, non-convex neural network setting and provide
theoretical guarantees for convergence; such a result combines tools from asynchronous optimization,
Neural Tangent Kernel assumptions and focuses on convolutional neural networks, that deviate from
fully-connected layer simplified scenarios. Finally, iii) we provide system-level algorithmic solutions
for our approach, mirroring best-practices found during our experiments. Overall, the contributions
of this work can be summarized as follows:
• We consider and propose asynchronous distributed dropout for efficient large-scale FL. Our focus is

on non-trivial, non-convex ML models –as in neural network training– and our framework provides
specific engineering solutions how to handle these cases in practice.

• We theoretically characterize and support our proposal with rigorous and non-trivial convergence
rate guarantees. Currently, our conjecture assumes bounded delays; our future goal is to exploit
recent developments on asynchronous optimization theory that drop such assumptions. Yet, our
theory considers the harder case of neural network training, which is often omitted in existing –but
rather abstract– theory results.

• We provide specific implementation instances and share “best practices” for faster distributed
FL neural network training in practice. Our preliminary results include baseline asynchronous
implementations of many synchronous methods (such as FedAvg, FedProx, and more), that are not
existent currently, to the best of our knowledge.

1We consider both random assignment, as well as structured assignments, based on the computation power
of the devices.

2

2 Problem Setup and Challenges
Federated Learning formulation. We use the following notation for data representation: given
a data source distribution D, {xi, yi} ∼ D represents a data point where xi is a data sample, and
yi is its corresponding label (for classification purposes). We use n to denote the total number of
samples, unless otherwise stated. Let S be the total number of clients in a distributed FL scenario.
Each client i has its own local data Di such that the whole dataset satisfies D = ∪iDi, and usually
Di ∩ Dj = ∅,∀i ̸= j. The goal of federated learning is to find a global model W that achieves good
accuracy on all data D, by minimizing the following optimization problem:

W⋆ = argmin
W∈H

{
L(W) := 1

S

S∑
i=1

ℓ (W,Di)

}
, where ℓ (W,Di) =

1
|Di|

∑
{xj ,yj}∈Di

ℓ (W, {xj , yj})

With a slight abuse of notation, ℓ (W,Di) denotes the local loss function for user i, associated with a
local model Wi (not indicated above), that gets aggregated with the models of other users. Local data
distribution Di can be heterogeneous and follow a non-i.i.d. distribution. In the following sections,
we consider both i.i.d. case and non-i.i.d. case.

Algorithm 1 Meta Asynchronous FL
Parameters: T iters, S clients, l local iters., W
as current global model, Wi as local model for
i-th client, α ∈ (0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do
Wi,t ←W
//Train Wi for l iters. via SGD
for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model
W← (1− α) ·W + α ·Wi,t

end for

Details of asynchronous training. An abstract
description of how asynchronous FL operates is
provided in Algorithm 1. In particular, given a
number of server iterations T , each client i gets
the updated global model Wt from the server,
and further locally trains it using Di for a num-
ber of local iterations l.2 Asynchronous feder-
ated learning assumes each client has different
computation power and communication band-
width; this can be abstracted by different wall-
clock times required to finish a number of local
training iterations. Thus, when client i has com-
pleted its round, the updated model is shared
with the server to be aggregated, before the next
round of communication and computation starts
for client i. This is different from classical syn-
chronous federated learning, where the global
model is updated only when all participating clients finish certain local training iterations.

3 Asynchronous Distributed Dropout in the i.i.d. case
Intricacies of asynchronous FL. Asynchronous motions often lead to inconsistent update schedules
of the global model and are characterized by gradient staleness and overfitting. While there are some
recent solutions [38, 3, 28, 18, 1, 13, 37], real-life FL applications include edge devices with limited
communication and computation capabilities that further exacerbate such issues(e.g., how often and
fast they can connect with the central server, and how powerful as devices they are). For instance,
edge devices such as IoT devices or mobile phones [22], might only be able to communicate with the
server within short time windows, due to network conditions or user permission policy (e.g., a device
might need to upload and download the updated model in a short time window). Such edge devices
have limited computational capabilities, as compared to GPU-based systems.

Finally, existing semi-asynchronous methods [38, 3, 28, 18, 1, 13, 37] might require fast clients wait
until all other clients’ updates are completed, in order to receive the updated model for the next round
of local training. This might further result in nondeterministic long waiting time.

(Distributed) Dropout. Dropout [32, 29, 10, 4] is a widely-accepted regularization technique in
deep learning. The procedure of Dropout is as follows: per training round, a random mask over the
parameters is generated; this mask is used to nullify part of the neurons in the neural network for
this particular iteration. Variants of dropout include the drop-connect [32], multisample dropout [14],
Gaussian dropout [35], and the variational dropout [16].

The idea of dropout has also been used in efficient distributed and/or federated learning scenarios.
[11] introduces FjORD and the Ordered Dropout, a synchronous distributed dropout technique that

2Details on the use of the optimizer, how it is tuned with respect to step size, mini-batch size, etc. are
intentionally hidden at this point of the discussion.

3

leads to ordered, nested representation of knowledge in models, and enables the extraction of lower
footprint submodels without the need of retraining. Such submodels are more suitable in client system
heterogeneity, as they adapt submodel’s width to the client’s capabilities. Similar approaches include
Nested Dropout [27] and HeteroFL [6].3

Algorithm 2 AsyncDrop algorithm
Parameters: T iters, S clients, l local iters., W as
current global model, Wi as local model for i-th
client, α ∈ (0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do

Generate mask Mi,t

Wi,t ←Wt ⊙ Mi,t

//Train Wi,t for l iters. via SGD
for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model
Wt+1 ←Wt ⊙ (Mi,t)

c

+((1−α)·Wt+α·Wi,t) ⊙ Mi,t

end for

Our proposal and main hypothesis.
In this work, we focus on the asyn-
chronous version of distributed dropout.
We first study theoretically whether asyn-
chrony provably works in non-trivial non-
convex scenarios –as in training convo-
lutional neural networks– with random
masks that generate submodels for each
worker/participating device. The algorithm
we focus on is described in Algorithm 2
and is based on recent distributed protocols
[40, 8, 19, 36]. The main difference of Al-
gorithm 2, compared to Algorithm 1, is that
the former splits the model vertically per
iteration, where each submodel contains
all layers of the neural network, but only
with a (non-overlapping) subset of neurons
being active in each layer. Multiple local
SGD steps can be performed without the
workers having to communicate.

Theoretical Results. We perform theoretical analysis on a one-hidden-layer convolutional neural
network (CNN), and show the convergence with random filter dropout. Consider a training dataset
(X,y) = {(xi, yi)}ni=1, where each xi ∈ Rd̂×p is an image and yi being its label. Here, d̂ is the
number of input channels and p the number of pixels. Let q denote the size of the filter, and let m be
the number of filters in the first layer. We let ϕ̂(·) denote the patching operator with ϕ̂(x) ∈ Rqd̂×p

[7]. Consider the first layer weight W ∈ Rm×qd̂, and second layer (aggregation) weight a ∈ Rm×p.
We assume that only the first layer weights W is trainable. The CNN model, trained on the means
squared error, has the form:

f(x, ζ) =
〈
a, σ

(
Wϕ̂ (x)

)〉
; L (W) = ∥f(X,W)− y∥22 ,

where ζ abstractly represents all training parameters, f(x, ·) denotes the output of the one-layer CNN
for input x, and L(·) is the loss function.

Assumption 3.1 (Training Data) Assume that for all data points, we have ∥xi∥F = q−
1
2 and

|yi| ≤ C for some constant C. Moreover, for all i, i′ we have xi ̸= xi′ .

This assumption can be easily satisfied with data normalization. For simplicity, let d := qd̂.

Assumption 3.2 (Initialization) w0,r ∼ N
(
0, κ2I

)
and arj ∼

{
± 1

p
√
m

}
for r ∈ [m] and j ∈ [p].

In an asynchronous scenario, we assume the neural network weights are updated with stale gradients:
here, dt denotes the delay at training step t. Further, for all t iterations, we assume dt is bounded by a
constant E. Then, gradient descent motions with delays take the form:

Wt = Wt − η∇WL (Wt−dt
) , where dt ≤ E.

Based on the above we make the following conjecture:

3Beyond the restriction to synchronous training, such approaches often lack a specific instantiation of the
proposed methodology to neural network training. This present work proposes specific algorithmic solutions on
how to consolidate these ideas into a single practical framework for neural network training in FL scenarios.

4

Theorem 3.1 Let f(·, ·) be a one-hidden-layer CNN with the second layer weight fixed. Let ut
abstractly represent the output of the model after t iterations, over the random selection of the
masks. Let ξ denote the dropout rate (ξ = 1 dictates that all neurons are selected), and denote
θ = 1 − (1 − ξ)S the probability that a neuron is active in at least one subnetwork. Assume the

number of hidden neurons satisfies m = Ω
(
max{n

4K2

λ4
0δ

2 max{n, d}, n
λ0
}
)

and the step size satisfies

η = O
(
λ0

n2

)
. Let κ be a proper initialization scaling factor, and it is considered constant. We use λ0

to denote the smallest eigenvalue of the Neural Tangent Kernel matrix. Let Assumptions 1 and 2 be
satisfied. Then, the following convergence rate guarantee is proved to be satisfied:

EMt

[
∥ut+1 − y∥22

]
≤

(
1− θηλ0

4

)t

∥u0 − y∥22

+O

(
θηλ3

0ξ
2κ2E2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0

+
ξ2(1− ξ)2θ2η2κ2λ0E

2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)

4 Smart Partition in Asynchronous Dropout for FL
Potential issues in asynchronous FL. Despite theoretical support, asynchronous algorithms might
show slower convergence rates and/or lower final model accuracies, mainly due to inconsistent global
model updates between slower devices and faster devices. With non-i.i.d. data as in the case of FL,
more frequent updates by faster devices could lead to global model overfitting over local data on the
same devices; this often results in significantly sub-optimal final model accuracy. These facts suggest
a more careful handling of model splitting and model distribution among heterogeneous workers.

Algorithm 3 Smart Dropout for Asynchronous FL
Parameters: T iters, S clients, l local iters., W
as current global model, Wi as local model for i-
th client, ηg as global LR, q(·) weight score func-
tion, ψ(i) computes the computation capacity of i-
th worker, φ(W, ψ(i), q(·)) is the Smart Dropout
function that creates the mask, based on worker ca-
pacity ψ and score function q, α ∈ (0, 1).

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do

//For i-th fastest worker, φ(·) drops
weights with i-th largest q(·) score
Generate mask Mi,t = φ(Wt, ψ(i), q(·))
Wi,t ←Wt ⊙ Mi,t

//Train Wi,t for l iters. via SGD
for j = 1, . . . , l do

Wi,t ←Wi,t − ηg ∂L
Wi,t

end for
if i-th client is fastest then

Update ηg
end if
//Write local to global model
Wt+1 ←Wt ⊙ (Mi,t)

c

+((1−α)·Wt+α·Wi,t) ⊙ Mi,t

//Update score q

q(Wj
t+1) =

∥∥∥Wj
t+1 −Wj

0

∥∥∥
1
, ∀ j ∈ J

end for

Smart Dropout: improved asyn-
chronous solution. We propose to resolve
inconsistency in global model updates by
“balancing" the contribution from different
devices with a Smart Dropout method.
Briefly, Smart Dropout assigns different
weights to different devices, based on
the updated rate of the weights, and the
computation power of the devices.

An algorithmic description is provided in
Algorithm 3. We assign model weights that
are less updated to the faster devices; this
way, we guarantees that such weights will
be updated more frequently than random
weight assignment. Similarly, we assign
model weights that are updated more often
– and, thus, converging faster– to the slower
devices. The premise behind such a proto-
col is that all weights, eventually, will be
updated/will converge with a similar rate.

In the i.i.d. case, this would reduce the gra-
dient staleness: slower devices take fewer
steps to converge on the assigned weights;
this is compensated by assigning “fast-
converging weights”, that were assigned
to faster devices in the previous iterations.
In the non-i.i.d. case, such a strategy would
reduce any overfitting over the local data
in faster devices: The weights previously
updated the most by the faster devices will
not be assigned to the fast devices in the
near-future iterations.

5

Figure 1: Left: CIFAR10 non-i.i.d.; Right: CIFAR100, non-i.i.d..

Smart Dropout: its ingredients. The above are encapsulated with a weight score function q(·),
a device-capacity score function ψ(·) and the mask generator function φ(·) in Algorithm 3. The
function q(·) quantifies the update speed of each weight. One simple score can be the norm of
weight change: Given predefined grouping of weights in set J , define Wj

t for j ∈ J as the j-th
weight/group of weights of global network at the t-th update. Then, the score function is selected as:
q(Wj

t) =
∥∥∥Wj

t −Wj
0

∥∥∥
1
, i.e., the score function measures how far from the initial values the j-th

group of weights has moved. In our experiments, we have tested grouping of weights J by filters and
by layers. Further, we have some measure of the computation capacity of each device ψ(i), and order
the devices in descending order such that the first device is the fastest and last the slowest.

The mask generator function φ(W, ψ(i), q(·)) generates masks that nullify weights in W, based
on the score function q over the weights, and the device capacity list in ψ(·). The Smart Dropout
strategy is that for the i-th fastest worker, we drop weights with i-th largest q score.

5 Experiments
We focus on fully asynchronous FL using CNNs. Yet, we highlight that, with proper tuning, our ideas
are model agnostic by design. To simulate the heterogeneous edge devices, we implement devices
as different processes, while we manually insert different time delays to simulate different compute
nodes and communication bandwidths. In these preliminary results, we focus only on non-i.i.d.
scenarios. We consider the difficult case where data distribution will be correlated to computation
power, which results in a more heterogeneous model update during training. In all experiments,
we use 104 devices/users in total and activate 8 of them at any moment. In all Smart Dropout
experiments, we use 25% dropout rate.

Baselines. We compare asynchronous implementations of five algorithms: i) asynchronous FedAvg;
ii) asynchronous FedAvg with weighted aggregation based on gradient staleness; iii) asynchronous
FjORD; iv) asynchronous FedProx; and iv) FedBuff. These baselines are straightforward implemen-
tations of synchronous versions (except from FedBuff).

Preliminary results. We only highlight key points in our preliminary results; more findings and
further discussion will be included during the workshop. Focusing on the non-i.i.d. case for CIFAR10
(Table 1), we observe that our proposal gets the maximum accuracy compared to the rest of the
algorithms, while being stable: notice the high variability in values coming from different runs of our
code (indicated with red colored text). At the same time, our algorithm is faster and requires less
communication over the course of the execution.

Similar observations can be made for the case of non-i.i.d. CIFAR100 (Table 2). Here, observe
that FedBuff achieves the best maximum accuracy. However, again the achieved models are not
consistent over various runs of the algorithm; our algorithm shows a stable performance, within
reach of the high variance by FedBuff. At the same time, our algorithms shows great performance in
terms of acceleration in execution and required communication bandwidth. This behavior is further
highlighted in Figure 1.

6

Table 1: Test accuracy on non-i.i.d. CIFAR10 datasets.

Max. Accuracy Time to 35% accuracy Time Saved Ratio Comm. Saved Ratio

AsyncDrop 50.67 ± 1.75 1579.1s -

Async FedAvg 45.79 ± 7.9 2105.5s -33.34% -15.56%
Async Fed-Weighted-Avg 46.51 ± 6.8 2105.5s -33.34% -15.56%

Async FedProx 43.97 ± 1.35 2296.9s -45.46% -26.06%
Async Fjord 23.14 ± 0.90 N/A N/A N/A

FedBuff 35.81 ± 11.83 2296.9s -45.46% -443.03%

Table 2: Test accuracy on non-i.i.d. CIFAR100 datasets.

Max. Accuracy Time to 32% accuracy Time Saved Ratio Comm. Saved Ratio

AsyncDrop 37.26 ± 0.93 2296.8s -

Async FedAvg 32.47 ± 1.89 3062.5s -33.38% -15.56%
Async Fed-Weighted-Avg 32.98 ± 1.71 3062.5s -33.38% -15.56%

Async FedProx 35.75 ± 0.61 3062.5s -33.38% -15.56%
Async Fjord 12.07 ± 0.83 N/A N/A N/A

FedBuff 41.91 ± 3.80 3253.9s -41.72% -488.28%

7

References
[1] Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fedat: A

communication-efficient federated learning method with asynchronous tiers under non-iid
data. ArXivorg, 2020.

[2] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting
distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[3] Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient federated deep learn-
ing with layerwise asynchronous model update and temporally weighted aggregation. IEEE
transactions on neural networks and learning systems, 31(10):4229–4238, 2019.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. Advances in neural information
processing systems, 28, 2015.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

[6] Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and communication efficient
federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020.

[7] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pages
1675–1685. PMLR, 2019.

[8] Chen Dun, Cameron R Wolfe, Christopher M Jermaine, and Anastasios Kyrillidis. ResIST:
Layer-wise decomposition of ResNets for distributed training. In Uncertainty in Artificial
Intelligence, pages 610–620. PMLR, 2022.

[9] P. Farber and K. Asanovic. Parallel neural network training on multi-spert. In Proceedings of
3rd International Conference on Algorithms and Architectures for Parallel Processing, pages
659–666, 1997.

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[11] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. FjORD: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. Advances in Neural Information Processing Systems, 34:12876–12889, 2021.

[12] Cho-Jui Hsieh, Hsiang-Fu Yu, and Inderjit Dhillon. PaSSCODE: Parallel asynchronous stochas-
tic dual co-ordinate descent. In International Conference on Machine Learning, pages 2370–
2379. PMLR, 2015.

[13] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour,
Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, et al. Papaya: Practical,
private, and scalable federated learning. Proceedings of Machine Learning and Systems, 4:814–
832, 2022.

[14] Hiroshi Inoue. Multi-sample dropout for accelerated training and better generalization. arXiv
preprint arXiv:1905.09788, 2019.

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated
learning, 2019.

[16] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. Advances in neural information processing systems, 28, 2015.

[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2018.

8

[18] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are not disaster: A hybrid federated
learning algorithm with delayed gradients. arXiv preprint arXiv:2102.06329, 2021.

[19] Fangshuo Liao and Anastasios Kyrillidis. On the convergence of shallow neural network training
with randomly masked neurons. arXiv preprint arXiv:2112.02668, 2021.

[20] Ji Liu, Steve Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous
parallel stochastic coordinate descent algorithm. In International Conference on Machine
Learning, pages 469–477. PMLR, 2014.

[21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[22] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vincent
Poor. Federated learning for internet of things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 23(3):1622–1658, 2021.

[23] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek,
and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pages 3581–3607. PMLR, 2022.

[24] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent, 2011.

[25] Yuben Qu, Haipeng Dai, Yan Zhuang, Jiafa Chen, Chao Dong, Fan Wu, and Song Guo.
Decentralized federated learning for UAV networks: Architecture, challenges, and opportunities.
IEEE Network, 35(6):156–162, 2021.

[26] R. Raina, A. Madhavan, and A. Ng. Large-scale deep unsupervised learning using graphics
processors. In ICML, pages 873–880. ACM, 2009.

[27] Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pages 1746–1754. PMLR, 2014.

[28] Guomei Shi, Li Li, Jun Wang, Wenyan Chen, Kejiang Ye, and ChengZhong Xu. Hysync:
Hybrid federated learning with effective synchronization. In 2020 IEEE 22nd International
Conference on High Performance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 628–633, 2020.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[30] Branislav Stojkovic, Jonathan Woodbridge, Zhihan Fang, Jerry Cai, Andrey Petrov, Sathya
Iyer, Daoyu Huang, Patrick Yau, Arvind Sastha Kumar, Hitesh Jawa, et al. Applied federated
learning: Architectural design for robust and efficient learning in privacy aware settings. arXiv
preprint arXiv:2206.00807, 2022.

[31] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. Gradient coding:
Avoiding stragglers in distributed learning. In International Conference on Machine Learning,
pages 3368–3376. PMLR, 2017.

[32] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International conference on machine learning, pages
1058–1066. PMLR, 2013.

[33] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[34] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

9

[35] Sida Wang and Christopher Manning. Fast dropout training. In international conference on
machine learning, pages 118–126. PMLR, 2013.

[36] Cameron R Wolfe, Jingkang Yang, Arindam Chowdhury, Chen Dun, Artun Bayer, Santiago
Segarra, and Anastasios Kyrillidis. GIST: Distributed training for large-scale graph convolu-
tional networks. arXiv preprint arXiv:2102.10424, 2021.

[37] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis. Safa: A
semi-asynchronous protocol for fast federated learning with low overhead. IEEE Transactions
on Computers, 70(5):655–668, 2020.

[38] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization, 2019.

[39] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning
on heterogeneous devices: A survey, 2021.

[40] Binhang Yuan, Cameron R Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris
Jermaine. Distributed learning of fully connected neural networks using independent subnet
training. Proceedings of the VLDB Endowment, 15(8):1581–1590, 2022.

[41] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, SVN Vishwanathan, and Inderjit Dhillon. Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and decentralized matrix
completion. arXiv preprint arXiv:1312.0193, 2013.

[42] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel SGD for
matrix factorization in shared memory systems. In Proceedings of the 7th ACM conference on
Recommender systems, pages 249–256, 2013.

10

	Introduction
	Problem Setup and Challenges
	Asynchronous Distributed Dropout in the i.i.d. case
	Smart Partition in Asynchronous Dropout for FL
	Experiments

