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ABSTRACT

Recent years have witnessed significant advancements in graph machine learning
(GML), with its applications spanning numerous domains. However, the focus
of GML has predominantly been on developing powerful models, often overlook-
ing a crucial initial step: constructing suitable graphs from common data formats,
such as tabular data. This construction process is fundamental to applying graph-
based models, yet it remains largely understudied and lacks formalization. Our re-
search aims to address this gap by formalizing the graph construction problem and
proposing an effective solution. We identify two critical challenges to achieve this
goal: 1. The absence of dedicated benchmarks to formalize and evaluate the ef-
fectiveness of graph construction methods, and 2. Existing automatic construction
methods can only be applied to some specific cases, while tedious human engi-
neering is required to generate high-quality graphs. To tackle these challenges, we
present a two-fold contribution. First, we introduce a benchmark to formalize and
evaluate graph construction methods. Second, we propose an LLM-based solu-
tion, AutoG, automatically generating high-quality graph schemas without human
intervention. The experimental results demonstrate that the quality of constructed
graphs is critical to downstream task performance, and AutoG can generate high-
quality graphs that rival those produced by human experts.

1 INTRODUCTION

Graph machine learning (GML) has attracted massive attention due to its wide application in di-
verse fields such as life science (Wong et al., 2023), E-commerce (Ying et al., 2018), and social
networks (Wang & Kleinberg, 2023; Suárez-Varela et al., 2022). GML typically involves applying
models like graph neural networks (GNNs) (Kipf & Welling, 2017) to leverage the underlying graph
structure of a given task, e.g., using the friendship networks for user recommendations (Tang et al.,
2013) and identifying new drug interactions (Zitnik et al., 2018).

Despite the widespread interest and rapid development in GML (Kipf & Welling, 2017; Mao et al.,
2024; Müller et al., 2024), constructing graphs from common data formats such as industrial tabu-
lar data (Ghosh et al., 2018) remains an under-explored topic. This primarily stems from a widely
adopted assumption that appropriate graph datasets exist for downstream tasks akin to established
benchmarks (Hu et al., 2020; Khatua et al., 2023). However, readily available graph datasets are ab-
sent in many real-world enterprise scenarios. First, given an input data in common storage formats
such as tables, there can be many plausible graph schemas and structures that can be defined over
them. The choice of graph schema impacts downstream performance of GML. Rossi et al. (2024)
shows that considering the directional aspect of edges within a graph can lead to substantial vari-
ance in the downstream GML performance. Second, converting the source data into graph format
requires expert data engineering and processing. Even though, GNN based approaches shows strong
performance on Kaggle leaderboard (Wang et al., 2024b), it involves laborious pre-processing and
specialized skills to transform the original tabular data into ready-to-be-consumed graphs for GML.

The objective of this work is to formalize the challenges in graph construction by establishing a
real-world benchmark followed by automatic graph construction from input tabular data. Existing
tabular graph benchmarks such as Wang et al. (2024b) and Fey et al. (2024) assume the availability
of well-formatted graphs with explicit relationships such as complete foreign-key and primary-key
pairs. In these cases, graphs can be easily constructed using heuristics like Row2Node (Cvitkovic,
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2020) by converting each table into a node type. However, implicit relationships like columns with
similar semantics (Dong et al., 2023) or columns with categorical types also widely exist in real-
world scenarios, which cannot be addressed by heuristic methods (see Figure 1). A benchmark
designed for graph construction should reflect the importance of modeling implicit relationships.
Additionally, different tasks can be defined based on the same dataset (Fey et al., 2024). Further,
different ways to construct graphs affect different tasks’ performance is an understudied problem.
Therefore, the benchmark for graph construction also needs to include different downstream tasks
to reflect this problem. From the solution perspective, graph construction involves finding the best
candidate among all possible graph structures. However, considering the vast search space, finding
the graph structure through an exhaustive search is infeasible. Therefore, an effective automatic
graph construction method should be able to efficiently identify high-quality candidates from many
possible graph structures/schemas.

To address the above challenges, we propose an evaluation benchmark and a large language model
(LLM)-based graph construction solution. We first extract raw tabular datasets from Kaggle, Co-
dalab, and other data sources to design a benchmark reflecting real-world graph construction chal-
lenges. They differ from prior work (Fey et al., 2024; Wang et al., 2024b) in that these datasets
haven’t been processed by experts, and existing graph construction methods get inferior performance
(see Table 3). To solve the graph construction problem, we propose an LLM-based automatic graph
construction solution AutoG inspired by LLM’s reasoning capability to serve as a planning module
for agentic tasks (Zhou et al., 2024) and tabular data processing (Hollmann et al., 2023). However,
we observe that LLMs tend to generate invalid graphs or graphs with fewer relationships (as shown
in Section 5.3.1). We address this problem by guiding LLMs to conduct close-ended function call-
ing (Schick et al., 2024). Specifically, we decompose the generation of graph structures into four
basic transformations applied to tabular data: (1) establishing key relations between two columns,
(2) expanding a specific column, (3) generating new tables based on columns, and (4) manipulat-
ing primary keys. Coupled with chain-of-thought prompt demonstrations for each action, AutoG
generates a series of actions to get the augmented schema and thus construct the graph. To further
enhance the generation quality, it will adopt the early-stage validation performance of trained GML
models as an oracle to select results efficiently.

Our major contributions can be summarized as follows:

a) Formalizing graph construction problems with a benchmark: We create a benchmark cov-
ering diverse graph construction challenges, consisting of eight datasets from academic, E-
commerce, medical, and other domains.

b) LLM-based automatic graph construction method: AutoG: To solve the graph construction
problem without manual data engineering, we propose an LLM-based baseline to automatically
generate graph candidates and then select the best candidates efficiently.

c) Comprehensive evaluation: We compare AutoG with different baseline methods on the pro-
posed benchmarks. AutoG shows promising performance that is close to the level of a data
engineering expert. Among 12 test tasks, it achieves 98.5% of the performance of human expert-
designed prompts on 9 downstream tasks.

2 PRELIMINARIES

2.1 TABULAR DATA AND SCHEMAS

The input tabular data is represented using the RDB language (Codd, 2007; Chen, 1976) as a schema
file. Subsequently, we introduce table schemas and how they may be used to describe a graph. We
start by introducing the fundamental elements of RDB languages.

Definition. Tabular data D contains an array of K tables D := {Ti}Ki=1. Each table Ti can be
viewed as a set Ti = (Ci, Ri,Mi), where

• Ci = (Ci,1, . . . , Ci,li) is an array of strings representing the column names, with li denoting the
number of columns in Ti.

• Ri is a matrix where each row Ri,j = (Ri,j,1, . . . , Ri,j,li) contains the values for the j-th row of
table Ti.

• Mi = (Mi,1, . . . ,Mi,li) is an array specifying the data type of each column.
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In this paper, we consider the following data types {category, numeric, text,
primary key(PK), foreign key (FK), set, timestamp}. As an example, if Mi,1 = text,
then all values in the same column Ri,1,1, · · · , Ri,mi,1 are of text type (mi refers to the number of
rows for table Ti). Detailed descriptions of each data type can be found in Appendix A.1.

The definitions above focus on the properties of individual tables, For multiple tables with K > 1,
they can be related with set of n PK-FK pairs {xm

PK, y
m
PK, x

m
FK, y

m
FK} where m = 1, . . . ,M . x and y

represent the indices of tables in D and the indices of columns. In real-world scenarios, it’s often the
case that only a subset of all PK-FK are explicit (Wang et al., 2024b). The other implicit connections
must be identified manually to support downstream tasks well.

Table schema and graph schema description. Based on this language, we define table schema by
storing all the meta information in a structured format like YAML (Ben-Kiki et al., 2009). An exam-
ple is shown in Appendix A.2. Table schema defines the metainformation of tables in a structured
manner following the RDB language. Graph schema is a special type of table schema. Compared
to general table schema, graph schema presents tables with proper column designs and PK-FK rela-
tions. These characteristics make it trivial to convert a graph schema (as discussed in Section 2.2)
into an ideal graph structure for downstream tasks.

2.2 BRIDGING TABULAR DATA AND GRAPHS

Based on the definition of tabular data, the goal of graph construction is to convert relational tabular
data D into a graph G. Following Fey et al. (2024); Wang et al. (2024b), we consider G as a
heterogeneous graph (Wang et al., 2022) G = {V, E} characterized by sets of nodes V and edges E .
The nodes and edges are organized such that V =

⋃
v∈V Vv and E =

⋃
e∈E Ee where Vv represents

the set of nodes of type v, and Ee represents the set of edges of type e. The main challenge of graph
construction lies in extracting appropriate node types and edge types from the schema of tabular
data. This process could be straightforward if we treat each table as a node type and each PK-FK
relationship as an edge type. However, this method may generate suboptimal graphs for general table
schemas. For instance, when two entities are placed in a single table, one entity might be treated
as a feature of the other, resulting in a graph that fails to effectively reflect structural relationships,
thereby impacting the performance of downstream tasks (Wang et al., 2024b).

Movies

PKMovieID

TextTitle

SetGenres

Ratings

PKRatingID

CatUserID

FKMovieID

CatRating

TimeTime

Tags

CatUser

FKMovieID

textTag

C1: User-UserID

HasGenre

FKMovieID

CatGenre

C3: Genres-
>HasGenre

(Augmented table)

C4:  Proper type 
(remove PK)

TabGNN can’t solve challenges here, JTD 
can only solve C1 

(a) Movielens

Paper

PKPaperID

floatFeat

CatLabel 

CatYear

Cites

FKPaper_Cite

FKPaper_Cited

Affiliated

CatAuthorName

CatInstitution

Writes

CatAuthor

FKPaper

C1: Author-
AuthorName

HasTopic

FKPaper

CatField
C2: Cat to 
relation

C5: Tasks require 
different graphs

(b) MAG

Figure 1: Demonstrations of challenges in two selected datasets. Existing heuristic-based methods
cannot well tackle C2-C5 in that they require task-specific decisions.

3 BENCHMARKS

To make the graph construction problem concrete and provide a benchmark for comparing different
methods, we aim to design a benchmark that reflects the challenges encountered in real-world sce-
narios. Specifically, we first identify key problems that need to be addressed during the graph con-
struction process, which can be viewed as the benchmark’s design space. Based on these problems,
we have carefully selected 8 multi-tabular datasets from diverse domains to construct a benchmark
for graph construction.
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3.1 DESIGN SPACE OF THE BENCHMARK

We propose five core challenges to be addressed when converting tabular data into graphs. Examples
of these challenge are demonstrated in Figure 1.

1. C1: Identifying edges from non PK-FK relationships: Traditional methods like
Row2Node (Wang et al., 2024b) only turn PK-FK relationships into edges, while these relation-
ships are usually not complete, which necessitates either automatic join discovery (Dong et al.,
2023) or human intervention.

2. C2: Augmenting multiple node or edge types from one table: Multiple node types and edge
types may be improperly put in one table. For example, the “Field” column in Figure 1 can
induce useful relations, and thus, an augmented table should be added.

3. C3: Transforming tables into proper node or edge types: How to convert tables into ap-
propriate types affects downstream task performance and the validity of generated graphs. For
instance, the “Ratings” table in Figure 1 should be better modeled as an edge type since it’s about
predicting the property between user and movie type.

4. C4: Generating proper graphs for different downstream tasks: Considering that multiple
tasks can be defined based on the same tabular data (Fey et al., 2024), one single graph design
may not fit all tasks. This claim has not been well studied and will be verified in our benchmark.

Design philosophy of these challenges. These five challenges are inspired by existing works (Wang
et al., 2024b; Dong et al., 2023; Gan et al., 2024) but go beyond their scopes. Specifically, C1 is a
common problem in data lakes and RDB (Dong et al., 2023; Hulsebos et al., 2019) for automatic
data engineering. When constructing the graph is the final objective, joinable column detection
becomes even more important since it’s crucial to find relations. C2 is derived by comparing the
original schema from Kaggle to the graph schema used in Wang et al. (2024b). Human experts have
introduced multiple augmented tables, which are crucial to the performance of GML models. The
mechanism behind these augmented tables hasn’t been well studied, and we first introduce them in
our benchmarks. C3 is derived from real-world datasets such as (Harper & Konstan, 2015), and we
find that simple heuristics may work poorly when the proper type of table cannot be induced from
the schema. C4 is naturally derived from the multiple tasks defined on tabular data. We are the first
to study the influence of graphs on different downstream task performance.

Relationship to traditional database profiling (Abedjan et al., 2015). Database normalization
is a related concept to our work. The goal of graph construction from relational data to graph is
to find what kind of relational information is beneficial to the downstream task. For example, the
objective of challenge 2 is to consider whether the relationship induced by this categorical value is
beneficial. This decision needs to consider the semantic relationship between this column and the
corresponding downstream tasks, which cannot be solved by normalization. As a comparison, the
objective of normalization is to minimize data redundancy and improve data integrity. Despite the
overlap, data normalization cannot fully solve the graph construction task.

3.2 DATASETS

Based on the design space of graph construction from relational tabular data, we gather 8 datasets
from various domains to evaluate graph construction methods. We collect these datasets from 1. the
source of existing tabular graph datasets, such as Diginetica (Wang et al., 2024b); 2. augmented
from existing tabular graph datasets, such as Stackexchange (Wang et al., 2024b); 3. traditional tab-
ular datasets adapter for graph construction, including IEEE-CIS (Howard et al., 2019) and Movie-
lens (Harper & Konstan, 2015). The information of these 8 datasets is listed in Table 1. Two
concrete examples are shown in Figure 1. Details on dataset sources and pre-processing are shown
in Appendix B.

Benchmark evaluation. To evaluate the quality of generated graphs, we adopt a quantitative eval-
uation approach by assessing downstream task performance, i.e., use fixed GML models (RGCN,
RGAT) to compare the impact of different graph construction methods. Better downstream task
performance indicates higher graph quality.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Datasets included in our benchmarks. The tasks are categorized into predictions of relation
attribute, entity attribute, and FK by following (Wang et al., 2024b).

Name of the dataset #Tasks #Tables Inductive C1 C2 C3 C4 Task type Source of datasets
Movielens 1 3 ✓ ✓ ✓ ✓ ✗ Relation Attribute Designed from Harper & Konstan (2015)
MAG 3 5 ✗ ✓ ✓ ✓ ✓ Entity Attribute, FK Prediction Augmented from Wang et al. (2024b)
AVS 2 3 ✓ ✓ ✓ ✓ ✓ Entity Attribute Augmented from Wang et al. (2024b)
IEEE-CIS 1 2 ✗ ✗ ✓ ✓ ✗ Entity Attribute Designed from Howard et al. (2019)
Outbrain 1 8 ✓ ✓ ✓ ✓ ✗ Relation Attribute Augmented from Wang et al. (2024b)
Dignetica 2 8 ✓ ✓ ✓ ✓ ✓ Relation Attribute, FK Prediction Augmented from Wang et al. (2024b)
RetailRocket 1 5 ✓ ✓ ✓ ✓ ✗ Relation Attribute Augmented from Wang et al. (2024b)
Stackexchange 3 7 ✓ ✓ ✓ ✓ ✓ Entity Attribute Augmented from Wang et al. (2024b)

4 METHOD

This section introduces an automatic graph construction solution to tackle the five challenges in
Section 3.1. As discussed in Section 2.2, we consider graph construction as a transformation from
the original table schema with implicit relations to the final graph schema with explicit relations.
We adopt an LLM as the decision maker to generate transformations automatically.

4.1 AUTOG: AN LLM-BASED GRAPH CONSTRUCTION FRAMEWORK

Inspired by the classic generator-discriminator structure (Goodfellow et al., 2014), we first design a
generator to produce reasonable candidates, and then evaluate the generated results through a dis-
criminator. In previous work (Fey et al., 2024; Wang et al., 2024b), human data scientists often play
the generator, which generates outputs based on their expert knowledge. Like humans, LLMs also
demonstrate the capabilities to generate molecular structures or code-formatted augmentations based
on prior knowledge (Wang et al., 2024a; Hollmann et al., 2023). Consequently, we adopt an LLM
as a generator and provide it with input tabular data to generate transformations. As demonstrated
in Figure 2, we propose a framework AutoG composed of the following modules.

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Generated table
schemas

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Prompt Instruction
Input table schemas

LLM as
generators

Heuristics

Flexible 
Designs

Oracle as
discriminator

Figure 2: An illustration of our proposed AutoG
framework.

Input module. The input of AutoG consists
of two parts. The first part is the input table
schema, which represents the metadata related
to the data. The second part is the prompt in-
struction. Following Wang et al. (2024b), we
use the table schema format introduced in Sec-
tion 2.1 to represent the input data. An ex-
ample can be found in Appendix A.2. Input
schema files can be easily generated from tabu-
lar storage (e.g., Pandas DataFrames), with col-
umn data types either user-defined or inferred
from sampled column values using LLMs (see
Appendix D.4). For prompt instruction, we in-
clude a general description of the graph con-
struction task, a one-sentence description for
the corresponding downstream task, and data
supplementary information, including dataset
statistics and sample column values.

LLM as generators. Based on input modules, we further leverage LLMs to generate a transformed
schema. A straightforward approach is to let the LLM directly generate structured outputs such as
YAML (Ben-Kiki et al., 2009)-formatted code. However, we find that open-ended generation usually
produces invalid graph structures. To address this, inspired by the idea of function calling (Schick
et al., 2024), we design basic augmentation actions based on 5 challenges of graph construction and
then guide the output through chain-of-augmentation prompts, which is elaborated in Section 4.2.

Heuristic-based graph constructors. We then employ heuristic algorithms to convert tables into
graphs once a candidate table schema is generated. For instance, if we opt for the Row2Node/Edge
heuristic algorithm, we transform tables with at least two columns as FK and no PK, along with the
remaining PK-FK relationships, into edges of a heterogeneous graph, while converting other tables
into nodes.
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Oracle as discriminators. After generating the graph, we design an oracle as a discriminator to gen-
erate feedback. LLMs generate candidate results based on the semantic information and statistics
of tables. This information can serve as valuable priors but cannot evaluate the validity and com-
patibility of the generated graphs with specific downstream tasks. As a result, we adopt either the
results of graph construction (whether successful or not) or execute a GML model training module
to get the (estimated) performance of the generated graph. Such feedback will further be appended
to the prompt instruction as history information. We detail the oracle design in Section 4.3.

4.2 GUIDED GENERATION WITH CHAIN-OF-AUGMENTATION

The most straightforward way to let LLMs generate schema is directly generating the YAML-
formatted structured outputs. However, such open-ended generation suffers from the following
pitfalls: 1. LLMs generate schema and augmentation code with grammar errors, which makes
the pipeline fail to proceed automatically. 2. LLMs tend to miss those node types and relations
that require multi-step augmentation. Taking the Diginetica dataset as an example, relations
may be found by first transforming set-attributed columns into proper augmented columns and then
identifying the non PK-FK relations from the augmented columns. Simply generating the schema in
a single-step manner fails to extract such relations.

To alleviate these problems, we propose guided generation with a chain of augmentation. First,
based on four challenges proposed in Section 3.1, we identify the following basic actions for aug-
mentation.

1. CONNECT TWO COLUMNS: Building a PK-FK relationship between two columns, and it will
first make sure they satisfy the PK constraints. This action is designed to tackle challenge 1.
Compared to joinable table discovery (JTD) (Dong et al., 2023; Hulsebos et al., 2019), this action
is simpler because it directly generates the potential column pairs based on LLM decisions. JTD
can also be used as a replacement in scenarios requiring higher accuracy with the cost of much
more running time.

2. GENERATE NEW TABLE: Inducing a new table from the original table via moving columns with-
out changing any values. This can be viewed as identifying multiple node or relation types from
the original table. This action is designed to tackle challenge 2.

3. REMOVE(ADD) PRIMARY KEY: Combined with proper heuristic methods, this action can
change the type of table (as a node or an edge type) in the generated graph. This action is
designed to tackle challenge 3.

We then provide two types of supplementary information in the prompt to help LLMs decide on
actions. Statistics of columns: A textual description of the task and statistics of each column are
appended to the prompt instruction, guiding the LLM’s decision-making. LLM will determine the
usefulness of actions like GENERATE NEW TABLE based on whether the augmented table seman-
tically contributes to the task. For instance, if the task is to identify citations between papers, the
“co-author” relationship is highly relevant, and the LLM will favor generating a table representing
such a relation. Conversely, the “co-year” relationship is less informative, making the LLM less
likely to generate it. Additionally, if a categorical column has only two distinct values, the induced
table will become a super node in the graph, which is not ideal for model training, thus the LLM
will tend not to generate such a table. Chain of thought demonstrations: For each of these actions,
we provide a demonstration to showcase its usage. Specifically, we find that chain-of-thought (CoT)
prompts (Wei et al., 2022) are critical to action generation. As a motivating example, LLMs tend
to merely find those columns with identical names to build non-PK-FK relationships without CoT.
Only after introducing CoT demonstrations can LLMs utilize the statistics of columns to find more
general non-PK-FK relationships with different column names. The complete prompt design can
be found in Appendix D.1. To determine the termination step, we add a null action to the action
space and set a hard threshold T to limit the maximum number of actions, typically set to 10 for our
proposed datasets.

4.3 DESIGNING ORACLE TO GENERATE FEEDBACK

After generating the schema candidates, we need an oracle to evaluate their effectiveness and thus
choose the best schema. Despite LLM’s capability to generate schemas based on prior knowledge,
they cannot quantitatively predict how different schemas affect downstream task performance. As
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a result, we still need a graph-centric model to generate the feedback. We introduce qualitative and
quantitative oracles, where the former checks the validity of schemas by running graph construction
heuristics, and the latter adopts the GML model to determine the quality of graph schema. We detail
the quantitative oracle exploration below.

Table 2: Evaluating different oracles by quality and
efficiency. For sampling, we set the ratio to 30%. For
early-stage validation performance, we set to 10% of total
epochs (should be set according to different datasets). Net-
InfoF can’t be applied to large-scale link prediction here
since compatibility matrix computation is not scalable. The
pre-processing time of the full graph is set as the basic unit;
all other time is rounded to an integer.

Discrepancy Training (node) Training (link) Process
Full 0 29x 300x 1x
Sampled 0.75 16x 95x 1x
Actively sampled 0.75 16x 95x 3x
Early metric 0.09 10x 52x 1x
NetInfoF Not applicable

The main challenge of designing a quanti-
tative oracle is to efficiently obtain the ap-
proximate performance of models. After us-
ing heuristics to construct graphs based on
the generated schemas, AutoG will automat-
ically execute the GML model fitting pro-
cess, and the validation performance will be
adopted as the final metric. We further ex-
plore the potential to speed up this process:
(1) Condensating the graph (Hashemi et al.,
2024), improving the evaluation efficiency
by training and testing on a smaller graph;
(2) Adopting an early-stage training metric,
such as the validation set performance. (3)
Simplified or Training-free model: Adopting a simplified model such as linear GNN (Yu et al., 2020;
Lee et al., 2024) designed for heterogeneous graphs. However, we find that existing linear GNNs for
heterogeneous graphs can only achieve embeddings for target nodes, which does not apply to general
link-level prediction (more discussion in Appendix D.3). We then compare these methods in terms
of their effectiveness and efficiency. Specifically, we randomly sample three groups of schemas
(in total 36, with distinguishable performance) from the proposed datasets. Then, we let different
oracles generate orders for each group and measure the normalized Kendall’s tau distance (Kumar
& Vassilvitskii, 2010) to ones generated by regular GML models. From the experimental results in
Table 2, we find that only the early-stage validation performance can estimate the downstream task
performance well, as adopted in AutoG.

4.4 CANDIDATE AND RESULT GENERATION

After describing the LLM’s action space and oracle, the last part of AutoG is the candidate gen-
eration strategy. Instead of using complex tree-based search strategies like MCTS (Zhang et al.,
2024a), we use a simpler strategy that generates one action at a time to create a new candidate. We
find that tree-based search cannot improve the generated candidate quality and many candidates are
duplicated. AutoG will backtrace to the last valid states when an invalid action is generated and
terminate after consecutive errors. To produce diverse schemas, we run the algorithm multiple times
and choose the candidates with the best oracle score as the final selection.

5 EXPERIMENTAL RESULTS

In this section, we systematically evaluate the AutoG framework on the proposed benchmarks from
the following perspectives:

• Quantitative Evaluation: Comparing variants of AutoG to other heuristic-based graph construc-
tion algorithms and expert-designed graph schemas.

• In-depth Analysis: Conducting ablation studies on different components of AutoG to understand
the mechanism and limitations of AutoG.

5.1 EXPERIMENTAL SETTINGS

To investigate the impact of different graph construction methods, we fix the GML model to check
the downstream task performance according to different graph schemas. Specifically, we select
two commonly used baselines on heterogeneous graphs, RGCN (Schlichtkrull et al., 2018) and
RGAT (Veličković et al., 2018). We present the RGCN results and show RGAT ones in Ap-
pendix E.1. On the constructed graph, we choose the optimal hyperparameters based on the model’s
performance on the validation set, with the selection range detailed in appendix D.2. We select
Claude’s Sonnet-3.5 as the backbone of LLMs and investigate the impact of different LLMs in Sec-
tion 5.3. We consider the following baseline methods:

7
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• XGBoost (Chen & Guestrin, 2016) and DeepFM (Guo et al., 2017): Directly applying XGBoost
and DeepFM, two widely adopted baselines for tabular data to the merged tables.

• TabGNN (Guo et al., 2021): Creating an edge type based on every categorical value and construct-
ing a multiplex graph based on each edge type.

• Row2Node and Row2Node/Edge (Wang et al., 2024b): Converting tables to graphs with heuris-
tics. Row2Node treats each table as a node type and each PK-FK relationship as an edge type.
Row2Node/Edge introduces more flexibility by treating tables with two FK columns as an edge
between the FK-induced pair.

• JTD with Row2Node/Edge (Dong et al., 2023; Gan et al., 2024): Joinable table discovery (JTD)
targets finding joinable columns across tables. It can be combined with heuristics to generate
graphs with more complex relations.

• Graph schema designed by human experts. We detail the expert schema design in Appendix E.3.

5.2 QUANTITATIVE EVALUATION

Table 3 shows the performance of different graph construction methods. Our evaluation follows the
following steps: (1) generate the heterogeneous graphs with the corresponding graph construction
methods; (2) then, train a GML model towards downstream tasks with the constructed graph. Mod-
els’ performance is used to determine the quality of graphs. The metrics for each task are shown in
the second column, and the ranking is calculated based on the average ranking of each task.

Table 3: Evaluation of different graph construction methods on proposed datasets. The best is in bold,
second best is underlined, and third best is double-underlined. ∗, ∗∗ indicate identical graph structures.

Dataset Task XGBOOST DeepFM TabGNN Original schema JTD schema AutoG Expert
N/A N/A TabGNN R2N R2NE R2N R2NE AutoG Expert

Datasets with a single downstream task

IEEE-CIS Fraud (AUC) 90.14 90.28 75.38 89.17∗ 89.17∗ 89.17∗ 89.17∗ 90.36 89.20

RetailRocket CVR(AUC) 50.35 49.33 82.84 50.45 49.90 50.82 48.99 82.53 84.70

Movielens Ratings(AUC) 53.62 50.93 55.34 57.34 56.96 54.55 64.71 66.54∗ 66.54∗

Outbrain Ratings(AUC) 50.05 51.09 62.12 49.33∗ 52.06∗∗ 49.35∗ 52.23∗∗ 61.32 62.71

AVS Repeat (AUC) 52.71 52.88 54.48 47.75 48.84 53.27∗ 53.27∗ 54.03 55.08

Datasets with multiple downstream tasks

MAG
Venue (Acc) 21.95 28.19 42.84 27.24 46.26 21.26 46.97 49.88 49.66

Citation (MRR) 3.29 45.06 70.65 65.29 65.29 72.53 81.50 80.84 80.86

Year (Acc) 28.09 28.42 52.77 54.09∗ 30.90 53.07∗∗ 53.07∗∗ 54.09∗ 35.35

Dignetica CTR (AUC) 53.50 50.57 50.00 68.44 65.92 50.05∗ 50.00∗ 72.26 75.07

Purchase (MRR) 3.16 5.02 5.01 5.64 7.70 11.37 15.47 34.92 36.91

Stackexchange Churn(AUC) 58.20 59.84 78.27 74.23 75.62 85.58 84.85 85.43 85.58

Upvote(AUC) 86.69 87.64 85.28 88.49 88.65 88.61 67.98 88.57 88.61

Ranking 5.8 5.2 4.3 4.5 4.1 2.0 1.8

From the experimental results, we make the following observations

• AutoG generates high-quality graphs: The AutoG method we propose can surpass other auto-
matic graph construction methods and reach close to the level of human experts.

• AutoG’s superiority against heuristic-based methods: Heuristic-based automatic discovery
methods can only be applied to some special cases. We particularly note that AutoG has a unique
advantage in addressing challenge 2. Unlike challenge 1, challenge 2 is originally solved entirely
based on expert experience. Take IEEE-CIS as an example, which has many categorical columns.
If all categorical columns are converted into relations, it will lead to poor performance (TabGNN).
In contrast, AutoG, based on LLMs, can analyze the semantic relationships between columns,
for instance, grouping all card-related meta information into one table (see Appendix E.3), thus
achieving good results.

• The same graph may not be effective for different downstream tasks. On the MAG dataset,
we observe that the expert-designed graph is not optimal for the year prediction task and is much
worse than the original schema. This demonstrates the importance of adaptively generating graphs
based on the task and illustrates the importance of automatic graph construction. Taking a deeper
look at the generated graph statistics, we find that when predicting the venue of “Paper”, the ad-
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justed homophily (Lim et al., 2021) of labels based on metapath “Paper-Author-Paper” is 0.156.
While for year prediction, the adjusted homophily is only 0.02. This can be viewed as an exten-
sion of the heterophily problem (Lim et al., 2021) towards the RDB data, and an effective graph
construction algorithm should address this problem by eliminating harmful relations. AutoG still
relies on a graph oracle to deal with this problem. As shown in Appendix E.1, the observation
based on RGAT is consistent.

5.3 IN-DEPTH ANALYSIS

To better understand the effectiveness of AutoG, we further study the effect of its components. We
conduct three experiments: (1) Comparing AutoG variants with open-ended generation and oracle-
free designs. (2) Studying the effect of different LLM backbones on the final results. (3) Studying
the necessity of each prompt component. We also study AutoG’s performance on synthetic data with
anonymous columns.

Table 4: Ablation studies for closed-ended gen-
eration and oracles

Dataset Task Valid Performance
AutoG-S AutoG-A AutoG AutoG-A AutoG

MAG Venue ✗ ✓ ✓ 49.88 49.88

Year ✗ ✓ ✓ 35.40 54.09

IEEE-CIS Fraud ✗ ✓ ✓ 90.15 90.36

RetailRockets CVR ✗ ✓ ✓ 82.53 82.53

Table 5: Effect of LLMs on generation validity and
performance. *CoT prompts doesn’t work for Mistral.

LLM MAG (venue) Movielens (ratings)
#actions Valid Best #actions Valid Best

Sonnet3.5 4 100% ✓ 7 57% ✓
Sonnet3 8 37.5% ✓ 4 75% ✗
Mistral(*) 7 57% ✓ 2 22% ✗

5.3.1 AUTOG VARIANTS STUDIES

We consider two variants of AutoG: AutoG-S and AutoG-A, where AutoG-S conducts open-ended
generation with no pre-defined actions and AutoG-A removes oracles from AutoG. As shown in Ta-
ble 4, we draw the following conclusions: 1. Close-ended generation is necessary for valid schema
generation. 2. Comparing AutoG-A to AutoG, we find that in many cases, oracle is unneces-
sary, meaning LLMs can generate good candidates merely based on prior knowledge. However,
AutoG-A also performs poorly in some specific tasks with potentially noisy relations, as discussed
in Section 5.2. A viable next step for our method would be determining whether an oracle is needed
before running AutoG, which could improve overall efficiency.

5.3.2 INFLUENCE OF LLMS

We then evaluate the influence of different LLMs on the final generated results. Specifically, we
adopt LLMs with adequate context length that can support our prompts and thus ignore models like
LLaMA 3. As a result, we mainly compare three typical models: Claude Sonnet 3.5, Mistral Large,
and Claude Sonnet 3. As shown in Table 5, we find that 1. more powerful LLMs generate better
schemas with fewer invalid actions, which may be related to the instruction following capability. 2.
We observe that CoT demonstrations work poorly for Mistral Large, which may be due to different
LLMs’ distinct pre-training strategies. Generally, we find that for LLM models with capabilities
surpassing Sonnet3, AutoG can generate promising results and surpass heuristic-based counterparts.

5.3.3 WORKING MECHANISM OF AUTOG

“‘
Table 6: Ablation studies of different AutoG prompt
components. “Orig” stands for the original schema with
original names. “Anon” stands for the anonymous column
names. “3/3” means 3 of the 3 expected actions have all
been generated.

Challenge 1 Challenge 2 Challenge 3
Orig Anon Orig Anon Orig Anon

Default 3/3 1/3 2/3 1/3 2/2 0/2
No COT 1/3 0/3 1/3 0/3 0/2 0/2
No stats 1/3 0/3 1/3 0/3 0/2 1/2
No demon 0/3 0/3 0/3 0/3 0/2 0/2

“‘

Despite the promising performance of Au-
toG, LLM as generators is composed of
complicated prompt designs, which makes
it challenging to understand the role of each
component and how they may be applied to
more general types of tabular data (for ex-
ample, ones with anonymous columns). We
thus further study the influence of different
prompt components. In our prompt design,
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we have considered the following compo-
nents: 1. the semantic information of the column (column name); 2. the statistical meta-information
of the column; 3. the examples given in the prompt; 4. the chain of thought demonstrations for
each action. Specifically, we built a synthetic dataset based on MAG to include the challenges 1− 4
proposed in Section 3.1 and ensure the test data is not included in the pre-training set of LLMs.
Compared to quantitative evaluation, here we directly study whether LLMs can generate the re-
quired actions for better graphs. As shown in Table 6, we observe the following conclusions: 1.
Demonstration is necessary for AutoG to generate valid actions. 2. Both COT and statistics are
critical to the graph schema generation. Specifically, we find that LLMs will only find trivial aug-
mentations (for example, non-PK-FK relations with identical column names), which means COT is
the key for LLMs to conduct deep reasoning and to well utilize the statistics. 3. Semantic infor-
mation of the column names is vital for the performance of AutoG, which is a limitation of AutoG.
Column name expansion (Zhang et al., 2023a) may be adopted to enhance the effectiveness of Au-
toG on anonymous data.

6 RELATED WORKS

Recently, GML has been widely adopted to capture the structural relationship across tabular data (Li
et al., 2024). One of the key challenges lies in identifying graph structures from tabular data that can
benefit the downstream tasks. Early endeavors in database management mine relationships across
databases using rule-based methods Yao & Hamilton (2008); Liu et al. (2012); Abedjan et al. (2015).
One limitation of these methods lies in their scalability towards large-scale tables. The rise of ma-
chine learning has led to two ML-based approaches: heuristic-based and learning-based methods.
Heuristic-based methods transform tabular data into graphs based on certain rules. For instance,
Guo et al. (2021) generates edge relationships based on columns with categorical values in the table,
resulting in a multiplex graph through multiple columns. Wu et al. (2021) and You et al. (2020)
create a bipartite graph based on each row representing a sample and each column representing a
feature, where You et al. (2020) further supports numerical values by storing them as edge attributes.
Du et al. (2022) generates a hypergraph by treating each row as a hyperedge. A major challenge for
these heuristic methods is the inability to handle multi-table scenarios effectively. Row2Node (Fey
et al., 2024) and Row2Node/Edge (Wang et al., 2024b) are proposed for multiple tables with ex-
plicit key relationships. Bai et al. (2021) designs and end-to-end model for RDB prediction tasks.
These methods are still limited to tables satisfying RDB specifications. Learning-based methods
aim to learn edge relationships automatically based on the correlation between features. Chen et al.
(2020) and Franceschi et al. (2019) leverage graph structure learning to learn the induced edge re-
lationships between each sample. However, learning-based methods suffer from efficiency issues,
and their effectiveness is challenged by Errica (2024) when adequate supervision is provided. Dong
et al. (2023) leverages a language model embedding to detect similar columns in the table and thus
extract those related columns. To study the effectiveness of different GML methods for tabular data,
multiple benchmarks have been developed (Wang et al., 2024b; Fey et al., 2024; Bazhenov et al.,
2024). However, their scopes are limited to either model evaluation (Wang et al., 2024b; Fey et al.,
2024) or feature evaluation (Bazhenov et al., 2024), which leaves graph construction evaluation an
underexplored area.

7 CONCLUSION

In this paper, we formalize the graph construction problem with a benchmark and present an LLM-
based automatic construction solution. Extensive experimental results show that graph construction
is an important step that may significantly influence downstream task performance. Our proposed
AutoG can effectively tackle this important task when columns present semantic information. How-
ever, our approach still has two limitations: (1) In terms of the dataset, the datasets we use already
contain some relational information and can be converted into a graph structure through heuris-
tic methods (although this graph structure may not be effective). Therefore, we are focusing on
relatively simple scenarios, while the next challenge is the more complex conversion from raw un-
structured text files. (2) Regarding the method, we observe that LLMs rely heavily on semantic
information to make effective decisions, which is a limitation in real-world scenarios. Extending
AutoG with naming expansion module (Zhang et al., 2023a) can be a potential future direction.
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8 REPRODUCIBILITY STATEMENTS

To enhance the reproducibility of our methods, we include the prompt instruction in Appendix D.1.
GNN training module is built upon the framework of Wang et al. (2024b) (https://github.
com/awslabs/multi-table-benchmark). Data pre-processing details are demonstrated in
Appendix E.3.
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Kraska, Çagatay Demiralp, and César Hidalgo. Sherlock: A deep learning approach to seman-
tic data type detection. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1500–1508, 2019.

Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka, Tengfei Ma, Xiang Song, and
Wen-mei Hwu. Igb: Addressing the gaps in labeling, features, heterogeneity, and size of public
graph datasets for deep learning research. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 4284–4295, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Proceedings of
the 19th international conference on World wide web, pp. 571–580, 2010.

Meng-Chieh Lee, Haiyang Yu, Jian Zhang, Vassilis N. Ioannidis, Xiang song, Soji Adeshina,
Da Zheng, and Christos Faloutsos. Netinfof framework: Measuring and exploiting network us-
able information. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=KY8ZNcljVU.

Cheng-Te Li, Yu-Che Tsai, Chih-Yao Chen, and Jay Chiehen Liao. Graph neural networks for
tabular data learning: A survey with taxonomy and directions. arXiv preprint arXiv:2401.02143,
2024.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from data—a
review. IEEE Transactions on Knowledge and Data Engineering, 24(2):251–264, 2012. doi:
10.1109/TKDE.2010.197.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In International
Conference on Machine Learning, 2024. URL https://api.semanticscholar.org/
CorpusID:267412744.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
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A MORE PRELIMINARIES

A.1 DATA TYPES

In this paper, we consider the following data types {category, numeric, text,
primary key(PK), foreign key (FK), set, timestamp}.

• category: A data type representing categorical values. For example, a column with three
possible values (“Book”, “Pen”, “Paper”) is of the category data type.

• numeric: A data type representing numerical values. This can include integers, floating-point
numbers, or decimals. For instance, a column storing ages or prices would typically be of the
numeric data type.

• text: A data type representing textual data. This can include strings of characters, sentences,
or even paragraphs. A column storing product descriptions or customer reviews would be of the
text data type.

• primary key (PK): A special type of column or a combination of columns that uniquely iden-
tifies each row in a table. It ensures data integrity and is often used to establish relationships
between tables.

• foreign key (FK): A column or a combination of columns in one table that refers to the
primary key in another table. It creates a link between the two tables, enabling data rela-
tionships and maintaining consistency.

• set: A data type representing a collection of values. It is often used to store multiple choices or
options associated with a particular record.

• timestamp: A data type representing time. It’s used to define the time-based neighbor sampler
and prevents data leakage.

A.2 EXAMPLES OF DATA FORMATS

We follow Wang et al. (2024b) to represent the table schema as a YAML-formatted configuration file.
An example is shown below. An example original schema plot is shown in Figure 3. The original
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schema only presents limited relations, which may result in an ineffective graph for downstream
tasks. Figure 4 shows an example of augmented relations schemas. With augmented tables including
Company, Brand, Category, Customer, and Chain, the resulting graphs will benefit downstream
tasks.

1 tables:
2 - name: History
3 source: data/history.pqt
4 format: parquet
5 columns:
6 - name: chain
7 dtype: category
8 - name: market
9 dtype: category

10 - name: offerdate
11 dtype: datetime
12 - name: id
13 dtype: primary_key
14 - name: repeater
15 dtype: category
16 - name: offer
17 dtype: foreign_key
18 link_to: Offer.offer
19 time_column: offerdate
20 ......

History

- chain : VARCHAR

- market : VARCHAR

- offerdate : DATETIME

- id : CHAR(32)

- repeater : VARCHAR

- offer : CHAR(32)

Offer

- brand : VARCHAR

- category : VARCHAR

- company : VARCHAR

- offervalue : ARRAY

- quantity : ARRAY

- offer : CHAR(32)

+ offer
+ offer

Transaction

- brand : VARCHAR

- category : VARCHAR

- chain : VARCHAR

- company : VARCHAR

- date : DATETIME

- dept : VARCHAR

- productmeasure : VARCHAR

- productsize : ARRAY

- purchaseamount : ARRAY

- purchasequantity : ARRAY

- id : CHAR(32)

+ id+ id

Figure 3: The original schema for the dataset AVS

B DATASETS

Movielens is a collection of movie ratings and tag applications from MovieLens users. This
dataset is widely used for collaborative filtering and recommender system development. We adopt
the tabular version from the original website. Expert schema is designed by ourselves.

MAG is a heterogeneous graph dataset containing information about authors, papers, institutions,
and fields of study. We adopt the tabular version from Wang et al. (2024b) and generate the original
version by removing relations added by experts. Expert schemas are adapted from Wang et al.
(2024b).

AVS (Acquire Valued Shoppers) is a Kaggle dataset predicting whether a user will repurchase a
product based on history sessions. We adopt the original version from the website. Expert schemas
are adapted from Wang et al. (2024b).

IEEE-CIS is a Kaggle dataset predicting whether a transaction is fraudulent. We adopt the original
version from the website. Expert schema is designed by ourselves.
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History

- chain : CHAR(32)

- market : VARCHAR

- offerdate : DATETIME

- id : CHAR(32)

- offer : CHAR(32)

Offer

- brand : CHAR(32)

- category : CHAR(32)

- company : CHAR(32)

- offervalue : ARRAY

- quantity : ARRAY

- offer : CHAR(32)
+ offer

+ offer

Chain

- id : CHAR(32)+ id+ chain

Customer

- id : CHAR(32)

+ id

+ id

Brand

- id : CHAR(32)

+ id

+ brand

Category

- id : CHAR(32)

+ id

+ category

Company

- id : CHAR(32)

+ id
+ company

Transaction

- brand : CHAR(32)

- category : CHAR(32)

- chain : CHAR(32)

- company : CHAR(32)

- date : DATETIME

- dept : VARCHAR

- productmeasure : VARCHAR

- productsize : ARRAY

- purchaseamount : ARRAY

- purchasequantity : ARRAY

- id : CHAR(32)

+ id

+ chain

+ id

+ id

+ id

+ brand

+ id

+ category

+ id

+ company

Figure 4: The new schema for dataset AVS with augmented relations

Outbrain is a Kaggle dataset predicting which pieces of content its global base of users are likely
to click on. We adopt the original version from the website, with expert schemas are adapted from
Wang et al. (2024b).

Diginetica is a Codalab dataset for recommendation system. We adopt the original version from
the website and expert schema from Wang et al. (2024b).

Retailrocket is a Kaggle dataset for recommender system. We adopt the original version from
the website and expert schema from Wang et al. (2024b).

Stackexchange is a database from Stackexchange platform. We generate the original version by
appending augmentations and expert schema from Wang et al. (2024b).

C MORE RELATED WORKS

LLMs for automated data science. Our work is also related to applying LLMs to automated data
science. The core principle of these works lies in adopting the code generation capabilities of LLMs
to automatically generate code for data curation (Chen et al., 2023), data augmentation (Hollmann
et al., 2023), or working as a general interface for diverse data manipulation (Zhang et al., 2023b;
Hong et al., 2024; Hassan et al., 2023). Zhang et al. (2024b) proposes a benchmark to evaluate
the capabilities of LLMs in various data science scenarios. Compared to the methods adopted in
these works, AutoG adopts close-ended generation via function calling to ensure the correctness of
generation.

Learning on heterogeneous graphs Heterogeneous graphs featuring multiple node and edge types
naturally abstract relational database data. Learning representations within these graphs often rely
on meta-paths Yang et al. (2020), which transform heterogeneous relations into homogeneous sets.
Early methods focused on similarity measures derived from meta-paths Sun et al. (2011). With
the advent of Graph Neural Networks (GNNs), approaches like HAN (Wang et al., 2019) ex-
tract multiple homogeneous graphs based on meta-paths for individual encoding. MAGNN (Fu
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et al., 2020) further accounts for the roles of intermediate nodes in meta-paths. Alternatively,
RGCN (Schlichtkrull et al., 2018) and G2S (Beck et al., 2018) emphasize relational graphs, where
edges carry rich semantic information.

D MORE DETAILS ON METHODS

D.1 PROMPT DESIGN

Our prompt design is demonstrated as below. The first part involves general task instruction.

1 Imagine you are an expert graph data scientist, and now you are expected
to construct graph schema based on the original inputs. You will be
given an original schema represented in the dictionary format:

2 <data>
3 1. dataset_name: name of the dataset
4 2. tables: meta data for list of tables, each one will present

following attributes
5 1. name: table name
6 2. source: source of the data, can either be a numpy .npz file or

a parquet file
7 3. columns: list of columns, each column will have following

attributes
8 1. name: column name
9 2. dtype: column type, can be either text, categorical, float

, primary_key, foreign_key, or multi_category.primary_key and
foreign_key are two special types of categorical columns, which
presents a structural relationship with other tables. Multi_category
means this column is of list type, and each row contains a list of
categorical values. dtype ’split’ is used to generate the training/
validation/test split. Don’t change this column. After a column is
set as primary_key or foreign_key, it should not be changed to other
types. However, you may remove the primary_key or add a primary key
from a table.

10 3. link_to (optional): if this column is a foreign key, point
to which primary key from which table

11 3. statistics of the table: statistics of the column value of tables.
These statistics can be used to help you determine the

characteristics of the columns. For example, if one categorical
column only contains one unique value, then creating a node type
based on this column can result in a super node, which is not ideal
for graph construction. You should also determine whether two columns
represent the same thing based on these statistics.

12 4. Dummy table is a special type of table. It’s not explicitly
defined with a table slot. It’s defined in other tables, such as {{"
name": "Country", "dtype": "foreign_key", "link_to": "Country.
CountryID"}}. In this case, "Country" is a dummy table, which is not
explicitly defined in the tables slot.

13 </data>
14 Here are the documents of the actions:
15
16 {actions}
17
18 What you need to do?
19 For each round, you need to consider the following things:
20 1. If there are any categorical columns that represent the same entities

but not yet related, for example, "User" and "Purchaser", the name
doesn’t need to be the same. In these cases, you need to use "
connect_two_columns" to connect them. You should carefully look at
the statistics of two columns to make decisions.

21 2. If there are any multi_category columns and you think that it’s better
to represent them with some structures, you need to expand them with
"explode_multi_category_column"

22 3. If you think in one single table, columns represent different entities
, then you may separate them using "generate_non_dummy_table". If you
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think there are some relations, you may utilize them using "
generate_or_connect_dummy_table". You should consider whether
conducting this action based on whether the new relation will help
the corresponding downstream tasks.

23 4. If you want to convert a table representing node into edge, you may
utilize "remove_primary_key". When representing as node, the
categorical features will be used as feature, which may be suboptimal
. When representing as edge, they can be used as edges. For example,
when a table contains two foreign keys and one primary key, then it’s
possible that this primary key should be removed.

24 5. If you think there’s no more action need to be taken, just output <
selection> None </selection> and the process will terminate.

25
26 You also need to consider how to construct the graph, with two options to

choose from:
27 * r2n: Row2Node, each table will be converted to a node in the

constructed heterogeneous graph. You should adopt
28 this method if you think that every table should be converted to a node.
29 * r2ne: Row2Node with Edge, each table will be converted to a node or an

edge in the constructed heterogeneous graph.
30 Specifically, for a table with two foreign key columns and no primary key

column, it will be converted to an edge.
31 You should adopt this method if you think that some tables should be

converted to edges.
32
33 With these two heurisitcs, primary_key and foreign_key plays a crucial

role in constructing the graph structures. Tables with a primary_key
will be converted to a node in the graph. If you think one table
shouldn’t modeled as a node, then you should remove the primary key
using the actions.

34
35 Now, you need to select one action from the above list to perform, and

output your selection in the following format, first state your
thought similar to the examples shown. Then,

36
37 <selection>
38 {{Your selection here}}
39 </selection>
40
41 <parameters>
42 {{Parameters for the selected action}}
43 </parameters>
44 <construction>
45 {{Your selection here}}
46 </construction>
47
48
49 {example_prompt}
50 {example}
51
52 History Actions:
53 {history_actions}
54
55 <input>
56 <dataset_stats>
57 {stats}
58 </dataset_stats>
59 <task>
60 {task}
61 </task>
62 <schema>
63 {input_schema}
64 </schema>
65 </input>
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The dataset statistics are as follows
1 Table: Paper
2 {
3 "Column": "PaperID",
4 "data type": "primary_key"
5 }
6 {
7 "Column": "Title",
8 "data type": "text",
9 "Number of unique values": 10000,

10 "Number of nan values": 0,
11 "Number of total values": 10000,
12 "Mode values": "Transformers",
13 "5 sampled values": [
14 "Transformers",
15 "Graph Neural Networks",
16 "Reinforcement Learning",
17 "Meta Learning",
18 "Computer Vision"
19 ]
20 }
21 {
22 "Column": "Authors",
23 "data type": "multi_category",
24 "Number of unique values": 987,
25 "Number of nan values": 0,
26 "Number of total values": 74320,
27 "Mode values": "Yann LeCun",
28 "5 sampled values": [
29 "Yann LeCun",
30 "Geoffrey Hinton",
31 "Yoshua Bengio",
32 "Fei-Fei Li",
33 "Jitendra Malik"
34 ]
35 }

Chain-of-thought demonstrations are as follows
1 An example will be as follows:
2 <input>
3 <dataset_stats>
4 Table: View
5 Number of primary key: 0\nNumber of foreign key: 1\n
6 {
7 "Column": "User",
8 "data type": "category",
9 "Number of unique values": 8932,

10 "Number of nan values": 0,
11 "Number of total values": 97422,
12 "Mode values": 414,
13 "5 sampled values": [
14 329,
15 414,
16 378,
17 421,
18 521
19 ]
20 }
21 {
22 "Column": "ItemID",
23 "data type": "foreign_key"
24 }
25 Table: Purchase
26 Number of primary key: 0\nNumber of foreign key: 1\n
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27 {
28 "Column": "UserID",
29 "data type": "category",
30 "Number of unique values": 10245,
31 "Number of nan values": 0,
32 "Number of total values": 137422,
33 "Mode values": 414,
34 "5 sampled values": [
35 329,
36 414,
37 378,
38 421,
39 521
40 ]
41 }
42 {
43 "Column": "ItemID",
44 "data type": "foreign_key"
45 }
46 Table: Product
47 Number of primary key: 1\nNumber of foreign key: 0\n
48 {
49 "Column": "ItemID",
50 "data type": "primary_key"
51 }
52 {
53 "Column": "Price",
54 "data type": "float",
55 }
56 {
57 "Column": "Category",
58 "data type": "category",
59 "Number of unique values": 10,
60 "Number of nan values": 0,
61 "Number of total values": 128564,
62 "Mode values": 3,
63 "5 sampled values": [
64 3,
65 4,
66 1,
67 6,
68 9
69 ]
70
71 }
72
73 </dataset_stats>
74 <schema>
75 {
76 "dataset_name": "Sales",
77 "tables": [
78 {
79 "name": "View",
80 "source": "data/view.npz",
81 "columns": [
82 {"name": "User", "dtype": "category"},
83 {"name": "ItemID", "dtype": "foreign_key", "link_to":

"Product.ItemID"}
84 ]
85 },
86 {
87 "name": "Purchase",
88 "source": "data/purchase.npz",
89 "columns": [
90 {"name": "UserID", "dtype": "category"},
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91 {"name": "ItemID", "dtype": "foreign_key", "link_to":
"Product.ItemID"}

92 ]
93 },
94 {
95 "name": "Product",
96 "source": "data/product.parquet",
97 "columns": [
98 {"name": "ItemID", "dtype": "primary_key"},
99 {"name": "Price", "dtype": "float"},

100 {"name": "Category", "dtype": "category"}
101 ]
102 }
103 ]
104 }
105 </schema>
106 <tasks>
107 Now I want to train a model which can predict the category of a

product based on the information in the product.
108 </tasks>
109 </input>
110
111
112
113 <output>
114 Let’s think of this problem step by step. The target is to predict

the category of a product. There are three tables "View", "Purchase"
and "Product". "View" has columns "User", "ItemID", "Purchase" has
columns "UserID" and "ItemID", "Product" has columns "ItemID", "Price
", and "Category".

115
116 I will first check whether there’s need to conduct

explode_multi_category_column, this action should be conducted when
there’s multi_category column and relations can be induced from this
column. However, there’s no multi_category column so we won’t do this
action.

117
118 I will then check whether there’s need to conduct remove_primary_key,

this action should be conducted when there’s a table representing an
edge has a primary key. From the statistics, tables have 1,1,0

foreign keys, no tables represent edges, so no need to execute this
action.

119
120 I will then check whether there’s need to conduct connect_two_columns

, this action should be conducted when there are two non PK/FK
columns representing the same entities. "View" table has a column "
User", "Purchase" has a similar column "UserID". If we have a closer
look, User’s sampled value is [329,414,378,421,521

121 ], while UserID’s sampled value is [329,414,378,421,521], both of them
should represent the ID of user, as a result, we should connect these
two columns.

122 <selection>
123 connect_two_columns
124 </selection>
125
126 <parameters>
127 "View", "UserID", "Purchase", "UserID", "User", "UserID"
128 </parameters>
129 </output>

D.2 HYPER-PARAMETER SELECTION

We follow the hyper-parameter setting of Wang et al. (2024b). However, Wang et al. (2024b) adopts
a non-discrete selection range for most training-related parameters. As a result, for parameters like
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batch size. epochs, and fanouts, we adopt them from Wang et al. (2024b). For parameters like lr,
hidden size, dropout, we select them from the following range, where lr comes from {0.001, 0.005,
0.01}, hidden size comes from {64, 128, 256}, and dropout comes from {0.1, 0.5}.

D.3 MODEL ORACLES

Implementing an efficient oracle is an important part of ensuring AutoG’s efficiency. As far as we
know, Lee et al. (2024) is currently the only approach to estimate a model’s performance without
actually training the model. The core idea is to generate an embedding combined with structural
features and then calculate the entropy between concatenated features with labels (or pseudo labels
like clustering centers). When applied to link prediction tasks, it adopts the compatibility matrix
to deal with linear GNN’s ignorance of negative links. However, Lee et al. (2024) can only be
applied to a homogeneous graph. We try extending it to a heterogeneous graph similar to Wang
et al. (2019). However, it can only generate the embeddings for the center node type of the induced
multiplex graph, which can’t be applied to tasks like Movielens, Diginetica, and StackExchange.
Similar problems also apply to R-SGC (Yu et al., 2020).

We also explore the potential of the early-fusion model like DFS in Wang et al. (2024b). After
generating the relation-aware features, we may use an MLP as the backbone model. However,
we find that besides the long preprocessing time (on MAG, it takes nearly one hour), the training
efficiency of DFS+MLP is even worse than that of a normal R-SGC because of the size of the
induced features. As a result, we still adopt a regular GML model as the oracle. More complicated
oracle design is a future work of this paper.

D.4 INFERRING THE DATA TYPE OF INPUT SCHEMAS

Inferring the data type of each column is a necessary first step to convert the original Kaggle-like
data into the input data format we use. This paper assumes the original input data comprises some
pandas data frames. Specifically, we find that it’s trivial for LLMs to infer the data types based on
meta information like this. As a result, AutoG can be extended to cases where no metadata file is
given.

1 {
2 "Table": "Paper",
3 "Column": "paperID",
4 "Number of unique values": 736389,
5 "Number of total values": 736389,
6 "5 sampled values": [
7 0,
8 1,
9 2,

10 3,
11 4
12 ]
13 }
14 {
15 "Table": "Paper",
16 "Column": "label",
17 "Number of unique values": 349,
18 "Number of total values": 736389,
19 "5 sampled values": [
20 246,
21 131,
22 189,
23 131,
24 95
25 ]
26 }
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E MORE EXPERIMENTAL RESULTS

E.1 RESULTS OF R-GAT

Table 7: Quatitative comparison of different graph construction methods. R-GAT is adopted as the
backbone model.

Dataset Task XGBOOST DeepFM TabGNN Original schema JTD schema AutoG Expert
N/A N/A TabGNN R2N R2NE R2N R2NE AutoG Expert

Datasets with single downstream task

IEEE-CIS Fraud (AUC) 90.14 90.28 74.65 87.23 87.23 87.23 87.23 90.25 89.34

RetailRocket CVR(AUC) 50.35 49.33 81.92 50.13 49.45 50.63 48.94 82.45 82.84

Movielens Ratings(AUC) 53.62 50.93 54.78 56.42 55.94 54.06 62.98 64.47 64.47

Outbrain Ratings(AUC) 50.05 51.09 62.44 49.49 52.54 49.52 52.73 61.57 63.08

AVS Repeat (AUC) 52.71 52.88 55.18 47.88 48.08 54.02 54.02 54.35 55.27

Datasets with multiple downstream tasks

MAG
Venue (Acc) 21.95 28.19 44.39 26.54 47.98 22.34 47.65 51.08 51.19

Citation (MRR) 3.29 45.06 70.92 68.23 68.23 71.45 80.65 80.09 79.45

Year (Acc) 28.09 28.42 54.27 54.32 31.25 54.18 54.18 56.12 35.23

Dignetica CTR (AUC) 53.50 50.57 50.15 68.65 66.82 49.95 50.00 71.92 73.60

Purchase (MRR) 3.16 5.02 4.98 5.60 7.65 11.37 15.47 36.08 37.42

Stackexchange Churn(AUC) 58.20 59.84 78.04 74.27 75.89 85.43 84.22 86.08 86.45

Upvote(AUC) 86.69 87.64 85.96 89.02 88.34 88.53 68.32 88.43 88.53

E.2 EXAMPLES OF ERRORS FOR SCHEMA GENERATION AND CODE GENERATION

In this section, we demonstrate some cases in AutoG-S, the variant of AutoG that adopts open-
ended generation to produce invalid schemas. For example, when we require LLMs to generate the
augmentation code for Movielens, it makes the following mistakes.

1 tags_df = tags_df.drop(columns=["tag"]) ## This column has already been
deleted

2 tags_df = tags_df.merge(tag_df[["tagID", "tag"]], how="left", on="tag")
3 tags_df.to_parquet("datasets/movielens/data/tags.pqt")

It will repeatedly remove the column. For more complicated cases like Diginetica and StackEx-
change, the open-ended generation results in even more errors. These kind of errors can not be
easily fixed by prompt engineering and self-correction. As a result, we decide to use close-ended
generation in a function-calling manner.

E.3 DESIGN OF SCHEMAS

This section details the original and expert schema design for each dataset we propose.

E.3.1 IEEE-CIS

The original schema is adopted from the original Kaggle website. For expert schema,
we find that the schema from https://aws.amazon.com/blogs/database/
build-a-real-time-fraud-detection-solution-using-amazon-neptune-ml/
underperforms. We filter the relations and generate the following expert schemas.

E.3.2 RETAILROCKET

The original schema is adapted from Kaggle’s version. We preprocess the “event” table into three
separate tables based on categorical values. The expert one is taken from Wang et al. (2024b).
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Transaction

- ProductCode : VARCHAR

- card_meta_info_1 : VARCHAR

- card_meta_info_2 : VARCHAR

- card_meta_info_3 : VARCHAR

- card_meta_info_4 : VARCHAR

- card_meta_info_5 : VARCHAR

- card_meta_info_6 : VARCHAR

- purchaser billing region : VARCHAR

- purchaser billing country : VARCHAR

- purchaser email domain : VARCHAR

- recipient email domain : VARCHAR

- match_1 : VARCHAR

- match_2 : VARCHAR

- match_3 : VARCHAR

- match_4 : VARCHAR

- match_5 : VARCHAR

- match_6 : VARCHAR

- match_7 : VARCHAR

- match_8 : VARCHAR

- match_9 : VARCHAR

- TransactionID : CHAR(32)

- isFraud : VARCHAR

- TransactionAmt : ARRAY

- distance : ARRAY

- payment_card_related_counting : ARRAY

- timedelta : ARRAY

- vesta_features : ARRAY

Identity

- identity_12_info : VARCHAR

- identity_13_info : VARCHAR

- identity_14_info : VARCHAR

- identity_15_info : VARCHAR

- identity_16_info : VARCHAR

- identity_17_info : VARCHAR

- identity_18_info : VARCHAR

- identity_19_info : VARCHAR

- identity_20_info : VARCHAR

- identity_21_info : VARCHAR

- identity_22_info : VARCHAR

- identity_23_info : VARCHAR

- identity_24_info : VARCHAR

- identity_25_info : VARCHAR

- identity_26_info : VARCHAR

- identity_27_info : VARCHAR

- identity_28_info : VARCHAR

- identity_29_info : VARCHAR

- identity_30_info : VARCHAR

- identity_31_info : VARCHAR

- identity_32_info : VARCHAR

- identity_33_info : VARCHAR

- identity_34_info : VARCHAR

- identity_35_info : VARCHAR

- identity_36_info : VARCHAR

- identity_37_info : VARCHAR

- identity_38_info : VARCHAR

- DeviceType : VARCHAR

- DeviceInfo : VARCHAR

- TransactionID : CHAR(32)

- id_related_features : ARRAY

+ TransactionID
+ TransactionID

Figure 5: Schema for the original IEEE-CIS
dataset

Transaction

- ProductCode : VARCHAR

- card_meta_info_1 : VARCHAR

- card_meta_info_2 : VARCHAR

- card_meta_info_3 : VARCHAR

- card_meta_info_4 : VARCHAR

- card_meta_info_5 : VARCHAR

- card_meta_info_6 : VARCHAR

- purchaser billing region : CHAR(32)

- purchaser billing country : CHAR(32)

- purchaser email domain : VARCHAR

- recipient email domain : VARCHAR

- match_1 : VARCHAR

- match_2 : VARCHAR

- match_3 : VARCHAR

- match_4 : VARCHAR

- match_5 : VARCHAR

- match_6 : VARCHAR

- match_7 : VARCHAR

- match_8 : VARCHAR

- match_9 : VARCHAR

- TransactionID : CHAR(32)

- isFraud : VARCHAR

- TransactionAmt : ARRAY

- distance : ARRAY

- payment_card_related_counting : ARRAY

- timedelta : ARRAY

- vesta_features : ARRAY

Region

- RegionID : CHAR(32)+ RegionID

+ purchaser billing region

Country

- CountryID : CHAR(32)

+ CountryID

+ purchaser billing country

Identity

- identity_12_info : VARCHAR

- identity_13_info : VARCHAR

- identity_14_info : VARCHAR

- identity_15_info : VARCHAR

- identity_16_info : VARCHAR

- identity_17_info : VARCHAR

- identity_18_info : VARCHAR

- identity_19_info : VARCHAR

- identity_20_info : VARCHAR

- identity_21_info : VARCHAR

- identity_22_info : VARCHAR

- identity_23_info : VARCHAR

- identity_24_info : VARCHAR

- identity_25_info : VARCHAR

- identity_26_info : VARCHAR

- identity_27_info : VARCHAR

- identity_28_info : VARCHAR

- identity_29_info : VARCHAR

- identity_30_info : VARCHAR

- identity_31_info : VARCHAR

- identity_32_info : VARCHAR

- identity_33_info : VARCHAR

- identity_34_info : VARCHAR

- identity_35_info : VARCHAR

- identity_36_info : VARCHAR

- identity_37_info : VARCHAR

- identity_38_info : VARCHAR

- DeviceType : VARCHAR

- DeviceInfo : VARCHAR

- TransactionID : CHAR(32)

- id_related_features : ARRAY

+ TransactionID
+ TransactionID

Figure 6: Schema for the expert IEEE-CIS
dataset

View

- cvrID : CHAR(32)

- itemid : CHAR(32)

- visitorid : VARCHAR

- added_to_cart : VARCHAR

- timestamp : DATETIME

Item

- itemid : CHAR(32)

+ itemid
+ itemid

Category

- categoryid : CHAR(32)

- parentid : CHAR(32)

+ categoryid+ parentid

ItemAvailability

- itemid : VARCHAR

- available : ARRAY

- timestamp : DATETIME

ItemCategory

- itemid : VARCHAR

- category : CHAR(32)

- timestamp : DATETIME

+ categoryid
+ category

ItemProperty

- itemid : VARCHAR

- property : VARCHAR

- value : VARCHAR

- timestamp : DATETIME

Figure 7: Schema for the original Retail-
Rocket dataset

View

- itemid : CHAR(32)

- visitorid : CHAR(32)

- added_to_cart : VARCHAR

- timestamp : DATETIME

Item

- itemid : CHAR(32)

+ itemid

+ itemid

Visitor

- id : CHAR(32)

+ id
+ visitorid

Category

- categoryid : CHAR(32)

- parentid : CHAR(32)

+ categoryid+ parentid

ItemAvailability

- itemid : CHAR(32)

- available : ARRAY

- timestamp : DATETIME

+ itemid

+ itemid

ItemCategory

- itemid : CHAR(32)

- category : CHAR(32)

- timestamp : DATETIME

+ categoryid
+ category

+ itemid

+ itemid

ItemProperty

- itemid : CHAR(32)

- property : VARCHAR

- value : VARCHAR

- timestamp : DATETIME

+ itemid

+ itemid

Figure 8: Schema for the expert RetailRocket
dataset
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E.3.3 MOVIELENS

The original schema is the original format from https://movielens.org/. The expert
schema is inspired by Pyg’s Movielens dataset version https://pytorch-geometric.
readthedocs.io/en/latest/generated/torch_geometric.datasets.
MovieLens.html#torch_geometric.datasets.MovieLens.

Movies

- movieID : CHAR(32)

- title : VARCHAR

- genres : VARCHAR

Ratings

- ratingID : CHAR(32)

- userID : VARCHAR

- movieID : CHAR(32)

- rating : VARCHAR

- timestamp : DATETIME
+ movieID

+ movieID

Tags

- userID : VARCHAR

- movieID : CHAR(32)

- tag : VARCHAR

- timestamp : DATETIME

+ movieID

+ movieID

Figure 9: Schema for the original Movielens
dataset

Movies

- movieID : CHAR(32)

- title : VARCHAR

Ratings

- userNum : VARCHAR

- movieID : CHAR(32)

- rating : VARCHAR

- timestamp : DATETIME

- ratingID : CHAR(32)

+ movieID

+ movieID

Tags

- user : VARCHAR

- movieID : CHAR(32)

- tag : VARCHAR

- timestamp : DATETIME

+ movieID
+ movieID

Genre

- movieID : CHAR(32)

- genre_name : CHAR(32)

+ movieID

+ movieID

genre_name

- genre_nameID : CHAR(32)

+ genre_nameID
+ genre_name

Figure 10: Schema for the expert Movielens
dataset

E.3.4 OUTBRAIN

The original schema is the original format from the Kaggle website. The expert schema is from
Wang et al. (2024b).

Event

- display_id : CHAR(32)

- uuid : VARCHAR

- document_id : CHAR(32)

- platform : VARCHAR

- timestamp : DATETIME

- geo_location : VARCHAR

DocumentsMeta

- document_id : CHAR(32)

- source_id : VARCHAR

- publisher_id : VARCHAR

- publish_time : DATETIME

+ document_id

+ document_id

Pageview

- uuid : VARCHAR

- document_id : CHAR(32)

- timestamp : DATETIME

- platform : VARCHAR

- geo_location : VARCHAR

- traffic_source : VARCHAR

+ document_id

+ document_id

Click

- clickID : VARCHAR

- display_id : CHAR(32)

- ad_id : CHAR(32)

- clicked : VARCHAR

- timestamp : DATETIME

+ display_id

+ display_id

PromotedContent

- ad_id : CHAR(32)

- document_id : CHAR(32)

- campaign_id : VARCHAR

- advertiser_id : VARCHAR

+ ad_id

+ ad_id

+ document_id
+ document_id

DocumentsTopic

- document_id : CHAR(32)

- topic_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsCategory

- document_id : CHAR(32)

- category_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsEntity

- document_id : CHAR(32)

- entity_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

Figure 11: Schema for the original Outbrain
dataset

Event

- display_id : CHAR(32)

- uuid : CHAR(32)

- document_id : CHAR(32)

- platform : VARCHAR

- timestamp : DATETIME

- geo_location : VARCHAR

DocumentsMeta

- document_id : CHAR(32)

- source_id : VARCHAR

- publisher_id : VARCHAR

- publish_time : DATETIME

+ document_id

+ document_id User

- uuid : CHAR(32)

+ uuid

+ uuid

Pageview

- uuid : CHAR(32)

- document_id : CHAR(32)

- timestamp : DATETIME

- platform : VARCHAR

- geo_location : VARCHAR

- traffic_source : VARCHAR

+ document_id

+ document_id

+ uuid

+ uuid

Click

- display_id : CHAR(32)

- ad_id : CHAR(32)

- clicked : VARCHAR

- timestamp : DATETIME

+ display_id

+ display_id

PromotedContent

- ad_id : CHAR(32)

- document_id : CHAR(32)

- campaign_id : VARCHAR

- advertiser_id : VARCHAR

+ ad_id

+ ad_id

+ document_id

+ document_id

DocumentsTopic

- document_id : CHAR(32)

- topic_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsCategory

- document_id : CHAR(32)

- category_id : VARCHAR

- confidence_level : ARRAY
+ document_id

+ document_id

DocumentsEntity

- document_id : CHAR(32)

- entity_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

Figure 12: Schema for the expert Outbrain
dataset

E.3.5 AVS

We have shown the schema for AVS in Appendix A.2.
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E.3.6 MAG

The original schema is induced from the ogb version (Hu et al., 2020). The expert schema is from
Wang et al. (2024b).

Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

Cites

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited+ paperID
+ paper_cite

HasTopic

- field_of_study : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

AffiliatedWith

- author : VARCHAR

- institution : VARCHAR

Writes

- author : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

Figure 13: Schema for the original MAG
dataset

Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

Cites

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited

+ paperID
+ paper_cite

HasTopic

- field_of_study : CHAR(32)

- paper : CHAR(32)

+ paperID

+ paper

FieldOfStudy

- id : CHAR(32)

+ id
+ field_of_study

AffiliatedWith

- author : CHAR(32)

- institution : CHAR(32)

Author

- id : CHAR(32)

+ id

+ author

Institution

- id : CHAR(32)

+ id
+ institution

Writes

- author : CHAR(32)

- paper : CHAR(32)

+ paperID

+ paper

+ id+ author

Figure 14: Schema for the expert MAG
dataset

E.3.7 DIGINETICA

The original schema is induced from the Codalab version https://competitions.
codalab.org/competitions/11161. The expert schema is from Wang et al. (2024b).

QueryResult

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

Query

- queryId : CHAR(32)

- sessionId : VARCHAR

- userId : VARCHAR

- duration : ARRAY

- categoryId : VARCHAR

- timestamp : DATETIME+ queryId

+ queryId

Product

- itemId : CHAR(32)

- categoryId : VARCHAR

- pricelog2 : ARRAY

- name_tokens : VARCHAR

+ itemId

+ itemId

Click

- ClickID : VARCHAR

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ queryId
+ queryId

+ itemId

+ itemId

View

- sessionId : VARCHAR

- userId : VARCHAR

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Purchase

- purchaseID : VARCHAR

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- ordernumber : VARCHAR

- timestamp : DATETIME

+ itemId

+ itemId
Session

- sessionId : CHAR(32)
+ sessionId
+ sessionId

User

- id : CHAR(32)
+ id

+ userId

QuerySearchstringToken

- queryId : CHAR(32)

- token : VARCHAR

+ queryId

+ queryId

Figure 15: Schema for the original Diginet-
ica dataset

Product

- itemId : CHAR(32)

- categoryId : VARCHAR

- pricelog2 : ARRAY

Click

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Query

- queryId : CHAR(32)

- sessionId : CHAR(32)

- userId : CHAR(32)

- duration : ARRAY

- categoryId : VARCHAR

- timestamp : DATETIME
+ queryId

+ queryId

QueryResult

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

+ queryId

+ queryId

View

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Session

- id : CHAR(32)+ id

+ sessionId

User

- id : CHAR(32)
+ id

+ userId

Purchase

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- ordernumber : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

+ id

+ sessionId
+ id

+ userId

Orders

- id : CHAR(32)

+ id
+ ordernumber

+ id

+ sessionId

+ id

+ userId

ProductNameToken

- itemId : CHAR(32)

- token : CHAR(32)

+ itemId

+ itemId

Token

- id : CHAR(32)+ id

+ token

QuerySearchstringToken

- queryId : CHAR(32)

- token : CHAR(32)

+ queryId

+ queryId

+ id

+ token

Figure 16: Schema for the expert Diginetica
dataset
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E.3.8 STACKEXCHANGE

Since the schema given in Wang et al. (2024b) is already a good graph schema. For this dataset,
we construct the original schema by using the following back-augmentation: 1. Remove the userid
relationship of Badges table, and add a multi category column “Badges” to the user table. 2. Remove
the Userid relationship of postHistory and Vote table, and add a new column “UserName” with
no explicit relationships. 3. Remove the Userid relationship of Comments table, and add a new
categorical type “CommentedUserId”.

Badges

- Id : CHAR(32)

- Class : VARCHAR

- Date : DATETIME

- Name : VARCHAR

- TagBased : VARCHAR

Comments

- Id : CHAR(32)

- CreationDate : DATETIME

- Text : VARCHAR

- PostId : CHAR(32)

- CommentedUserId : VARCHAR

Posts

- Id : CHAR(32)

- Body : VARCHAR

- CreationDate : DATETIME

- PostTypeId : VARCHAR

- Title : VARCHAR

- AcceptedAnswerId : VARCHAR

- LastEditorUserId : CHAR(32)

- OwnerUserId : CHAR(32)

- ParentId : CHAR(32)

+ Id

+ PostId

PostHistory

- Id : CHAR(32)

- Comment : VARCHAR

- CreationDate : DATETIME

- PostHistoryTypeId : VARCHAR

- Text : VARCHAR

- PostId : CHAR(32)

- UserName : VARCHAR

+ Id

+ PostId

PostLink

- Id : CHAR(32)

- CreationDate : DATETIME

- LinkTypeId : VARCHAR

- PostId : CHAR(32)

- RelatedPostId : CHAR(32) + Id
+ RelatedPostId

+ Id+ PostId

PostTag

- PostId : CHAR(32)

- TagId : CHAR(32)

+ Id

+ PostId

Tag

- Id : CHAR(32)

- TagName : VARCHAR

- ExcerptPostId : CHAR(32)

- WikiPostId : CHAR(32)

+ Id

+ TagId

+ Id+ ParentId

Users

- Id : CHAR(32)

- AboutMe : VARCHAR

- CreationDate : DATETIME

- Location : VARCHAR

- Badges : VARCHAR

+ Id
+ OwnerUserId

+ Id
+ LastEditorUserId

+ Id

+ ExcerptPostId

+ Id

+ WikiPostId

Vote

- Id : CHAR(32)

- BountyAmount : VARCHAR

- CreationDate : DATETIME

- VoteTypeId : VARCHAR

- PostId : CHAR(32)

- Username : VARCHAR

+ Id

+ PostId

Figure 17: Schema for the original Stackex-
change dataset

Badges

- Id : CHAR(32)

- Class : VARCHAR

- Date : DATETIME

- Name : VARCHAR

- TagBased : VARCHAR

- UserId : CHAR(32)

Users

- Id : CHAR(32)

- AboutMe : VARCHAR

- CreationDate : DATETIME

- Location : VARCHAR

+ Id

+ UserId

Comments

- Id : CHAR(32)

- CreationDate : DATETIME

- Text : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

Posts

- Id : CHAR(32)

- Body : VARCHAR

- CreationDate : DATETIME

- PostTypeId : VARCHAR

- Title : VARCHAR

- AcceptedAnswerId : CHAR(32)

- LastEditorUserId : CHAR(32)

- OwnerUserId : CHAR(32)

- ParentId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

PostHistory

- Id : CHAR(32)

- Comment : VARCHAR

- CreationDate : DATETIME

- PostHistoryTypeId : VARCHAR

- Text : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

PostLink

- Id : CHAR(32)

- CreationDate : DATETIME

- LinkTypeId : VARCHAR

- PostId : CHAR(32)

- RelatedPostId : CHAR(32)

+ Id
+ PostId

+ Id+ RelatedPostId

PostTag

- PostId : CHAR(32)

- TagId : CHAR(32)

+ Id

+ PostId

Tag

- Id : CHAR(32)

- TagName : VARCHAR

- ExcerptPostId : CHAR(32)

- WikiPostId : CHAR(32)

+ Id
+ TagId

+ Id+ ParentId + Id+ AcceptedAnswerId

+ Id

+ OwnerUserId

+ Id

+ LastEditorUserId

+ Id

+ WikiPostId

+ Id

+ ExcerptPostId

Vote

- Id : CHAR(32)

- BountyAmount : VARCHAR

- CreationDate : DATETIME

- VoteTypeId : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

Figure 18: Schema for the expert Stackex-
change dataset

E.4 DESIGN OF SYNTHETIC DATASETS

The schema we design for Section 5.3.3 are shown in Figure 19 and Figure 20.
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Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

- LeadInstitution : VARCHAR

- PaperTopic : VARCHAR

- TopicDescription : VARCHAR

Institution

- ID : CHAR(32)

- Name : VARCHAR

- location : VARCHAR

- industry : VARCHAR

Cites

- citationID : CHAR(32)

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited+ paperID
+ paper_cite

HasTopic

- field_of_study : VARCHAR

- paper : CHAR(32)

+ paperID
+ paper

AffiliatedWith

- affiID : CHAR(32)

- author : VARCHAR

- institution : VARCHAR

Writes

- authorName : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

Interests

- author : VARCHAR

- interestedTopic : VARCHAR

Figure 19: Schema for augmented MAG
dataset

Xk9fR

- uzY3q : ARRAY

- bH5wJ : VARCHAR

- Xk9fR_ID : CHAR(32)

- kT2yC : VARCHAR

- P8mZx : VARCHAR

- L1aE7 : VARCHAR

- N6tKp : VARCHAR

Q0dF1

- Q0dF1_ID : CHAR(32)

- W3cB9 : VARCHAR

- Y5hM2 : VARCHAR

- A7jD4 : VARCHAR

U9gS6

- U9gS6_ID : CHAR(32)

- I1nR8 : CHAR(32)

- O3bV0 : CHAR(32)

+ Xk9fR_ID
+ I1nR8

+ Xk9fR_ID+ O3bV0

E5mK7

- C7tH9 : VARCHAR

- F9wL1 : CHAR(32)

+ Xk9fR_ID

+ F9wL1

Zt7Lq

- Zt7Lq_ID : CHAR(32)

- mR9Kf : VARCHAR

- pX2Hd : VARCHAR

nB5Vj

- cE8Wg : VARCHAR

- yS1Tm : CHAR(32)

+ Xk9fR_ID

+ yS1Tm

hF4Np

- aU6Yk : VARCHAR

- iM3Qr : VARCHAR

Figure 20: Schema for anonymous aug-
mented MAG dataset
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