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Abstract

Two narratives about machine learning ecosystems grew out of the recent algo-
rithmic fairness discourse. In one, dubbed monoculture, algorithmic ecosystems
tend toward homogeneity akin to a single model making all decisions. Individuals
then face the risk of systematic exclusion with no recourse. In the other, model
multiplicity, many models solve the same task with similar accuracy, causing
excessive variation in individual outcomes. Both narratives are compelling, yet,
seemingly at odds: model multiplicity can’t materialize in a strict monoculture. In
this work, we conduct a comprehensive empirical evaluation to test both claims. We
work from the premise that increasingly decision makers will use large language
models for consequential prediction tasks. We therefore examine 50 language
models, open source models ranging in size from 1B to 141B parameters and
state-of-the-art commercial models, under 4 different prompt variations, and across
6 different prediction tasks. Evaluating both new and old quantitative measures of
monoculture and multiplicity, we find the empirical landscape sits between the two
extremes. Each narrative finds some empirical support, but neither tightly fits the
observations. Systematic exclusion with no recourse is rare, but model similarity
is real. Even when starting from a single model, prompt variation induces some
diversity in predictions. Our results contribute empirical insights that illuminate
the underappreciated middle ground between monoculture and multiplicity.

1 Introduction

Bureaucratic decisions have always provoked two distinct anxieties. One is the fear of systematic
exclusion with no recourse, discretion, or alternatives [Weber, 2019, Merton, [1940, [Eubanks|, [2019].
The other is a fear of haphazard, inconsistent, and arbitrary decisions [Lipsky} 1980, [Pasquale, [2016].
In one case decision making is too rigid, in the other it is too loose.

These concerns extend to algorithmic ecosystems—networks of multiple institutions that each use
algorithms for consequential decisions about individuals. In this context, the two fears map onto a
growing academic discourse about algorithmic monoculture and model multiplicity. In a monoculture,
the algorithmic ecosystem collapses to a single rule leading to homogeneous outcomes and reduced
welfare [Creel and Hellman, 2021} |Kleinberg and Raghavan| [2021, Bommasani et al., 2022]. In
contrast, model multiplicity proliferates the algorithmic ecosystem with inconsistent outcomes
[Breimanl 2001, Marx et al.,2020]]. Both narratives issue compelling warnings of what society might
face, but there is apparent tension between the two. One problem, if severe enough, is an antidote to
the other [Black et al.l [2022] |Ganesh et al., [2025| |Gur-Arieh and Lee, [2025]].

In this work, we systematically study the degree to which either narrative fits the empirical landscape.
In doing so, we anticipate a near future where decision makers prompt large language models for
risk assessments and predictions about individuals. Traditionally, institutions have procured special-
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Figure 1: Left. Schematic of our setup. We empirically measure the degree of multiplicity and
monoculture present in recent large language models. We zero-shot models and select those with
accuracy within € = 0.05 of the best. Middle. Agreement curve for ACSIncome: x% of model
pairs agree on at most y% of the positive instances. Observed agreement (blue) is higher than under
random errors (orange) and random predictions (dashed gray), but well below strict monoculture
(red). Right. Recourse curve for ACSIncome: x% of positive instances are accepted by at most y%
of models; e.g., 20% of instances are accepted by at most 50% of models. Under strict monoculture
(red, dotted) all models collapse to one, so individuals are either accepted or rejected by all; the
accepted fraction equals to the model’s true positive rate (here: mean TPR). The y-axis bar plot shows
the distribution of recourse levels.

purpose predictive models for consequential decisions—primarily, regression models trained on
task-specific tabular records. Pre-trained language models promise a tempting alternative: these
models work with any data encoding and flexibly solve numerous tasks, thus mitigating inefficiencies
in the old machine learning pipeline.

How the use of large language models influences the situation, however, is neither obvious nor has it
been studied systematically to date. Large language models share overlapping training data—much
of the accessible internet—and there are relatively few model providers due to excessive training
costs. These factors seem to promote monoculture. On the other hand, much research on evaluation
points to the inconsistencies and instabilities of answers generated from large language models.

We broadly evaluate 50 large language models across seven prediction tasks and under different
prompting strategies. What emerges is a rich empirical landscape that defies either of the two
narratives. Language models show significant variation in their predictions, largely contradicting the
idea of a monoculture. When rejected by one model, individuals consistently find recourse in other
models. At the same time, model similarity is real and model errors are far from independent. To the
extent that model multiplicity occurs, however, its presence isn’t strong enough to fully mitigate the
problem of systematic exclusion for a non-negligible fraction of the population. Our findings point at
the unglamorous middle ground between monoculture and multiplicity as the most likely place for
algorithmic ecosystems to end up in.

1.1 Our contributions

We empirically measure the degree of multiplicity and monoculture present in recent large language
models under zero- and few-shot prompting. We evaluate 50 large language models, both open source
models ranging in size from 1B to 141B parameters and state-of-the-art commercial model, across 7
standard prediction tasks, six based on U.S. Census Data and one from the medical domain.

Models share inductive biases. We evaluate the extent to which different models agree in their
predictions under identical zero-shot prompts, focusing on the Rashomon set—models achieving
accuracy near the best (Figure[T] left panel). We consider two extremes: Under strong multiplicity,
all models err randomly. For instance, two models with 80% accuracy would agree in 68% of
their predictions if errors were randomly located. Higher agreement rates indicate model similarity.
Under strict monoculture, agreement rates approach 100%. Figure |1 (middle panel) shows that the



empirically observed agreement lies solidly between the two extremes, far from monoculture, but
also far from strong multiplicity.

Individuals generally have high recourse. We define the recourse level of an individual with
respect to a model set as the fraction of models that accept that individual, capturing the number of
ways they have in finding a positive prediction within the model ecosystem. We focus on positive
instances, i.e., those individuals that should be accepted. Figure[I|(right panel) shows the recourse
curve, corresponding to the recourse level for each population quantile. For example, 7% are wrongly
rejected by all models, thus having no recourse, while 51% are correctly accepted by all models.
Recourse is generally high with 79% of positive instances accepted by at least half the models. The
observed recourse curve is far from what it would look like under either monoculture or multiplicity.

Prompt variation provides recourse even in a single model. Previously, we gave different models
identical prompts. In reality, it is extremely unlikely that two institutions would prompt models in
exactly the same way. Different institutions likely use different data encodings or follow different
practices. We consider only minor prompt variations including changes in feature order, granularity,
and formatting. Even these minor variations provide recourse levels that rule out monoculture.

All findings are robust to few-shot prompting. We repeat our analysis under 10-shot prompting.
Few-shot prompting generally improves accuracy. However, the results about model agreement and
individual recourse are consistent and suggest the same conclusions.

Summary. Our evaluation suggests that neither monoculture nor multiplicity tightly fits the empiri-
cal observations. Recourse levels are far from perfect, but sufficiently high to rule out monoculture.
This is true even though our setup favors monoculture: we evaluate similar language models under
identical use or minor prompt variations. Model multiplicity is a real phenomenon, but models
nevertheless share strong inductive biases. Their predictions exhibit high agreement rates, well above
those we’d see under randomly located errors.

1.2 Related Work

The study of model multiplicity and the notion of the Rashomon set go back to |[Breiman|[2001]]. In
recent years, this phenomenon has again gained traction [Black et al.l 2022} |Creel and Hellman, [2021}
D’ Amour et al.| 2020} Jain et al., 2024]. Much prior research examined multiplicity in traditional
models such as of regression, linear classification, tree-based models, and small neural networks
in controlled settings [Marx et al., [2020, Bommasani et al., 2022} Semenova et al., 2022} (Castillo
et al.| 2008, [Hsu and Calmon), 2022| Hsu et al.,2024]]. By systematically varying either training data
or hyperparameters, these studies examine the effects that different training practices have on the
Rashomon set. To address the concerns of arbitrariness and justifiability, other lines of work either
mitigate multiplicity by aggregating models from the Rashomon set [Black et al.,[2021} 2022} |Cooper
et al.,[2024, Roth et al., 2023} Behzad et al.,|2025] or leverage it to incorporate additional selection
criteria [Semenova et al., 2022, (Coston et al., 2021, [Black et al., [2024].

Creel and Hellman|[2021]] argue that monopolistic power of few companies may lead to algorithmic
leviathans, resulting in arbitrary decisions deployed at scale. They propose to intentionally introduce
variance to the model, that is, to counteract monoculture by intentionally introducing multiplicity.
Kleinberg and Raghavan| [2021]] coin the term algorithmic monoculture and provide a theoretical
model where it can occur. Other theoretical models explore the relationship of competition and
monoculture [Jagadeesan et al.|[2023| Raghavan| [2024]. Black et al.|[2022] argue that multiplicity can
be a bulwark against monoculture, providing opportunities to choose the model that best promotes
fairness or welfare among equivalent ones. (Ganesh et al.| [2025] give a comprehensive discussion of
the moral concern of arbitrariness and its relationship to multiplicity and monoculture.

Closely related to monoculture, Bommasani et al.| [2022]] formalize outcome homogenization as
the amplification of systemic denial relative to what would be expected under independent model
predictions. The authors argue that we may see growing homogenization due to the rise of foundation
models and conduct experiments on a vision-text model (CLIP) and an early language model
(RoBERTa-base). [Toups et al.|[2024]] analyze systemic failure and outcome homogenization for three
commercial APIs used for emotion recognition and sentiment analysis.

There is a broader debate about the diversity of content generated by large language models that’s
beyond the scope of our work, as we focus on predictions and risk assessment.



2 Measuring monoculture and multiplicity

Preliminaries. Let D = {(z;,9;)}Y, be a dataset of N i.i.d. samples from a joint distribu-
tion P(X,Y), where each z; € X is a feature vector and y; € {0, 1} is the corresponding label. A
binary predictor is a function h: X — {0, 1}. As algorithmic monoculture and model multiplicity
arise in algorithmic ecosystems, we consider a model set M = {hq, ha, ..., has}, which consists of
M binary predictors.

Prior work on multiplicity focuses on a set of good models that achieve accuracy close to that of a
reference model hg, typically the best model found by empirical risk minimization. In reference to
the Rashomon effect [Breiman), [2001]], this model set is called Rashomon set.

Definition 1 (Rashomon set, e-level set). Given a baseline model hy, performance metric 0, and
error tolerance e, the Rashomon set is given by R.(hg) = {h € H : 0(h) > 6(hg) — €}.

Throughout the paper we use accuracy as performance metric 6 and refer to the parameter € as
accuracy deficit. We call the set of available models that deviate in performance at most by € from
the best model found the empirical Rashomon set to indicate that we don’t have the full Rashomon
set Re. Note that characterizing the full Rashomon set becomes computationally infeasible for large
hypothesis classes H, rendering efficient search a core issue of predictive multiplicity [Marx et al.,
2020, Hsu and Calmon, {2022} |[Hsu et al., [ 2023]].

Definition 2. Given two classifiers h, h/, their pairwise agreement over dataset D is given by the
fraction of individuals their predictions agree on

agree(h, 1) = % 31 1[h(z;) = b (2)] (1)

Pairwise agreement quantifies model similarity based on their predictions. Note that models can agree
on both correct and incorrect predictions. We take strict monoculture to correspond to agreement
Strong multiplicity corresponds to the agreement rate we’d expect if errors were randomly located.
For two models &, h’ with accuracies a and a’, respectively, this corresponds to the expression

agree, ,,q(h, h') = aa’ + (1 — a)(1 — d’).

In this work, we focus on predictive multiplicity—situations where competing models assign conflict-
ing predictions to the same individual. For our analysis, we also adopt two commonly used measures,
ambiguity and discrepancy. Note that several other forms of multiplicity have been studied, see
Ganesh et al.|[2025]] for a comprehensive overview.

Definition 3 (Ambiguity, [Marx et al.,2020]). The ambiguity of a prediction problem over the model
set M is the proportion of points x; in a dataset that can be assigned a conflicting prediction by a
competing classifier h compared to a baseline classifier hg € M:

a(ho) = & SoN  maxpent L[h(x:) # ho(x:)] 2

Ambiguity captures the extent to which individuals are affected by the choice of model, because they
would receive a conflicting prediction from another model in the Rashomon set. When switching
the baseline model for a competing model, the conflicting predictions must all be realized by that
particular model. Discrepancy captures the maximum change that can be realized by any other model
in the Rashomon set relative to the baseline classifier.

Definition 4 (Discrepancy, [Marx et al.l 2020]]). The discrepancy of a prediction problem over the
model set M is the maximum proportion of conflicting predictions between the baseline classifier hg
and any competing classifier h:

8(ho) = maxper & SN Uh(w;) # holw;)] 3)

Note that ambiguity and discrepancy are monotonic, meaning they can only increase as additional
models are considered. Given that our empirical Rashomon set may omit some models achieving
accuracy similar to the best model, monotonicity ensures that our measures provide lower bounds on
those computed from the full Rashomon set.

2Accuracy differences within the Rashomon set can oppose strict monoculture: two models with accuracies
a # a' can agree on at most 1 — |a — a’| of the total population. This bound, however, applies only at the
population level. Our analysis focuses on positive instances. Thus, the bound does not directly apply without
additional assumptions about conditional agreement. If the positive class constitutes at least an e-fraction of the
data, perfect agreement within this subset remains possible, even if the models’ overall accuracies differ slightly.



Recourse with respect to a model set. The concept of monoculture implies homogenization of
predictions, wherein, in the extreme case, all decision-makers rely on a single model. To measure
its impact on individuals, Bommasani et al.| [[2022]] consider the fraction of individuals receiving a
negative prediction from all models. We generalize this idea by introducing the notion of recourse
with respect to a model set. It captures the ability of an individual to obtain a favorable outcome by
switching to a different model within the model set.

Definition 5 (Recourse with respect to a model set). For an instance x € X, we define recourse
level with respect to a model set M as rec(x) = ﬁ > hem LR(x) = y*], where y* denotes the

favorable outcome.

Note that this notion of recourse of an individual is a property of a model set. In contrast to the
single-model notion of algorithmic recourse |[Ustun et al.||2019]], we consider favorable predictions
obtained by changing the model, not the individual features. For our analysis, we distinguish:

* Full recourse: rec(z) = 1
* Substantial recourse: rec(x) > 0.5, the majority of models yield a favorable outcome.
* Limited recourse: rec(z) < 0.5, the majority of models yield a unfavorable outcome.

* No recourse: rec(x) = 0, the individual faces systematic exclusion.

The fraction of individuals having no recourse corresponds to the observed rate of systemic failure
defined by Bommasani et al.|[2022]]. They further define the notion of outcome homogenization as
the observed ratio of individuals with no recourse relative to the fraction of individuals that would
have no recourse, if model errors were random.

The notion of a favorable outcome depends on the prediction task and context. It may correspond to
predicting 1 (e.g. loan approval), O (e.g. fraud detection), or to a correct prediction irrespective of the
label. In this work, we focus on the recourse level of positive instances — individuals who, according
to their ground-truth label, should be granted an opportunity. We treat y* = 1 as the favorable
outcome, allowing us to analyze cases where such opportunities are denied. Under this framing, the
average recourse level among positive instances is a natural generalization of true positive rate from
a single model to a model family.

We generalize the random error baseline used by Bommasani et al.|[2022] to varying recourse levels.
Recall, strict multiplicity corresponds to the case where errors are randomly located. Assuming that
model h,, has true positive rate p,,, the fraction of models accepting a fixed positive instance z
follows a Poisson-Binomial distribution so that

M
1 (m) _(m)
E[rec(l‘)] = M Z H p'm (1 _pTYL)l ) (4)

Il m=1

where I, describes the set of distinct permutations of k successes and M — k failures. Further let
7(m) ¢ {0, 1} indicate whether for permutation = model m provides a success (positive prediction)
or a failure (negative prediction). Note that the success probability in the baseline should reflect
the outcome deemed favorable. In our case, since we are focusing on positive instances achieving
positive outcomes, p,,, corresponds to the true positive rate. More generally, when considering correct
classifications, the appropriate metric would be accuracy. Conversely, if a negative outcome (i.e.,
class 0) is considered favorable, the corresponding success probability is the true negative rate.

3 Experimental Design

Working from the premise that decision makers will increasingly use language models for decision
making, we evaluate the consistency of model predictions across a diverse set of language models
on multiple binary classification tasks. In each task, models are prompted with a natural-text
representation of the features = using a standard multiple-choice format. We then compare similarity
of model outputs and their impact on individuals varying either the models or the prompt.

Prompting language models. We evaluate 50 language models, including both open-source
models—ranging from 1B to 141B parameters—and state-of-the-art commercial models. A complete



Table 1: Recourse levels and multiplicity measures across tasks using identical prompts.

task |R| no substantial full ambiguity  discrepancy
recourse  recourse  recourse
ACSIncome 27 0.07 0.80 0.51 0.43 0.19
ACSEmployment 8 0.06 0.82 0.64 0.30 0.15
BRFSS Blood Pressure 23 0.03 0.59 0.14 0.83 0.38
SIPP 16 0.05 0.77 0.48 0.47 0.18
ACSTravelTime 12 0.04 0.72 0.24 0.72 0.35
ACSPublicCoverage 21 0.14 0.38 0.00 0.86 0.47
ACSMobility 5 0.68 0.00 0.00 0.32 0.20

list is provided in Appendix For open-source models, we include both base pretrained variants
and their instruction-tuned counterparts if available. We use the folktexts package [Cruz et al.,
2024] to zero- and few-shot the language models in a standardized multiple-choice format and to
extract predicted risk scores. Since language models are widely miscalibrated on non-realizable tasks,
we adopt the approach from |Cruz et al.| [2024] to calibrate the model predictions. For each model and
task, we fit a decision threshold ¢ on n = 2000 samples from a validation set to maximize balanced
accuracy. The threshold is then applied to turn the risk scores into class predictions.

Prediction tasks. We evaluate model predictions on seven binary classification tasks derived from
three data sources. Five tasks are based on the American Community Survey (ACS) Public Use
Microdata Sample (PUMS), a high-quality dataset from the U.S. Census Bureau [Flood et al., 2018].
Ding et al.|[2022] construct several predictions tasks on this dataset, for which folktexts [[Cruz et al.
2024]| provide natural-text mappings for prompting. We use ACSIncome (individual’s income is above
$50,000), ACSEmployment (individual is employed), ACSPublicCoverage (individual is covered by
public health insurance) and ACSTravelTime (commute time to work is greater than 20 minutes) and
ACSMobility (individual moved in the last year). To complement these, we extend folktexts by
two additional tasks. BRFSS Blood Pressure is a health-related prediction task introduced by |Gardner
et al.| [2024]] on large-scale surveys from the Behavioral Risk Factors Surveillance System [BRFSS,
Centers for Disease Control and Prevention (CDC), 2021]]. The task is to predict if an individual
has been diagnosed with hypertension. SIPP is defined on the longitudinal Survey of Income and
Program Participation [SIPP, [U.S. Census Bureaul |2014]. Here, the goal is to predict whether a
person’s income is significantly above the Official Poverty Measure (OPM). See Appendix [A.2]for a
detailed description of all tasks. We randomly sample 10% of each dataset for evaluation, yielding
test sets ranging in size from approximately 60,000 to 320,000 instances for most tasks. The SIPP
task has a smaller test set of almost 4,000 instances.

Our analysis focuses on the impact on positive instances, that is individuals with a positive label
y = 1. We refer the reader to Appendix for results for negatives instances. In the next two
sections we examine similarity of model predictions for identical prompts across different models
(Section[d) and, starting from a single model, explore the impact of prompt variations on monoculture
and multiplicity (Section [5).

4 Models disagree on identical prompts

A central concern in increasingly interconnected algorithmic ecosystems is the potential conver-
gence toward homogeneity—where different models yield highly similar outputs that, if flawed,
could systematically limit individuals’ opportunities. To explore the degree of homogeneity and its
consequences, we evaluate our base set of 50 language models using identical zero-shot prompts. Ag-
gregate performance varies considerably (Appendix [B). We thus restrict our analysis to the Rashomon
set—models whose accuracy falls within € = 0.05 of the best-performing model. Across tasks, the
empirical Rashomon set comprises models from at least four providers, encompassing different sizes
as well as both base and instruction-tuned variants.

Model predictions are highly similar. As shown in (left), pairwise comparisons on
the ACSIncome task reveal that all model pairs exhibit substantially higher agreement (blue line)
than would be expected if errors were randomly distributed (orange line). Specifically, model pairs
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Figure 2: Recourse curves across tasks: x% of positive instances are accepted by at most y% of
models. We zero-shot models and select those achieving accuracy within € = 0.05 from the best. For
example, on ACSIncome we observe (blue) 20% of positive instances being accepted by at most 50%
of the models. Under random errors (orange) this would rarely happen. Under strict monoculture (red,
dotted) individuals only experience no or full recourse. Here, the mean TPR is used for illustration.
The bar plot shows the distribution of recourse levels.

agree on at least 75.34% of positive instances, with a mean agreement of 88.37%. In contrast, the
random-error baseline yields agreement rates between 61.69% and 66.49% (mean 63.66%). These
results demonstrate that models share considerable inductive biases. However, agreement remains
below perfect consensus, which would be observed in a strict monoculture. This suggests that
models are highly similar, but not perfectly aligned in their predictions. This pattern holds when
disaggregating by model provider, model variant, or demographic groups (Appendix [C). Extending
this analysis across tasks (Figure[T9] top panel) shows a consistent pattern of high predictive similarity,
with empirically observed agreement rates consistently falling between the two extremes of strong
multiplicity and strict monoculture.

Individuals generally have high recourse. Pairwise agreement rates — unless exactly O or 1 — do
not directly capture the individual-level impact of predictions within a model ecosystem. In particular,
they do not reveal the extent to which entire model sets concur on an individual’s outcome. To
address this, we examine recourse: the fraction of models that accept an individual, reflecting the
individual’s ability to obtain a favorable outcome by switching to another model. The recourse curve
in (right) shows these values across population quantiles for ACSIncome. We find that 79%
of positive instances are accepted by at least half of the models. The median individual is accepted by
96% of the models, compared to approximately 78% under the random-error baseline. These results
suggest that recourse levels are generally high. Notably, 7% of positive instances are rejected by all
models, meaning they receive no recourse. Conversely, 51% are correctly accepted by all models.
Relative to a baseline of random errors, we observe a higher likelihood of both extreme outcomes, no
recourse and full recourse, reflecting the influence of shared inductive biases. At the same time, the
distribution of recourse levels differs considerably from a strict monoculture, wherein the recourse
curve would collapse into a step function determined by the false negative rate of the sole remaining
model. Thus, despite substantial predictive similarity, individuals largely retain the opportunity to
obtain favorable outcomes by switching models.

Extending this analysis across tasks (Figure 2] top panel, and Table T reveals a generally consistent
pattern of high recourse levels, with a small fraction of individuals experiencing no recourse. Across
tasks, the distribution of recourse levels largely falls between the extremes of strong multiplicity
and strict monoculture. Two tasks, ACSMobility and ACSPublicCoverage, deviate from this pattern,
exhibiting higher rates of no recourse and smaller fractions of individuals with substantial recourse.
Both tasks are characterized by low predictive signal and high class imbalance, which also affect the
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Figure 3: Severity of monoculture and predictive multiplicity as a function of accuracy deficit ¢ from
the best model. Each column corresponds to one task. Predictions are obtained via 0-shot prompting.
Top. The fraction of positive instances that experience no recourse (blue) is consistently higher than
what would be expected under random errors (orange). While stable across different Rashomon
sets, the gap between the observed and expected fraction of no recourse decreases with increasing
€. Middle. Discrepancy increases with ¢, potentially affording opportunities for recourse for some
individuals. Due to monotonicity, their values are likely higher for the full Rashomon set. Bottom.
Number of models in the empirical Rashomon set.

Rashomon set. See Appendix [D.]for a detailed discussion. We further assess recourse levels for
different demographic groups defined by sex, race, and age, to examine whether predictive similarity
affects these groups differently. While levels of agreement and recourse are comparable between
female and male individuals, we observe notable differences in multiple tasks when disaggregating
by race or age. These observations provide preliminary evidence that certain groups may face
disproportionate barriers to finding recourse. Differences between tasks suggest that disparities
may also be task-dependent. A more comprehensive understanding of these dynamics remains an
important direction for future work. Further details and analysis are provided in Appendix [C.2}

Multiplicity is high, but we might still underestimate it. As our analysis is limited to available
pre-trained models, we cannot influence training choices or exhaustively explore the parameter
space. Nonetheless, our empirical Rashomon set likely includes models representative of those
actually deployed by decision makers. Among those models, we find substantial discrepancies: on
ACSIncome, 19% of positive instances receive a different classification when switching to another
model (Table [1); across tasks, at least 15% do. Both ambiguity and discrepancy are monotonic with
respect to the size of the Rashomon set [Marx et al.,2020]]. Therefore, an exhaustive search over the
parameter space would likely yield even higher values for both measures.

Impact of accuracy deficit e. The accuracy deficit e specifies the maximum performance gap
among models in the Rashomon set. To assess its impact on our findings, we compute discrepancy
and the prevalence of no recourse across varying values of e (Figure[3). Even small increases in e
rapidly expand the empirical Rashomon set and observed discrepancy J., indicating that many models
achieve comparable accuracy while generating divergent individual-level predictions. This diversity
creates potential avenues for recourse and reduces the likelihood that decision makers converge
on a single model. Nevertheless, whenever the Rashomon set includes more than one model, a
non-negligible fraction of individuals experiences no recourse—substantially higher than expected
under random errors. Full recourse curves for varying values of € are provided in Appendix [D.2]

Consistent under few-shot prompting We repeat our analysis under 10-shot prompting, providing
each model with 10 class-balanced examples. We find that aggregate performance increases slightly,
resulting in overall larger empirical Rashomon sets. Observed recourse levels remain at a similar
order of magnitude with slightly decreased discrepancy, indicating a mild trend towards monoculture.
See Appendix [E] for detailed results.
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Figure 4: Minor prompt variations induce changes in accuracy of up to 3 percentage points, con-
sistently across models on ACSIncome. Each subplot varies a single aspect of the prompt, keeping
the others fixed to default. Light blue dots show accuracy for individual variations, dark blue dots
indicate the mean accuracy with error bars.

5 Recourse through minor prompt variations

Under monoculture, algorithmic ecosystems tend toward homogeneity resembling a single model
making all decisions. To simulate this in the context of LLMs used for consequential decision-making,
we select the two best-performing models on ACSIncome — Llama 3.3 70B (it) and Qwen 2.5 72B (it)
— along with smaller variants, Llama 3 8B (it) and Qwen 2.5 7B (it). Even after training, LLMs accept
a wide range of prompt formats, styles or even modalities. This flexibility means that decision-makers
may naturally vary in how they compose prompts. In line with prior work on prompt sensitivity of
language models [Petroni et al., 2019, Shin et al.| 2020, |Sclar et al., 2023 |Voronov et al., 2024, we
find that minor prompt variations cause significant changes in model predictions.

Prompt variations. We vary four minor aspects of prompt construction: feature order, testing five
orders in which features of an individual are presented - the default order given by folktexts, its
reverse, and three random permutations; format, presenting features as bullet list, a comma-separated
list or plain zext in the form ’<feature name> <connector> <feature value>’; cornnector, choosing the
symbol linking <feature name> and <feature value> among ’is’, =" and ’:’; and granularity, using
either the original feature mapping provided by folktexts or a lower-resolution version such as age
groups instead of the exact age. Examples are provided in Appendix

We find that varying a single aspect of the prompt construction can shift accuracy up to 3 percentage
points and with it, induce predictive multiplicity. The effect on accuracy is consistent
across models, with no clear trend by size or model family. While granularity changes alter the
information content, we find their impact on accuracy to be comparable to that of other variations.

Prompt variations still induce substantial multiplicity. Since decision-makers may vary in more
than one aspect of how they construct prompts, we evaluate all four models on the cross-product
of these variations, resulting in V' = 90 distinct prompting styles per model. To compare effects of
prompt variations and model changes directly, we fix the number of prompts and models to be the
same: we randomly sample M prompt styles (M = 27 for ACSIncome) and evaluate agreement and
recourse across 100 independent repetitions top panel). Pairwise agreement across models
increases under prompt variations (blue), though it remains similar to the agreement observed when
varying the model under identical prompting (gray line), suggesting that substantial disagreement
persists in both settings. Comparing recourse curves (bottom panel), we find that prompt variation
leads to a higher fraction of positive instances with full recourse, while the rate of instances with
no recourse remains similar. This suggests a mild trend toward monoculture; nevertheless, prompt
variations alone still enable recourse for a considerable fraction of individuals, with the majority
experiencing substantial recourse.

Prompt variations and few-shot prompting Few-shot prompting introduces additional sources of
variation, such as the choice and ordering of examples. Consistent with prior work [Zhao et al.| {2021}
Lu et al.} 2022} |Gao et al., 2021} [Schick and Schiitze, [2021]], we find that these factors impact model
performance and add variability in model predictions, impacting recourse we observe (Appendix [F).
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Figure 5: Agreement and recourse across prompt variations on ACSIncome. We zero-shot models
with varying prompting styles, subsampling V' = 27 prompt variations per model to match the
number of different models in Top. Agreement curve: x% of prompt variation pairs agree
on up to y% of the positive instances. Observed agreement rates (blue) surpass those under random
errors (orange), but remain similar to agreement rates observed with identical prompting across
different models (gray, solid). Bottom. Recourse curve: x% of the positive instances are accepted
by at most y% of the prompt variations. For example, 25% of the positive instances are accepted
by at most 50% of the variations. Observed recourse (blue), random errors (orange). Under strict
monoculture (red, dotted) individual only experience no or full recourse. Here, the mean TPR is used
for illustration. Bar plot on the y-axis shows density function of recourse level in the population.

6 Discussion

Our evaluation suggests that neither monoculture nor multiplicity fits the empirical landscape. Every
way we look at it, the observations fall strictly between the two extremes of strict monoculture
and strong multiplicity. Still, predictive similarity among the evaluated models is high: across
tasks, a notable fraction of individuals face no recourse, yet disagreement between models provides
opportunities for the majority to find recourse. Disaggregating by demographics reveals that these
effects are unevenly distributed, with certain groups disproportionately affected. These findings
underscore the need for a deeper understanding of the system-levels dynamics and the individual
harms arising from them. We believe that conducting such system-level analyses can serve as an
important initial step in this direction. Some might contend that our experimental setup is biased
toward monoculture. After all, we evaluate all models on exactly the same dataset. In reality,
two different institutions almost certainly collect different datasets. The records that two different
institutions have about the same individual are likely quite different in most cases. This introduces
an additional source of variation that we don’t capture. As a result, our empirical findings likely
understate how far reality is from monoculture. We study monoculture in the sense of systematic
exclusion from opportunity in the context of consequential decision making using predictive risk
assessment. We do not address broader sociological questions about how the use of language models
might homogenize culture and expression.

In our study, we work from the assumption that increasingly decision makers will prompt language
models for consequential decisions. Admittedly, this is a look into the future rather than the present.
But it’s a highly plausible near future given current trends of adoption of language models. Language
models must strike institutions like a perfect fit for the mundane bureaucratic processes in which
consequential decisions take place. These models can sift through volumes of messily encoded
data and come up with some answer to any question. It’s urgent, then, to ask: What harms might
individuals face in a language model ecosystem that governs consequential decisions? Our work
points to a troubling conclusion: the harms individuals face resist capture by either the lens of
monoculture or that of multiplicity.
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A Additional experimental details

A.1 Models

We evaluate 50 language models, including both open-source models—ranging from 1B to 141B
parameters—and state-of-the-art commercial models. A complete list of the models is provided in
Table[2] For open-source models, we include both base pretrained variants and their instruction-tuned
counterparts if available. Instruction-tuned models may be appealing to decision makers as they
are trained specific instruction-response pairs to enhance their ability to follow natural language
instructions. As a result, they often show better alignment with human preferences on realizable tasks.
However, on unrealizable tasks such as those studied in our work, they have also been observed to
produce overconfident risk scores [[Cruz et al., 2024]]. Accordingly, to facilitate a more comprehensive
characterization of model behavior, we also consider the corresponding base model variants. Base
models can be naturally attractive to decision makers for several reasons: Unlike instruction-tuned
models, they do not impose an instruction-response format, offering greater flexibility to be adapted
in custom workflows or in deployment settings where a particular alignment may be undesirable. As
detailed in Appendix [B] the two model variants exhibit comparable performance, resulting in models
from both variants being included in the Rashomon set of each task.

Table 2: Models evaluated for this work. Model size in billions of parameters is indicated by V.
Model weights for open-source models were retrieved from the corresponding HuggingFace (HF)

repositories.

Language Model N HF Repository Citation

Gemma 2B 2.51 google/gemma-2b Team et al.[[2024a]
Gemma 2B (it) 2.51 google/gemma-1.1-2b-it Team et al.|[2024a]
Gemma 7B 8.54 google/gemma-7b Team et al.[[2024a]
Gemma 7B (it) 8.54 google/gemma-1.1-7b-it Team et al.|[2024a]
Gemma 2 9B 9.24 google/gemma-2-9b Team et al.|[2024Db]
Gemma 2 9B (it) 9.24 google/gemma-2-9b-it Team et al.|[2024b|
Gemma 2 27B 27.2 google/gemma-2-27b Team et al.|[2024Db]
Gemma 2 27B (it) 27.2 google/gemma-2-27b-it Team et al.|[2024b]
Llama 3 8B 8.03 meta-llama/Meta-Ilama-3-8B MetaAl|[2024])
Llama 3 8B (it) 8.03 meta-llama/Meta-Llama-3-8B-Instruct MetaAll[2024])
Llama 3 70B 70.6 meta-llama/Meta-Llama-3-70B MetaAl|[2024])
Llama 3 70B (it) 70.6 meta-llama/Meta-Llama-3-70B-Instruct MetaAll[2024]
Llama 3.1 8B 8.03 meta-llama/Meta-Llama-3.1-8B MetaAl|[2024]
Llama 3.1 8B (it) 8.03 meta-llama/Meta-Llama-3.1-8B-Instruct MetaAll[2024]
Llama 3.1 70B 70.6 meta-llama/Meta-Llama-3.1-70B MetaAl|[2024]
Llama 3.1 70B (it) 70.6 meta-llama/Meta-Llama-3.1-70B-Instruct MetaAll[2024]
Llama 3.2 1B 1.24 meta-llama/Meta-Llama-3.2-1B MetaAl|[2024])
Llama 3.2 1B (it) 1.24 meta-llama/Meta-Llama-3.2-1B-Instruct MetaAll[2024]
Llama 3.2 3B 3.21 meta-llama/Meta-Llama-3.2-3B MetaAl|[2024]
Llama 3.2 3B (it) 3.21 meta-llama/Meta-Llama-3.2-3B-Instruct MetaAl|[2024]
Llama 3.3 70B (it) 70.6 meta-llama/Meta-IL.lama-3.3-70B-Instruct MetaAl|[2024])
Mistral 7B 7.24 mistralai/Mistral-7B-v0.1 Jiang et al.[[2023]
Mistral 7B (it) 7.24 mistralai/Mistral-7B-Instruct-v0.2 Jiang et al.| [2023]]
Mixtral 8x7B 46.7 mistralai/Mixtral-8x7B-v0.1 Jiang et al.[[2024]
Mixtral 8x7B (it) 46.7 mistralai/Mixtral-8x7B-Instruct-v0.1 Jiang et al.| [2024]
Mixtral 8x22B 141 mistralai/Mixtral-8x22B-v0.1 Jiang et al.[[2024]
Mixtral 8x22B (it) 141 mistralai/Mixtral-8x22B-Instruct-v0. 1 Jiang et al.| [2024]
Mistral Small 24B 23.6 mistralai/Mistral-Small-24B-Base-2501 Mistral Al [2025]]
Mistral Small 24B (it) 23.6 mistralai/Mistral-Small-24B-Instruct-2501  [Mistral A} [2025]]
Yi 6B 6.06 01-ai/Yi-6B O1.Al et al.| [2025]]
Yi 6B (chat) 6.06 01-ai/Yi-6B-Chat O1.Al et al.| [2025]]
Yi 34B 34.4 01-ai/Yi-34B O1.Al et al.| [2025]]
Yi 34B (chat) 344 01-ai/Yi-34B-Chat O1.Al et al.| [2025]]
Qwen 2 7B 7.62 Qwen/Qwen2-7B Yang et al.|[2024]
Qwen 2 7B (it) 7.62 Qwen/Qwen2-7B-Instruct Yang et al.| [2024]
Qwen 2 72B 72.7 Qwen/Qwen2-72B Yang et al.|[2024]

Continued on next page
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Table 2 — Continued from previous page

Language Model N HF Repository Citation

Qwen 2 72B (it) 72.7 Qwen/Qwen2-72B-Instruct Yang et al.| [2024]
Qwen 2.5 7B 7.62 Qwen/Qwen2.5-7B Qwen et al.|[2025]
Qwen 2.5 7B (it) 7.62 Qwen/Qwen2.5-7B-Instruct Qwen et al.|[2025]
Qwen 2.5 72B 72.7 Qwen/Qwen2.5-72B Qwen et al.|[2025]
Qwen 2.5 72B (it) 72.7 Qwen/Qwen2.5-72B-Instruct Qwen et al.|[2025]
OLMo 1B 0724 1.28 allenai/OLMo-1B-0724-hf Groeneveld et al.|[2024]]
OLMo 1B 1.18 allenai/OLMo-1B-hf Groeneveld et al.|[2024]]
OLMo 7B 0724 6.89 allenai/OLMo-7B-0724-hf Groeneveld et al.| [2024]
OLMo 7B 6.89 allenai/OLMo-7B-hf Groeneveld et al.| [2024]]
OLMo 7B (it) 6.89 allenai/OLMo-7B-Instruct-hf Groeneveld et al.| [2024]]
OLMo 2 7B 73 allenai/OLMo-2-1124-7B OLMo et al.| [2025]]
OLMo 2 7B (it) 7.3 allenai/OLMo-2-1124-7B-Instruct OLMo et al.|[2025]
gpt-3.5-turbo-0125 unknown - OpenAl|[2024]

gpt-4.1 unknown - OpenAll [2025]

A.2 Prediction Tasks

We evaluate model predictions on seven binary classification tasks derived from three data sources,
Census Bureau’s American Community Survey (ACS) Public Use Microdata Sample (PUMS) [U.S!|
Census Bureau, 2018]), the Behavioral Risk Factors Surveillance System [BRFSS, (Centers for Disease
Control and Prevention (CDC), |2021]] and the Survey on Income and Program Participation [SIPP,
U.S. Census Bureau, [2014]. In this section we will provide more details about the data sources and
each of the the prediction tasks used.

ACS prediction tasks. Five of the prediction tasks used for this work are based on ACS PUMS data,
which is derived from US Census data and provides a rich, diverse, and high-quality representation
of the US population. While a wide range of prediction tasks could be defined on this data source,
we adopt five prediction tasks predefined in the popular folktables package [Ding et al., [2022].
These tasks span a broad range of prediction challenges — from high predictive signal to more difficult
low-signal settings (such as ACS Mobility) — and collectively make up a diverse benchmark suite.
While some features (e.g., age, race, and sex) appear across tasks due to their relevance for fairness
analysis, their overall feature sets differ, and none is a strict subset of another. Further, each task is
constructed on a distinct subpopulation (e.g., adults, employed individuals). As a result, individuals
do not consistently appear across tasks: The maximum pairwise overlap corresponds to at most
10.1% relative to each task’s size. No individual appears in all five tasks.

The folktexts package by |Cruz et al.[[2024] complements each task with a natural-text mapping
for every feature, ready be used for language model prompting. To enable comparison with existing
benchmarks and prior work on multiplicity, we use the task definitions including feature sets and
population filters as provided. Following Ding et al.|[2022] and |Cruz et al.|[2024]] we analyze data
from the 2018 1-year-horizon person-level survey, although any ACS survey year could be used. The
following paragraphs detail each ACS prediction task. Table 3| provides a description and exemplary
natural language encoding for all features.

ACSIncome The goal of the ACSIncome task is to predict whether a person’s yearly income is
above $50,000, given by the PINCP column. The ACS columns used as features are AGEP, COW,
SCHL, MAR, OCCP, POBP, RELP, WKHP, SEX, and RAC1P. The column PINCP is binarized and
used as target. The sub-population over which the task is conducted is employed US residents with
age greater than 16 years. The ACSIncome prediction task was put-forth as the successor to the
popular UCI Adult dataset [Becker and Kohavi, |1996], used extensively in the algorithmic fairness
literature.

ACSEmployment The goal of the ACSEmployment is to predict whether an individual is employed,
given by the ESR column. The ACS columns used as features are AGEP, SCHL, MAR, RELP,
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DIS, ESP, CIT, MIG, MIL, ANC, NATIVITY, DEAR, DEYE, DREM, SEX and RACI1P. The sub-
population over which the task is conducted is US residents.

ACSTravelTime The goal of the ACSTravelTime task is to predict whether a person’s commute
time to work is greater than 20 minutes, given by the JWMNP column. The ACS columns used as
features are: AGEP, SCHL, MAR, SEX, DIS, ESP, MIG, RELP, RAC1P, PUMA, ST, CIT, OCCP,
JWTR, POWPUMA, and POVPIP. The sub-population over which the task is conducted is employed
US residents with age greater than 16 years.

ACSPublicCoverage The goal of the ACSPublicCoverage task is to predict whether an individual
is covered by public health insurance, given by the PUBCOV column. The ACS columns used
as features are: AGEP, SCHL, MAR, SEX, DIS, ESP, CIT, MIG, MIL, ANC, NATIVITY, DEAR,
DEYE, DREM, PINCP, ESR, ST, FER, and RACI1P. The sub-population over which the task is
conducted is US residents with age below 65 years old, and with personal income below $30,000.

ACSMobility The goal of the ACSMobility task is to predict whether an individual has changed
their home address in the last year, given by the MIG column. The ACS columns used as features are:
AGEP, SCHL, MAR, SEX, DIS, ESP, CIT, MIL, ANC, NATIVITY, RELP, DEAR, DEYE, DREM,
RACIP, GCL, COW, ESR, WKHP, JWMNP, and PINCP. The sub-population over which the task is
conducted is US residents with age between 18 and 35.

BRFSS prediction task. The tableshift package [[Gardner et al.[2024] provides a unified API
to 15 prediction tasks, including some of the above mentioned ACS prediction tasks. For this work,
we complement the ACS prediction tasks by one additional health-related prediction task, BRFSS
Blood Pressure. The data comes from the Behavioral Risk Factor Surveillance System [BRESS,
Centers for Disease Control and Prevention (CDC), [2021]]. BRFSS is a US-wide system of telephone
surveys that assess health-related risk behaviors, chronic health conditions, and the use of preventive
services by US residents. BRFSS collects data in all 50 states as well as the District of Columbia and
three US territories. Following the implementation in tableshift, we use the default year range
(2015-2021) of biannual BRFSS survey data. Further, we use the dataset as preprocessed in the
tableshift package, with the exception of feature normalization, which is omitted to preserve the
raw data entries used for mapping to natural text. Following the codebook available for BRFFS, we
define a natural-text mapping for every feature. Table[d] provides a description and exemplary natural
language encoding for all features.

BRFSS Blood Pressure The goal of the BRFSS Blood Pressure task is to predict whether an
individual has been told by a health professional that they have high blood pressure (hypertension).
The features used include several risk factor like age, family history, other medical conditions,
race, sex and social and economic factors. The BRFSS columns used as features are: BMISCAT,
AGEGS5YR, FRUIT_ONCE_PER_DAY, VEG_ONCE_PER_DAY, DRNK_PER_WEEK, RFBINGS,
TOTINDA, SMOKE100, SMOKDAY?2, CHCSCNCR, CHCOCNCR, DIABETES, POVERTY, EM-
PLOY1, IYEAR, STATE, MEDCOST, PRACEI1 and SEX. The subpopulation over which the task is
defined includes all US residents, with no additional filters.

SIPP prediction task. Following Hardt and Kim|[2022], we define one task based on the Survey of
Income and Program Participation (SIPP) data [U.S. Census Bureaul 2014]]. SIPP is an important
longitudinal survey administered by the US Census Bureau that provides information on the dynamics
of income, employment, household composition, and government program participation. The survey
is considered nationally representative and interviews individuals for several years, providing monthly
data about changes in household and family composition and economic circumstances over time.
As |Hardt and Kim| [2022], we consider Wave 1 and Wave 2 of the SIPP 2014 panel data for the
prediction task and adopt their data cleaning and pre-processing steps. Following the codebook
available for SIPP, we define a natural-text mapping for every feature. Table[5|provides a description
and exemplary natural language encoding for all features.

SIPP The goal of the SIPP task is to predict whether an individual’s income is well above the
Official Poverty Measure (OPM), a cash-income-based measure of poverty. The target variable is
calculated using the OPM ratio from Wave 2 data. In total, a set of 50 features is constructed from
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one or multiple variables appearing in the Wave 1 raw data are used for the SIPP task. These include
features of the individual related to

* demographics (AGE, GENDER, RACE, EDUCATION MARITAL_STATUS, CITIZEN-
SHIP,
FAMILY_SIZE_AVG, ORIGIN),

e income (INCOME, HOUSEHOLD_INC, RECEIVED_WORK_COMP, IN-
COME_FROM_ASSISTANCE, SAVINGS_INV_AMOUNT),

* health (MEDICARE_ASSISTANCE, MEDICAID_ASSISTANCE,
HEALTHDISAB, DAYS_SICK, HOSPITAL_NIGHTS, PRESCRIPTION_MEDS,
HEALTH_INSURANCE_PREMIUMS,
HEALTH_OVER_THE_COUNTER_PRODUCTS_PAY,
HEALTH_MEDICAL_CARE_PAY,

HEALTH_HEARING, HEALTH_SEEING, HEALTH_COGNITIVE,
HEALTH_AMBULATORY,

HEALTH_SELF_CARE, HEALTH_ERRANDS_DIFFICULTY,
HEALTH_CORE_DISABILITY,

HEALTH_SUPPLEMENTAL_DISABILITY, VISIT_DOCTOR_NUM,

VISIT_DENTIST_NUM),

¢ hardship (LIVING_QUARTERS_TYPE, LIVING_OWNERSHIP, FOOD_ASSISTANCE,
WIC_ASSISTANCE, SNAP_ASSISTANCE),

e and details on program participation (TANF_ASSISTANCE ,TANF ,TRANS-
PORTATION_ASSISTANCE, _COMP, UNEMPLOYMENT_COMP_AMOUNT,
SOCIAL_SEC_BENEFITS, VA_BENEFITS_AMOUNT, RETIRE-
MENT_INCOME_AMOUNT, SURVIVOR_INCOME_AMOUNT,
DISABILITY_BENEFITS_ AMOUNT, SEVERANCE_PAY_PENSION, FOS-
TER_CHILD_CARE_AMT, CHILD_SUPPORT AMT, ALIMONY_AMT).
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Table 3: Description of all column-to-text mappings implemented for ACS features. The variable part of each example is shown in typeset gray font.
See the ACS PUMS data dictionary for the full list of available variables.'

Column Description Example

AGEP Age age is 29 years old

COwW Class of worker class of worker is Working for a non-profit organization

SCHL Educational attainment highest educational attainment is Bachelor’s degree

MAR Marital status marital status is Married

OCCP Occupation occupation is Human Resources Manager

POBP Place of birth place of birth is E1 Salvador

RELP Relationship relationship to the reference survey respondent in the survey is Brother or sister

WKHP Work-hours per week usual number of hours worked per week is 40 hours

SEX Sex sex is Female

RAC1P Race race is Black or African American

PINCP Total yearly income total yearly income is $75,000

DIS Disability status disability status is With a disability

ESP Employment status of parents employment status of parents is 1iving with two parents, only Father is employed
CIT Citizenship status citizenship status is Born in the United States

MIG Mobility (lived here 1 year ago) mobility status over the last year is 1ived in the same house 1 year ago

MIL Military service military service status is Never served in the military

ANC Ancestry ancestry is Single ancestry

NATIVITY Nativity nativity is foreign born

DEAR Hearing hearing status is No hearing difficulty

DEYE Vision vision status is With vision difficulty.

DREM Cognition cognition status is No cognitive difficulty

ESR Employment status employment status is Civilian employed, at work.

ST State resident state is Colorado

FER Person has given birth within the last year ~ person has given birth within the last year is Person has not given birth within the last year
PUBCOV Public health coverage status public health coverage status is Not covered by public health insurance

JWTR Means of transportation to work means of transportation to work is Bicycle

PUMA Public Use Microdata Area (PUMA) code  Public Use Microdata Area (PUMA) code is Southeast Colorado

POWPUMA Place of Work PUMA Public Use Microdata Area (PUMA) code for the place of work is Southeast Colorado
POVPIP Income-to-Poverty Ratio income-to-poverty ratio is 40% of the poverty line income, which is below the poverty line
JWMNP Commute time commute time is 20 minutes

GCL Household includes grandparents grandparent living with grandchildren is Household does not include grandparents living with

grandchildren

"https://www.census.gov/programs-surveys/acs/microdata/documentation. html
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Table 4: Description of all column-to-text mappings implemented for BRFSS features. The variable part of each example is shown in typeset
gray font. See the details in BRFSS Documentation for the full list of available variables.?

Column Description Example
BMI5SCAT Body Mass Index (kg/m?) category body mass index (kg/m?) category is normal weight
AGEGSYR Age group (in intervals of 5 years) age group (in intervals of 5 years) is 62-64 years old

FRUIT_ONCE_PER_DAY
VEG_ONCE_PER_DAY

DRNK_PER_WEEK

RFBINGS

TOTINDA

SMOKE100

SMOKDAY?2
CHCSCNCR
CHCOCNCR
DIABETES
POVERTY

EMPLOY1
IYEAR
STATE
MEDCOST

PRACEI1
SEX

Consumption of fruit one or more times per day
Consumption of vegetables one or more times
per day

Total number of alcoholic beverages consumed
per week

Binge drinking behavior (i.e. > 5 drinks per
occasion for males, > 4 drinks per occasion for
females)

Leisure-time physical activity in the past 30 days

History of smoking at least 100 cigarettes in
their lifetime

Current frequency of cigarette smoking

Prior diagnosis of skin cancer

Prior diagnosis of other cancer than skin cancer
Prior diagnosis of diabetes

Binary Indicator: Individual’s income falls be-
low 2021 poverty guideline for a family of four
Employment Status

Survey year

State of residence

Unmet medical need due to costs in the last 12
months

Preferred race category

Sex

consumption of fruit one or more times per day is Yes
consumption of vegetables one or more times per day is Yes

total number of alcoholic beverages consumed per week is 23 alcoholic beverages
per week
binge drinking behavior is Yes

leisure-time physical activity in the past 30 days is Yes, had physical activity or
exercise during the past 30 days other than regular job.
history of smoking at least 100 cigarettes in their lifetime is No

current frequency of cigarette smoking is some days

prior diagnosis of skin cancer is Yes

prior diagnosis of other cancer than skin cancer is No

prior diagnosis of diabetes is No

binary indicator of whether individual’s income falls below 2021 poverty guideline for a
family of four is Yes

current employment status is Retired

year of survey is 2017

state of residence is Georgia

unmet medical need due to costs in the last 12 months is No

preferred race category is White
sex is Female

2https ://www.cdc.gov/brfss/annual_data/annual_data.htm
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Table 5: Description of all column-to-text mappings implemented for SIPP features. The variable part of each example is shown in typeset gray font. See the
SIPP codebook and the pre-processing script provided by Hardt and Kim|[2022] for the full list of available variables.!

Column Description Example

demographics

AGE age age is 67 years old

GENDER gender gender of person is Male

RACE race races the person identifies with is White only
EDUCATION highest educational attainment highest level of education completed is 9th grade

MARITAL_STATUS
CITIZENSHIP_STATUS
FAMILY_SIZE_AVG
ORIGIN

income

INCOME

HOUSEHOLD_INC
RECEIVED_WORK_COMP
INCOME_FROM_ASSISTANCE
SAVINGS_INV_AMOUNT

hardship
LIVING_QUARTERS_TYPE
LIVING_OWNERSHIP
FOOD_ASSISTANCE
WIC_ASSISTANCE
SNAP_ASSISTANCE

health
MEDICARE_ASSISTANCE

MEDICAID_ASSISTANCE

marital status

US citizenship status

average family size in the reference year
of Spanish, Hispanic, or Latino origin

total individual income from earnings, investment
and property in the reference year

total household income in the reference year
receives worker’s compensation payments
monthly amount received from assistance

total value of IRA, KEOGH, 401k, 403b, 503b,
and Thrift Savings Plan accounts

type of living quarters

living quarters are owned, rented or occupied with-
out payment

received some form of food assistance
percentage of year in which individual received
assistance from WIC (Women, Infants, and Chil-
dren supplemental program)

percentage of year in which individual received
assistance from SNAP (Supplemental Nutrition
Assistance Program)

percentage of year in which individual received
assistance from MEDICARE
percentage of year in which individual received
assistance from MEDICAID

marital status is Divorced

US citizenship status is Yes

average number of persons in family is 2 persons
Spanish, Hispanic, or Latino origin is No

total personal income is $6288

total monthly income of all household members is $13500

received worker’s compensation payments is No is

total income from public assistance, benefits or compensation is $6288
total value of retirement accounts is $0

type of living quarters is house, apartment, flat

ownership status of living quarters is owned or being bought by
someone in the household

received food assistance is No

percentage of the year the respondent received WIC assistance is 0. 007

percentage of the year the respondent received SNAP/food stamps assistance is
100.00%

percentage of the year the respondent was covered by Medicare is 100.007%

percentage of the year the respondent was covered by Medicaid is 07,

(Continued on next page)
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(Continued from previous page)

Column Description Example

HEALTHDISAB has a physical, mental or other health condition  has a physical, mental or other health condition that limits the kind or amount
limiting the amount of work they can do of work they can do is Yes

DAYS_SICK number of sick days number of days sick in the last year is 10 days

HOSPITAL_NIGHTS
PRESCRIPTION_MEDS
HEALTH_INSURANCE_PREMIUMS
HEALTH_OVER_THE_COUNTER_PRODUCTS_PAY
HEALTH_MEDICAL_CARE_PAY
HEALTH_HEARING

HEALTH_SEEING

HEALTH_COGNITIVE
HEALTH_AMBULATORY

HEALTH_SELF CARE
HEALTH_ERRANDS_DIFFICULTY
HEALTH_CORE_DISABILITY
HEALTH_SUPPLEMENTAL_DISABILITY
VISIT_DOCTOR_NUM
VISIT_DENTIST_NUM

program participation details
TANF_ASSISTANCE

TRANSPORTATION_ASSISTANCE
UNEMPLOYMENT_COMP

UNEMPLOYMENT_COMP_AMOUNT

SOCIAL_SEC_BENEFITS

number of nights in a hospital

did take any prescription medications
expenditures for comprehensive health insurance
premiums

out-of-pocket expenditures for over-the-counter
health-related products

out-of-pocket expenditures for on medical care

has serious difficulty hearing

serious difficulty seeing

has serious difficulty concentrating, remembering,
or making decisions

has serious difficulty walking or climbing stairs
has difficulty dressing or bathing

has difficulty doing errands alone

has at least one of six core disability measures
answered positively to at least one core questions,
three child disability questions, or two work dis-
ability questions

number of visits to a doctor, nurse, or any other
type of medical provider

number of visits to a dentist or other dental pro-
fessional

percentage of year in which individual received
assistance from TANF

received some kind of transportation assistance
received unemployment compensation payments
at any time during the reference year

total amount of unemployment compensation pay-
ments

received social security benefits for themselves or
on behalf of a child

number of nights in a hospital is 0 nights
uses prescription medications is Yes
amount paid for comprehensive health insurance premiums is $0

amount paid for over-the-counter health-related products is $100

amount paid for non-premium medical out-of-pocket expenditures on medical
care is $300

is deaf of has hearing difficulties is No

is blind or has seeing difficulties is Yes

has serious difficulty concentrating, remembering, or making decisions is No

has serious difficulty walking or climbing stairs is Yes

has difficulty with self-care such as dressing or bathing is No

has difficulty doing errands alone is No

has a core disability is Yes, with a core disability

answered positively to at least one core questions, three child disability ques-
tions, or two work disability questions is Yes, with a disability

number of visits to a doctor, nurse, or any other type of medical provider is 25
visits
number of dentist visits is 1 visit

percentage of the year the respondent received TANF benefit is 0. 007,

receives transportation assistance is No
receives unemployment compensation payments is No

amount of unemployment compensation per month is $0

received social security benefits is No

(Continued on next page)
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Column

Description

Example

VA_BENEFITS_AMOUNT
RETIREMENT_INCOME_AMOUNT
SURVIVOR_INCOME_AMOUNT
DISABILITY_BENEFITS_ AMOUNT

SEVERANCE_PAY_PENSION

FOSTER_CHILD_CARE_AMT

CHILD_SUPPORT_AMT
ALIMONY_AMT

total monthly amount of VA benefits

total monthly amount of retirement income

total monthly amount of survivor income

total monthly amount of payments due to sickness,
accident or disability

received any severance pay or lump sum payments
from a pension or retirement plan during the ref-
erence period

amount of foster child care payments received in
each month

amount of child support payments in each month
amount of alimony payments received in each
month

total amount of VA benefits per month is $0

total amount of retirement income per month is $0

is

total amount of disability benefits or income per month is $0

receives any severance pay or lump sum payments from a pension or retirement
plan is No

amount of foster child care payments received per month is $0

amount of child support payments received per month is $0
amount of alimony payments received per month is $0

"https://www2.census.gov/programs-surveys/sipp/data/datasets/2014/
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Table 6: Dataset statistics. Test set size is reported as samples X features.

Task Test set size Positive instances  Negative instances
(samples X features) (y =1) y=0)

ACSIncome 166,450 x 10 61,233 105,217

ACSEmployment 323,611 x 16 146, 740 176,871

ACSMobility 62,094 x 21 16,446 45,648

ACSTravelTime 146,665 x 16 64, 285 82,380

ACSPublicCoverage 113,829 x 19 33,971 79, 858

BRFSS Blood Pressure 84,676 x 19 44,586 40,090

SIPP Poverty 3,972 x 50 2,035 1,937

A.3 Experimental Details

We follow the default configuration provided by folktexts, adopting a random 80/10/10 split for
training, validation, and test sets. All evaluations are performed exclusively on the test set; no models
are trained in this study. For few-shot prompting experiments, we randomly sample 10 examples
from the training set to construct the prompt context. These same examples are reused across all
few-shot prompts to ensure that each model receives an identical prompt.

To report performance of XGBoost, we use the implementation provided by scikit-learn, with
default hyperparameters. No additional hyperparameter tuning was performed.

Table [6] summarizes the datasets used in this study. The main text focuses on results for positive
instances (i.e., samples with true label y = 1). Results for negative instances (y = 0) are presented in

Appendix [D.4]

Code. We provide the code necessary to reproduce our analysis, along with a step-by-step guide
for obtaining model predictions, available here: https://github.com/socialfoundations/
mono-multil

Resources used. We use an internal compute cluster with NVIDIA A100 and H100 GPUs. Zero-
shot evaluation of all models required approximately 1000 GPU hours, while 10-shot prompting
added an additional 2, 500 GPU hours.

B Aggregate Model Performance

Aggregate performance varies considerably across models and tasks. See Figure [6] for accuracy
and Figure [/|for balanced accuracy. Thresholds for all models where chosen to maximize balanced
accuracy. For task with imbalanced label distributions, such as ACSMobility and ACSPublicCoverage,
only a few models outperform the constant majority-class baseline when selected for inclusion in the
Rashomon set based on overall accuracy (Figure [6). Generally, we observe that models with more
parameters tend to perform better and are frequently included in the Rashomon set (highlighted in
black), a trend that is even more pronounced under balanced accuracy. Variation in performance across
models is lower for balanced accuracy, likely because model predictions are explicitly optimized for
this metric (Figure[7)). Finally, we find that high performance on one task rarely translates to other
tasks, indicating limited cross-task generalizability.
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C Zero-Shot Prompting with Identical Prompts: Disaggregated Results

In the main paper, we report agreement and recourse levels aggregated across base and instruction-
tuned models from different model providers, and across individuals in the test dataset to assess the
model landscape. In this section, we break down our results along several axes. The first section
focuses on model-specific characteristics: model provider and model variant. In the second section,
we disaggregate results by demographic groups (sex, race and age) to examine how predictive
similarity among language models affects these groups.

C.1 Results by Model Attributes

In this section, we present fine-grained results by model attributes, focusing on model provider and
model variant. To enable fair comparisons of how agreement rates and recourse levels vary across
different model groups, we subsample larger groups to match the size of the smaller group. Reported
values then correspond to the mean and standard error computed over 1,000 independent repetitions,
or over the maximum number of unique subsamples possible given the group sizes. Results on the
ACSMobility task are omitted, as its Rashomon set is small to begin with, and further breakdowns
would produce prohibitively small model groups.

1 models 2 models 4 models 6 models
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Figure 8: Recourse curves are sensitive to the model set size. Illustrative example based on the
Rashomon set for ACSIncome (¢ = 0.05).

Recourse is sensitive to the model set size. To motivate the subsampling, we illustrate how
recourse curves depend on the size of the model set. By expectation, full agreement is more likely
in smaller sets, and the recourse curves are correspondingly coarser with fewer distinct values. In
larger model sets, achieving full agreement requires a high degree of predictive similarity across all
models. Even a single model deviating from the majority directly reduces the fraction of individuals
experiencing either full or no recourse. At the same time, the impact on the individual is minimal: an
individual who experiences nearly full recourse is still very likely to receive a favorable outcome in a
large model ecosystem, without relying on recourse. We demonstrate this on the ACSIncome task by
varying the number of models (not the restrictiveness of the Rashomon set!) and reporting the mean
and standard error in Figure[§] Recall, that models in the Rashomon vary by up to 5 accuracy points.

To summarize, our metric recourse with respect to a model set is inherently sensitive to the set
size, as is the random error baseline. To ensure comparability across model groups resulting from
disaggregation, we subsample the larger groups without replacement to match the size of the smallest
group.

C.1.1 Disaggregation by Model Provider
Results in the main paper are aggregated over models from different families and developers to assess

the empirical landscape of the current language model ecosystem. Technical reports for various
open-source models reveal that their pre-training data mixes frequently draw from overlapping
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Figure 9: Agreement rates by model provider: x% of model pairs agree on at most y% of
positive instances. Models are grouped by provider, showing only groups with at least four models,
subsampled to match the smallest group. Mean and standard error are reported; group sizes are in the
task legend. Across all groups, observed agreement (solid colored) exceeds random-error (dotted)
and random-prediction (dashed gray) baselines, but remains below strict monoculture (agreement =
1). For most tasks, within-group agreement is slightly higher than across the full Rashomon set (solid

gray).

sources such as CommonCrawl, Wikipedia and Wikibooks, GitHub, ArXiv, and Semantic Scholar,
indicating considerable overlap in the training datasets even across developers. In this section, we
break results down by model developer, yielding subgroups whose models are likely to share not only
larger portions of training data, but also similar architecture choices and training pipelines. Under
the component-sharing hypothesis proposed by [Bommasanti et al.|[2022], such increased overlaps
may lead to higher within-group agreement. Examining these patterns sheds light on the effects of
increased component sharing, and also helps anticipate the potential outcomes when models from a
single developer dominate a domain or when training pipelines converge across the ecosystem.

Note that for all tasks, the Rashomon set includes models from many different providers, often
resulting in very small groups with only one or two models, which limits interpretability. To address
this, we report results only for groups with at least four models; as a result, the disaggregated results
presented here do not cover the full Rashomon set. For ACSEmployment, all groups fell below this
threshold, so this task is excluded from the analysis in this section.

Agreement rates. When adjusting for the size of the model sets, we find that within-provider
agreement is elevated for some groups but generally comparable to the overall level of agreement
computed across all models (Figure[J). In particular, on ACSIncome, within-group agreement is nearly
indistinguishable from the overall average. In contrast, within-group agreement varies notably on
BRFSS Blood Pressure. Notably, agreement among Mistral models is slightly below the overall level
and considerably lower than that of other providers, which may reflect the heterogeneity of the Mistral
group, which includes both dense and mixture-of-experts (MoE) models. On ACSPublicCoverage,
the Meta group exhibits high standard error, suggesting that some models provided by Meta are
more similar to each other than others. Across tasks, we find that models from Meta and Alibaba are
consistently contained in the Rashomon set and display slightly elevated within-group agreement.
Nevertheless, there is no consistent pattern indicating that a single provider’s models consistently show
exceptionally high within-group agreement, and very few model pairs reach full agreement. Thus,
even restricted to a single provider, agreement remains well below the level of strict monoculture.

Baseline agreement under random errors remains relatively stable across subgroups, suggesting
that overall accuracy differences alone cannot explain the observed disparities. Instead, the slightly
elevated agreement among models from the same model provider likely reflects shared training
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Figure 10: Recourse curves by model provider: x% of positive instances are accepted by at most
y% of models. Only provider groups with > 4 models are shown; all groups are subsampled to match
the smallest group. Mean (solid colored) and standard error (shaded) are reported, with group sizes
in the task legends.

data, architecture choices or training pipelines, in line with the shared component hypothesis of
Bommasani et al.| [2022]].

Recourse curves. When disaggregating recourse levels by model provider, the overall picture
remains stable: both no recourse and full recourse occur much more frequently than would be
expected under random errors (Figure[T0). Even when restricted to a single provider, disagreement
between models still creates opportunities to find recourse in other models. Across all tasks, the
majority of positive instances experiences substantive or full recourse, receiving a favorable outcome
by the majority of models.

Comparing within-group recourse levels to those computed across all models in the Rashomon set
shows a tendency toward more homogeneous outcomes, with larger fractions of positive instances
experiencing either no or full recourse. On BRFSS Blood Pressure, for example, the higher agreement
among models from Alibaba translates into increases in both extremes, with more individuals facing
no recourse as well as more achieving full recourse compared to the fraction computed across all
models in the Rashomon set. On ACSPublicCoverage the pattern differs: for models from Alibaba the
prevalence of no recourse remain comparable to that across all models. Increased agreement levels
mostly stem from true positives, visible from higher levels of full recourse. Similarly, full recourse
is also increased among models from Mistral Al, but in combination with a decreased fraction of
individuals experiencing no recourse resulting in overall higher recourse levels. Models from Meta
show the reverse pattern: a higher fraction of no recourse and comparable levels of full recourse
suggest that agreement among Meta models arises primarily from shared false negatives. Because
these observations vary by task and by provider, consistent generalizations are difficult. We find some
evidence that restricting to a single provider can amplify the extreme levels of recourse compared to
those computed across all models in the Rashomon set.

C.1.2 Disaggregation by Model Variants (base vs. instruction-tuned)

In our work we include both base and instruction-tuned variant when available because both variants
might be attractive for decision-makers for various reasons. Importantly, as shown in Figure [6}
we find that across many tasks, there is often no clear performance gap between base models and
instruction-tuned variants. Consequently, models of both types are present in the Rashomon sets of
all tasks. Including both variants thus provides a more comprehensive picture. In this section, we
disaggregate the results from the main paper by model variant as it can serve to analyze the impact of
instruction-tuning on model agreement and recourse opportunities experienced by individuals.
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Figure 11: Agreement rates grouped by model variants: x% of model pairs agree on at most y%
of the positive instances. The Rashomon set is split into base and instruction-tuned models. For both
groups, observed agreement (solid colored) is higher than under random errors (corresponding dotted)
and random predictions (dashed gray), but remain below strict monoculture (red). The solid gray
line depicts agreement among all models in the Rashomon set, while the dotted gray line shows the
corresponding random-error baseline. For most tasks, average agreement among instruction-tuned
variants in the Rashomon set is slightly above that among base models.

Agreement rates. When comparing agreement rates between base and instruction-tuned models,
we find them largely comparable, with a slight tendency for pairwise agreement to be higher among
instruction-tuned models (Figure[TT)). This is most pronounced for ACSIncome and ACSEmployment.
Across tasks, instruction-tuned models account for at least half of each group and, in most cases, con-
stitute the majority. This suggests that instruction-tuning improves balanced accuracy. However, the
effect on predictive similarity across models is moderate. A notable exception is ACSPublicCoverage,
where a subset of base model pairs exhibits distinctly low, partially anti-correlated predictions with
agreement rates below random, while other models shows relatively high agreement (mean 65.6%).
In contrast, most instruction-tuned model pairs are highly correlated, with an mean agreement rate of
72.62%. These differences may be related to low predictive signal and class imbalance of this task.

Recourse levels. When disaggregating recourse levels by model variant, the overall picture remains
stable: both no recourse (receiving an unfavorable outcome from all models) and full recourse
(receiving a favorable outcome from all models) occur much more frequently than would be expected
under random errors (Figure [I2)). Even when restricted to a specific model variant, disagreement
between models creates opportunities for individuals to find recourse in other models. Across tasks,
recourse curves are largely comparable to those computed across all models in the Rashomon set. On
ACSIncome and ACSEmployment, instruction-tuned models show a slightly increased fraction of
individuals correctly receiving a favorable outcome from all models, suggesting that higher agreement
rates stem primarily from shared true positives. The opposite pattern is observed for BRFSS Blood
Pressure, where full recourse is slightly more prevalent among base models. For ACSPublicCoverage,
instruction-tuned models tend to produce positive predictions more frequently, resulting in a larger
fraction of individuals experiencing substantive recourse compared to base models. Nevertheless,
within both base and instruction-tuned models, a substantial fraction of individuals still faces no
recourse.
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Figure 12: Recourse curves grouped by model variants: x% of the positive instances are accepted
by at most y% of the models. The Rashomon set is split into base and instruction-tuned models. The
solid gray line depicts observed recourse among all models in the Rashomon set, while the dotted
gray line shows the corresponding baseline under random errors. Observed recourse curves for base
and instruction-tuned models are depicted in blue and orange respectively.

C.2 Results by Demographic Attributes

In this section, we provide fine-grained results for different demographic groups: sex, race and age,
features that are present among all tasks. For the plots we define a unified mapping to obtain similar
groups (if present and defined) across tasks. We report results for demographic groups that account
for at least 5% of the available data.

C.2.1 Disaggregation by Sex

Across all tasks, sex (or gender in the case of SIPP) is encoded as a binary variable with two categories:
male and female. When stratifying individuals by this variable, we observe that agreement rates are
largely comparable across tasks, with models showing slightly higher agreement for male individuals
in most cases (Figure[I3). This is also the case when looking at recourse levels (Figure[I4). The
largest group-level disparity is observed in the BRFSS Blood Pressure task. Although agreement
rates between male and female individuals are nearly identical, an examination of recourse levels
reveals systematically higher recourse for males. This pattern may indicate a shared bias among
models that could disadvantage female individuals in downstream decision-making. Alternatively,
the observed pattern could reflect intersectional effects between sex and age on the prevalence of
blood pressure, which we have not investigated further.

C.2.2 Disaggregation by Race

To analyze results by race, we standardize the encoding across tasks resulting in the follwing
categories: American Indian or Alaska Native, Asian, Black, Multiracial, Native Hawaiian or Other
Pacific Islander, Other, and White. We report outcomes only for race groups representing at least
5% of the test data, but disparities are also prevalent for smaller groups. Note that, following the
preprocessing procedure from tableshift, only binarized race information is available for BRFSS
Blood Pressure. In this case, individuals get mapped to the categories White and Non-White, with the
latter labeled as “Other” in the plots, since it does not correspond to a specific racial group.

Disaggregating results by race reveals substantial variation between groups in both within-group
agreement rates (Figure[T3) and within-group recourse levels (Figure[T6). Across tasks, the majority
of individuals in the datasets are White. For most tasks, agreement rates for this majority group closely
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Figure 13: Agreement rates by sex: x% of model pairs agree on at most y% of the positive
instances, with data grouped by sex. For both groups, observed agreement (solid colored) exceeds
that expected under random errors (dotted) and random predictions (dashed gray), but remains below
strict monoculture (red). The solid gray line represents agreement across all models in the Rashomon
set, while the dotted gray line indicates the corresponding random-error baseline. Overall, agreement
rates are comparable between groups across tasks. Task legends indicate group sizes.
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Figure 14: Recourse curves grouped by sex: x% of the positive instances are accepted by at most
y% of the models, with data grouped by sex. Task legends indicate group sizes. Observed recourse
curves are comparable between groups.
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Rashomon set. For most tasks, average agreement among instruction-tuned variants in the Rashomon
set is slightly above that among base models.
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Figure 16: Recourse curves grouped by race: x% of the positive instances are accepted by at most
y% of the models, with data grouped by race. Task legends indicate group sizes. Observed recourse
curves vary systematically between groups.

34



Income Employment Blood Pressure SIPP

=]
]
g
5]
8
&b
&

T T T T T

0 .25 5 .75 1 0 .25 5 .75 1 0 .25 5 .75 1 0 .25 5 .75 1

fraction of model pairs
TravelTime PublicCoverage Mobility
random prediction

= random error
[
g all
8 30-60 years
E 60 years and older

below 30 years

0 .25 5 .75 1 0 .25 5 .75 1 0 .25 5 .75 1
fraction of model pairs

Figure 17: Agreement rates grouped by age: x% of model pairs agree on at most y% of the
positive instances, with data grouped by age. Task legends indicate group size. Observed agreement
(solid colored) lies between consistently the random-error baseline (corresponding dotted) and strict
monoculture (red). Agreement rates vary systemically between groups.

match overall agreement rates. An exception is ACSMobility, where overall pairwise agreement
rates are elevated for individuals identified as White. Recourse levels generally follow the same
pattern. For tasks including individuals identified as Black, agreement rates for this group tend
to be lower, a trend consistent across all tasks except ACSTravelTime. This suggests that Black
individuals experience greater multiplicity in the examined model set. In terms of recourse, we
observe that for ACSIncome, ACSEmployment and SIPP, Black individuals face systemic exclusion
(no recourse) at much higher rates and receive full recourse at lower rates than other groups. This
pattern is particularly pronounced in ACSIncome, despite this task having the largest empirical
Rashomon set. By contrast, on ACSTravelTime and ACSPublicCoverage, a higher fraction of Black
individuals experiences high levels of recourse. The elevated agreement rates on ACSTravelTime can
be explained by a larger proportion of individuals receiving full recourse.When present, individuals
identified as Asian generally experience higher agreement rates among models in the Rashomon set
compared to both the overall agreement rates and those of other groups. This is primarily driven by
an increase in shared true positives, as reflected in the fraction of individuals receiving full recourse.
Correspondingly, the fraction of Asian individuals facing no opportunity for recourse tends to be
lower than for other groups.

Overall, the disaggregated results indicate that agreement and recourse patterns vary systematically
by race: White and Asian individuals often experience higher agreement and recourse levels, whereas
Black individuals exhibit lower agreement and are more frequently subject to systemic exclusion
across several tasks.

C.2.3 Disaggregation by Age

We categorize individuals into three age brackets: younger than 30 years, 30—60 years, and 60 years
or older. Note that some tasks are restricted to specific age ranges. For instance, most ACS tasks
consider only individuals aged 16 and older, ACSMobility restricts the population to those younger
than 35, and the BRFSS Blood Pressure dataset includes only individuals aged 50 and above.

Disaggregating results by age reveals systematic variation in both within-group agreement rates
(Figure[I7) and within-group recourse levels (Figure[I8). Across tasks, the majority of individuals
are aged 30-60, with the exceptions of BRFSS Blood Pressure and ACSMobility due to the
aforementioned age restrictions. For most tasks, agreement rates within this age group are higher and
closely match or exceed overall agreement rates. Recourse levels follow a similar pattern, with a
larger fraction of individuals in this age range receiving full recourse. Individuals younger than 30
tend to experience lower recourse levels across multiple tasks, although these disparities are generally
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Figure 18: Recourse curves grouped by age: x% of the positive instances are accepted by at most
y% of the models, with data group by age. Task legends indicate group sizes. Observed recourse
curves vary systematically between groups.

less pronounced than those observed for the 30-60 age group. The most notable disparities occur in
ACSEmployment, where younger individuals are disproportionately classified as false negatives,
receive lower levels of recourse overall, and exhibit lower agreement rates. Individuals aged 60 years
or older show a recourse curve with a slope similar to that of younger individuals, but a substantially
larger fraction of positive instances (nearly 25%) experience no recourse. Overall, the disaggregated
results indicate that agreement and recourse patterns vary systematically by age: individuals aged
30-60 generally experience higher agreement and greater access to recourse, whereas younger
individuals face lower agreement and more limited recourse across several tasks. The relationship
of the recourse curve for individuals aged 60 years or older to those of other age groups appears
task-dependent.

The disaggregated analyses may serve as an initial step toward understanding how recourse
patterns vary across demographic groups, providing indicative evidence that some groups may
face disproportionate barriers to recourse in the present language model ecosystem. It remains
an important avenue for future research to further investigate the mechanisms underlying such
disparities and ways to mitigate them.

D Zero-Shot Prompting with Identical Prompts: Additional Results

In this section, we provide additional details on our results when zero-shotting different models
with identical prompts. Section [D.T] presents a more detailed discussion of results across tasks,
Section@ shows the effect of varying e, which determines the restrictiveness of the Rashomon set,
and Section [D.3|examines the impact of selecting models based on their balanced accuracy.

D.1 Agreement and Recourse Levels Across Tasks

To complement the results presented in the main paper, we provide a more detailed analysis across
tasks in this section, including agreement rates between model pairs (Figure [T9).

As reported in detail for ACSIncome, we observe generally high recourse levels among the positive
instances, with a small, but considerable fraction experiencing no recourse (Figure[I9] bottom panel).
Compared to a random-error baseline, extreme outcomes — either no or full recourse — are more
likely, reflecting shared inductive biases between models. Nevertheless, the distribution of recourse
levels remains far from a strict monoculture, such that individuals largely retain the opportunity to
obtain favorable outcomes by switching models. We find these patterns to be generally consistent
across tasks (Figure [2] and [I9). Empirically observed agreement rates significantly exceed those
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Figure 19: Agreement rates and recourse curves for accuracy-based selection of models. Top.
Agreement curves across tasks: x% of model pairs agree on at most y% of the positive instances.
Observed agreement (blue) is higher than under random errors (orange) and random predictions
(dashed gray), but well below monoculture (red). Bottom. Recourse curves across tasks: x% of
the positive instances are accepted by at most y% of the models. We zero-shot models and select
those that achieve accuracy within € = 0.05 from the best. For example, on ACSIncome we observe
(blue) 20% of positive instances being accepted by at most 50% of the models. Under random errors
(orange) this would rarely happen. Under strict monoculture (red, dotted) individuals only experience
no or full recourse. Here, the mean TPR is used for illustration. The bar plot on the y-axis shows
density function of recourse level in the population.

expected under random errors, showing substantial predictive similarity across language models, but
generally remain below complete consensus. As as result, both agreement rates as well as recourse
curves consistently occupy the middle ground between the extremes of strong multiplicity and strict
monoculture, reflecting some degree of diversity in model behavior even within the Rashomon set.

Two tasks, ACSMobility and ACSPublicCoverage, deviate notably from the overall pattern, showing
higher rates of no recourse and smaller proportions of individuals with substantial recourse. These
deviations likely reflect the influence of two underlying characteristics common to both tasks, whose
combination may further amplify the observed differences. First, they exhibit low predictive signal
[Ding et al., 2022]]. We assess this by examining the performance gap between a majority-class
predictor and XGBoost, a strong baseline for tabular data (Figure[6). Small performance gaps indicate
that models hardly improve over trivial baselines. Second, both tasks display high class imbalance,
with a low prevalence of the positive class. Because the Rashomon set is constructed based on overall
accuracy, it tends to favor models that prioritize performance on the majority class. This effect is
particularly pronounced for ACSMobility, where the (small) Rashomon set includes mainly models
behaving highly similar to the constant majority-class predictor. Consequently, agreement among
some models is close perfect and a large fraction of individuals receive no recourse. Notably, for
ACSMobility, recourse levels align closely with those observed under the respective the random-error
baseline. For ACSPublicCoverage, recourse levels are generally lower than in other tasks, reflecting
the high negative prediction rates of models in the empirical Rashomon set (see Figure [6] right
panel). Nonetheless, 38% of positive instances receive substantial recourse. This task also exhibits
elevated levels of ambiguity and prediction discrepancy (Figure 20), consistent with unexpectedly
low agreement rates, that for a subset of models even fall below the baseline of random predictions.
Notably, the lowest agreement rates are observed for model pairs comprising one large and one small
model, suggesting that differences in model capacity may contribute to the divergence in predictions.

As discussed in Appendix [D.3] (Figure 22), selecting models using balanced accuracy rather than
overall accuracy partially mitigates these effects, reducing the fraction of individuals receiving no
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Figure 20: Severity of monoculture and predictive multiplicity as a function of accuracy deficit € from
the best model. Each column corresponds to one task. Predictions are obtained via 0-shot prompting.
Models are selected based on overall accuracy. Top. The fraction of positive instances experiencing
no recourse (blue) is consistently higher than would be expected under random errors (orange).
Although this gap persists, it decreases as € increases. Second Row. Ambiguity increases with e,
highlighting the fraction of individuals affected by model choice. Due to monotonicity, ambiguity
is likely higher for the full Rashomon set. Third Row. Discrepancy increases with e, potentially
affording opportunities for recourse for some individuals. Due to monotonicity, discrepancy is likely
higher for the full Rashomon set. Bottom. Number of models in the Rashomon set as € set increases.

recourse and increasing substantial or full recourse. Taken together, these observations suggest that
task-dependent factors such as class balance, the predictive signal of the prediction task, and the
selection criterion for the Rashomon set can influence the observed levels of recourse individuals
receive.

D.2 Effect of the Choice of Accuracy Deficit ¢

In the main analysis, we consider models whose accuracy lies within an absolute margin of € = 0.05
of the best-performing model. This choice aligns with ranges commonly explored in prior work
[Marx et al., 2020, Hsu et al., 2023, [Watson-Daniels et al.,[2023]] and strikes a practical balance
between including plausible deployment candidates from multiple major language model providers
and avoiding overly narrow empirical Rashomon sets. Because a 0.05 difference in accuracy can
correspond to a substantial change in error depending on the task and the best model’s performance,
this section explores the sensitivity of our findings to more restrictive values of e.

Figure [20] reproduces results from the main analysis, showing the prevalence of no recourse and
discrepancy across varying values of €, now also including ambiguity as an additional measure of
multiplicity. At e = 0.0, the Rashomon set contains only the best model found. Across tasks, we
observe that small increases in e rapidly expand the empirical Rashomon set as well as the observed
discrepancy () and ambiguity (c.), indicating that many models achieve comparable accuracy
while producing divergent individual-level predictions. This diversity creates potential avenues for
recourse and reduces the likelihood that decision makers converge on a single model. Nevertheless,
for all € values where the Rashomon set contains more than one model, a non-negligible fraction
of individuals experiences no recourse—substantially higher than would be expected under random
errors.

To further examine the effect of €, we provide agreement and recourse curves for varying e values in
Figure[21] The results show a pattern consistent with the main analysis. For small ¢, the empirical
Rashomon set typically contains very few models, often only the best-performing one (see also
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Figure 21: Agreement rates and recourse curves for different values of €. First row. Agreement
curves: x% of model pairs agree on at most y% of the positive instances. Observed agreement
(blue) consistently lies between strong multiplicity (orange) and strict monoculture (red). Rows 2-6.
Recourse curves for varying values of e: x% of the positive instances are accepted by at most y% of
the models. We zero-shot models and select those that achieve accuracy within e from the best. For
small €, the empirical Rashomon set can become restrictively small.
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Table 7: Recourse levels and measures of multiplicity for all tasks under zero-shot prompting when
using balanced accuracy as selection criterion for the Rashomon set.

task R no substantial full ambiguity  discrepancy
recourse  recourse  recourse
ACSIncome 32 0.05 0.81 0.56 0.39 0.15
ACSEmployment 8 0.06 0.82 0.64 0.30 0.15
BREFSS Blood Pressure 25 0.03 0.59 0.11 0.86 0.37
SIPP 15 0.05 0.78 0.49 0.46 0.18
ACSTravelTime 13 0.03 0.77 0.29 0.67 0.25
ACSPublicCoverage 17 0.09 0.51 0.22 0.69 0.37
ACSMobility 14 0.12 0.46 0.07 0.81 0.43

Figure bottom row). When the Rashomon set includes at least two models, agreement rates
exceed what would be expected under random errors, indicating substantial predictive similarity
across language models. Nevertheless, agreement generally remains below complete consensus, even
for more restrictive Rashomon sets. Consistently across varying levels of € and across tasks, the
observed recourse curve lies in between the extremes of strong multiplicity and strict monoculture
(see Appendix [D.T]for a discussion of task differences). In particular, the observed likelihood for both
extreme outcomes, no recourse and full recourse, is elevated compared to the random-error baseline
even for more restrictive, smaller Rashomon sets. Unsurprisingly, we do observe, that opportunities
for recourse increase as € and thus the size of the Rashomon set increases. Nevertheless, we observe
distribution of recourse levels differs considerably from a strict monoculture, wherein the recourse
curve would collapse into a step function determined by the false negative rate of the sole remaining
model.

Across varying values of € and tasks, the observed recourse curve lies between the extremes of
strong multiplicity and strict monoculture (see Appendix [D.|for a discussion of task differences).
In particular, the likelihood of both extreme outcomes — no recourse and full recourse — is elevated
compared to the random-error baseline, even for smaller Rashomon sets. As expected, opportunities
for recourse increase as € and thus the size of the Rashomon set grow. Nonetheless, the distribution
of recourse levels differs substantially from a strict monoculture, even for more restrictive values of e,
reflecting some degree of diversity in model behavior within the Rashomon set.

D.3 Impact of Thresholding and Model Selection Metrics

In the main paper, we take a conservative approach: to obtain model predictions, the decision
threshold ¢ is tuned to maximize balanced accuracy, converting continuous risk scores into binary
outcomes. However, when constructing the Rashomon set, models are selected based on overall
accuracy rather than balanced accuracy. An alternative would be to align the selection criterion with
the objective used to fit the threshold by employing the same metric for both steps. In the following
sections, we report additional results obtained when from using either balanced accuracy for both
threshold tuning and model selection, or overall accuracy in both steps. We note that the objective
used by decision makers to convert risk scores into discrete predictions may vary across contexts and
is generally unknown.

D.3.1 Thresholding and Model Selection based on Balanced Accuracy

In the main analysis, we optimize model predictions by tuning a threshold ¢ on a validation subset
of n = 2000 samples to maximize balanced accuracy, which is then used to convert risk scores into
binary class predictions. Models are subsequently selected for inclusion in the Rashomon set based
on their overall accuracy. In this section, we use balanced accuracy for both threshold tuning and
model selection for the Rashomon set. Applying it also as the selection criterion ensures that the
chosen models perform well across both classes. The selected models, along with their corresponding
balanced accuracy scores, are highlighted in black in Figure[7}

Overall, the findings remain consistent (Figure 22)). Across tasks, agreement rates consistently
fall between two extremes: (i) strong multiplicity, as expected under random errors, and (ii) strict
monoculture, in which all model predictions are identical. Likewise, the observed recourse curves
clearly lie between these two extremes across tasks, with elevated likelihood of no and full recourse.
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Figure 22: Agreement rates and recourse curves under zero-shot prompting when selecting models
based on balanced accuracy. Top. Agreement curves across tasks: x% of model pairs agree on at
most y% of the positive instances. Observed agreement (blue) is higher than under random errors
(orange) and random predictions (dashed gray), but well below monoculture (red). Bottom. Recourse
curves across tasks: x% of the positive instances are accepted by at most y% of the models. We
zero-shot models and select those that achieve balanced accuracy within € = 0.05 from the best. For
example, on ACSIncome we observe (blue) 20% of positive instances being accepted by at most 50%
of the models. Under random errors (orange) this would rarely happen. Under strict monoculture (red,
dotted) individuals only experience no or full recourse. Here, the mean TPR is used for illustration.
The bar plot on the y-axis shows the density function of recourse level in the population.

Furthermore, we observe that the size of the Rashomon set increases for most tasks compared to
the accuracy-based sets. This is likely because it not only includes models that are already high-
performing overall, but also models that achieve more balanced performance across classes, placing
more emphasis on the minority class. Despite this increase in set sizes, recourse levels remain stable
across those tasks with balanced datasets (see Table[7]and Figure[23). We observe stronger differences
for tasks with highly imbalanced datasets, particularly ACSMobility and ACSPublicCoverage. For
both tasks, smaller fractions of individuals experience no recourse, while larger fractions experience
substantial or even full recourse. On ACSMobility, discrepancy increases compared to accuracy-based
selection, indicating that the Rashomon set includes models with more diverse predictive behavior. In
contrast, discrepancy decreases for ACSPublicCoverage. Recall that under accuracy-based selection,
a subset of models exhibits anti-correlated predictions. When selection is based on balanced accuracy,
model agreement rates are consistently higher than expected under random errors, suggesting that
the inductive biases of models in the empirical Rashomon set are more aligned. This alignment also
results in lower discrepancy.

D.3.2 Thresholding and Model Selection based on Accuracy

In the main analysis, we optimize model predictions by tuning a threshold ¢ on a validation subset
of n = 2000 samples to maximize balanced accuracy, which is then used to convert risk scores
into binary class predictions. Models are subsequently selected for inclusion in the Rashomon set
based on their overall accuracy. In this section, we instead use the same metric, overall accuracy,
for both threshold tuning and model selection. Overall, the results remain largely consistent, except
for ACSMobility, where the empirical Rashomon set includes all evaluated models and very high
agreement rates up to perfect agreement are observed. As discussed in Appendix [D.T] this dataset is
highly imbalanced and has low predictive signal. Consequently, most models basically behave like
the constant majority class predictor, further amplified by tuning the threshold for overall accuracy.
This example illustrates that the choice of metrics for thresholding and the Rashomon set should
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Figure 23: Severity of monoculture and predictive multiplicity as a function of accuracy deficit
€ from the best model. Each column corresponds to one task. Predictions are obtained via 0-
shot prompting. Models are selected based on balanced accuracy. Top. The fraction of positive
instances that experience no recourse (blue) is consistently higher than what would be expected
under random errors (orange). Although this gap persists, it decreases as € increases. Second Row.
Ambiguity increases with €, highlighting the fraction of individuals affected by model choice. Due
to monotonicity, ambiguity is likely higher for the full Rashomon set. Third Row. Discrepancy
increases with e, potentially affording opportunities for recourse for some individuals. Due to
monotonicity, discrepancy is likely higher for the full Rashomon set. Bottom. Number of models in
the Rashomon set as € set increases.

Table 8: Recourse levels and measures of multiplicity for all tasks under zero-shot prompting when
using overall accuracy as selection criterion for the Rashomon set.

task |Re| no substantial full ambiguity  discrepancy
recourse  recourse  recourse
ACSIncome 34 0.13 0.64 0.31 0.56 0.25
ACSEmployment 8 0.07 0.78 0.61 0.32 0.15
BRFSS Blood Pressure 22 0.02 0.72 0.22 0.76 0.35
SIPP 14 0.06 0.78 0.51 0.44 0.17
ACSTravelTime 15 0.08 0.49 0.10 0.82 0.37
ACSPublicCoverage 22 0.38 0.27 0.03 0.59 0.26
ACSMobility 50 0.88 0.00 0.00 0.12 0.05

be considered in a task-dependent manner. For completeness, Table 8] reports the exact fractions
of individuals receiving no, substantial or full recourse as well as ambiguity and discrepancy as
measured on the empirical Rashomon set.

D.4 Results for Negative Instances

In this work, we focus on positive instances, individuals with a true label of y = 1 who should be
accepted or approved. Nevertheless, the notion of a (favorable outcome) varies depending on the
context. For instance, in the ACSIncome dataset, a positive prediction may indicate loan eligibility,
where approval is the advantageous outcome. Conversely, when the same data is used to assess
eligibility for financial aid, in which case a negative prediction (reflecting lower income) would
instead result in a beneficial outcome for the individual. Similarly, in tasks like fraud detection,
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Figure 24: Agreement rates and recourse curves under zero-shot prompting when selecting models
based on overall accuracy. Top. Agreement curves across tasks: x% of model pairs agree on at most
y% of the positive instances. Observed agreement (blue) is higher than under random errors (orange)
and random predictions (dashed gray), but well below monoculture (red). Bottom. Recourse curves
across tasks: x% of the positive instances are accepted by at most y% of the models. We zero-shot
models and select those that achieve balanced accuracy within € = 0.05 from the best. For example,
on ACSIncome we observe (blue) 20% of positive instances being accepted by at most 50% of the
models. Under random errors (orange) this would rarely happen. Under strict monoculture (red,
dotted) individuals only experience no or full recourse. Here, the mean TPR is used for illustration.
The bar plot on the y-axis shows the density function of recourse level in the population.

Table 9: Recourse levels and measures of multiplicity for negative instances. We zero-shot models
and use their overall accuracy as selection criterion for the Rashomon set.

task |Re| no substantial full ambiguity  discrepancy
recCourse  recourse  recourse
ACSIncome 27 0.08 0.76 0.52 0.40 0.14
ACSEmployment 8 0.13 0.75 0.61 0.26 0.16
BRFSS Blood Pressure 23 0.04 0.66 0.13 0.83 0.39
SIPP 16 0.07 0.76 0.45 0.48 0.20
ACSTravelTime 12 0.09 0.53 0.20 0.70 0.29
ACSPublicCoverage 21 0.00 0.91 0.33 0.67 0.22
ACSMobility 5 0.00 1.00 0.77 0.23 0.14

the desirable outcome corresponds to a negative prediction (i.e., being classified as not fraudulent).
In such settings, it becomes more appropriate to evaluate recourse for negative instances, as these
individuals represent those potentially excluded from desirable opportunities or favorable decisions.

In this section, we present results for zero-shot prompting under the assumption that the favorable
outcome corresponds to a negative prediction. Consequently, our analysis focuses on negative
instances. In this context, full recourse generalizes the notion of the true negative rate across models,
that is, it captures the extent to which all models consistently classify an individual as belonging to
the negative class. Models are included in the empirical Rashomon set if their overall accuracy lies
with a margin of € = 0.05 of the best-performing model.

Results for negative instances mirror those for positive ones: The empirical pairwise agreement
rates fall between the two extremes — substantially higher than what would be expected under
strong multiplicity, yet notably lower than under full strict monoculture (Figure 23] top panel). The
corresponding recourse curve reveals an overall high level of recourse, with most negative instances

43



Blood Travel Public

Income Employment  Pressure SIPP Time Coverage Mobility
(M=27) (M=8) (M=23) (M=16) (M=12) (M=21) (M=5)
+ 1 -
=
g s -/ -/——" | -’,’/ -/ -/ | ;
iéo.
oot 7t =

0.25.5.751 0.25.5.751 0.25.5.751
fraction of model pairs

fraction of
negative predictions

0.25.5.751 0.25.5.751 0.25.5.751 0.25.5.751 0.25.5.751 0.25.5.751 0.25.5.751
fraction of negative instances

I observed random error --- random prediction ==+ monoculture

Figure 25: Agreement rates and recourse curves under zero-shot prompting for accuracy-based
selection of models. Results are shown for negative instances. Top. Agreement curves across tasks:
x% of model pairs agree on at most y% of the negative instances. For most tasks, observed agreement
(blue) is higher than under random errors (orange) and random predictions (dashed gray), but well
below monoculture (red). Bottom. Recourse curves across tasks: x% of the negative instances are
correctly rejected by at most y% of the models. We zero-shot models and select those that achieve
accuracy withine = 0.05 from the best.

experiencing substantial recourse potential (Figure 23] bottom panel, and Table[0). Complementary
to the results for positive instances, recourse levels for ACSMobility and ACSPublicCoverage are
shifted toward higher values; no recourse does not occur. Across tasks, both extremes, no recourse
and full recourse, occur more frequently than expected under the random-error baseline. Nevertheless,
the overall recourse curves remain situated between the poles of strict monoculture and strong
multiplicity, underscoring the potential for many individuals to find recourse by turning to a different
model.

E Few-Shot Prompting with Identical Prompts

We repeat our analysis using 10-shot prompting, providing each model with the same class-balanced
set of examples — five labeled positive and five labeled negative. This uniform prior is chosen to
ensure that models are exposed to both classes. Note, prior work has shown that language model
behavior can be sensitive to the specific composition of few-shot examples [Zhao et al., | 2021]], which
might further increase variability in model predictions (see also Section [F). Consistent with the
zero-shot analysis, we report results based on two selection strategies for constructing the empirical
Rashomon set: one defined by overall accuracy and the other by balanced accuracy, corresponding to
the criterion used to tune the decision threshold.

E.1 Impact of the number of shots

Moving from zero-shot to few-shot prompting has been found to generally improve performance; here,
we examine its effects on predictive similarity among models. Since the exact number of shots is a
design choice, we tested 4-, 8-, and 10-shot prompting on ACSIncome and observed consistent results
(Figure 26), with a slight increase in average accuracy among models selected for the Rashomon set
as the number of shots increased. For the main analysis, we focus on a larger number of shots to
allow for in-context variations and ensure class balance. Beyond these considerations, the choice of
the number of shots appears to have little impact on the observed patterns.
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Figure 26: Agreement rates and recourse curves under few-shot prompting for varying numbers of
shots. Top. Agreement curves across tasks: x% of model pairs agree on at most y% of the negative
instances. For most tasks, observed agreement (blue) is higher than under random errors (orange)
and random predictions (dashed gray), but well below monoculture (red). Bottom. Recourse curves
across tasks: x% of the positive instances are correctly accepted by at most y% of the models. We
few-shot models and select those that achieve accuracy withine = 0.05 from the best.

E.2 Aggregate Performance

As in zero-shot prompting, aggregate performance under 10-shot prompting varies considerably
across models and tasks (Figure 27]for accuracy; Figure[28]for balanced accuracy). All thresholds
were tuned to maximize balanced accuracy. We observe a tendency for additional context in few-shot
prompting to benefit larger models, while also reducing performance variability among them. Effects
on smaller models are mixed. Consequently, Rashomon sets are mostly comprised of large models.

At the task level, accuracy improves slightly for most models on ACSIncome and ACSEmployment.
In contrast, tasks with more imbalanced label distributions — particularly ACSMobility and ACSPub-
licCoverage — show substantial variability in performance, with some models experiencing notable
declines in accuracy under 10-shot prompting. We hypothesize that this degradation may be attributed
to the use of a uniform label prior when selecting few-shot examples. This might be further amplified
as thresholds are tuned to maximize balanced accuracy.

E.3 Agreement and Recourse Levels Across Tasks
E.3.1 Selection based on overall accuracy

Overall, the analysis of predictive similarity under 10-shot prompting yields results consistent with
those observed in the zero-shot setting (Figure[29). Across tasks, we observe slightly higher agreement
rates, though they continue to fall short of complete consensus as would be expected under strict
monoculture. Notably, for ACSPublicCoverage, a small subset of models exhibits distinctly low
agreement rates. Closer inspection of the Rashomon set shows that these model pairs all involve the
single small model in the Rashomon set, Llama 3.2 1B, which effectively behaves like a constant
majority-class predictor. As shown in Figure[30] this pattern can be addressed by choosing a more
restrictive value of €, without affecting the overall results.

Similarly, recourse curves under 10-shot prompting exhibit characteristics comparable to those
observed under zero-shot prompting. The curves consistently lie between the two extremes of strong
multiplicity and strict monoculture, while the distribution of recourse levels shows a higher likelihood
of observing both extremes relative to the random-error baseline. For the tasks with class imbalance
and low predictive signal, ACSPublicCoverage and ACSMobility, we observe a more varied pattern
of model similarity. In particular, notably larger fractions of positive instances receive substantial
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Figure 29: Agreement rates and recourse curves under 10-shot prompting for accuracy-based selection
of models. Top. Agreement curves across tasks: x% of model pairs agree on at most y% of the
positive instances. For most tasks, observed agreement (blue) is higher than under random errors
(orange) and random predictions (dashed gray), but well below monoculture (red). Bottom. Recourse
curves across tasks: x% of the positive instances are accepted by at most y% of the models. We
zero-shot models and select those that achieve accuracy withine = 0.05 from the best. For example,
on ACSIncome we observe (blue) 200f positive instances being accepted by at most 50% of the
models. Under random errors (orange) this would rarely happen. Under strict monoculture (red,
dotted) individuals only experience no or full recourse. Here, the mean TPR is used for illustration.
The bar plot on the y-axis shows density function of recourse level in the population.

Table 10: Recourse levels and measures of multiplicity for all tasks under 10-shot prompting. Models
are selected for the empirical Rashomon set based on overall accuracy.

task R no substantial full ambiguity  discrepancy
recourse = recourse  recourse
ACSIncome 35 0.07 0.80 0.43 0.50 0.24
ACSEmployment 14 0.07 0.83 0.64 0.28 0.12
BRFSS Blood Pressure 28 0.07 0.59 0.21 0.72 0.27
SIPP 19 0.06 0.81 0.57 0.37 0.15
ACSTravelTime 17 0.10 0.69 0.33 0.56 0.25
ACSPublicCoverage 14 0.24 0.42 0.00 0.76 0.39
ACSMobility 11 0.35 0.20 0.00 0.65 0.26

recourse. Comparing the Rashomon sets for these tasks between the zero-shot and 10-shot settings
reveals that larger models are more frequently included under the 10-shot condition, likely because
they benefit most from the additional context (see Section [E.2).

While 10-shot prompting largely mirrors zero-shot results, the data reveal a mild trend toward
monoculture, as higher fractions of positive instances fall into one of the extremes for most tasks
(Table[T0). This is particularly notable given that the empirical Rashomon sets are larger than those
identified under the zero-shot setting, making it less likely that a larger set of models will agree unless
they are highly aligned. This pattern is also reflected in the overall lower discrepancy observed across
Rashomon sets.

Together, these results suggest that while 10-shot prompting slightly aligns model behavior, substantial
heterogeneity in model predictions remains, preserving opportunities for individuals to find recourse
by switching to another model.
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Figure 30: Agreement rates and recourse curves under 10-shot prompting for different values
of e. First row. Agreement curves: x% of model pairs agree on at most y% of the positive
instances. Observed agreement (blue) consistently lies between strong multiplicity (orange) and strict
monoculture (red). Rows 2-6. Recourse curves for varying values of e: x% of the positive instances
are accepted by at most y% of the models. We zero-shot models and select those that achieve accuracy
within e from the best. For small ¢, the empirical Rashomon set can become restrictively small.
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E.3.2 Selection based on balanced accuracy

In the main analysis, model predictions are optimized by tuning a threshold ¢ on a validation subset
of n = 2000 samples to maximize balanced accuracy, which is then used to convert continuous risk
scores into binary class predictions. Models are subsequently selected for inclusion in the Rashomon
set based on their overall accuracy. Given that few-shot examples are provided in a class-balanced
manner, this section presents 10-shot prompting results when the model selection criterion is aligned
with the optimization objective—that is, when the empirical Rashomon set is defined based on
balanced accuracy.

Analogous to observations in the zero-shot setting, selecting models based on balanced accuracy pri-
marily affects tasks with highly imbalanced datasets, namely ACSMobility and ACSPublicCoverage.
For both tasks, we observe a distribution shift toward higher levels of recourse, with fewer individuals
experiencing no recourse and larger fractions experiencing substantial or full recourse. In contrast
to accuracy-based selection, agreement rates for ACSPublicCoverage are more homogeneous and
higher, likely reflecting the emphasis on minority-class performance enforced by balanced accuracy.
As aresult, the Llama 3.2 1B model, which was included in the accuracy-based Rashomon set and
effectively behaves like a constant majority-class predictor, is no longer part of the Rashomon set.
While the Rashomon set size does not noticeably increase compared to accuracy-based selection
in the 10-shot setting, it increases relative to the corresponding zero-shot balanced-accuracy-based
Rashomon sets. Pairwise agreement rates are generally higher, and despite the larger set sizes,
instances of no recourse and full recourse are more frequent, indicating a mild trend toward monocul-
ture. Recourse curves remain situated between strong multiplicity and strict monoculture, showing
that opportunities for recourse persist for a large fraction of positive instances.

Taken together, these results largely mirror those observed under zero-shot prompting. Slightly higher
alignment in model predictions under 10-shot prompting suggests a mild trend toward monoculture,
but substantial disagreement between models remains, preserving opportunities for individuals to
find recourse by switching to another model.

Table 11: Recourse levels and measures of multiplicity for all tasks under 10-shot prompting.
Balanced accuracy is used as selection criterion for the Rashomon set.

task |Re| no substantial full ambiguity  discrepancy
recourse  recourse  recourse
ACSIncome 36 0.06 0.80 0.50 0.44 0.17
ACSEmployment 16 0.07 0.84 0.64 0.29 0.13
BREFSS Blood Pressure 25 0.10 0.58 0.24 0.66 0.27
SIPP 19 0.06 0.81 0.57 0.37 0.15
ACSTravelTime 19 0.07 0.70 0.31 0.62 0.23
ACSPublicCoverage 19 0.14 0.47 0.25 0.61 0.27
ACSMobility 10 0.17 0.48 0.15 0.67 0.34
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Figure 31: Agreement rates and recourse curves under 10-shot prompting for models selected by
balanced accuracy. Top. Agreement curves across tasks: x% of model pairs agree on at most y% of
the positive instances. For most tasks, observed agreement (blue) is higher than under random errors
(orange) and random predictions (dashed gray), but well below monoculture (red). Bottom. Recourse
curves across tasks: x% of the positive instances are accepted by at most y% of the models. We
zero-shot models and select those that achieve balanced accuracy within € = 0.05 from the best. For
example, on ACSIncome we observe (blue) 210of positive instances being accepted by at most 50% of
the models. Under random errors (orange) this would rarely happen. Under strict monoculture (red,
dotted) individuals only experience no or full recourse. Here, the mean TPR is used for illustration.
The bar plot on the y-axis shows density function of recourse level in the population.

F Few-Shot Prompting with Varying Prompts

Few-shot prompting introduces additional sources of variation, such as the choice, ordering, and
class composition of examples. To investigate this, we repeat our analysis of prompt variations under
10-shot prompting. Consistent with prior work [Zhao et al.,|2021} |Lu et al., 2022} |Gao et al., 2021},
Schick and Schiitze| [2021]], we find that both the order of examples and the class composition of
few-shot examples affect overall model performance (Figure[32)), resulting in accuracy differences
of up to three percentage points even when changing a single aspect. In addition, models remain
sensitive to the same minor prompt variations tested in the zero-shot setting, exhibiting similar
fluctuations in accuracy.

Since decision-makers may vary in more than one aspect of how they construct prompts, we evaluate
all four models on a subsample of the variations possible for few-shot prompting. To compare effects
of prompt variations and model changes directly, we fix the number of prompts and models to be
the same: we randomly sample M prompt styles (M = 35 for ACSIncome) and evaluate agreement
and recourse across 100 independent repetitions (Figure 33). We observe that pairwise agreement
across models increases under prompt variations (blue), though it remains similar to the agreement
observed when varying the model under identical prompting (gray line), suggesting that substantial
disagreement persists in both settings. Comparing recourse curves (bottom panel), we find that
prompt variation leads to a higher fraction of positive instances with no and full recourse. This
suggests a mild trend toward monoculture; nevertheless, prompt variations alone still enable recourse
for a considerable fraction of individuals, with the majority experiencing substantial recourse.
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Figure 32: Minor prompt variations induce changes in accuracy of up to 3 percentage points,
consistently across models on ACSIncome. Each subplot varies a single aspect of the prompt, keeping
the others fixed to default. Light blue dots show accuracy for individual variations, dark blue dots
indicate the mean accuracy with error bars.
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Figure 33: Agreement and recourse across prompt variations on ACSIncome. We 10-shot models
with varying prompting styles, subsampling V' = 35 prompt variations per model to match the
number of different models in Top. Agreement curve: x% of prompt variation pairs
agree on up to y% of the positive instances. Observed agreement rates (blue) surpass those under
random errors (orange), but remain similar to agreement rates observed with identical prompting
across different models (gray, solid). Bottom. Recourse curve: x% of the positive instances are
accepted by at most y% of the prompt variations. For example, 25% of the positive instances are
accepted by at most 50% of the variations. Observed recourse (blue), random errors (orange). Under
strict monoculture (red, dotted) individual only experience no or full recourse. Here, the mean TPR is
used for illustration. Bar plot on the y-axis shows density function of recourse level in the population.
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G Prompt Variations

In this section we provide further details and examples for the prompt variations tested in this work.
By default, information about an individual is presented as a bulleted list, where each feature name
is followed by its value using the verb is. The default feature order and feature-to-text mapping are
taken as provided from folktexts. As running example consider:

Information:

- age is 48 years old

- class of worker is Working for a non-profit organization
- highest educational attainment is Doctorate degree

- marital status is Married

- occupation is Education and childcare administrators

- place of birth is Califormnia

- relationship to the reference person in the survey is Brother or
sister

- usual number of hours worked per week is 45 hours

- sex is Female

- race is Asian

To assess how sensitive models are to subtle changes in prompting, we modify four minor aspects of
prompt construction — specifically, the way information about individuals is presented. The following
paragraphs detail each variation.

Feature order. We test five arbitrary orders in which features of an individual are presented - the
default order given by folktexts, its reverse, and three random samples from the d! possible orders,
where d is the number of features. On ACSIncome, the resulting feature orders are:

e default: AGEP, COW, SCHL, MAR, OCCP, POBP, RELP, WKHP, SEX, RAC1P
* reverse: RACIP, SEX, WKHP, RELP, POBP, OCCP, MAR, SCHL, COW, AGEP
* random 1: RAC1P, WKHP, AGEP, SCHL, MAR, SEX, RELP, POBP, COW, OCCP
* random 2: WKHP, OCCP, RAC1P, MAR, AGEP, RELP, SCHL, POBP, COW, SEX
* random 3: AGEP, SCHL, OCCP, MAR, COW, WKHP, RAC1P, RELP, SEX, POBP

The rows in the above example are reordered according to the given feature order.

Format. Features are presented either as bullet list, as comma-separated list (CSV style) or as
simple text using the format ’<feature name> <connector> <feature value>.’.

Information provided as comma-separated list:

Information:

age is 48 years old, class of worker is Working for a non-profit
organization, highest educational attainment is Doctorate degree,
marital status is Married, occupation is Education and childcare
administrators, place of birth is California, relationship to the
reference person in the survey is Brother or sister, usual number of
hours worked per week is 45 hours, sex is Female, race is Asian

Information provided as simple text

Information:

The age is 48 years old. The class of worker is Working for a non-

profit organization. The highest educational attainment is Doctorate

degree. The marital status is Married. The occupation is Education and
childcare administrators. The place of birth is Califormnia. The

relationship to the reference person in the survey is Brother or
sister. The usual number of hours worked per week is 45 hours. The sex
is Female. The race is Asian.
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Connector. We vary the symbol used between <feature name> and <feature value>, choosing

’ L)

among ’is’,’="or ' .
Information provided with ’:* as connector:

Information:

- age: 48 years old

- class of worker: Working for a non-profit organization
- highest educational attainment: Doctorate degree

- marital status: Married

- occupation: Education and childcare administrators

- place of birth: California

- relationship to the reference person in the survey: Brother or
sister

- usual number of hours worked per week: 45 hours

- sex: Female

- race: Asian

Information provided with =" as connector:

Information:
- age = 48 years old

- class of worker = Working for a non-profit organization

- highest educational attainment = Doctorate degree

- marital status = Married

- occupation = Education and childcare administrators

- place of birth = California

- relationship to the reference person in the survey = Brother or
sister

- usual number of hours worked per week = 45 hours

- sex = Female

- race = Asian

Granularity. We toggle between the original feature mapping provided by folktexts and a lower
resolution mapping. For most features, the lower-resolution version aggregates categories or bins
numerical values — for example, exact age is grouped into age ranges, and detailed occupational
statuses are mapped to broader occupational categories as defined in the ACS data documentation'.

Information provided in lower resolution:

Information:

- age is 40-49 years old

- class of worker is Employed

- highest educational attainment is Graduate or professional degree
- marital status is Married

- occupation is Management Occupations

- place of birth is West USA

- relationship to the reference person in the survey is Siblings
- usual number of hours worked per week is 40-49 hours

- sex 1is Female

- race is Asian
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are empirically backed in Section[4]and[3]
Guidelines:.
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Scope and assumptions are clearly stated, we discuss limitations in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

55



Justification: Paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Steps to reproduce all experimental results are provided in the code.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code and data to reproduce the main results are provided with the supplemen-
tary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section [3|and supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Provided in

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper includes details on computational resources used in the supplemen-
tary material in Section[A.3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification:
Guidelines: Societal impact discussed in[I}

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is focused on evaluation and does not release any new assets.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Original paper that produced the code package or dataset is cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: Paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were primarily used for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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