
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOG: TOWARDS AUTOMATIC GRAPH CONSTRUC-
TION FROM TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have witnessed significant advancements in graph machine learning
(GML), with its applications spanning numerous domains. However, the focus
of GML has predominantly been on developing powerful models, often overlook-
ing a crucial initial step: constructing suitable graphs from common data formats,
such as tabular data. This construction process is fundamental to applying graph-
based models, yet it remains largely understudied and lacks formalization. Our re-
search aims to address this gap by formalizing the graph construction problem and
proposing an effective solution. We identify two critical challenges to achieve this
goal: 1. The absence of dedicated benchmarks to formalize and evaluate the ef-
fectiveness of graph construction methods, and 2. Existing automatic construction
methods can only be applied to some specific cases, while tedious human engi-
neering is required to generate high-quality graphs. To tackle these challenges, we
present a two-fold contribution. First, we introduce a benchmark to formalize and
evaluate graph construction methods. Second, we propose an LLM-based solu-
tion, AutoG, automatically generating high-quality graph schemas without human
intervention. The experimental results demonstrate that the quality of constructed
graphs is critical to downstream task performance, and AutoG can generate high-
quality graphs that rival those produced by human experts.

1 INTRODUCTION

Graph machine learning (GML) has attracted massive attention due to its wide application in di-
verse fields such as life science (Wong et al., 2023), E-commerce (Ying et al., 2018), and social
networks (Wang & Kleinberg, 2023; Suárez-Varela et al., 2022). GML typically involves applying
models like graph neural networks (GNNs) (Kipf & Welling, 2017) to leverage the underlying graph
structure of a given task, e.g., using the friendship networks for user recommendations (Tang et al.,
2013) and identifying new drug interactions (Zitnik et al., 2018).

Despite the widespread interest and rapid development in GML (Kipf & Welling, 2017; Mao et al.,
2024; Müller et al., 2024), constructing graphs from common data formats such as industrial tabu-
lar data (Ghosh et al., 2018) remains an under-explored topic. This primarily stems from a widely
adopted assumption that appropriate graph datasets exist for downstream tasks akin to established
benchmarks (Hu et al., 2020; Khatua et al., 2023). However, readily available graph datasets are ab-
sent in many real-world enterprise scenarios. First, given an input data in common storage formats
such as tables, there can be many plausible graph schemas and structures that can be defined over
them. The choice of graph schema impacts downstream performance of GML. Rossi et al. (2024)
shows that considering the directional aspect of edges within a graph can lead to substantial vari-
ance in the downstream GML performance. Second, converting the source data into graph format
requires expert data engineering and processing. Even though, GNN based approaches shows strong
performance on Kaggle leaderboard (Wang et al., 2024b), it involves laborious pre-processing and
specialized skills to transform the original tabular data into ready-to-be-consumed graphs for GML.

The objective of this work is to formalize the challenges in graph construction by establishing a
real-world benchmark followed by automatic graph construction from input tabular data. Existing
tabular graph benchmarks such as Wang et al. (2024b) and Fey et al. (2024) assume the availability
of well-formatted graphs with explicit relationships such as complete foreign-key and primary-key
pairs. In these cases, graphs can be easily constructed using heuristics like Row2Node (Cvitkovic,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2020) by converting each table into a node type. However, implicit relationships like columns with
similar semantics (Dong et al., 2023) or columns with categorical types also widely exist in real-
world scenarios, which cannot be addressed by heuristic methods (see Figure 1). A benchmark
designed for graph construction should reflect the importance of modeling implicit relationships.
Additionally, different tasks can be defined based on the same dataset (Fey et al., 2024). Further,
different ways to construct graphs affect different tasks’ performance is an understudied problem.
Therefore, the benchmark for graph construction also needs to include different downstream tasks
to reflect this problem. From the solution perspective, graph construction involves finding the best
candidate among all possible graph structures. However, considering the vast search space, finding
the graph structure through an exhaustive search is infeasible. Therefore, an effective automatic
graph construction method should be able to efficiently identify high-quality candidates from many
possible graph structures/schemas.

To address the above challenges, we propose an evaluation benchmark and a large language model
(LLM)-based graph construction solution. We first extract raw tabular datasets from Kaggle, Co-
dalab, and other data sources to design a benchmark reflecting real-world graph construction chal-
lenges. They differ from prior work (Fey et al., 2024; Wang et al., 2024b) in that these datasets
haven’t been processed by experts, and existing graph construction methods get inferior performance
(see Table 3). To solve the graph construction problem, we propose an LLM-based automatic graph
construction solution AutoG inspired by LLM’s reasoning capability to serve as a planning module
for agentic tasks (Zhou et al., 2024) and tabular data processing (Hollmann et al., 2023). However,
we observe that LLMs tend to generate invalid graphs or graphs with fewer relationships (as shown
in Section 5.3.1). We address this problem by guiding LLMs to conduct close-ended function call-
ing (Schick et al., 2024). Specifically, we decompose the generation of graph structures into four
basic transformations applied to tabular data: (1) establishing key relations between two columns,
(2) expanding a specific column, (3) generating new tables based on columns, and (4) manipulat-
ing primary keys. Coupled with chain-of-thought prompt demonstrations for each action, AutoG
generates a series of actions to get the augmented schema and thus construct the graph. To further
enhance the generation quality, it will adopt the early-stage validation performance of trained GML
models as an oracle to select results efficiently.

Our major contributions can be summarized as follows:

a) Formalizing graph construction problems with a benchmark: We create a benchmark cov-
ering diverse graph construction challenges, consisting of eight datasets from academic, E-
commerce, medical, and other domains.

b) LLM-based automatic graph construction method: AutoG: To solve the graph construction
problem without manual data engineering, we propose an LLM-based baseline to automatically
generate graph candidates and then select the best candidates efficiently.

c) Comprehensive evaluation: We compare AutoG with different baseline methods on the pro-
posed benchmarks. AutoG shows promising performance that is close to the level of a data
engineering expert. Among 12 test tasks, it achieves 98.5% of the performance of human expert-
designed prompts on 9 downstream tasks.

2 PRELIMINARIES

2.1 TABULAR DATA AND SCHEMAS

The input tabular data is represented using the RDB language (Codd, 2007; Chen, 1976) as a schema
file. Subsequently, we introduce table schemas and how they may be used to describe a graph. We
start by introducing the fundamental elements of RDB languages.

Definition. Tabular data D contains an array of K tables D := {Ti}Ki=1. Each table Ti can be
viewed as a set Ti = (Ci, Ri,Mi), where

• Ci = (Ci,1, . . . , Ci,li) is an array of strings representing the column names, with li denoting the
number of columns in Ti.

• Ri is a matrix where each row Ri,j = (Ri,j,1, . . . , Ri,j,li) contains the values for the j-th row of
table Ti.

• Mi = (Mi,1, . . . ,Mi,li) is an array specifying the data type of each column.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this paper, we consider the following data types {category, numeric, text,
primary key(PK), foreign key (FK), set, timestamp}. As an example, if Mi,1 = text,
then all values in the same column Ri,1,1, · · · , Ri,mi,1 are of text type (mi refers to the number of
rows for table Ti). Detailed descriptions of each data type can be found in Appendix A.1.

The definitions above focus on the properties of individual tables, For multiple tables with K > 1,
they can be related with set of n PK-FK pairs {xm

PK, y
m
PK, x

m
FK, y

m
FK} where m = 1, . . . ,M . x and y

represent the indices of tables in D and the indices of columns. In real-world scenarios, it’s often the
case that only a subset of all PK-FK are explicit (Wang et al., 2024b). The other implicit connections
must be identified manually to support downstream tasks well.

Table schema and graph schema description. Based on this language, we define table schema by
storing all the meta information in a structured format like YAML (Ben-Kiki et al., 2009). An exam-
ple is shown in Appendix A.2. Table schema defines the metainformation of tables in a structured
manner following the RDB language. Graph schema is a special type of table schema. Compared
to general table schema, graph schema presents tables with proper column designs and PK-FK rela-
tions. These characteristics make it trivial to convert a graph schema (as discussed in Section 2.2)
into an ideal graph structure for downstream tasks.

2.2 BRIDGING TABULAR DATA AND GRAPHS

Based on the definition of tabular data, the goal of graph construction is to convert relational tabular
data D into a graph G. Following Fey et al. (2024); Wang et al. (2024b), we consider G as a
heterogeneous graph (Wang et al., 2022) G = {V, E} characterized by sets of nodes V and edges E .
The nodes and edges are organized such that V =

⋃
v∈V Vv and E =

⋃
e∈E Ee where Vv represents

the set of nodes of type v, and Ee represents the set of edges of type e. The main challenge of graph
construction lies in extracting appropriate node types and edge types from the schema of tabular
data. This process could be straightforward if we treat each table as a node type and each PK-FK
relationship as an edge type. However, this method may generate suboptimal graphs for general table
schemas. For instance, when two entities are placed in a single table, one entity might be treated
as a feature of the other, resulting in a graph that fails to effectively reflect structural relationships,
thereby impacting the performance of downstream tasks (Wang et al., 2024b).

Movies

PKMovieID

TextTitle

SetGenres

Ratings

PKRatingID

CatUserID

FKMovieID

CatRating

TimeTime

Tags

CatUser

FKMovieID

textTag

C1: User-UserID

HasGenre

FKMovieID

CatGenre

C3: Genres-
>HasGenre

(Augmented table)

C4: Proper type
(remove PK)

TabGNN can’t solve challenges here, JTD
can only solve C1

(a) Movielens

Paper

PKPaperID

floatFeat

CatLabel

CatYear

Cites

FKPaper_Cite

FKPaper_Cited

Affiliated

CatAuthorName

CatInstitution

Writes

CatAuthor

FKPaper

C1: Author-
AuthorName

HasTopic

FKPaper

CatField
C2: Cat to
relation

C5: Tasks require
different graphs

(b) MAG

Figure 1: Demonstrations of challenges in two selected datasets. Existing heuristic-based methods
cannot well tackle C2-C5 in that they require task-specific decisions.

3 BENCHMARKS

To make the graph construction problem concrete and provide a benchmark for comparing different
methods, we aim to design a benchmark that reflects the challenges encountered in real-world sce-
narios. Specifically, we first identify key problems that need to be addressed during the graph con-
struction process, which can be viewed as the benchmark’s design space. Based on these problems,
we have carefully selected 8 multi-tabular datasets from diverse domains to construct a benchmark
for graph construction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 DESIGN SPACE OF THE BENCHMARK

We propose five core challenges to be addressed when converting tabular data into graphs. Examples
of these challenge are demonstrated in Figure 1.

1. C1: Identifying edges from non PK-FK relationships: Traditional methods like
Row2Node (Wang et al., 2024b) only turn PK-FK relationships into edges, while these relation-
ships are usually not complete, which necessitates either automatic join discovery (Dong et al.,
2023) or human intervention.

2. C2: Augmenting multiple node or edge types from one table: Multiple node types and edge
types may be improperly put in one table. For example, the “Field” column in Figure 1 can
induce useful relations, and thus, an augmented table should be added.

3. C3: Transforming tables into proper node or edge types: How to convert tables into ap-
propriate types affects downstream task performance and the validity of generated graphs. For
instance, the “Ratings” table in Figure 1 should be better modeled as an edge type since it’s about
predicting the property between user and movie type.

4. C4: Generating proper graphs for different downstream tasks: Considering that multiple
tasks can be defined based on the same tabular data (Fey et al., 2024), one single graph design
may not fit all tasks. This claim has not been well studied and will be verified in our benchmark.

Design philosophy of these challenges. These five challenges are inspired by existing works (Wang
et al., 2024b; Dong et al., 2023; Gan et al., 2024) but go beyond their scopes. Specifically, C1 is a
common problem in data lakes and RDB (Dong et al., 2023; Hulsebos et al., 2019) for automatic
data engineering. When constructing the graph is the final objective, joinable column detection
becomes even more important since it’s crucial to find relations. C2 is derived by comparing the
original schema from Kaggle to the graph schema used in Wang et al. (2024b). Human experts have
introduced multiple augmented tables, which are crucial to the performance of GML models. The
mechanism behind these augmented tables hasn’t been well studied, and we first introduce them in
our benchmarks. C3 is derived from real-world datasets such as (Harper & Konstan, 2015), and we
find that simple heuristics may work poorly when the proper type of table cannot be induced from
the schema. C4 is naturally derived from the multiple tasks defined on tabular data. We are the first
to study the influence of graphs on different downstream task performance.

Relationship to traditional database profiling (Abedjan et al., 2015). Database normalization
is a related concept to our work. The goal of graph construction from relational data to graph is
to find what kind of relational information is beneficial to the downstream task. For example, the
objective of challenge 2 is to consider whether the relationship induced by this categorical value is
beneficial. This decision needs to consider the semantic relationship between this column and the
corresponding downstream tasks, which cannot be solved by normalization. As a comparison, the
objective of normalization is to minimize data redundancy and improve data integrity. Despite the
overlap, data normalization cannot fully solve the graph construction task.

3.2 DATASETS

Based on the design space of graph construction from relational tabular data, we gather 8 datasets
from various domains to evaluate graph construction methods. We collect these datasets from 1. the
source of existing tabular graph datasets, such as Diginetica (Wang et al., 2024b); 2. augmented
from existing tabular graph datasets, such as Stackexchange (Wang et al., 2024b); 3. traditional tab-
ular datasets adapter for graph construction, including IEEE-CIS (Howard et al., 2019) and Movie-
lens (Harper & Konstan, 2015). The information of these 8 datasets is listed in Table 1. Two
concrete examples are shown in Figure 1. Details on dataset sources and pre-processing are shown
in Appendix B.

Benchmark evaluation. To evaluate the quality of generated graphs, we adopt a quantitative eval-
uation approach by assessing downstream task performance, i.e., use fixed GML models (RGCN,
RGAT) to compare the impact of different graph construction methods. Better downstream task
performance indicates higher graph quality.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Datasets included in our benchmarks. The tasks are categorized into predictions of relation
attribute, entity attribute, and FK by following (Wang et al., 2024b).

Name of the dataset #Tasks #Tables Inductive C1 C2 C3 C4 Task type Source of datasets
Movielens 1 3 ✓ ✓ ✓ ✓ ✗ Relation Attribute Designed from Harper & Konstan (2015)
MAG 3 5 ✗ ✓ ✓ ✓ ✓ Entity Attribute, FK Prediction Augmented from Wang et al. (2024b)
AVS 2 3 ✓ ✓ ✓ ✓ ✓ Entity Attribute Augmented from Wang et al. (2024b)
IEEE-CIS 1 2 ✗ ✗ ✓ ✓ ✗ Entity Attribute Designed from Howard et al. (2019)
Outbrain 1 8 ✓ ✓ ✓ ✓ ✗ Relation Attribute Augmented from Wang et al. (2024b)
Dignetica 2 8 ✓ ✓ ✓ ✓ ✓ Relation Attribute, FK Prediction Augmented from Wang et al. (2024b)
RetailRocket 1 5 ✓ ✓ ✓ ✓ ✗ Relation Attribute Augmented from Wang et al. (2024b)
Stackexchange 3 7 ✓ ✓ ✓ ✓ ✓ Entity Attribute Augmented from Wang et al. (2024b)

4 METHOD

This section introduces an automatic graph construction solution to tackle the five challenges in
Section 3.1. As discussed in Section 2.2, we consider graph construction as a transformation from
the original table schema with implicit relations to the final graph schema with explicit relations.
We adopt an LLM as the decision maker to generate transformations automatically.

4.1 AUTOG: AN LLM-BASED GRAPH CONSTRUCTION FRAMEWORK

Inspired by the classic generator-discriminator structure (Goodfellow et al., 2014), we first design a
generator to produce reasonable candidates, and then evaluate the generated results through a dis-
criminator. In previous work (Fey et al., 2024; Wang et al., 2024b), human data scientists often play
the generator, which generates outputs based on their expert knowledge. Like humans, LLMs also
demonstrate the capabilities to generate molecular structures or code-formatted augmentations based
on prior knowledge (Wang et al., 2024a; Hollmann et al., 2023). Consequently, we adopt an LLM
as a generator and provide it with input tabular data to generate transformations. As demonstrated
in Figure 2, we propose a framework AutoG composed of the following modules.

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Generated table
schemas

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Table

PK Value 1

Value 2

Value 3

Prompt Instruction
Input table schemas

LLM as
generators

Heuristics

Flexible
Designs

Oracle as
discriminator

Figure 2: An illustration of our proposed AutoG
framework.

Input module. The input of AutoG consists
of two parts. The first part is the input table
schema, which represents the metadata related
to the data. The second part is the prompt in-
struction. Following Wang et al. (2024b), we
use the table schema format introduced in Sec-
tion 2.1 to represent the input data. An ex-
ample can be found in Appendix A.2. Input
schema files can be easily generated from tabu-
lar storage (e.g., Pandas DataFrames), with col-
umn data types either user-defined or inferred
from sampled column values using LLMs (see
Appendix D.4). For prompt instruction, we in-
clude a general description of the graph con-
struction task, a one-sentence description for
the corresponding downstream task, and data
supplementary information, including dataset
statistics and sample column values.

LLM as generators. Based on input modules, we further leverage LLMs to generate a transformed
schema. A straightforward approach is to let the LLM directly generate structured outputs such as
YAML (Ben-Kiki et al., 2009)-formatted code. However, we find that open-ended generation usually
produces invalid graph structures. To address this, inspired by the idea of function calling (Schick
et al., 2024), we design basic augmentation actions based on 5 challenges of graph construction and
then guide the output through chain-of-augmentation prompts, which is elaborated in Section 4.2.

Heuristic-based graph constructors. We then employ heuristic algorithms to convert tables into
graphs once a candidate table schema is generated. For instance, if we opt for the Row2Node/Edge
heuristic algorithm, we transform tables with at least two columns as FK and no PK, along with the
remaining PK-FK relationships, into edges of a heterogeneous graph, while converting other tables
into nodes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Oracle as discriminators. After generating the graph, we design an oracle as a discriminator to gen-
erate feedback. LLMs generate candidate results based on the semantic information and statistics
of tables. This information can serve as valuable priors but cannot evaluate the validity and com-
patibility of the generated graphs with specific downstream tasks. As a result, we adopt either the
results of graph construction (whether successful or not) or execute a GML model training module
to get the (estimated) performance of the generated graph. Such feedback will further be appended
to the prompt instruction as history information. We detail the oracle design in Section 4.3.

4.2 GUIDED GENERATION WITH CHAIN-OF-AUGMENTATION

The most straightforward way to let LLMs generate schema is directly generating the YAML-
formatted structured outputs. However, such open-ended generation suffers from the following
pitfalls: 1. LLMs generate schema and augmentation code with grammar errors, which makes
the pipeline fail to proceed automatically. 2. LLMs tend to miss those node types and relations
that require multi-step augmentation. Taking the Diginetica dataset as an example, relations
may be found by first transforming set-attributed columns into proper augmented columns and then
identifying the non PK-FK relations from the augmented columns. Simply generating the schema in
a single-step manner fails to extract such relations.

To alleviate these problems, we propose guided generation with a chain of augmentation. First,
based on four challenges proposed in Section 3.1, we identify the following basic actions for aug-
mentation.

1. CONNECT TWO COLUMNS: Building a PK-FK relationship between two columns, and it will
first make sure they satisfy the PK constraints. This action is designed to tackle challenge 1.
Compared to joinable table discovery (JTD) (Dong et al., 2023; Hulsebos et al., 2019), this action
is simpler because it directly generates the potential column pairs based on LLM decisions. JTD
can also be used as a replacement in scenarios requiring higher accuracy with the cost of much
more running time.

2. GENERATE NEW TABLE: Inducing a new table from the original table via moving columns with-
out changing any values. This can be viewed as identifying multiple node or relation types from
the original table. This action is designed to tackle challenge 2.

3. REMOVE(ADD) PRIMARY KEY: Combined with proper heuristic methods, this action can
change the type of table (as a node or an edge type) in the generated graph. This action is
designed to tackle challenge 3.

We then provide two types of supplementary information in the prompt to help LLMs decide on
actions. Statistics of columns: A textual description of the task and statistics of each column are
appended to the prompt instruction, guiding the LLM’s decision-making. LLM will determine the
usefulness of actions like GENERATE NEW TABLE based on whether the augmented table seman-
tically contributes to the task. For instance, if the task is to identify citations between papers, the
“co-author” relationship is highly relevant, and the LLM will favor generating a table representing
such a relation. Conversely, the “co-year” relationship is less informative, making the LLM less
likely to generate it. Additionally, if a categorical column has only two distinct values, the induced
table will become a super node in the graph, which is not ideal for model training, thus the LLM
will tend not to generate such a table. Chain of thought demonstrations: For each of these actions,
we provide a demonstration to showcase its usage. Specifically, we find that chain-of-thought (CoT)
prompts (Wei et al., 2022) are critical to action generation. As a motivating example, LLMs tend
to merely find those columns with identical names to build non-PK-FK relationships without CoT.
Only after introducing CoT demonstrations can LLMs utilize the statistics of columns to find more
general non-PK-FK relationships with different column names. The complete prompt design can
be found in Appendix D.1. To determine the termination step, we add a null action to the action
space and set a hard threshold T to limit the maximum number of actions, typically set to 10 for our
proposed datasets.

4.3 DESIGNING ORACLE TO GENERATE FEEDBACK

After generating the schema candidates, we need an oracle to evaluate their effectiveness and thus
choose the best schema. Despite LLM’s capability to generate schemas based on prior knowledge,
they cannot quantitatively predict how different schemas affect downstream task performance. As

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

a result, we still need a graph-centric model to generate the feedback. We introduce qualitative and
quantitative oracles, where the former checks the validity of schemas by running graph construction
heuristics, and the latter adopts the GML model to determine the quality of graph schema. We detail
the quantitative oracle exploration below.

Table 2: Evaluating different oracles by quality and
efficiency. For sampling, we set the ratio to 30%. For
early-stage validation performance, we set to 10% of total
epochs (should be set according to different datasets). Net-
InfoF can’t be applied to large-scale link prediction here
since compatibility matrix computation is not scalable. The
pre-processing time of the full graph is set as the basic unit;
all other time is rounded to an integer.

Discrepancy Training (node) Training (link) Process
Full 0 29x 300x 1x
Sampled 0.75 16x 95x 1x
Actively sampled 0.75 16x 95x 3x
Early metric 0.09 10x 52x 1x
NetInfoF Not applicable

The main challenge of designing a quanti-
tative oracle is to efficiently obtain the ap-
proximate performance of models. After us-
ing heuristics to construct graphs based on
the generated schemas, AutoG will automat-
ically execute the GML model fitting pro-
cess, and the validation performance will be
adopted as the final metric. We further ex-
plore the potential to speed up this process:
(1) Condensating the graph (Hashemi et al.,
2024), improving the evaluation efficiency
by training and testing on a smaller graph;
(2) Adopting an early-stage training metric,
such as the validation set performance. (3)
Simplified or Training-free model: Adopting a simplified model such as linear GNN (Yu et al., 2020;
Lee et al., 2024) designed for heterogeneous graphs. However, we find that existing linear GNNs for
heterogeneous graphs can only achieve embeddings for target nodes, which does not apply to general
link-level prediction (more discussion in Appendix D.3). We then compare these methods in terms
of their effectiveness and efficiency. Specifically, we randomly sample three groups of schemas
(in total 36, with distinguishable performance) from the proposed datasets. Then, we let different
oracles generate orders for each group and measure the normalized Kendall’s tau distance (Kumar
& Vassilvitskii, 2010) to ones generated by regular GML models. From the experimental results in
Table 2, we find that only the early-stage validation performance can estimate the downstream task
performance well, as adopted in AutoG.

4.4 CANDIDATE AND RESULT GENERATION

After describing the LLM’s action space and oracle, the last part of AutoG is the candidate gen-
eration strategy. Instead of using complex tree-based search strategies like MCTS (Zhang et al.,
2024a), we use a simpler strategy that generates one action at a time to create a new candidate. We
find that tree-based search cannot improve the generated candidate quality and many candidates are
duplicated. AutoG will backtrace to the last valid states when an invalid action is generated and
terminate after consecutive errors. To produce diverse schemas, we run the algorithm multiple times
and choose the candidates with the best oracle score as the final selection.

5 EXPERIMENTAL RESULTS

In this section, we systematically evaluate the AutoG framework on the proposed benchmarks from
the following perspectives:

• Quantitative Evaluation: Comparing variants of AutoG to other heuristic-based graph construc-
tion algorithms and expert-designed graph schemas.

• In-depth Analysis: Conducting ablation studies on different components of AutoG to understand
the mechanism and limitations of AutoG.

5.1 EXPERIMENTAL SETTINGS

To investigate the impact of different graph construction methods, we fix the GML model to check
the downstream task performance according to different graph schemas. Specifically, we select
two commonly used baselines on heterogeneous graphs, RGCN (Schlichtkrull et al., 2018) and
RGAT (Veličković et al., 2018). We present the RGCN results and show RGAT ones in Ap-
pendix E.1. On the constructed graph, we choose the optimal hyperparameters based on the model’s
performance on the validation set, with the selection range detailed in appendix D.2. We select
Claude’s Sonnet-3.5 as the backbone of LLMs and investigate the impact of different LLMs in Sec-
tion 5.3. We consider the following baseline methods:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• XGBoost (Chen & Guestrin, 2016) and DeepFM (Guo et al., 2017): Directly applying XGBoost
and DeepFM, two widely adopted baselines for tabular data to the merged tables.

• TabGNN (Guo et al., 2021): Creating an edge type based on every categorical value and construct-
ing a multiplex graph based on each edge type.

• Row2Node and Row2Node/Edge (Wang et al., 2024b): Converting tables to graphs with heuris-
tics. Row2Node treats each table as a node type and each PK-FK relationship as an edge type.
Row2Node/Edge introduces more flexibility by treating tables with two FK columns as an edge
between the FK-induced pair.

• JTD with Row2Node/Edge (Dong et al., 2023; Gan et al., 2024): Joinable table discovery (JTD)
targets finding joinable columns across tables. It can be combined with heuristics to generate
graphs with more complex relations.

• Graph schema designed by human experts. We detail the expert schema design in Appendix E.3.

5.2 QUANTITATIVE EVALUATION

Table 3 shows the performance of different graph construction methods. Our evaluation follows the
following steps: (1) generate the heterogeneous graphs with the corresponding graph construction
methods; (2) then, train a GML model towards downstream tasks with the constructed graph. Mod-
els’ performance is used to determine the quality of graphs. The metrics for each task are shown in
the second column, and the ranking is calculated based on the average ranking of each task.

Table 3: Evaluation of different graph construction methods on proposed datasets. The best is in bold,
second best is underlined, and third best is double-underlined. ∗, ∗∗ indicate identical graph structures.

Dataset Task XGBOOST DeepFM TabGNN Original schema JTD schema AutoG Expert
N/A N/A TabGNN R2N R2NE R2N R2NE AutoG Expert

Datasets with a single downstream task

IEEE-CIS Fraud (AUC) 90.14 90.28 75.38 89.17∗ 89.17∗ 89.17∗ 89.17∗ 90.36 89.20

RetailRocket CVR(AUC) 50.35 49.33 82.84 50.45 49.90 50.82 48.99 82.53 84.70

Movielens Ratings(AUC) 53.62 50.93 55.34 57.34 56.96 54.55 64.71 66.54∗ 66.54∗

Outbrain Ratings(AUC) 50.05 51.09 62.12 49.33∗ 52.06∗∗ 49.35∗ 52.23∗∗ 61.32 62.71

AVS Repeat (AUC) 52.71 52.88 54.48 47.75 48.84 53.27∗ 53.27∗ 54.03 55.08

Datasets with multiple downstream tasks

MAG
Venue (Acc) 21.95 28.19 42.84 27.24 46.26 21.26 46.97 49.88 49.66

Citation (MRR) 3.29 45.06 70.65 65.29 65.29 72.53 81.50 80.84 80.86

Year (Acc) 28.09 28.42 52.77 54.09∗ 30.90 53.07∗∗ 53.07∗∗ 54.09∗ 35.35

Dignetica CTR (AUC) 53.50 50.57 50.00 68.44 65.92 50.05∗ 50.00∗ 72.26 75.07

Purchase (MRR) 3.16 5.02 5.01 5.64 7.70 11.37 15.47 34.92 36.91

Stackexchange Churn(AUC) 58.20 59.84 78.27 74.23 75.62 85.58 84.85 85.43 85.58

Upvote(AUC) 86.69 87.64 85.28 88.49 88.65 88.61 67.98 88.57 88.61

Ranking 5.8 5.2 4.3 4.5 4.1 2.0 1.8

From the experimental results, we make the following observations

• AutoG generates high-quality graphs: The AutoG method we propose can surpass other auto-
matic graph construction methods and reach close to the level of human experts.

• AutoG’s superiority against heuristic-based methods: Heuristic-based automatic discovery
methods can only be applied to some special cases. We particularly note that AutoG has a unique
advantage in addressing challenge 2. Unlike challenge 1, challenge 2 is originally solved entirely
based on expert experience. Take IEEE-CIS as an example, which has many categorical columns.
If all categorical columns are converted into relations, it will lead to poor performance (TabGNN).
In contrast, AutoG, based on LLMs, can analyze the semantic relationships between columns,
for instance, grouping all card-related meta information into one table (see Appendix E.3), thus
achieving good results.

• The same graph may not be effective for different downstream tasks. On the MAG dataset,
we observe that the expert-designed graph is not optimal for the year prediction task and is much
worse than the original schema. This demonstrates the importance of adaptively generating graphs
based on the task and illustrates the importance of automatic graph construction. Taking a deeper
look at the generated graph statistics, we find that when predicting the venue of “Paper”, the ad-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

justed homophily (Lim et al., 2021) of labels based on metapath “Paper-Author-Paper” is 0.156.
While for year prediction, the adjusted homophily is only 0.02. This can be viewed as an exten-
sion of the heterophily problem (Lim et al., 2021) towards the RDB data, and an effective graph
construction algorithm should address this problem by eliminating harmful relations. AutoG still
relies on a graph oracle to deal with this problem. As shown in Appendix E.1, the observation
based on RGAT is consistent.

5.3 IN-DEPTH ANALYSIS

To better understand the effectiveness of AutoG, we further study the effect of its components. We
conduct three experiments: (1) Comparing AutoG variants with open-ended generation and oracle-
free designs. (2) Studying the effect of different LLM backbones on the final results. (3) Studying
the necessity of each prompt component. We also study AutoG’s performance on synthetic data with
anonymous columns.

Table 4: Ablation studies for closed-ended gen-
eration and oracles

Dataset Task Valid Performance
AutoG-S AutoG-A AutoG AutoG-A AutoG

MAG Venue ✗ ✓ ✓ 49.88 49.88

Year ✗ ✓ ✓ 35.40 54.09

IEEE-CIS Fraud ✗ ✓ ✓ 90.15 90.36

RetailRockets CVR ✗ ✓ ✓ 82.53 82.53

Table 5: Effect of LLMs on generation validity and
performance. *CoT prompts doesn’t work for Mistral.

LLM MAG (venue) Movielens (ratings)
#actions Valid Best #actions Valid Best

Sonnet3.5 4 100% ✓ 7 57% ✓
Sonnet3 8 37.5% ✓ 4 75% ✗
Mistral(*) 7 57% ✓ 2 22% ✗

5.3.1 AUTOG VARIANTS STUDIES

We consider two variants of AutoG: AutoG-S and AutoG-A, where AutoG-S conducts open-ended
generation with no pre-defined actions and AutoG-A removes oracles from AutoG. As shown in Ta-
ble 4, we draw the following conclusions: 1. Close-ended generation is necessary for valid schema
generation. 2. Comparing AutoG-A to AutoG, we find that in many cases, oracle is unneces-
sary, meaning LLMs can generate good candidates merely based on prior knowledge. However,
AutoG-A also performs poorly in some specific tasks with potentially noisy relations, as discussed
in Section 5.2. A viable next step for our method would be determining whether an oracle is needed
before running AutoG, which could improve overall efficiency.

5.3.2 INFLUENCE OF LLMS

We then evaluate the influence of different LLMs on the final generated results. Specifically, we
adopt LLMs with adequate context length that can support our prompts and thus ignore models like
LLaMA 3. As a result, we mainly compare three typical models: Claude Sonnet 3.5, Mistral Large,
and Claude Sonnet 3. As shown in Table 5, we find that 1. more powerful LLMs generate better
schemas with fewer invalid actions, which may be related to the instruction following capability. 2.
We observe that CoT demonstrations work poorly for Mistral Large, which may be due to different
LLMs’ distinct pre-training strategies. Generally, we find that for LLM models with capabilities
surpassing Sonnet3, AutoG can generate promising results and surpass heuristic-based counterparts.

5.3.3 WORKING MECHANISM OF AUTOG

“‘
Table 6: Ablation studies of different AutoG prompt
components. “Orig” stands for the original schema with
original names. “Anon” stands for the anonymous column
names. “3/3” means 3 of the 3 expected actions have all
been generated.

Challenge 1 Challenge 2 Challenge 3
Orig Anon Orig Anon Orig Anon

Default 3/3 1/3 2/3 1/3 2/2 0/2
No COT 1/3 0/3 1/3 0/3 0/2 0/2
No stats 1/3 0/3 1/3 0/3 0/2 1/2
No demon 0/3 0/3 0/3 0/3 0/2 0/2

“‘

Despite the promising performance of Au-
toG, LLM as generators is composed of
complicated prompt designs, which makes
it challenging to understand the role of each
component and how they may be applied to
more general types of tabular data (for ex-
ample, ones with anonymous columns). We
thus further study the influence of different
prompt components. In our prompt design,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

we have considered the following compo-
nents: 1. the semantic information of the column (column name); 2. the statistical meta-information
of the column; 3. the examples given in the prompt; 4. the chain of thought demonstrations for
each action. Specifically, we built a synthetic dataset based on MAG to include the challenges 1− 4
proposed in Section 3.1 and ensure the test data is not included in the pre-training set of LLMs.
Compared to quantitative evaluation, here we directly study whether LLMs can generate the re-
quired actions for better graphs. As shown in Table 6, we observe the following conclusions: 1.
Demonstration is necessary for AutoG to generate valid actions. 2. Both COT and statistics are
critical to the graph schema generation. Specifically, we find that LLMs will only find trivial aug-
mentations (for example, non-PK-FK relations with identical column names), which means COT is
the key for LLMs to conduct deep reasoning and to well utilize the statistics. 3. Semantic infor-
mation of the column names is vital for the performance of AutoG, which is a limitation of AutoG.
Column name expansion (Zhang et al., 2023a) may be adopted to enhance the effectiveness of Au-
toG on anonymous data.

6 RELATED WORKS

Recently, GML has been widely adopted to capture the structural relationship across tabular data (Li
et al., 2024). One of the key challenges lies in identifying graph structures from tabular data that can
benefit the downstream tasks. Early endeavors in database management mine relationships across
databases using rule-based methods Yao & Hamilton (2008); Liu et al. (2012); Abedjan et al. (2015).
One limitation of these methods lies in their scalability towards large-scale tables. The rise of ma-
chine learning has led to two ML-based approaches: heuristic-based and learning-based methods.
Heuristic-based methods transform tabular data into graphs based on certain rules. For instance,
Guo et al. (2021) generates edge relationships based on columns with categorical values in the table,
resulting in a multiplex graph through multiple columns. Wu et al. (2021) and You et al. (2020)
create a bipartite graph based on each row representing a sample and each column representing a
feature, where You et al. (2020) further supports numerical values by storing them as edge attributes.
Du et al. (2022) generates a hypergraph by treating each row as a hyperedge. A major challenge for
these heuristic methods is the inability to handle multi-table scenarios effectively. Row2Node (Fey
et al., 2024) and Row2Node/Edge (Wang et al., 2024b) are proposed for multiple tables with ex-
plicit key relationships. Bai et al. (2021) designs and end-to-end model for RDB prediction tasks.
These methods are still limited to tables satisfying RDB specifications. Learning-based methods
aim to learn edge relationships automatically based on the correlation between features. Chen et al.
(2020) and Franceschi et al. (2019) leverage graph structure learning to learn the induced edge re-
lationships between each sample. However, learning-based methods suffer from efficiency issues,
and their effectiveness is challenged by Errica (2024) when adequate supervision is provided. Dong
et al. (2023) leverages a language model embedding to detect similar columns in the table and thus
extract those related columns. To study the effectiveness of different GML methods for tabular data,
multiple benchmarks have been developed (Wang et al., 2024b; Fey et al., 2024; Bazhenov et al.,
2024). However, their scopes are limited to either model evaluation (Wang et al., 2024b; Fey et al.,
2024) or feature evaluation (Bazhenov et al., 2024), which leaves graph construction evaluation an
underexplored area.

7 CONCLUSION

In this paper, we formalize the graph construction problem with a benchmark and present an LLM-
based automatic construction solution. Extensive experimental results show that graph construction
is an important step that may significantly influence downstream task performance. Our proposed
AutoG can effectively tackle this important task when columns present semantic information. How-
ever, our approach still has two limitations: (1) In terms of the dataset, the datasets we use already
contain some relational information and can be converted into a graph structure through heuris-
tic methods (although this graph structure may not be effective). Therefore, we are focusing on
relatively simple scenarios, while the next challenge is the more complex conversion from raw un-
structured text files. (2) Regarding the method, we observe that LLMs rely heavily on semantic
information to make effective decisions, which is a limitation in real-world scenarios. Extending
AutoG with naming expansion module (Zhang et al., 2023a) can be a potential future direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENTS

To enhance the reproducibility of our methods, we include the prompt instruction in Appendix D.1.
GNN training module is built upon the framework of Wang et al. (2024b) (https://github.
com/awslabs/multi-table-benchmark). Data pre-processing details are demonstrated in
Appendix E.3.

REFERENCES

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data: a survey. The
VLDB Journal, 24:557–581, 2015.

Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. Atj-net: Auto-table-join
network for automatic learning on relational databases. In Proceedings of the Web Conference
2021, WWW ’21, pp. 1540–1551, New York, NY, USA, 2021. Association for Computing Ma-
chinery. ISBN 9781450383127. doi: 10.1145/3442381.3449980. URL https://doi.org/
10.1145/3442381.3449980.

Gleb Bazhenov, Oleg Platonov, and Liudmila Prokhorenkova. Tabgraphs: new benchmark and
insights for learning on graphs with tabular features, 2024. URL https://openreview.
net/forum?id=Ue93J8VV3W.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn. Graph-to-sequence learning using gated graph
neural networks. arXiv preprint arXiv:1806.09835, 2018.

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language (yaml)(tm) version
1.2. YAML. org, Tech. Rep, 359, 2009.

Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of data. ACM Trans.
Database Syst., 1(1):9–36, mar 1976. ISSN 0362-5915. doi: 10.1145/320434.320440. URL
https://doi.org/10.1145/320434.320440.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. Advances in neural information processing systems,
33:19314–19326, 2020.

Zui Chen, Lei Cao, Sam Madden, Ju Fan, Nan Tang, Zihui Gu, Zeyuan Shang, Chunwei Liu,
Michael Cafarella, and Tim Kraska. Seed: Simple, efficient, and effective data management
via large language models. arXiv preprint arXiv:2310.00749, 2023.

Edgar F Codd. Relational database: A practical foundation for productivity. In ACM Turing award
lectures, pp. 1981. Association for Computing Machinery, 2007.

Milan Cvitkovic. Supervised learning on relational databases with graph neural networks. arXiv
preprint arXiv:2002.02046, 2020.

Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi Oyamada. Deep-
join: Joinable table discovery with pre-trained language models. Proc. VLDB Endow., 16(10):
2458–2470, June 2023. ISSN 2150-8097. doi: 10.14778/3603581.3603587. URL https:
//doi.org/10.14778/3603581.3603587.

Kounianhua Du, Weinan Zhang, Ruiwen Zhou, Yangkun Wang, Xilong Zhao, Jiarui Jin, Quan Gan,
Zheng Zhang, and David P Wipf. Learning enhanced representation for tabular data via neigh-
borhood propagation. Advances in Neural Information Processing Systems, 35:16373–16384,
2022.

Federico Errica. On class distributions induced by nearest neighbor graphs for node classification
of tabular data. Advances in Neural Information Processing Systems, 36, 2024.

11

https://github.com/awslabs/multi-table-benchmark
https://github.com/awslabs/multi-table-benchmark
https://doi.org/10.1145/3442381.3449980
https://doi.org/10.1145/3442381.3449980
https://openreview.net/forum?id=Ue93J8VV3W
https://openreview.net/forum?id=Ue93J8VV3W
https://doi.org/10.1145/320434.320440
https://doi.org/10.14778/3603581.3603587
https://doi.org/10.14778/3603581.3603587

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph representation
learning on relational databases. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=BIMSHniyCP.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pp. 1972–1982.
PMLR, 2019.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of the web conference 2020, pp.
2331–2341, 2020.

Quan Gan, Minjie Wang, David Wipf, and Christos Faloutsos. Graph machine learning meets
multi-table relational data. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6502–6512, 2024.

Aindrila Ghosh, Mona Nashaat, James Miller, Shaikh Quader, and Chad Marston. A comprehensive
review of tools for exploratory analysis of tabular industrial datasets. Visual Informatics, 2(4):
235–253, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, IJCAI’17, pp. 1725–1731. AAAI Press, 2017. ISBN
9780999241103.

Xiawei Guo, Yuhan Quan, Huan Zhao, Quanming Yao, Yong Li, and Weiwei Tu. Tabgnn: Multiplex
graph neural network for tabular data prediction. arXiv preprint arXiv:2108.09127, 2021.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A
comprehensive survey on graph reduction: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist. arXiv preprint arXiv:2305.13657, 2023.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated
data science: Introducing caafe for context-aware automated feature engineering. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 44753–44775. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024.

Addison Howard, Bernadette Bouchon-Meunier, IEEE CIS, John Lei, Lynn@Vesta, Marcus2010,
and Hussein Abbass. IEEE-CIS fraud detection, 2019. URL https://kaggle.com/
competitions/ieee-fraud-detection.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

12

https://openreview.net/forum?id=BIMSHniyCP
https://doi.org/10.1145/2827872
https://proceedings.neurips.cc/paper_files/paper/2023/file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf
https://kaggle.com/competitions/ieee-fraud-detection
https://kaggle.com/competitions/ieee-fraud-detection

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satyanarayan, Tim
Kraska, Çagatay Demiralp, and César Hidalgo. Sherlock: A deep learning approach to seman-
tic data type detection. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1500–1508, 2019.

Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka, Tengfei Ma, Xiang Song, and
Wen-mei Hwu. Igb: Addressing the gaps in labeling, features, heterogeneity, and size of public
graph datasets for deep learning research. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 4284–4295, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Proceedings of
the 19th international conference on World wide web, pp. 571–580, 2010.

Meng-Chieh Lee, Haiyang Yu, Jian Zhang, Vassilis N. Ioannidis, Xiang song, Soji Adeshina,
Da Zheng, and Christos Faloutsos. Netinfof framework: Measuring and exploiting network us-
able information. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=KY8ZNcljVU.

Cheng-Te Li, Yu-Che Tsai, Chih-Yao Chen, and Jay Chiehen Liao. Graph neural networks for
tabular data learning: A survey with taxonomy and directions. arXiv preprint arXiv:2401.02143,
2024.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from data—a
review. IEEE Transactions on Knowledge and Data Engineering, 24(2):251–264, 2012. doi:
10.1109/TKDE.2010.197.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In International
Conference on Machine Learning, 2024. URL https://api.semanticscholar.org/
CorpusID:267412744.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=HhbqHBBrfZ.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pp. 25–1. PMLR, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings
15, pp. 593–607. Springer, 2018.

José Suárez-Varela, Paul Almasan, Miquel Ferriol-Galmés, Krzysztof Rusek, Fabien Geyer, Xiangle
Cheng, Xiang Shi, Shihan Xiao, Franco Scarselli, Albert Cabellos-Aparicio, et al. Graph neural
networks for communication networks: Context, use cases and opportunities. IEEE network, 37
(3):146–153, 2022.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment,
4(11):992–1003, 2011.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=KY8ZNcljVU
https://api.semanticscholar.org/CorpusID:267412744
https://api.semanticscholar.org/CorpusID:267412744
https://openreview.net/forum?id=HhbqHBBrfZ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jiliang Tang, Xia Hu, and Huan Liu. Social recommendation: a review. Social Network Analysis
and Mining, 3:1113–1133, 2013.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Streith-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024a.

Minjie Wang, Quan Gan, David Wipf, Zheng Zhang, Christos Faloutsos, Weinan Zhang, Muhan
Zhang, Zhenkun Cai, Jiahang Li, Zunyao Mao, Yakun Song, Jianheng Tang, Yanlin Zhang, Guang
Yang, Chuan Lei, Xiao Qin, Ning Li, Han Zhang, Yanbo Wang, and Zizhao Zhang. 4DBInfer:
A 4d benchmarking toolbox for graph-centric predictive modeling on RDBs. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024b.
URL https://openreview.net/forum?id=YXXmIHJQBN.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. A survey on hetero-
geneous graph embedding: methods, techniques, applications and sources. IEEE Transactions on
Big Data, 9(2):415–436, 2022.

Yanbang Wang and Jon Kleinberg. On the relationship between relevance and con-
flict in online social link recommendations. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 36708–36725. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
73d6c3e4b214deebbbf8256e26d2cf45-Paper-Conference.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Felix Wong, Erica J. Zheng, Jacqueline A. Valeri, Nina M. Donghia, Melis N. Anahtar, Sato-
taka Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, Abigail L. Man-
son, Jens Friedrichs, Ralf Helbig, Behnoush Hajian, Dawid K. Fiejtek, Florence F. Wagner,
Holly H. Soutter, Ashlee M. Earl, Jonathan M Stokes, L.D. Renner, and James J. Collins. Dis-
covery of a structural class of antibiotics with explainable deep learning. Nature, 2023. URL
https://api.semanticscholar.org/CorpusID:266431397.

Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrap-
olation: An inductive graph learning approach. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 19435–19447. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/a1c5aff9679455a233086e26b72b9a06-Paper.pdf.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network repre-
sentation learning: A unified framework with survey and benchmark. IEEE Transactions on
Knowledge and Data Engineering, 34(10):4854–4873, 2020.

Hong Yao and Howard J. Hamilton. Mining functional dependencies from data. Data Min. Knowl.
Discov., 16(2):197–219, April 2008. ISSN 1384-5810.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

14

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=YXXmIHJQBN
https://proceedings.neurips.cc/paper_files/paper/2023/file/73d6c3e4b214deebbbf8256e26d2cf45-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73d6c3e4b214deebbbf8256e26d2cf45-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:266431397
https://proceedings.neurips.cc/paper_files/paper/2021/file/a1c5aff9679455a233086e26b72b9a06-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a1c5aff9679455a233086e26b72b9a06-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for hetero-
geneous graphs. arXiv preprint arXiv:2011.09679, 2020.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b.
arXiv preprint arXiv:2406.07394, 2024a.

Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Shen Wang, Huzefa Rangwala, and
George Karypis. Nameguess: Column name expansion for tabular data. arXiv preprint
arXiv:2310.13196, 2023a.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023b.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking
data science agents. arXiv preprint arXiv:2402.17168, 2024b.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A
realistic web environment for building autonomous agents. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=oKn9c6ytLx.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

A MORE PRELIMINARIES

A.1 DATA TYPES

In this paper, we consider the following data types {category, numeric, text,
primary key(PK), foreign key (FK), set, timestamp}.

• category: A data type representing categorical values. For example, a column with three
possible values (“Book”, “Pen”, “Paper”) is of the category data type.

• numeric: A data type representing numerical values. This can include integers, floating-point
numbers, or decimals. For instance, a column storing ages or prices would typically be of the
numeric data type.

• text: A data type representing textual data. This can include strings of characters, sentences,
or even paragraphs. A column storing product descriptions or customer reviews would be of the
text data type.

• primary key (PK): A special type of column or a combination of columns that uniquely iden-
tifies each row in a table. It ensures data integrity and is often used to establish relationships
between tables.

• foreign key (FK): A column or a combination of columns in one table that refers to the
primary key in another table. It creates a link between the two tables, enabling data rela-
tionships and maintaining consistency.

• set: A data type representing a collection of values. It is often used to store multiple choices or
options associated with a particular record.

• timestamp: A data type representing time. It’s used to define the time-based neighbor sampler
and prevents data leakage.

A.2 EXAMPLES OF DATA FORMATS

We follow Wang et al. (2024b) to represent the table schema as a YAML-formatted configuration file.
An example is shown below. An example original schema plot is shown in Figure 3. The original

15

https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

schema only presents limited relations, which may result in an ineffective graph for downstream
tasks. Figure 4 shows an example of augmented relations schemas. With augmented tables including
Company, Brand, Category, Customer, and Chain, the resulting graphs will benefit downstream
tasks.

1 tables:
2 - name: History
3 source: data/history.pqt
4 format: parquet
5 columns:
6 - name: chain
7 dtype: category
8 - name: market
9 dtype: category

10 - name: offerdate
11 dtype: datetime
12 - name: id
13 dtype: primary_key
14 - name: repeater
15 dtype: category
16 - name: offer
17 dtype: foreign_key
18 link_to: Offer.offer
19 time_column: offerdate
20

History

- chain : VARCHAR

- market : VARCHAR

- offerdate : DATETIME

- id : CHAR(32)

- repeater : VARCHAR

- offer : CHAR(32)

Offer

- brand : VARCHAR

- category : VARCHAR

- company : VARCHAR

- offervalue : ARRAY

- quantity : ARRAY

- offer : CHAR(32)

+ offer
+ offer

Transaction

- brand : VARCHAR

- category : VARCHAR

- chain : VARCHAR

- company : VARCHAR

- date : DATETIME

- dept : VARCHAR

- productmeasure : VARCHAR

- productsize : ARRAY

- purchaseamount : ARRAY

- purchasequantity : ARRAY

- id : CHAR(32)

+ id+ id

Figure 3: The original schema for the dataset AVS

B DATASETS

Movielens is a collection of movie ratings and tag applications from MovieLens users. This
dataset is widely used for collaborative filtering and recommender system development. We adopt
the tabular version from the original website. Expert schema is designed by ourselves.

MAG is a heterogeneous graph dataset containing information about authors, papers, institutions,
and fields of study. We adopt the tabular version from Wang et al. (2024b) and generate the original
version by removing relations added by experts. Expert schemas are adapted from Wang et al.
(2024b).

AVS (Acquire Valued Shoppers) is a Kaggle dataset predicting whether a user will repurchase a
product based on history sessions. We adopt the original version from the website. Expert schemas
are adapted from Wang et al. (2024b).

IEEE-CIS is a Kaggle dataset predicting whether a transaction is fraudulent. We adopt the original
version from the website. Expert schema is designed by ourselves.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

History

- chain : CHAR(32)

- market : VARCHAR

- offerdate : DATETIME

- id : CHAR(32)

- offer : CHAR(32)

Offer

- brand : CHAR(32)

- category : CHAR(32)

- company : CHAR(32)

- offervalue : ARRAY

- quantity : ARRAY

- offer : CHAR(32)
+ offer

+ offer

Chain

- id : CHAR(32)+ id+ chain

Customer

- id : CHAR(32)

+ id

+ id

Brand

- id : CHAR(32)

+ id

+ brand

Category

- id : CHAR(32)

+ id

+ category

Company

- id : CHAR(32)

+ id
+ company

Transaction

- brand : CHAR(32)

- category : CHAR(32)

- chain : CHAR(32)

- company : CHAR(32)

- date : DATETIME

- dept : VARCHAR

- productmeasure : VARCHAR

- productsize : ARRAY

- purchaseamount : ARRAY

- purchasequantity : ARRAY

- id : CHAR(32)

+ id

+ chain

+ id

+ id

+ id

+ brand

+ id

+ category

+ id

+ company

Figure 4: The new schema for dataset AVS with augmented relations

Outbrain is a Kaggle dataset predicting which pieces of content its global base of users are likely
to click on. We adopt the original version from the website, with expert schemas are adapted from
Wang et al. (2024b).

Diginetica is a Codalab dataset for recommendation system. We adopt the original version from
the website and expert schema from Wang et al. (2024b).

Retailrocket is a Kaggle dataset for recommender system. We adopt the original version from
the website and expert schema from Wang et al. (2024b).

Stackexchange is a database from Stackexchange platform. We generate the original version by
appending augmentations and expert schema from Wang et al. (2024b).

C MORE RELATED WORKS

LLMs for automated data science. Our work is also related to applying LLMs to automated data
science. The core principle of these works lies in adopting the code generation capabilities of LLMs
to automatically generate code for data curation (Chen et al., 2023), data augmentation (Hollmann
et al., 2023), or working as a general interface for diverse data manipulation (Zhang et al., 2023b;
Hong et al., 2024; Hassan et al., 2023). Zhang et al. (2024b) proposes a benchmark to evaluate
the capabilities of LLMs in various data science scenarios. Compared to the methods adopted in
these works, AutoG adopts close-ended generation via function calling to ensure the correctness of
generation.

Learning on heterogeneous graphs Heterogeneous graphs featuring multiple node and edge types
naturally abstract relational database data. Learning representations within these graphs often rely
on meta-paths Yang et al. (2020), which transform heterogeneous relations into homogeneous sets.
Early methods focused on similarity measures derived from meta-paths Sun et al. (2011). With
the advent of Graph Neural Networks (GNNs), approaches like HAN (Wang et al., 2019) ex-
tract multiple homogeneous graphs based on meta-paths for individual encoding. MAGNN (Fu

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

et al., 2020) further accounts for the roles of intermediate nodes in meta-paths. Alternatively,
RGCN (Schlichtkrull et al., 2018) and G2S (Beck et al., 2018) emphasize relational graphs, where
edges carry rich semantic information.

D MORE DETAILS ON METHODS

D.1 PROMPT DESIGN

Our prompt design is demonstrated as below. The first part involves general task instruction.

1 Imagine you are an expert graph data scientist, and now you are expected
to construct graph schema based on the original inputs. You will be
given an original schema represented in the dictionary format:

2 <data>
3 1. dataset_name: name of the dataset
4 2. tables: meta data for list of tables, each one will present

following attributes
5 1. name: table name
6 2. source: source of the data, can either be a numpy .npz file or

a parquet file
7 3. columns: list of columns, each column will have following

attributes
8 1. name: column name
9 2. dtype: column type, can be either text, categorical, float

, primary_key, foreign_key, or multi_category.primary_key and
foreign_key are two special types of categorical columns, which
presents a structural relationship with other tables. Multi_category
means this column is of list type, and each row contains a list of
categorical values. dtype ’split’ is used to generate the training/
validation/test split. Don’t change this column. After a column is
set as primary_key or foreign_key, it should not be changed to other
types. However, you may remove the primary_key or add a primary key
from a table.

10 3. link_to (optional): if this column is a foreign key, point
to which primary key from which table

11 3. statistics of the table: statistics of the column value of tables.
These statistics can be used to help you determine the

characteristics of the columns. For example, if one categorical
column only contains one unique value, then creating a node type
based on this column can result in a super node, which is not ideal
for graph construction. You should also determine whether two columns
represent the same thing based on these statistics.

12 4. Dummy table is a special type of table. It’s not explicitly
defined with a table slot. It’s defined in other tables, such as {{"
name": "Country", "dtype": "foreign_key", "link_to": "Country.
CountryID"}}. In this case, "Country" is a dummy table, which is not
explicitly defined in the tables slot.

13 </data>
14 Here are the documents of the actions:
15
16 {actions}
17
18 What you need to do?
19 For each round, you need to consider the following things:
20 1. If there are any categorical columns that represent the same entities

but not yet related, for example, "User" and "Purchaser", the name
doesn’t need to be the same. In these cases, you need to use "
connect_two_columns" to connect them. You should carefully look at
the statistics of two columns to make decisions.

21 2. If there are any multi_category columns and you think that it’s better
to represent them with some structures, you need to expand them with
"explode_multi_category_column"

22 3. If you think in one single table, columns represent different entities
, then you may separate them using "generate_non_dummy_table". If you

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

think there are some relations, you may utilize them using "
generate_or_connect_dummy_table". You should consider whether
conducting this action based on whether the new relation will help
the corresponding downstream tasks.

23 4. If you want to convert a table representing node into edge, you may
utilize "remove_primary_key". When representing as node, the
categorical features will be used as feature, which may be suboptimal
. When representing as edge, they can be used as edges. For example,
when a table contains two foreign keys and one primary key, then it’s
possible that this primary key should be removed.

24 5. If you think there’s no more action need to be taken, just output <
selection> None </selection> and the process will terminate.

25
26 You also need to consider how to construct the graph, with two options to

choose from:
27 * r2n: Row2Node, each table will be converted to a node in the

constructed heterogeneous graph. You should adopt
28 this method if you think that every table should be converted to a node.
29 * r2ne: Row2Node with Edge, each table will be converted to a node or an

edge in the constructed heterogeneous graph.
30 Specifically, for a table with two foreign key columns and no primary key

column, it will be converted to an edge.
31 You should adopt this method if you think that some tables should be

converted to edges.
32
33 With these two heurisitcs, primary_key and foreign_key plays a crucial

role in constructing the graph structures. Tables with a primary_key
will be converted to a node in the graph. If you think one table
shouldn’t modeled as a node, then you should remove the primary key
using the actions.

34
35 Now, you need to select one action from the above list to perform, and

output your selection in the following format, first state your
thought similar to the examples shown. Then,

36
37 <selection>
38 {{Your selection here}}
39 </selection>
40
41 <parameters>
42 {{Parameters for the selected action}}
43 </parameters>
44 <construction>
45 {{Your selection here}}
46 </construction>
47
48
49 {example_prompt}
50 {example}
51
52 History Actions:
53 {history_actions}
54
55 <input>
56 <dataset_stats>
57 {stats}
58 </dataset_stats>
59 <task>
60 {task}
61 </task>
62 <schema>
63 {input_schema}
64 </schema>
65 </input>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The dataset statistics are as follows
1 Table: Paper
2 {
3 "Column": "PaperID",
4 "data type": "primary_key"
5 }
6 {
7 "Column": "Title",
8 "data type": "text",
9 "Number of unique values": 10000,

10 "Number of nan values": 0,
11 "Number of total values": 10000,
12 "Mode values": "Transformers",
13 "5 sampled values": [
14 "Transformers",
15 "Graph Neural Networks",
16 "Reinforcement Learning",
17 "Meta Learning",
18 "Computer Vision"
19]
20 }
21 {
22 "Column": "Authors",
23 "data type": "multi_category",
24 "Number of unique values": 987,
25 "Number of nan values": 0,
26 "Number of total values": 74320,
27 "Mode values": "Yann LeCun",
28 "5 sampled values": [
29 "Yann LeCun",
30 "Geoffrey Hinton",
31 "Yoshua Bengio",
32 "Fei-Fei Li",
33 "Jitendra Malik"
34]
35 }

Chain-of-thought demonstrations are as follows
1 An example will be as follows:
2 <input>
3 <dataset_stats>
4 Table: View
5 Number of primary key: 0\nNumber of foreign key: 1\n
6 {
7 "Column": "User",
8 "data type": "category",
9 "Number of unique values": 8932,

10 "Number of nan values": 0,
11 "Number of total values": 97422,
12 "Mode values": 414,
13 "5 sampled values": [
14 329,
15 414,
16 378,
17 421,
18 521
19]
20 }
21 {
22 "Column": "ItemID",
23 "data type": "foreign_key"
24 }
25 Table: Purchase
26 Number of primary key: 0\nNumber of foreign key: 1\n

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

27 {
28 "Column": "UserID",
29 "data type": "category",
30 "Number of unique values": 10245,
31 "Number of nan values": 0,
32 "Number of total values": 137422,
33 "Mode values": 414,
34 "5 sampled values": [
35 329,
36 414,
37 378,
38 421,
39 521
40]
41 }
42 {
43 "Column": "ItemID",
44 "data type": "foreign_key"
45 }
46 Table: Product
47 Number of primary key: 1\nNumber of foreign key: 0\n
48 {
49 "Column": "ItemID",
50 "data type": "primary_key"
51 }
52 {
53 "Column": "Price",
54 "data type": "float",
55 }
56 {
57 "Column": "Category",
58 "data type": "category",
59 "Number of unique values": 10,
60 "Number of nan values": 0,
61 "Number of total values": 128564,
62 "Mode values": 3,
63 "5 sampled values": [
64 3,
65 4,
66 1,
67 6,
68 9
69]
70
71 }
72
73 </dataset_stats>
74 <schema>
75 {
76 "dataset_name": "Sales",
77 "tables": [
78 {
79 "name": "View",
80 "source": "data/view.npz",
81 "columns": [
82 {"name": "User", "dtype": "category"},
83 {"name": "ItemID", "dtype": "foreign_key", "link_to":

"Product.ItemID"}
84]
85 },
86 {
87 "name": "Purchase",
88 "source": "data/purchase.npz",
89 "columns": [
90 {"name": "UserID", "dtype": "category"},

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

91 {"name": "ItemID", "dtype": "foreign_key", "link_to":
"Product.ItemID"}

92]
93 },
94 {
95 "name": "Product",
96 "source": "data/product.parquet",
97 "columns": [
98 {"name": "ItemID", "dtype": "primary_key"},
99 {"name": "Price", "dtype": "float"},

100 {"name": "Category", "dtype": "category"}
101]
102 }
103]
104 }
105 </schema>
106 <tasks>
107 Now I want to train a model which can predict the category of a

product based on the information in the product.
108 </tasks>
109 </input>
110
111
112
113 <output>
114 Let’s think of this problem step by step. The target is to predict

the category of a product. There are three tables "View", "Purchase"
and "Product". "View" has columns "User", "ItemID", "Purchase" has
columns "UserID" and "ItemID", "Product" has columns "ItemID", "Price
", and "Category".

115
116 I will first check whether there’s need to conduct

explode_multi_category_column, this action should be conducted when
there’s multi_category column and relations can be induced from this
column. However, there’s no multi_category column so we won’t do this
action.

117
118 I will then check whether there’s need to conduct remove_primary_key,

this action should be conducted when there’s a table representing an
edge has a primary key. From the statistics, tables have 1,1,0

foreign keys, no tables represent edges, so no need to execute this
action.

119
120 I will then check whether there’s need to conduct connect_two_columns

, this action should be conducted when there are two non PK/FK
columns representing the same entities. "View" table has a column "
User", "Purchase" has a similar column "UserID". If we have a closer
look, User’s sampled value is [329,414,378,421,521

121], while UserID’s sampled value is [329,414,378,421,521], both of them
should represent the ID of user, as a result, we should connect these
two columns.

122 <selection>
123 connect_two_columns
124 </selection>
125
126 <parameters>
127 "View", "UserID", "Purchase", "UserID", "User", "UserID"
128 </parameters>
129 </output>

D.2 HYPER-PARAMETER SELECTION

We follow the hyper-parameter setting of Wang et al. (2024b). However, Wang et al. (2024b) adopts
a non-discrete selection range for most training-related parameters. As a result, for parameters like

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

batch size. epochs, and fanouts, we adopt them from Wang et al. (2024b). For parameters like lr,
hidden size, dropout, we select them from the following range, where lr comes from {0.001, 0.005,
0.01}, hidden size comes from {64, 128, 256}, and dropout comes from {0.1, 0.5}.

D.3 MODEL ORACLES

Implementing an efficient oracle is an important part of ensuring AutoG’s efficiency. As far as we
know, Lee et al. (2024) is currently the only approach to estimate a model’s performance without
actually training the model. The core idea is to generate an embedding combined with structural
features and then calculate the entropy between concatenated features with labels (or pseudo labels
like clustering centers). When applied to link prediction tasks, it adopts the compatibility matrix
to deal with linear GNN’s ignorance of negative links. However, Lee et al. (2024) can only be
applied to a homogeneous graph. We try extending it to a heterogeneous graph similar to Wang
et al. (2019). However, it can only generate the embeddings for the center node type of the induced
multiplex graph, which can’t be applied to tasks like Movielens, Diginetica, and StackExchange.
Similar problems also apply to R-SGC (Yu et al., 2020).

We also explore the potential of the early-fusion model like DFS in Wang et al. (2024b). After
generating the relation-aware features, we may use an MLP as the backbone model. However,
we find that besides the long preprocessing time (on MAG, it takes nearly one hour), the training
efficiency of DFS+MLP is even worse than that of a normal R-SGC because of the size of the
induced features. As a result, we still adopt a regular GML model as the oracle. More complicated
oracle design is a future work of this paper.

D.4 INFERRING THE DATA TYPE OF INPUT SCHEMAS

Inferring the data type of each column is a necessary first step to convert the original Kaggle-like
data into the input data format we use. This paper assumes the original input data comprises some
pandas data frames. Specifically, we find that it’s trivial for LLMs to infer the data types based on
meta information like this. As a result, AutoG can be extended to cases where no metadata file is
given.

1 {
2 "Table": "Paper",
3 "Column": "paperID",
4 "Number of unique values": 736389,
5 "Number of total values": 736389,
6 "5 sampled values": [
7 0,
8 1,
9 2,

10 3,
11 4
12]
13 }
14 {
15 "Table": "Paper",
16 "Column": "label",
17 "Number of unique values": 349,
18 "Number of total values": 736389,
19 "5 sampled values": [
20 246,
21 131,
22 189,
23 131,
24 95
25]
26 }

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENTAL RESULTS

E.1 RESULTS OF R-GAT

Table 7: Quatitative comparison of different graph construction methods. R-GAT is adopted as the
backbone model.

Dataset Task XGBOOST DeepFM TabGNN Original schema JTD schema AutoG Expert
N/A N/A TabGNN R2N R2NE R2N R2NE AutoG Expert

Datasets with single downstream task

IEEE-CIS Fraud (AUC) 90.14 90.28 74.65 87.23 87.23 87.23 87.23 90.25 89.34

RetailRocket CVR(AUC) 50.35 49.33 81.92 50.13 49.45 50.63 48.94 82.45 82.84

Movielens Ratings(AUC) 53.62 50.93 54.78 56.42 55.94 54.06 62.98 64.47 64.47

Outbrain Ratings(AUC) 50.05 51.09 62.44 49.49 52.54 49.52 52.73 61.57 63.08

AVS Repeat (AUC) 52.71 52.88 55.18 47.88 48.08 54.02 54.02 54.35 55.27

Datasets with multiple downstream tasks

MAG
Venue (Acc) 21.95 28.19 44.39 26.54 47.98 22.34 47.65 51.08 51.19

Citation (MRR) 3.29 45.06 70.92 68.23 68.23 71.45 80.65 80.09 79.45

Year (Acc) 28.09 28.42 54.27 54.32 31.25 54.18 54.18 56.12 35.23

Dignetica CTR (AUC) 53.50 50.57 50.15 68.65 66.82 49.95 50.00 71.92 73.60

Purchase (MRR) 3.16 5.02 4.98 5.60 7.65 11.37 15.47 36.08 37.42

Stackexchange Churn(AUC) 58.20 59.84 78.04 74.27 75.89 85.43 84.22 86.08 86.45

Upvote(AUC) 86.69 87.64 85.96 89.02 88.34 88.53 68.32 88.43 88.53

E.2 EXAMPLES OF ERRORS FOR SCHEMA GENERATION AND CODE GENERATION

In this section, we demonstrate some cases in AutoG-S, the variant of AutoG that adopts open-
ended generation to produce invalid schemas. For example, when we require LLMs to generate the
augmentation code for Movielens, it makes the following mistakes.

1 tags_df = tags_df.drop(columns=["tag"]) ## This column has already been
deleted

2 tags_df = tags_df.merge(tag_df[["tagID", "tag"]], how="left", on="tag")
3 tags_df.to_parquet("datasets/movielens/data/tags.pqt")

It will repeatedly remove the column. For more complicated cases like Diginetica and StackEx-
change, the open-ended generation results in even more errors. These kind of errors can not be
easily fixed by prompt engineering and self-correction. As a result, we decide to use close-ended
generation in a function-calling manner.

E.3 DESIGN OF SCHEMAS

This section details the original and expert schema design for each dataset we propose.

E.3.1 IEEE-CIS

The original schema is adopted from the original Kaggle website. For expert schema,
we find that the schema from https://aws.amazon.com/blogs/database/
build-a-real-time-fraud-detection-solution-using-amazon-neptune-ml/
underperforms. We filter the relations and generate the following expert schemas.

E.3.2 RETAILROCKET

The original schema is adapted from Kaggle’s version. We preprocess the “event” table into three
separate tables based on categorical values. The expert one is taken from Wang et al. (2024b).

24

https://aws.amazon.com/blogs/database/build-a-real-time-fraud-detection-solution-using-amazon-neptune-ml/
https://aws.amazon.com/blogs/database/build-a-real-time-fraud-detection-solution-using-amazon-neptune-ml/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Transaction

- ProductCode : VARCHAR

- card_meta_info_1 : VARCHAR

- card_meta_info_2 : VARCHAR

- card_meta_info_3 : VARCHAR

- card_meta_info_4 : VARCHAR

- card_meta_info_5 : VARCHAR

- card_meta_info_6 : VARCHAR

- purchaser billing region : VARCHAR

- purchaser billing country : VARCHAR

- purchaser email domain : VARCHAR

- recipient email domain : VARCHAR

- match_1 : VARCHAR

- match_2 : VARCHAR

- match_3 : VARCHAR

- match_4 : VARCHAR

- match_5 : VARCHAR

- match_6 : VARCHAR

- match_7 : VARCHAR

- match_8 : VARCHAR

- match_9 : VARCHAR

- TransactionID : CHAR(32)

- isFraud : VARCHAR

- TransactionAmt : ARRAY

- distance : ARRAY

- payment_card_related_counting : ARRAY

- timedelta : ARRAY

- vesta_features : ARRAY

Identity

- identity_12_info : VARCHAR

- identity_13_info : VARCHAR

- identity_14_info : VARCHAR

- identity_15_info : VARCHAR

- identity_16_info : VARCHAR

- identity_17_info : VARCHAR

- identity_18_info : VARCHAR

- identity_19_info : VARCHAR

- identity_20_info : VARCHAR

- identity_21_info : VARCHAR

- identity_22_info : VARCHAR

- identity_23_info : VARCHAR

- identity_24_info : VARCHAR

- identity_25_info : VARCHAR

- identity_26_info : VARCHAR

- identity_27_info : VARCHAR

- identity_28_info : VARCHAR

- identity_29_info : VARCHAR

- identity_30_info : VARCHAR

- identity_31_info : VARCHAR

- identity_32_info : VARCHAR

- identity_33_info : VARCHAR

- identity_34_info : VARCHAR

- identity_35_info : VARCHAR

- identity_36_info : VARCHAR

- identity_37_info : VARCHAR

- identity_38_info : VARCHAR

- DeviceType : VARCHAR

- DeviceInfo : VARCHAR

- TransactionID : CHAR(32)

- id_related_features : ARRAY

+ TransactionID
+ TransactionID

Figure 5: Schema for the original IEEE-CIS
dataset

Transaction

- ProductCode : VARCHAR

- card_meta_info_1 : VARCHAR

- card_meta_info_2 : VARCHAR

- card_meta_info_3 : VARCHAR

- card_meta_info_4 : VARCHAR

- card_meta_info_5 : VARCHAR

- card_meta_info_6 : VARCHAR

- purchaser billing region : CHAR(32)

- purchaser billing country : CHAR(32)

- purchaser email domain : VARCHAR

- recipient email domain : VARCHAR

- match_1 : VARCHAR

- match_2 : VARCHAR

- match_3 : VARCHAR

- match_4 : VARCHAR

- match_5 : VARCHAR

- match_6 : VARCHAR

- match_7 : VARCHAR

- match_8 : VARCHAR

- match_9 : VARCHAR

- TransactionID : CHAR(32)

- isFraud : VARCHAR

- TransactionAmt : ARRAY

- distance : ARRAY

- payment_card_related_counting : ARRAY

- timedelta : ARRAY

- vesta_features : ARRAY

Region

- RegionID : CHAR(32)+ RegionID

+ purchaser billing region

Country

- CountryID : CHAR(32)

+ CountryID

+ purchaser billing country

Identity

- identity_12_info : VARCHAR

- identity_13_info : VARCHAR

- identity_14_info : VARCHAR

- identity_15_info : VARCHAR

- identity_16_info : VARCHAR

- identity_17_info : VARCHAR

- identity_18_info : VARCHAR

- identity_19_info : VARCHAR

- identity_20_info : VARCHAR

- identity_21_info : VARCHAR

- identity_22_info : VARCHAR

- identity_23_info : VARCHAR

- identity_24_info : VARCHAR

- identity_25_info : VARCHAR

- identity_26_info : VARCHAR

- identity_27_info : VARCHAR

- identity_28_info : VARCHAR

- identity_29_info : VARCHAR

- identity_30_info : VARCHAR

- identity_31_info : VARCHAR

- identity_32_info : VARCHAR

- identity_33_info : VARCHAR

- identity_34_info : VARCHAR

- identity_35_info : VARCHAR

- identity_36_info : VARCHAR

- identity_37_info : VARCHAR

- identity_38_info : VARCHAR

- DeviceType : VARCHAR

- DeviceInfo : VARCHAR

- TransactionID : CHAR(32)

- id_related_features : ARRAY

+ TransactionID
+ TransactionID

Figure 6: Schema for the expert IEEE-CIS
dataset

View

- cvrID : CHAR(32)

- itemid : CHAR(32)

- visitorid : VARCHAR

- added_to_cart : VARCHAR

- timestamp : DATETIME

Item

- itemid : CHAR(32)

+ itemid
+ itemid

Category

- categoryid : CHAR(32)

- parentid : CHAR(32)

+ categoryid+ parentid

ItemAvailability

- itemid : VARCHAR

- available : ARRAY

- timestamp : DATETIME

ItemCategory

- itemid : VARCHAR

- category : CHAR(32)

- timestamp : DATETIME

+ categoryid
+ category

ItemProperty

- itemid : VARCHAR

- property : VARCHAR

- value : VARCHAR

- timestamp : DATETIME

Figure 7: Schema for the original Retail-
Rocket dataset

View

- itemid : CHAR(32)

- visitorid : CHAR(32)

- added_to_cart : VARCHAR

- timestamp : DATETIME

Item

- itemid : CHAR(32)

+ itemid

+ itemid

Visitor

- id : CHAR(32)

+ id
+ visitorid

Category

- categoryid : CHAR(32)

- parentid : CHAR(32)

+ categoryid+ parentid

ItemAvailability

- itemid : CHAR(32)

- available : ARRAY

- timestamp : DATETIME

+ itemid

+ itemid

ItemCategory

- itemid : CHAR(32)

- category : CHAR(32)

- timestamp : DATETIME

+ categoryid
+ category

+ itemid

+ itemid

ItemProperty

- itemid : CHAR(32)

- property : VARCHAR

- value : VARCHAR

- timestamp : DATETIME

+ itemid

+ itemid

Figure 8: Schema for the expert RetailRocket
dataset

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.3.3 MOVIELENS

The original schema is the original format from https://movielens.org/. The expert
schema is inspired by Pyg’s Movielens dataset version https://pytorch-geometric.
readthedocs.io/en/latest/generated/torch_geometric.datasets.
MovieLens.html#torch_geometric.datasets.MovieLens.

Movies

- movieID : CHAR(32)

- title : VARCHAR

- genres : VARCHAR

Ratings

- ratingID : CHAR(32)

- userID : VARCHAR

- movieID : CHAR(32)

- rating : VARCHAR

- timestamp : DATETIME
+ movieID

+ movieID

Tags

- userID : VARCHAR

- movieID : CHAR(32)

- tag : VARCHAR

- timestamp : DATETIME

+ movieID

+ movieID

Figure 9: Schema for the original Movielens
dataset

Movies

- movieID : CHAR(32)

- title : VARCHAR

Ratings

- userNum : VARCHAR

- movieID : CHAR(32)

- rating : VARCHAR

- timestamp : DATETIME

- ratingID : CHAR(32)

+ movieID

+ movieID

Tags

- user : VARCHAR

- movieID : CHAR(32)

- tag : VARCHAR

- timestamp : DATETIME

+ movieID
+ movieID

Genre

- movieID : CHAR(32)

- genre_name : CHAR(32)

+ movieID

+ movieID

genre_name

- genre_nameID : CHAR(32)

+ genre_nameID
+ genre_name

Figure 10: Schema for the expert Movielens
dataset

E.3.4 OUTBRAIN

The original schema is the original format from the Kaggle website. The expert schema is from
Wang et al. (2024b).

Event

- display_id : CHAR(32)

- uuid : VARCHAR

- document_id : CHAR(32)

- platform : VARCHAR

- timestamp : DATETIME

- geo_location : VARCHAR

DocumentsMeta

- document_id : CHAR(32)

- source_id : VARCHAR

- publisher_id : VARCHAR

- publish_time : DATETIME

+ document_id

+ document_id

Pageview

- uuid : VARCHAR

- document_id : CHAR(32)

- timestamp : DATETIME

- platform : VARCHAR

- geo_location : VARCHAR

- traffic_source : VARCHAR

+ document_id

+ document_id

Click

- clickID : VARCHAR

- display_id : CHAR(32)

- ad_id : CHAR(32)

- clicked : VARCHAR

- timestamp : DATETIME

+ display_id

+ display_id

PromotedContent

- ad_id : CHAR(32)

- document_id : CHAR(32)

- campaign_id : VARCHAR

- advertiser_id : VARCHAR

+ ad_id

+ ad_id

+ document_id
+ document_id

DocumentsTopic

- document_id : CHAR(32)

- topic_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsCategory

- document_id : CHAR(32)

- category_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsEntity

- document_id : CHAR(32)

- entity_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

Figure 11: Schema for the original Outbrain
dataset

Event

- display_id : CHAR(32)

- uuid : CHAR(32)

- document_id : CHAR(32)

- platform : VARCHAR

- timestamp : DATETIME

- geo_location : VARCHAR

DocumentsMeta

- document_id : CHAR(32)

- source_id : VARCHAR

- publisher_id : VARCHAR

- publish_time : DATETIME

+ document_id

+ document_id User

- uuid : CHAR(32)

+ uuid

+ uuid

Pageview

- uuid : CHAR(32)

- document_id : CHAR(32)

- timestamp : DATETIME

- platform : VARCHAR

- geo_location : VARCHAR

- traffic_source : VARCHAR

+ document_id

+ document_id

+ uuid

+ uuid

Click

- display_id : CHAR(32)

- ad_id : CHAR(32)

- clicked : VARCHAR

- timestamp : DATETIME

+ display_id

+ display_id

PromotedContent

- ad_id : CHAR(32)

- document_id : CHAR(32)

- campaign_id : VARCHAR

- advertiser_id : VARCHAR

+ ad_id

+ ad_id

+ document_id

+ document_id

DocumentsTopic

- document_id : CHAR(32)

- topic_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

DocumentsCategory

- document_id : CHAR(32)

- category_id : VARCHAR

- confidence_level : ARRAY
+ document_id

+ document_id

DocumentsEntity

- document_id : CHAR(32)

- entity_id : VARCHAR

- confidence_level : ARRAY

+ document_id

+ document_id

Figure 12: Schema for the expert Outbrain
dataset

E.3.5 AVS

We have shown the schema for AVS in Appendix A.2.

26

https://movielens.org/
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.MovieLens.html#torch_geometric.datasets.MovieLens
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.MovieLens.html#torch_geometric.datasets.MovieLens
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.MovieLens.html#torch_geometric.datasets.MovieLens

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.3.6 MAG

The original schema is induced from the ogb version (Hu et al., 2020). The expert schema is from
Wang et al. (2024b).

Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

Cites

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited+ paperID
+ paper_cite

HasTopic

- field_of_study : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

AffiliatedWith

- author : VARCHAR

- institution : VARCHAR

Writes

- author : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

Figure 13: Schema for the original MAG
dataset

Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

Cites

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited

+ paperID
+ paper_cite

HasTopic

- field_of_study : CHAR(32)

- paper : CHAR(32)

+ paperID

+ paper

FieldOfStudy

- id : CHAR(32)

+ id
+ field_of_study

AffiliatedWith

- author : CHAR(32)

- institution : CHAR(32)

Author

- id : CHAR(32)

+ id

+ author

Institution

- id : CHAR(32)

+ id
+ institution

Writes

- author : CHAR(32)

- paper : CHAR(32)

+ paperID

+ paper

+ id+ author

Figure 14: Schema for the expert MAG
dataset

E.3.7 DIGINETICA

The original schema is induced from the Codalab version https://competitions.
codalab.org/competitions/11161. The expert schema is from Wang et al. (2024b).

QueryResult

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

Query

- queryId : CHAR(32)

- sessionId : VARCHAR

- userId : VARCHAR

- duration : ARRAY

- categoryId : VARCHAR

- timestamp : DATETIME+ queryId

+ queryId

Product

- itemId : CHAR(32)

- categoryId : VARCHAR

- pricelog2 : ARRAY

- name_tokens : VARCHAR

+ itemId

+ itemId

Click

- ClickID : VARCHAR

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ queryId
+ queryId

+ itemId

+ itemId

View

- sessionId : VARCHAR

- userId : VARCHAR

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Purchase

- purchaseID : VARCHAR

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- ordernumber : VARCHAR

- timestamp : DATETIME

+ itemId

+ itemId
Session

- sessionId : CHAR(32)
+ sessionId
+ sessionId

User

- id : CHAR(32)
+ id

+ userId

QuerySearchstringToken

- queryId : CHAR(32)

- token : VARCHAR

+ queryId

+ queryId

Figure 15: Schema for the original Diginet-
ica dataset

Product

- itemId : CHAR(32)

- categoryId : VARCHAR

- pricelog2 : ARRAY

Click

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Query

- queryId : CHAR(32)

- sessionId : CHAR(32)

- userId : CHAR(32)

- duration : ARRAY

- categoryId : VARCHAR

- timestamp : DATETIME
+ queryId

+ queryId

QueryResult

- queryId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

+ queryId

+ queryId

View

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

Session

- id : CHAR(32)+ id

+ sessionId

User

- id : CHAR(32)
+ id

+ userId

Purchase

- sessionId : CHAR(32)

- userId : CHAR(32)

- itemId : CHAR(32)

- ordernumber : CHAR(32)

- timestamp : DATETIME

+ itemId

+ itemId

+ id

+ sessionId
+ id

+ userId

Orders

- id : CHAR(32)

+ id
+ ordernumber

+ id

+ sessionId

+ id

+ userId

ProductNameToken

- itemId : CHAR(32)

- token : CHAR(32)

+ itemId

+ itemId

Token

- id : CHAR(32)+ id

+ token

QuerySearchstringToken

- queryId : CHAR(32)

- token : CHAR(32)

+ queryId

+ queryId

+ id

+ token

Figure 16: Schema for the expert Diginetica
dataset

27

https://competitions.codalab.org/competitions/11161
https://competitions.codalab.org/competitions/11161

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.3.8 STACKEXCHANGE

Since the schema given in Wang et al. (2024b) is already a good graph schema. For this dataset,
we construct the original schema by using the following back-augmentation: 1. Remove the userid
relationship of Badges table, and add a multi category column “Badges” to the user table. 2. Remove
the Userid relationship of postHistory and Vote table, and add a new column “UserName” with
no explicit relationships. 3. Remove the Userid relationship of Comments table, and add a new
categorical type “CommentedUserId”.

Badges

- Id : CHAR(32)

- Class : VARCHAR

- Date : DATETIME

- Name : VARCHAR

- TagBased : VARCHAR

Comments

- Id : CHAR(32)

- CreationDate : DATETIME

- Text : VARCHAR

- PostId : CHAR(32)

- CommentedUserId : VARCHAR

Posts

- Id : CHAR(32)

- Body : VARCHAR

- CreationDate : DATETIME

- PostTypeId : VARCHAR

- Title : VARCHAR

- AcceptedAnswerId : VARCHAR

- LastEditorUserId : CHAR(32)

- OwnerUserId : CHAR(32)

- ParentId : CHAR(32)

+ Id

+ PostId

PostHistory

- Id : CHAR(32)

- Comment : VARCHAR

- CreationDate : DATETIME

- PostHistoryTypeId : VARCHAR

- Text : VARCHAR

- PostId : CHAR(32)

- UserName : VARCHAR

+ Id

+ PostId

PostLink

- Id : CHAR(32)

- CreationDate : DATETIME

- LinkTypeId : VARCHAR

- PostId : CHAR(32)

- RelatedPostId : CHAR(32) + Id
+ RelatedPostId

+ Id+ PostId

PostTag

- PostId : CHAR(32)

- TagId : CHAR(32)

+ Id

+ PostId

Tag

- Id : CHAR(32)

- TagName : VARCHAR

- ExcerptPostId : CHAR(32)

- WikiPostId : CHAR(32)

+ Id

+ TagId

+ Id+ ParentId

Users

- Id : CHAR(32)

- AboutMe : VARCHAR

- CreationDate : DATETIME

- Location : VARCHAR

- Badges : VARCHAR

+ Id
+ OwnerUserId

+ Id
+ LastEditorUserId

+ Id

+ ExcerptPostId

+ Id

+ WikiPostId

Vote

- Id : CHAR(32)

- BountyAmount : VARCHAR

- CreationDate : DATETIME

- VoteTypeId : VARCHAR

- PostId : CHAR(32)

- Username : VARCHAR

+ Id

+ PostId

Figure 17: Schema for the original Stackex-
change dataset

Badges

- Id : CHAR(32)

- Class : VARCHAR

- Date : DATETIME

- Name : VARCHAR

- TagBased : VARCHAR

- UserId : CHAR(32)

Users

- Id : CHAR(32)

- AboutMe : VARCHAR

- CreationDate : DATETIME

- Location : VARCHAR

+ Id

+ UserId

Comments

- Id : CHAR(32)

- CreationDate : DATETIME

- Text : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

Posts

- Id : CHAR(32)

- Body : VARCHAR

- CreationDate : DATETIME

- PostTypeId : VARCHAR

- Title : VARCHAR

- AcceptedAnswerId : CHAR(32)

- LastEditorUserId : CHAR(32)

- OwnerUserId : CHAR(32)

- ParentId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

PostHistory

- Id : CHAR(32)

- Comment : VARCHAR

- CreationDate : DATETIME

- PostHistoryTypeId : VARCHAR

- Text : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

PostLink

- Id : CHAR(32)

- CreationDate : DATETIME

- LinkTypeId : VARCHAR

- PostId : CHAR(32)

- RelatedPostId : CHAR(32)

+ Id
+ PostId

+ Id+ RelatedPostId

PostTag

- PostId : CHAR(32)

- TagId : CHAR(32)

+ Id

+ PostId

Tag

- Id : CHAR(32)

- TagName : VARCHAR

- ExcerptPostId : CHAR(32)

- WikiPostId : CHAR(32)

+ Id
+ TagId

+ Id+ ParentId + Id+ AcceptedAnswerId

+ Id

+ OwnerUserId

+ Id

+ LastEditorUserId

+ Id

+ WikiPostId

+ Id

+ ExcerptPostId

Vote

- Id : CHAR(32)

- BountyAmount : VARCHAR

- CreationDate : DATETIME

- VoteTypeId : VARCHAR

- PostId : CHAR(32)

- UserId : CHAR(32)

+ Id

+ PostId

+ Id

+ UserId

Figure 18: Schema for the expert Stackex-
change dataset

E.4 DESIGN OF SYNTHETIC DATASETS

The schema we design for Section 5.3.3 are shown in Figure 19 and Figure 20.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Paper

- feat : ARRAY

- label : VARCHAR

- paperID : CHAR(32)

- year : VARCHAR

- LeadInstitution : VARCHAR

- PaperTopic : VARCHAR

- TopicDescription : VARCHAR

Institution

- ID : CHAR(32)

- Name : VARCHAR

- location : VARCHAR

- industry : VARCHAR

Cites

- citationID : CHAR(32)

- paper_cite : CHAR(32)

- paper_cited : CHAR(32)

+ paperID
+ paper_cited+ paperID
+ paper_cite

HasTopic

- field_of_study : VARCHAR

- paper : CHAR(32)

+ paperID
+ paper

AffiliatedWith

- affiID : CHAR(32)

- author : VARCHAR

- institution : VARCHAR

Writes

- authorName : VARCHAR

- paper : CHAR(32)

+ paperID

+ paper

Interests

- author : VARCHAR

- interestedTopic : VARCHAR

Figure 19: Schema for augmented MAG
dataset

Xk9fR

- uzY3q : ARRAY

- bH5wJ : VARCHAR

- Xk9fR_ID : CHAR(32)

- kT2yC : VARCHAR

- P8mZx : VARCHAR

- L1aE7 : VARCHAR

- N6tKp : VARCHAR

Q0dF1

- Q0dF1_ID : CHAR(32)

- W3cB9 : VARCHAR

- Y5hM2 : VARCHAR

- A7jD4 : VARCHAR

U9gS6

- U9gS6_ID : CHAR(32)

- I1nR8 : CHAR(32)

- O3bV0 : CHAR(32)

+ Xk9fR_ID
+ I1nR8

+ Xk9fR_ID+ O3bV0

E5mK7

- C7tH9 : VARCHAR

- F9wL1 : CHAR(32)

+ Xk9fR_ID

+ F9wL1

Zt7Lq

- Zt7Lq_ID : CHAR(32)

- mR9Kf : VARCHAR

- pX2Hd : VARCHAR

nB5Vj

- cE8Wg : VARCHAR

- yS1Tm : CHAR(32)

+ Xk9fR_ID

+ yS1Tm

hF4Np

- aU6Yk : VARCHAR

- iM3Qr : VARCHAR

Figure 20: Schema for anonymous aug-
mented MAG dataset

29

	Introduction
	Preliminaries
	tabular data and schemas
	Bridging tabular data and graphs

	Benchmarks
	Design space of the benchmark
	Datasets

	Method
	AutoG: An LLM-based graph construction framework
	Guided generation with Chain-of-augmentation
	Designing oracle to generate feedback
	Candidate and result generation

	Experimental Results
	Experimental settings
	Quantitative evaluation
	In-depth analysis
	AutoG Variants Studies
	Influence of LLMs
	Working mechanism of AutoG

	Related Works
	Conclusion
	Reproducibility Statements
	More preliminaries
	Data types
	Examples of data formats

	Datasets
	More Related Works
	More details on methods
	Prompt design
	Hyper-parameter selection
	Model oracles
	Inferring the data type of input schemas

	More experimental results
	Results of R-GAT
	Examples of errors for schema generation and code generation
	Design of schemas
	IEEE-CIS
	RetailRocket
	Movielens
	Outbrain
	AVS
	MAG
	Diginetica
	Stackexchange

	Design of synthetic datasets

