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Abstract

We consider discounted infinite horizon con-
strained Markov decision processes (CMDPs)
where the goal is to find an optimal policy that
maximizes the expected cumulative reward sub-
ject to expected cumulative constraints. Motivated
by the application of CMDPs in online learning
of safety-critical systems, we focus on develop-
ing a model-free and simulator-free algorithm
that ensures constraint satisfaction during learn-
ing. To this end, we develop an interior point
approach based on the log barrier function of the
CMDP. Under the commonly assumed conditions
of Fisher non-degeneracy and bounded transfer
error of the policy parameterization, we estab-
lish the theoretical properties of the algorithm.
In particular, in contrast to existing CMDP ap-
proaches that ensure policy feasibility only upon
convergence, our algorithm guarantees the feasi-
bility of the policies during the learning process
and converges to the ε-optimal policy with a sam-
ple complexity of Õ(ε−6). In comparison to the
state-of-the-art policy gradient-based algorithm,
C-NPG-PDA (Bai et al., 2023), our algorithm
requires an additional O(ε−2) samples to ensure
policy feasibility during learning with same Fisher
non-degenerate parameterization.

1. Introduction
Reinforcement learning (RL) involves studying sequential
decision-making problems, where an agent aims to
maximize an expected cumulative reward by interacting
with an unknown environment (Sutton & Barto, 2018).
While RL has achieved impressive success in domains like
video games and board games (Berner et al., 2019; Silver
et al., 2016; 2017), safety concerns arise when applying RL
to real-world problems, such as autonomous driving (Fazel
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et al., 2018), robotics (Koppejan & Whiteson, 2011; Ono
et al., 2015), and cyber-security (Zhang et al., 2019). Incor-
porating safety into RL algorithms can be done in various
ways (Garcıa & Fernández, 2015). From a problem formula-
tion perspective, one natural approach to incorporate safety
constraints is through the framework of discounted infinite
horizon constrained Markov decision processes (CMDPs).

In a CMDP, the agent aims to maximize an expected cumula-
tive reward subject to expected cumulative constraints. The
CMDP formulation has a long history (Altman, 1999; Puter-
man, 2014) and has been applied in several realistic scenar-
ios (Kalweit et al., 2020; Mirchevska et al., 2018; Zang et al.,
2020). Due to its applicability, there has been a growing
body of literature in recent years that develops learning-
based algorithms for CMDPs, employing both model-free
(Mondal & Aggarwal, 2024; Bai et al., 2022; Ding et al.,
2020; 2022a; Liu et al., 2022; Xu et al., 2021; Zeng et al.,
2022) and model-based approaches (Agarwal et al., 2022;
HasanzadeZonuzy et al., 2021; Jayant & Bhatnagar, 2022).

Existing learning-based approaches to the CMDP problem
offer various theoretical guarantees regarding constraint
violations. Some of these approaches only ensure constraint
satisfaction upon algorithm convergence (Mondal &
Aggarwal, 2024; Ding et al., 2020; 2022a; Liu et al., 2022;
Xu et al., 2021; Zeng et al., 2022), bounding the average
constraint violation by ε. Others enhance these guarantees
by aiming for averaged zero constraint violation (Bai et al.,
2023; Kalagarla et al., 2023; Wei et al., 2022a;b). For the
practical deployment of RL algorithms in real-world scenar-
ios, particularly those requiring online tuning, it is important
to satisfy the constraints during the learning process (Abe
et al., 2010). This property is referred to as safe exploration
(Koller et al., 2019). Ensuring constraint satisfaction during
learning not only limits exploration but also requires a more
accurate estimation of model parameters or gradients to
ensure constraint satisfaction (Vaswani et al., 2022).

To address safe exploration, model-based methods employ
either Gaussian processes to learn system dynamics
(Koller et al., 2019; Cheng et al., 2019; Wachi et al., 2018;
Berkenkamp et al., 2017; Fisac et al., 2018) or leverage
Lyapunov-based analysis (Chow et al., 2018; 2019) to
ensure safe exploration with high probability. However,
these approaches lack guarantees on the performance of
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the learned policy. An alternative model-based approach,
known as the constrained upper confidence RL algorithm,
offers convergence guarantees and ensures safe exploration
with high probability. This algorithm has been applied in
both infinite horizon average reward scenarios with known
transition dynamics (Zheng & Ratliff, 2020) and finite
horizon reward scenarios with unknown transition dynamics
(Liu et al., 2021a; Bura et al., 2022). However, in complex
environments, accurately modeling system dynamics can
be computationally challenging (Sutton & Barto, 2018).

Policy gradient (PG) algorithms demonstrate their advan-
tage in handling complex environments in a model-free
manner (Agarwal et al., 2021). They have shown empirical
success in solving CMDPs (Liang et al., 2018; Achiam
et al., 2017; Tessler et al., 2019; Liu et al., 2020a). Initial
guarantees for safe exploration in CMDPs were provided
by (Achiam et al., 2017), relying on exact policy gradient
information. However, with unknown transition dynamics,
we can only estimate the gradient information. To address
this, access to a simulator (Koenig & Simmons, 1993)
(also known as generative model (Azar et al., 2012)) was
assumed by (Mondal & Aggarwal, 2024; Bai et al., 2023;
Ding et al., 2020; 2022a; Xu et al., 2021; Ding et al., 2024).
However, practical RL requires learning in real-world
scenarios, where access to a simulator may not be feasible.
Theoretically, the analysis becomes significantly more
challenging without a simulator (Jin et al., 2018).

Among the above works addressing CMDPs with simulator
access, (Mondal & Aggarwal, 2024; Ding et al., 2020;
2022a; Xu et al., 2021) provided theoretical guarantees on
bounding average constraint violations by ε, while (Bai
et al., 2023) strengthened this to averaged zero constraint
violation. However, ensuring an averaged zero constraint
violation is problematic in safety-critical CMDPs, as there
may be overshoots in the constraint values in each iteration
(Stooke et al., 2020; Calvo-Fullana et al., 2023), thus failing
to provide safety guarantees for each policy iteration. To
partially alleviate this issue, (Ding et al., 2024) proposed
an approach with constraint satisfaction and optimality of
the last iterate policy. The work (Zeng et al., 2022), which
does not rely on a simulator, showed that achieving an
average constraint violation bound of ε demands additional
O(ε−4) samples compared to the state-of-the-art policy
gradient-based algorithm (Ding et al., 2020). However,
this work, similar to all the above works, did not ensure
constraint satisfaction during learning. A summary of
these works, their constraint satisfaction and convergence
guarantees is provided in Table 1.

In the field of constrained optimization, safe exploration
has been extensively studied using Bayesian models based
on Gaussian processes (Berkenkamp et al., 2017; Sui et al.,
2015; Berkenkamp et al., 2021; Amani et al., 2019). How-

ever, Bayesian optimization algorithms suffer from the curse
of dimensionality (Frazier, 2018; Moriconi et al., 2020;
Eriksson & Jankowiak, 2021), making them impractical for
model-free RL settings, where large state and action spaces
are often encountered. To address this limitation, (Usman-
ova et al., 2020; 2022) proposed a first-order interior point
approach, inspired by (Hinder & Ye, 2019), that tackles the
issue by incorporating constraints into the objective using a
log barrier function. While their vanilla non-convex analysis
could directly apply to policy gradient type algorithms,
the convergence results will be limited to ε-approximate
stationary points rather than optimal points using O(ε−7)

samples in total. Furthermore, both (Usmanova et al., 2022)
and (Liu et al., 2020a) demonstrated the success of the
log barrier approach on benchmark continuous control
problems. But to our knowledge, safe exploration and tight
convergence guarantees for the log barrier policy gradient
method in a CMDP have not been addressed.

Our paper is dedicated to providing provable non-
asymptotic convergence guarantees for solving CMDPs
while ensuring safe exploration under a simulator-free
setting. Our contributions are as follows.

1.1. Contributions

• We develop an interior point stochastic policy gradient
approach for the CMDP problem and prove that the
last iterate policy is O(

√
εbias)+ Õ(ε)1, while ensuring

safe exploration with high probability, utilizing Õ(ε−6)

samples in total. The term εbias represents the function
approximation error resulting from the restricted
policy parameterization (see Theorem 4.9).

• Our technical analysis is based on constructing an ac-
curate gradient estimator for the log barrier and es-
tablishing its local smoothness properties, assuming
the smoothness of the policy parameterization. Ad-
ditionally, by incorporating common assumptions on
the policy class, including Fisher non-degeneracy and
bounded transfer error (Liu et al., 2020b; Yuan et al.,
2022; Fatkhullin et al., 2023; Ding et al., 2022b), we es-
tablish the gradient dominance property for the log bar-
rier function (see Lemma 4.8). This in turn enables us
to derive convergence guarantees for the last iterate as
well as regret rates for the performance of the iterates.

• We contribute to the understanding of the applicability
and limitations of the Fisher non-degeneracy and the
bounded transfer error assumptions by narrowing down
the classes of policies that satisfy these assumptions
(see Facts 4.5, 4.7).

1The notation Õ(·) hides the log( 1
ε
) term.
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Table 1. Sample complexity for achieving ε-optimal objectives with guarantees on constraint violations in stochastic policy gradient-based
algorithms, considering various parameterizations for discounted infinite horizon CMDPs. For constraint violation, O(ε) refers to the
average constraint violation being bounded by ε. Averaged zero strengthens the above bound to 0. RPG-PD (Ding et al., 2024) ensures
the last iterate’s safety. Here, we refer to “w.h.p" as with high probability.

Stochastic policy gradient-based algorithms

Parameterization Algorithm Sample complexity Constraint violation Optimality Generative model

Softmax NPG-PD(Ding et al., 2020) O(ε−2) O(ε) Average ✓
Softmax PD-NAC(Zeng et al., 2022) O(ε−6) O(ε) Average ×
Softmax This work Õ(ε−6) Safe exploration w.h.p Last iterate ×
General smooth policy NPG-PD (Ding et al., 2022a) O(ε−6) O(ε) Average ✓
Neural softmax(ReLu) CRPO(Xu et al., 2021) O(ε−6) O(ε) Average ✓
Log-linear RPG-PD(Ding et al., 2024) Õ(ε−14) 0 at last iterate Last iterate ✓
Fisher non-degenerate PD-ANPG(Mondal & Aggarwal, 2024) Õ(ε−3) O(ε) Average ✓
Fisher non-degenerate C-NPG-PDA(Bai et al., 2023) Õ(ε−4) Averaged zero Average ✓
Fisher non-degenerate This work Õ(ε−6) Safe exploration w.h.p Last iterate ×

1.2. Notations

For a set X , ∆(X ) denotes the probability simplex over the
set X , and |X | denotes the cardinality of the set X . For
any integer m, we set [m] := {1, . . . ,m}. ∥ · ∥ denotes the
Euclidean ℓ2-norm for vectors and the operator norm for
matrices respectively. The notation A ⪰ B indicates that
the matrix A − B is positive semi-definite. We denote the
image space and kernel space of the matrix A as Im(A) and
Ker(A), respectively. The function f(x) is said to be M-
smooth on X if the inequality f(x) ≤ f(y)+⟨∇f(y), x−y⟩+
M
2
∥x− y∥2 holds ∀x, y ∈ X , and L-Lipschitz continuous

on X if |f(x)− f(y)| ≤ L ∥x− y∥ holds ∀x, y ∈ X .

2. Problem formulation
We consider an infinite-horizon discounted constrained
Markov decision process (CMDP) defined by the tuple
{S,A, P, ρ, {ri}mi=0 , γ}. Here, S and A are the state and
action spaces, respectively. ρ ∈ ∆(S) denotes the initial
state distribution, and P (s′|s, a) is the probability of
transitioning from state s to state s′ when action a is taken.
Additionally, r0 : S × A → [0, 1] is the reward function,
and ri : S × A → [−1, 1] is the utility function for i ∈ [m].
γ ∈ (0, 1) represents the discount factor.

We consider a stationary stochastic policy π : S → ∆(A),
which maps states to probability distributions over actions,
and we denote Π as the set containing all stochastic
policies. We introduce the performance measure V π

i (ρ) :=

Eτ∼π

[∑∞
t=0 γ

tri(st, at)
]
, which is the infinite horizon dis-

counted total return concerning the function ri. Here, τ de-
notes a trajectory {(s0, a0, s1, a1, . . .) : sh ∈ S, ah ∈ A, h ∈
N} induced by the initial distribution s0 ∼ ν0, the policy
at ∼ π(·|st), and the transition dynamics st+1 ∼ P (·|st, at).

In CMDP, the objective is to find a policy that maximizes
the objective function V π

0 (ρ) subject to the constraints
V π
i (ρ) for i ∈ [m]:

max
π

V π
0 (ρ) s.t. V π

i (ρ) ≥ 0, i ∈ [m]. (RL-O)

The choice of optimizing only over stationary policies is jus-
tified: it has been shown that the set of all optimal policies
for a CMDP includes stationary policies (Altman, 1999).
We further assume the existence of a stationary optimal
policy π∗ that solves problem (RL-O), which is ensured by
Slater’s condition as demonstrated in (Altman, 1999).

For large or continuous CMDPs, solving (RL-O) is
intractable due to the curse of dimensionality (Sutton
et al., 1999). The policy gradient method allows us to
search for the optimal policy π∗ within a parameterized
policy set {πθ, θ ∈ Rd}. For example, we can apply neural
softmax parametrization for discrete action space, or
Gaussian parameterization for continuous action space. For
simplicity, we denote V

πθ
i (ρ) as V θ

i (ρ), as it is a function of
θ. Due to the policy parameterization, we can reformulate
problem (RL-O) into a constrained optimization problem
over the finite-dimensional parameter space, as follows:
Problem 2.1. Consider θ ∈ Rd, and we are solving the
following optimization problem:

max
θ

V θ
0 (ρ) s.t. V θ

i (ρ) ≥ 0, i ∈ [m]. (RL-P)

Here, the feasible set is denoted as Θ := {θ | V θ
i (ρ) ≥ 0, i ∈

[m]}, and the corresponding feasible parameterized policy
set is ΠΘ := {πθ | θ ∈ Θ}.
Due to parameterization, our parameterized policy set may
not cover the entire stochastic policy set. Our goal is to find
a policy πθ that closely approximates the optimal policy
π∗ while ensuring safe exploration, as defined below.
Definition 2.2. Given an algorithm providing a sequence of
{θt}Tt=0, we say the algorithm ensures safe exploration with
high probability if, for a given confidence level α ∈ (0, 1],
we have P

(
V θt
i (ρ) ≥ 0, ∀i ∈ [m], and ∀t ∈ {0, . . . , T}

)
≥

α.

3. Log barrier policy gradient approach
Our approach to safe exploration is based on considering
the unconstrained log barrier surrogate Bθ

η(ρ) of Problem
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(RL-P), where Bθ
η(ρ) and its gradient ∇θB

θ
η(ρ), as defined

below.

max
θ∈Θ

Bθ
η(ρ) := max

θ
V θ
0 (ρ) + η

m∑
i=1

log V θ
i (ρ),

∇θB
θ
η(ρ) := ∇V θ

0 (ρ) + η

m∑
i=1

∇V θ
i (ρ)

V θ
i (ρ)

, (1)

where η > 0. Log barrier algorithm (Liu et al., 2020a;
Usmanova et al., 2022) can be summarized by

θt+1 = θt + γt∇̂θB
θ
η(ρ), (2)

where γt represents the stepsize and ∇̂θB
θ
η(ρ) is an

estimation of the true gradient (1). The intuition is that
the iterates approach the stationary point of the log barrier
function from the interior, thereby ensuring safe exploration.
Furthermore, we establish that the stationary points of the
log barrier function correspond to approximately optimal
points of the CMDP objective, ensuring optimality.

The iteration above is arguably simple; In contrast to the
approach in (Bai et al., 2023; Ding et al., 2022a; Liu et al.,
2022; Xu et al., 2021; Zeng et al., 2022), our method
eliminates the need for projection, adjustment of the
learning rate for a dual variable, and the requirement of a
simulator capable of simulating the MDP from any initial
state s ∈ S. However, the challenge lies in fine-tuning the
stepsize γt to ensure safe exploration while maintaining
convergence. In the following two sections, we address
these aspects and formalize the algorithm.

3.1. Estimating log barrier gradient ∇̂θB
θ
η(ρ)

Given that we do not have access to the generative model,
we need to estimate the log barrier gradient to implement
(2). Equation (1) indicates that we need to estimate both
V θ
i (ρ) and its gradient ∇θV

θ
i (ρ). Gradient estimators using

Monte Carlo approaches have been addressed in past work
(Sutton et al., 1999; Williams, 1992; Baxter & Bartlett,
2001), and we will apply them to estimate the log barrier
gradient as follows.

Let τj :=
(
sjt , a

j
t ,
{
ri(s

j
t , a

j
t)
}m
i=0

)H−1

t=0
denote n truncated

trajectories, with a fixed horizon H , each including
the corresponding reward and utility functions. The
estimator of the value function, denoted as V̂ θ

i (ρ),
is computed as the average value over the sampled
trajectories: V̂ θ

i (ρ) := 1
n

∑n
j=1

∑H−1
t=0 γtri(s

j
t , a

j
t).

To estimate the gradient ∇θV
θ
i (ρ), we focus on the

GPOMDP gradient estimator for simplicity, but
the result extends to other gradient estimators. The
GPOMDP gradient estimator is computed as: ∇̂θV

θ
i (ρ) :=

1
n

∑n
j=1

∑H−1
t=0

∑t
t′=0 γ

tri(s
j
t , a

j
t)∇θ log πθ(a

j
t′ |s

j
t′).

Bounds on the error in the above estimations can be derived
based on the well-behavedness of the following assumption.

Assumption 3.1. The gradient and Hessian of the func-
tion log πθ(a|s) are bounded, i.e., there exist constants
Mg,Mh > 0 such that ∥∇θ log πθ(a|s)∥ ≤ Mg and
∥∇2

θ log πθ(a|s)∥ ≤ Mh for all θ ∈ Θ.

Remark 3.2. Assumption 3.1 has been widely utilized in the
analysis of policy gradient methods (Liu et al., 2020b; Yuan
et al., 2022; Ding et al., 2022b; Xu et al., 2020). It is satis-
fied for softmax policy, the log-linear policy with bounded
feature vectors (Agarwal et al., 2021, Section 6.1.1), as well
as Cauchy policy (Fatkhullin et al., 2023, Appendix B) and
Gaussian policy (Xu et al., 2020, Appendix D).

As stated in Proposition 3.3, Assumption 3.1 ensures
smoothness and Lipschitz continuity properties for the
value functions V θ

i (ρ). It also ensures that the estimator
of V θ

i (ρ) and its gradient ∇θV
θ
i (ρ) have sub-Gaussian tail

bounds. These tail bounds provide probabilistic guarantees
that the estimators do not deviate significantly from their
expected values, which is essential for assessing the safe
exploration and convergence behavior of the algorithm.

Proposition 3.3. Let Assumption 3.1 hold. The following
properties hold ∀i ∈ {0, . . . ,m} and ∀θ ∈ Θ.

1. V θ
i (ρ) are L-Lipschitz continuous and M -smooth, where

L :=
Mg

(1−γ)2
and M :=

M2
g+Mh

(1−γ)2
.

2. Let b0(H) := γH

1−γ
and b1(H) :=

Mgγ
H

1−γ

√
1

1−γ
+H, we

have ∣∣∣V θ
i (ρ)− E

[
V̂ θ
i (ρ)

]∣∣∣ ≤ b0(H),∥∥∥∇θV
θ
i (ρ)− E

[
∇̂θV

θ
i (ρ)

]∥∥∥ ≤ b1(H).

3. Let σ0(n) :=
√
2√

n(1−γ)
and σ1(n) :=

2
√
2Mg

√
n(1−γ)

3
2

, for any

δ ∈ (0, 1), we have

P

(∣∣∣V̂ θ
i (ρ)− E

[
V̂ θ
i (ρ)

]∣∣∣ ≤ σ0(n)

√
ln

2

δ

)
≥ 1− δ,

P

∥∥∥∇̂θV
θ
i (ρ)− E

[
∇̂θV

θ
i (ρ)

]∥∥∥ ≤ σ1(n)

√
ln

e
1
4

δ

 ≥ 1− δ.

The first property has been proven in (Bai et al., 2023,
Lemma 2) and (Yuan et al., 2022, Lemma 4.4). The
bias bound b1(H) has been established in (Yuan et al.,
2022, Lemma 4.5). We prove the remaining properties
in Appendix D.1. Based on the estimators of the value
function V θ

i (ρ) and its gradient ∇θV
θ
i (ρ), we construct

the estimator for the log barrier function required in our
iteration (2) as follows:

∇̂θB
θ
η(ρ) := ∇̂θV

θ
0 (ρ) + η

m∑
i=1

∇̂θV
θ
i (ρ)

V̂ θ
i (ρ)

. (3)

Based on Proposition 3.3, we can establish the sub-Gaussian
tail bound for the estimator (3) as follows.
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Lemma 3.4. Let Assumption 3.1 hold. For any
δ ∈ (0, 1), we have P(∥∇̂θB

θ
η(ρ) − ∇θB

θ
η(ρ)∥ ≤

(1 +
∑m

i=1
η

V̂ θ
i (ρ)

)(b1(H) + σ1(n)

√
ln e

1
4

δ
) +∑m

i=1
ηL

V̂ θ
i (ρ)V θ

i (ρ)
(b0(H) + σ0(n)

√
ln 2

δ
)) ≥ 1− δ.

The proof of Lemma 3.4 can be found in Appendix
D.2. Lemma 3.4 indicates that the sample complexity
for obtaining an accurate estimate of the log barrier
gradient depends on the distance of the iterates to the
boundary, which is on the order of O

(
1/mini V

θ
i (ρ)

2
)
. This

observation will be crucial in deriving the convergence rate
and sample complexity of our algorithm.

3.2. Tuning the stepsize

The log barrier function is not smooth globally because its
gradient becomes unbounded as the iterate approaches the
boundary of the feasible domain. However, within a local
region, the gradient of the log barrier function can exhibit
bounded growth since V θ

i (ρ) is smooth and bounded in that
area. Based on this observation, the LB-SGD algorithm
(Usmanova et al., 2022) developed a local smoothness
constant, Mt, by bounding the Hessian of the log barrier
function, assuming access to unbiased estimators of the
objective values. In our RL setting, we extend this approach
using Monte Carlo methods to estimate the gradient
information given the biased value function estimators and
GPOMDP gradient estimators.

The local smoothness constant M̂t, accounting for the biases
and variances of the objective values and gradients of V θ

i (ρ),
is as follows:

M̂t := M +

m∑
i=1

10Mη

αi(t)
+ 8η

m∑
i=1

(
βi(t)

)2
(αi(t))

2 .

Here, αi(t) represents the lower confidence bound of the
constraint function V θt

i (ρ), and βi(t) denotes the upper con-

fidence bound of
∣∣∣∣〈∇θV

θt
i (ρ),

∇θB
θt
η (ρ)

∥∇θB
θt
η (ρ)∥

〉∣∣∣∣. These confi-

dence bounds are derived from Proposition 3.3 and detailed
in Appendix D.3.1. To prevent overshooting and ensure that
iterations remain within the local region where the estimator
is valid, we set the stepsize γt as follows:

γt = min

{
min
i∈[m]

{
αi(t)√

Mαi(t) + 2|βi(t)|

}
1

∥∇̂xB
θt
η (ρ)∥

,
1

M̂t

}
.

(4)

Above, the first term inside the minimization corresponds to
the region around the current iterate θt where the estimator
is valid (see Appendix D.3.1).

With the gradient estimators and stepsize defined, we can
now provide the LB-SGD approach in Algorithm 1. In
summary, the LB-SGD algorithm implements stochastic
gradient ascent on the log barrier function Bθt

η (ρ) using the

Algorithm 1 LB-SGD

1: Input: Smoothness parameter M =
M2

g+Mh

(1−γ)2
, batch

size n, truncated horizon H , number of iterations T ,
confidence bound δ ∈ (0, 1), η > 0.

2: for t = 0, 1, . . . , T − 1 do
3: Compute V̂ θt

i (ρ) and ∇̂θV
θt
i (ρ) using sampling

scheme 3.1.
4: Compute ∇̂θB

θt
η (ρ) using Eq.(3).

5: if ∥∇̂θB
θt
η (ρ)∥ ≤ η

2
then

6: Break the loop. Return θbreak.
7: end if
8: θt+1 = θt + γt∇̂θB

θt
η (ρ) , where γt is defined in

Eq.(4).
9: end for

10: Return θout, which can be either θbreak or θT .

sampling scheme provided in Section 3.1, where η controls
the optimality of the algorithm’s output. If the norm of the
estimated gradient is smaller than η

2 , the algorithm termi-
nates. However, if the norm exceeds this threshold, the algo-
rithm proceeds with stochastic gradient ascent, based on the
stepsize specified in line 8. Under appropriate assumptions
on the policy parameterization, we prove that Algorithm
1 can find a policy that is O(

√
εbias) + Õ(ε)-optimal with

a sample complexity of Õ(ε−6). Here, εbias represents the
transfer error from Assumption 4.6, as detailed in Section
4.2. We provide an informal statement of the main result
of our paper here, and in the next section, we elaborate on
the assumptions to formalize and prove this statement.

Theorem 3.5. Under suitable assumptions (see Theorem
4.9 for the precise statement), Algorithm 1 has the following
properties using Õ(ε−6) samples:

1. Safe exploration is satisfied with high probability.

2. The output policy πθout achieves O(
√
εbias) + Õ(ε)-

optimality with high probability.

This result extends the findings of (Usmanova et al., 2022) to
the RL setting, where the authors provide convergence guar-
antees for the LB-SGD algorithm towards a stationary point.
Their work focuses on non-convex objective and constraint
functions V θ

i (ρ), employing an unbiased sampling scheme
for the values V θ

i (ρ). In this paper, we further demonstrate
that LB-SGD ensures that the last iterate policy converges
towards a globally optimal policy while guaranteeing safe
exploration, using biased estimators for V θ

i (ρ).

4. Technical analysis of log barrier for CMDPs
The proof of Theorem 4.9 is divided into safe exploration
analysis (Section 4.1) and convergence analysis (Section
4.2). In the safe exploration analysis (Lemma 4.3), we
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utilize Slater’s condition and an Extended Mangasarian-
Fromovitz constraint qualification (MFCQ) assumption (see
Assumptions 4.1 and 4.2, respectively) to establish lower
bounds on the distance of the iterates from the boundary.
For the convergence analysis, we rely on assumptions con-
cerning the richness of the policy parametrization. Specifi-
cally, under the Fisher non-degenerate assumption and the
bounded transfer error assumption (see Assumptions 4.4
and 4.6, respectively), we establish the gradient dominance
property for the log barrier function in Lemma 4.8. This
property allows us to bound the gap between V θ

0 (ρ) and the
optimal value function V π∗

0 (ρ) by the norm of the gradient
∇θB

θ
η(ρ).

4.1. Safe exploration of the algorithm

Assumption 4.1 (Slater’s condition). There exist a known
starting point θ0 ∈ Θ and νs > 0 such that V θ0

i (ρ) ≥ νs,
∀i ∈ [m].

Assumption 4.1 has been commonly used in the analysis
of CMDPs (Bai et al., 2023; Ding et al., 2020; Liu et al.,
2021a;b). It is natural to assume this since without a safe
initial policy πθ0 , the safe exploration property 2.2 is not
satisfied.

Assumption 4.2 (Extended MFCQ). Given p > 0, let
Bp(θ) :=

{
i ∈ [m] | 0 < V θ

i (ρ) ≤ p
}

be the set of constraints
indicating that θ is approximately p-close to the bound-
ary. We assume that there exist constants 0 < νemf ≤ νs
and ℓ > 0 such that for any θ ∈ Θ, there is a direction
sθ ∈ Rd with ∥sθ∥ = 1 satisfying ⟨sθ,∇V θ

i (ρ)⟩ > ℓ for all
i ∈ Bνemf(θ).

In the context of non-convex constrained optimization, the
MFCQ assumption (Mangasarian & Fromovitz, 1967) is
commonly required to ensure that the Karush-Kuhn-Tucker
conditions are necessary optimality conditions (Muehle-
bach & Jordan, 2022; Boob et al., 2023). Assumption 4.2
strengthens the MFCQ assumption by requiring the exis-
tence of a unit direction that guides the iterate within a
distance of νemf from the boundary while staying at least ℓ
away from it. While the MFCQ assumption mandates ℓ = 0
and νemf = 0, the need for strictly positive values of νemf

and ℓ arises due to our reliance on stochastic gradients rather
than exact gradients. Furthermore, Assumption 4.2 ensures
the existence of a trajectory guiding points on the boundary
away from it. Without Assumption 4.2, the iterates gener-
ated by the log barrier approach can be O

(
exp −1

η

)
close

to the boundary, as illustrated in the example provided in
Appendix B.2. This, in turn, would require very accurate
gradient estimators to ensure safe exploration, resulting in
high sample complexity, as inferred from Lemma 3.4. For
further insights, in Appendix B.1, we show the cases in
which this assumption is implied by the MFCQ assumption.

Next, we provide a safe exploration property of Algorithm
1 as follows.

Lemma 4.3. Let Assumptions 3.1, 4.1, and 4.2 hold, and
set η ≤ νemf , n = O(η−4 ln 1

δ
), and H = O(ln 1

η
), we have

P
{
∀t ∈ [T ],mini∈[m] V

θt
i (ρ) ≥ cη

}
≥ 1 − mTδ, where c is

defined in (23).
The proof of Lemma 4.3 can be found in Appendix D.3 and
is built upon the results of (Usmanova et al., 2022). Lemma
4.3 demonstrates that the LB-SGD algorithm ensures safe
exploration with high probability. Importantly, it also shows
that the iterates remain within a distance of Ω(η) from the
boundary. This ensures the upper bound of the sample com-
plexity for an accurate estimate of the log barrier gradient,
which helps derive the sample complexity of our algorithm.

4.2. Convergence and sample complexity

To establish algorithm convergence, we rely on two com-
monly employed assumptions: the Fisher non-degeneracy
assumption and the bounded transfer error assumption (see
Assumptions 4.4 and 4.6, respectively). The first assump-
tion, Fisher non-degeneracy, ensures that the policy can
adequately explore the state-action space. The second as-
sumption, regarding bounded transfer error, ensures that
our parameterized policy set sufficiently covers the entire
stochastic policy set. These assumptions are essential for
guaranteeing the effectiveness and convergence of our algo-
rithm.

To introduce the Fisher non-degeneracy assumption, we
first define the discounted state-action visitation distribu-
tion as dθρ(s, a) := (1 − γ)

∑∞
t=0 γ

tP (st = s, at = a). The
Fisher information matrix induced by policy πθ is defined
as F θ(ρ) := E(s,a)∼dθρ

[∇ log πθ(a|s) (∇ log πθ(a|s))T ].

Assumption 4.4 (Fisher non-degeneracy). For any θ ∈ Θ,
there exists a positive constant µF such that F θ(ρ) ⪰
µF Id×d, where Id×d is the identity matrix of size d× d.

Assumption 4.4 is a common requirement for the conver-
gence analysis of policy gradient methods, as discussed in
(Bai et al., 2023; Liu et al., 2020b; Yuan et al., 2022; Masiha
et al., 2022; Fatkhullin et al., 2023; Ding et al., 2022b). Sim-
ilar conditions to Assumption 4.4 are also found in (Agarwal
et al., 2021, Assumption 6.5) and (Ding et al., 2022a, As-
sumptions 13), specifically concerning the relative condition
number of the Fisher information matrix.

Despite the importance of the above assumption, there has
been only a partial understanding of which policy classes
satisfy it. It has been claimed that in the tabular setting,
the softmax parameterization fails to satisfy Fisher non-
degeneracy, particularly when the policy approaches a de-
terministic policy (Ding et al., 2022b). Our result below
complements this understanding.
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Fact 4.5. 1) The softmax parameterization does not satisfy
Fisher non-degeneracy. 2) Log-linear and neural softmax
parameterizations fail to satisfy Fisher non-degeneracy as
the policy approaches determinism.

The proof of Fact 4.5 can be found in Appendix C.1.
The policy parametrizations that do satisfy the Fisher non-
degeneracy include Gaussian policies, full-rank exponential
family distributions, and Cauchy policies (for a detailed
discussion, see (Fatkhullin et al., 2023, Appendix B)).

While the above assumption addresses the exploration
of the policy, the bounded transfer error assumption
concerns the richness of the policy class. To for-
malize it, let us start by defining the state value
function as V θ

i (s) := Eτ∼πθ [
∑∞

t=0 γ
tri(st, at)|s0 =

s], the state-action value function as Qθ
i (s, a) :=

Eτ∼πθ [
∑∞

t=0 γ
tri(st, at)|s0 = s, a0 = a], and the advantage

function as Aθ
i (s, a) = Qθ

i (s, a)− V θ
i (s). With these defini-

tions in place, the transfer error is defined as L(µ∗
i , θ, d

π∗
ρ ) :=

E(s,a)∼dπ
∗

ρ

[(
Aθ

i (s, a)− (1− γ)µ∗
i
T∇θ log πθ(a|s)

)2], where

µ∗
i =

(
F θ (ρ)

)−1 ∇θV
θ
i (ρ). This formulation is termed as

the transfer error because it quantifies the error in approx-
imating the advantage function Aθ

i , which depends on dθρ,
while the expectation of the error is taken with respect to
a fixed measure dπ

∗

ρ . Now, we introduce an assumption
regarding the transfer error.
Assumption 4.6 (Bounded transfer error). For any θ ∈ Θ,
there exists a non-negative constant εbias such that for i ∈
{0, . . . ,m}, L(µ∗

i , θ, d
π∗
ρ ) ≤ εbias.

Assumption 4.6 has been utilized in several works (Liu
et al., 2020b; Yuan et al., 2022; Fatkhullin et al., 2023; Ding
et al., 2022b). The general understanding is that softmax
parameterization results in εbias = 0. This result is extended
by either assuming a very specific class of MDPs, such as
a linear MDP model with low-rank transition dynamics
(Jiang et al., 2017; Jin et al., 2020; Yang & Wang, 2019),
or a very specific policy class, such as a “rich" two-layer
neural network (Wang et al., 2020). Building upon these
findings, we present a more general result connecting the
richness of policy classes to the transfer error.
Fact 4.7. For log-linear and neural softmax policy parame-
terizations, increasing the richness of the policy parameteri-
zation leads to a decrease in the transfer error εbias.

The proof of Fact 4.7 can be found in Appendix C.2.

With these assumptions in place, we can establish bounds
on the optimality of the policy πθ using the gradient infor-
mation of ∇θB

θ
η(ρ) in the following lemma.

Lemma 4.8. Let Assumptions 3.1, 4.4, and 4.6 hold. For
any θ ∈ Θ, we have

V π∗
0 (ρ)− V θ

0 (ρ) ≤mη +

√
εbias

1− γ

1 +
∑
i∈[m]

η

V θ
i (ρ)



+
Mh

µF

∥∥∥∇θB
θ
η(ρ)

∥∥∥ .
For softmax parameterization where Assumptions 3.1 and
4.6 hold with Mg = 1, Mh = 1, and εbias =
0, if ρ(s) > 0 for all s ∈ S and µF,s :=

infθ∈Θ{second smallest eigenvalue of F θ(ρ)} > 0, then for
any θ ∈ Θ, we have:

V π∗
0 (ρ)− V θ

0 (ρ) ≤ mη +
1

µF,s

∥∥∥PIm(Fθ(ρ))∇θB
θ
η(ρ)

∥∥∥ .
Here, PIm(Fθ(ρ)) represents the orthogonal projection
onto Im(F θ(ρ)), which is computed as Im(F θ(ρ)) :=

R|S||A|/ {1s : s ∈ S}.

For the proof of Lemma 4.8, please refer to Appendix D.4.
Previous works such as (Ding et al., 2022b; Masiha et al.,
2022) established gradient dominance of the value function
in the MDP setting, bounding the optimality gap for V θ

0 (ρ)

by the norm of its gradient ∇θV
θ
0 (ρ). Here, we establish this

property in the CMDP setting by bounding the optimality
gap using the norm of the log barrier gradient ∇θB

θ
η(ρ),

along with an additional term O
(∑

i∈[m] η
√
εbias/V

θ
i (ρ)

)
.

In Lemma E.1, we demonstrate that, under Assumption 4.2,
the stationary points of the log barrier function can only be
Ω(η + νemf ) close to the boundary. Combining this with
the above lemma, we conclude that the stationary points are
O(η + εbias max{1, η/νemf}) optimal. Meanwhile, the gra-
dient ascent method ensures convergence to the stationary
point of Bθ

η(ρ). Leveraging Lemmas 4.3 and 4.8, we can
complete the proof of Theorem 3.5. Here, we provide the
precise statement of Theorem 3.5.

Theorem 4.9. Let Assumptions 3.1, 4.1, 4.2, 4.4, and 4.6
hold, and set η < νemf , n = O(η−4 ln 1

δη
) where 0 < δ < 1

and H = O(ln 1
η
). After T iterations of the Algorithm 1, the

following holds:

1. P
(
V θt
i (ρ) ≥ 0,∀i ∈ [m], and ∀t ∈ {0, . . . , T}

)
≥ 1 −

mTδ.

2. The output policy πθout with a probability of at least
1−mTδ satisfies

V π∗
0 (ρ)− V θout

0 (ρ) ≤ O(
√
εbias) + Õ

(
η

µF

)
+O

(
exp

(
−CµFTη

2)) (V π∗
0 (ρ)− V θ0

0 (ρ)
)
(5)

Remark 4.10. Although the softmax parameterization does
not satisfy Fisher non-degeneracy, Lemma 4.8 enables us
to establish safe exploration and convergence guarantees
for softmax parameterization. This can be achieved by
replacing the if condition in line 5 of Algorithm 1 with∥∥PIm(Fθ(ρ))∇θB

θ
η(ρ)

∥∥ ≤ η
2
. Furthermore, if µF,s > 0 and

ρ(s) > 0, ∀s ∈ S, the results hold with εbias = 0 and µF =

µF,s. The proof is provided in Appendix D.5.
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The proof of Theorem 4.9 can be found in Appendix D.5.
Inequality (5) yields the following key insights: the last
iterate of the algorithm converges to the neighborhood of
the optimal point of V π∗

0 (ρ) at a rate of O(exp(−CµF η
2T )).

Hence, larger values of µF lead to faster convergence. On
the other hand, the neighborhood’s radius is influenced by
two factors: µF and the transfer error εbias. A smaller µF

corresponds to a less random policy, reducing exploration.
A larger εbias indicates inadequate policy parameterization.
Consequently, smaller µF values and larger εbias values
prevent the algorithm from reaching the optimal policy.
Therefore, µF controls optimality and convergence speed.

Based on Theorem 4.9, we can determine the sample
complexity of the algorithm required to ensure safe explo-
ration and achieve ε-optimality, as stated in the following
corollary, with its proof provided in Appendix D.6.

Corollary 4.11. The sample complexity of Algorithm 1 to
return an O(

√
εbias) + Õ(ε)-optimal policy while ensuring

safe exploration with high probability is Õ(ε−6).

When compared to the state-of-the-art policy gradient-based
algorithm, C-NPG-PDA (Bai et al., 2023), which only
provides guarantees for averaged zero constraint violation,
our algorithm demands an additional O(ε−2) samples while
utilizing the same Fisher non-degenerate assumption. This
increase in sampling requirement serves as the price for
ensuring safe exploration.

In the above theorem, we established that the last iterate of
Algorithm 1 converges towards the optimal policy of the
original problem. Additionally, we provide a bound on the
regret, which measures the average suboptimality during
learning, in the following corollary.
Corollary 4.12. Let Assumptions 3.1, 4.1, 4.2, 4.4, and 4.6
hold, and set η < νemf , n = O(η−4 ln 1

δη
) where 0 < δ < 1

and H = O(ln 1
η
). After T iterations of the Algorithm 1,

we can bound the regret of the objective function with a
probability of at least 1−mTδ as follows:

1

T

T−1∑
t=0

(
V π∗
0 (ρ)− V θt

0 (ρ)
)
≤ 8Mh

CµF η2T

(
V π∗
0 (ρ)− V θ0

0 (ρ)
)

+
8mMh log νs

CµF ηT
+ Õ(η) +O(

√
εbias).

Furthermore, the sample complexity required to attain
O(

√
εbias) + Õ(ε)-optimality, considering the regret bound

while ensuring safe exploration with high probability, is
O(ε−7).

The proof is provided in Appendix D.7 and is a direct
extension of the proof of Theorem 4.9. The above demon-
strates that throughout the learning process, the average
performance remains close to that of the optimal policy.

While our work has primarily focused on establishing
theoretical guarantees for safe exploration in CMDPs, we

have verified the performance of our algorithm in a standard
gridworld environment, as detailed in Appendix F. We
compared our algorithm with the IPO algorithm (Liu et al.,
2020a), which is also based on the log barrier method and a
policy gradient approach but uses a fixed stepsize. To ensure
safe exploration, IPO requires manual tuning of the stepsize.
Our experiments confirmed that LB-SGD achieves safe
exploration while converging to the optimal policy. How-
ever, as expected, ensuring these guarantees necessitates
a higher number of samples per iteration near the boundary
for accurate estimates. It would be interesting to determine
whether this sample complexity is inherent to our algorithm
and its analysis or to the safe exploration requirement.

5. Conclusion
We developed a log barrier policy gradient approach for
ensuring safe exploration in CMDPs. Our work establishes
the convergence of the algorithm to an optimal point and
characterizes its sample complexity. A potential direction
for future research is to explore methods that can further re-
duce the sample complexity of safe exploration. This could
involve incorporating variance reduction techniques, lever-
aging MDP structural characteristics (e.g., natural policy
gradient method), and extending the Fisher non-degenerate
parameterization to general policy representations. Another
potential research avenue is to establish lower bounds for
the safe exploration problem.
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Table 2. Sample complexity for achieving ε-optimal objectives with guarantees on constraint violations in stochastic policy gradient-based
algorithms, considering various parameterizations for discounted infinite horizon CMDPs.

Stochastic policy gradient-based algorithms

Parameterization Algorithm Sample complexity Constraint violation Optimality Generative model Slater’s condition

Softmax NPG-PD(Ding et al., 2020) O(ε−2) O(ε) Average ✓ ✓
Softmax PD-NAC(Zeng et al., 2022) O(ε−6) O(ε) Average × ✓
Softmax LB-SGD Õ(ε−6) Safe exploration w.h.p Last iterate × ✓
General smooth policy NPG-PD (Ding et al., 2022a) O(ε−6) O(ε) Average ✓ ✓
Neural softmax(ReLu) CRPO(Xu et al., 2021) O(ε−6) O(ε) Average ✓ ×
Log-linear RPG-PD(Ding et al., 2024) Õ(ε−14) 0 at last iterate Last iterate ✓ ✓
Fisher non-degenerate PD-ANPG(Mondal & Aggarwal, 2024) Õ(ε−3) O(ε) Average ✓ ✓
Fisher non-degenerate C-NPG-PDA(Bai et al., 2023) Õ(ε−4) Averaged zero Average ✓ ✓
Fisher non-degenerate LB-SGD Õ(ε−6) Safe exploration w.h.p Last iterate × ✓

A. Comparison of model-free safe RL algorithms
Regarding the past work on policy gradient in infinite horizon discounted CMDPs, we further provide details on the notion
of constraint satisfaction. To this end, we provide an extended version of Table 1 to include the assumptions.

1. (Slater’s condition) Compared to Table 1, the above table includes an additional column detailing the assumptions
required for convergence analysis. LB-SGD, unlike all the other methods in the table, requires a feasible initial policy
since our work is the only one that focuses on safe exploration.

2. (Constraint violation) In our work, we define safe exploration as ensuring constraint satisfaction throughout the learning
process, as defined in the property 2.2. Our LB-SGD algorithm achieves safe exploration with high probability.
However, in (Bai et al., 2023), the authors claim to achieve zero constraint violation but employ a different definition,
specified as:

1

T

T−1∑
t=0

V θt
i (ρ) ≥ 0, ∀i ∈ [m].

It is important to note that while their algorithm aims for zero constraint violation, individual iterates during the learning
process may still violate the constraints. Hence, we refer to it as an averaged zero constraint violation, since safe
exploration represents a stronger notion of constraint violation guarantees. Additionally, in (Ding et al., 2024), the
regularized policy gradient primal-dual (RPG-PD) algorithm returns the last iterate policy satisfying the constraints,
but it does not provide guarantees for safe exploration.

3. (Sample complexity) In the constraint-rectified policy optimization (CRPO) algorithm (Xu et al., 2021), the authors
provide a general result for measuring the algorithm’s performance in (Xu et al., 2021, Theorem 2). We conclude that
O(ε−6) is the optimal sample complexity for achieving an O(ε) optimality gap for the CRPO algorithm.

B. Discussion on Assumption 4.2
B.1. Sufficient conditions for Assumption 4.2

In this section, we first study the relationship between the extended MFCQ assumption and the MFCQ assumption. Let us
state the MFCQ assumption (Mangasarian & Fromovitz, 1967) below.

Assumption B.1 (MFCQ (Mangasarian & Fromovitz, 1967)). For every θ ∈ Θ′, where Θ′ = {θ ∈ Θ | ∃i ∈ [m], V θ
i (ρ) =

0}, there exists a direction sθ such that
〈
sθ,∇V θ

i (ρ)
〉
> 0 for all i ∈ B0(θ) :=

{
i ∈ [m] |V θ

i (ρ) = 0
}

.

Let us define

ℓθ := min
i∈B0(θ)

{〈
sθ
∥sθ∥

,∇V θ
i (ρ)

〉}
,

νθ :=

{
mini∈{[m]\B0(θ)}

{
V θ
i (ρ)

}
, {[m] \B0(θ)} ≠ ∅,

1
1−γ , otherwise.
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Under the MFCQ assumption, for θ ∈ Θ′, both ℓθ and νθ are strictly positive. Now, we argue that under Assumption 3.1,
we can establish a relationship between the MFCQ assumption and the extended MFCQ assumption.
Proposition B.2. Let Assumptions 3.1 and B.1 hold. Set ℓ := infθ∈Θ′

{
ℓθ
2

}
and ν1 := infθ∈Θ′

{
νθ

3

}
. If ℓ, ν1 > 0, then

Assumption 4.2, namely, the extended MFCQ Assumption, holds.

Proof of Proposition B.2. Under Assumption 3.1, we know that V θ
i (ρ) is L-Lipschitz continuous and M -smooth, as shown

in Proposition 3.3. For each θ ∈ Θ′, consider θ1 ∈ R(θ) :=
{
θ1 | θ1 ∈ Θ, ∥θ1 − θ∥ ≤ min{ ℓθ

2M , νθ

3L}
}

. For i ∈ B0(θ),
we have

V θ1
i (ρ) ≤ V θ

i (ρ) + L∥θ − θ1∥ ≤ νθ
3
.

For i /∈ B0(θ), we have

V θ1
i (ρ) ≥ V θ

i (ρ)− L∥θ − θ1∥ ≥ 2νθ
3

.

Therefore, we can conclude that B νθ
3
(θ1) ⊂ B0(θ) for θ1 ∈ R(θ). Next, we apply Assumption B.1 on θ1 ∈ R(θ), we have

for each i ∈ B νθ
3
(θ1) 〈

sθ
∥sθ∥

,∇V θ1
i (ρ)

〉
=

〈
sθ

∥sθ∥
,∇V θ

i (ρ)

〉
+

〈
sθ

∥sθ∥
,∇V θ1

i (ρ)−∇V θ
i (ρ)

〉
≥ℓθ −

∥∥∥∇V θ1
i (ρ)−∇V θ

i (ρ)
∥∥∥

≥ℓθ −M∥θ − θ1∥

≥ℓθ
2
.

We further set ν2 as

ν2 := inf

{
V θ
i (ρ), i ∈ [m] | θ ∈ Θ \

⋃
θ∈Θ′

R(θ)

}
.

Notice that ν2 > 0, we set νemf = min
{
ν1,

ν2

2

}
> 0. Therefore, for any θ2 ∈ Θ, we have Bνemf

(θ2) ⊂
⋃

θ∈Θ′ B0(θ),
since θ2 must be close to one of the θ in Θ′ since V θ

i (ρ) is a continuous function for i ∈ [m]. Consequently, we have〈
sθ
∥sθ∥

,∇V θ
i (ρ)

〉
≥ ℓ.

Therefore, Assumption 4.2 holds with such νemf and ℓ.

Corollary B.3. If Θ′ is compact, Assumptions 3.1 and B.1 imply Assumption 4.2.

Proof of Corollary B.3. From Proposition B.2, it is sufficient to prove that ℓ, ν1 defined in the above proposition are positive.
We will prove this by contradiction.

Let us begin by proving l > 0 by contradiction. Suppose ℓ = 0. This implies the existence of a series of points {θi}∞i=1 in
Θ′ such that

lim
i→∞

ℓθi = 0.

Using the definition of ℓθi , we have

lim
i→∞

∑
j∈B0(θi)

∥∥∥∇θV
θi
j (ρ)

∥∥∥ = 0.

Let kj :=
∑∞

i=1 1j∈B0(θi) for j ∈ [m]. Since
∑m

j=1 kj =
∑∞

i=1

∑m
j=1 1j∈B0(θi) =

∑∞
i=1 |B0(θi)| = ∞, there exists a

j ∈ [m] such that kj = ∞. We choose a subset of indices {i} as {ij} such that j ∈ B0(θij ). Then, we have

lim
ij→∞

∥∇θV
θij
j (ρ)∥ = 0.
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Since Θ′ is a compact set, there exists a θlim such that limij→∞ θij = θlim. For such θlim, we have∥∥∥∇θV
θlim
j (ρ)

∥∥∥ = 0 and V θlim
j (ρ) = 0.

However, this contradicts Assumption B.1. The same analysis applies for ν1 = 0, leading to a contradiction as well.

Discussion If the constraint functions are convex and the feasible set is bounded, Assumption 4.2, known as the extended
MFCQ assumption (Usmanova et al., 2022), is satisfied, as demonstrated in (Usmanova et al., 2022, Fact 2). However, in RL
settings, V θ

i (ρ) can be non-convex with respect to θ (Agarwal et al., 2021).

In this section, we study the relationship between Assumption 4.2 and Assumption B.1. Proposition B.2 and Corollary
B.3 illustrates that the extended MFCQ assumption is not significantly stronger than the MFCQ assumption; the former
is implied if Θ′ is a compact set, a condition satisfied in direct parameterization. For other policy parameterizations, this
condition holds if we limit the policy parameterized policy set to {πθ, θ ∈ K} where K is a compact set in Rd.

B.2. Impact of Assumption 4.2

The extended MFCQ assumption ensures that for every point θ lying on the boundary, there exists a trajectory that guides θ
away from the boundary. Essentially, the extended MFCQ assumption prevents the algorithm from becoming trapped at
the boundary, assuming a reasonable policy exists to guide the system back within the feasible region. When the CMDP
structure lacks this property, safe exploration becomes more challenging to achieve. To illustrate this point, we provide the
following theorem.

Theorem B.4. Let Assumptions 3.1, 4.1, 4.4, and 4.6 hold, and set η < νemf , H = Õ( 1η ) and n = O
(
exp 4

η ln 1
δ

)
and

T = O
(
exp 2

η

)
. After T iterations of the Algorithm 1, the following holds:

1. P
(
∀t ∈ [T ], mini∈[m] V

θt
i (ρ) ≥ Ω

(
exp −1

η(1−γ)

))
≥ 1−mTδ.

2. We can bound the regret of the objective function with a probability of at least 1− β as follows:

1

T

T−1∑
i=0

(
V π∗

0 (ρ)− V θt
0 (ρ)

)
≤ O(η) +O

(
√
εbias exp

1

η

)
,

with a probability of at least 1−mTδ.

We provide the proof of Theorem B.4 in the following section. This theorem illustrates that Algorithm 1 requires high sample
complexity to achieve safe exploration and does not guarantee the optimality of the iterates simultaneously if Assumption
4.2 is not satisfied. Specifically, without Assumption 4.2, the LB-SGD iterations could be as close as O

(
exp −1

η

)
to the

boundary as shown in Theorem Property 1.

To illustrate this, we provide an example demonstrating that without Assumption 4.2, LB-SGD iterations might approach
the boundary at a level of O(η2k+1) for any k ∈ N . This closeness to the boundary leads to slower convergence due to
smaller step sizes and increased sample complexity as the iterates approach the boundary to maintain small bias and low
variance of the estimators V̂ θ

i (ρ) and ∇̂V θ
i (ρ). Meanwhile, we cannot guarantee the optimality of the iterates as it magnifies

the transfer error εbias by exp 1
η

.
Example B.5. We consider the problem as follows:

max
x,y

− y

s.t. y2k+1 + x ≥ 0,

y2k+1 − 2x ≥ 0,

where k ∈ N .
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We can verify that the above example does not satisfy the MFCQ assumption since the constraint gradients at the point (0, 0)
are opposite to each other. Next, we define the log barrier function as follows:

Bη(x, y) = −y + η log(y2k+1 + x) + η log(y2k+1 − 2x).

We compute that the optimal solution for the original problem is (x∗, y∗) = (0, 0), and the optimal solution for the log
barrier function is (x∗

η, y
∗
η) = (−22k−1(2k + 1)2k+1η2k+1, (4k + 2)η). When implementing gradient ascent on the log

barrier function, starting from the point (x0, y0) = (0, 1), the trajectory follows a curve from (x0, y0) to the optimal point
(x∗

η, y
∗
η). Meanwhile, (x∗

η, y
∗
η) is at a distance of O(η2k+1) from the boundary. Consequently, the iterates can approach the

boundary within a distance of O(η2k+1).

B.2.1. PROOF OF THEOREM B.4

To prove Theorem B.4, we follow a similar structure to the proof of Theorem 4.9. For safe exploration analysis (as outlined
in Lemma B.6), we make use of Assumptions 4.1 and the boundedness of the value function V θ

i (ρ) to establish a lower
bound on the distance of the iterates from the boundary and the stepsize γt.

By employing a stochastic gradient ascent method with an appropriate stepsize γt, we ensure convergence to the stationary
point of the log barrier function. Using Lemma 4.8, we can measure the optimality of this stationary point.

Lemma B.6. Let Assumptions 3.1 and 4.1 hold, and we set n = O
(
exp 4

η ln 1
δ

)
and H = Õ

(
1
η

)
. Then, by running T

iterations of the LB-SGD algorithm, we obtain

P
{
∀t ∈ [T ], min

i∈[m]
V θt
i (ρ) ≥ c1, γt ≥ C1 and ∥∆t∥ ≥ η

4

}
≥ 1−mTδ,

where c1 := νm
s (1− γ)m−1 exp −1

η(1−γ)
, C1 := c21 min

{
3

(
√
6c1M+4L)(L+mηL)

, 1
c21M+20mηc1M+32mηL2

}
and ∆t := ∇̂θB

θt
η (ρ)−

∇θB
θt
η (ρ).

We first employ the sub-Gaussian tail bounds of the estimators ∇̂θV
θt
i (ρ) and V̂ θt

i (ρ) to establish concentration bounds for∥∥∥∇̂θB
θt
η (ρ)−∇θB

θt
η (ρ)

∥∥∥ in Lemma 3.4. Additionally, as we apply the stochastic gradient ascent method with sufficient

samples, Bθt
η (ρ) is non-decreasing. Combined with the boundedness of objective and constraint functions, we can establish

a lower bound of O
(
exp −1

η

)
for V θt

i (ρ) with high probability.

Proof of Lemma D.4. First, we prove the lower bound of the value functions V θ
i (ρ), i ∈ {0, . . . ,m}. If we set

σ0(n) ≤ min

 1

16
(∑m

i=1
L

αi(t)α̂i(t)

)√
ln 2

δ

 , σ1(n) ≤ min

 η

16
(
1 +

∑m
i=1

η
α̂i(t)

)√
ln e

1
4

δ

 ,

b0(H) ≤ min

 1

16
(∑m

i=1
L

αi(t)α̂i(t)

)
 , b1(H) ≤ min

 η

16
(
1 +

∑m
i=1

η
α̂i(t)

)
 .

By Lemma 3.4, we have

P(∆t ≤
η

4
) ≥ 1− δ.

Due to the choice of stepsize, P(γt ≤ 1
Mt

) ≥ 1− δ, where Mt is the local smoothness constant of the log barrier function
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Bθ
η(ρ). Then, we can bound B

θt+1
η (ρ)−Bθt

η (ρ) with probability at least 1− δ as follows:

B
θt+1
η (ρ)−Bθt

η (ρ)

≥γt
〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− Mtγ

2
t

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
≥γt

〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− γt

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
=γt

〈
∇θB

θt
η (ρ),

(
∇̂θB

θt
η (ρ)−∇θB

θt
η (ρ)

)
+∇θB

θt
η (ρ)

〉
− γt

2

∥∥∥(∇̂θB
θt
η (ρ)−∇θB

θt
η (ρ)

)
+∇θB

θt
η (ρ)

∥∥∥2
=
γt
2

∥∥∥∇θB
θt
η (ρ)

∥∥∥2 − γt
2

∥∆t∥2 . (6)

Before the break in algorithm 1 line 5, we obtain that ∥∇θB
θt
η (ρ)∥ ≥ η

4 since ∥∆t∥ ≤ η
4 . Therefore, Bθt+1

η (ρ) ≥ Bθt
η (ρ)

which leads to Bθt
η (ρ) ≥ Bθ0

η (ρ). Then,

V θt
0 (ρ) + η

∑
i∈[m]

log V θt
i (ρ) ≥ V θ0

0 (ρ) + η
∑
i∈[m]

log V θ0
i (ρ),

log V θt
j ≥ V θ0

0 (ρ)− V θt
0 (ρ)

η
+
∑
i∈[m]

log V θ0
i (ρ)−

∑
i∈[m]
i ̸=j

log V θt
i ,

log V θt
j ≥ −1

(1− γ)
+m log νs + (m− 1) log(1− γ),

where the last inequality comes from the boundness of the value functions V θ
i (ρ), i ∈ {0, . . . ,m}. Therefore,

min
i∈[m]

V θt
i (ρ) ≥ c1,∀t ≤ T and before the break, (7)

where c1 := νms (1−γ)m−1 exp −1
η(1−γ) = O

(
exp −1

η

)
. For each i ∈ [m], if σ0(n) ≤ αi(t)

8
√

ln 2
δ

and b0(H) ≤ αi(t)
8 , we have

P
(

3αi(t)
4 ≤ α̂i(t)

)
≥ 1− δ using the sub-Gaussian bound in Proposition 3.3. Therefore, we need to bound the variances

and biases as follows to make sure P(∆t ≤ η
4 ) ≥ 1− δ.

σ0(n) ≤ min

 3

64
(∑m

i=1
L

(αi(t))2

)√
ln 2

δ

,
αi(t)

8
√

ln 2
δ

 , σ1(n) ≤ min

 3η

64
(
1 +

∑m
i=1

η
αi(t)

)√
ln e

1
4

δ

 ,

b0(H) ≤ min

 3

64
(∑m

i=1
L

(αi(t))2

) , αi(t)

8

 , b1(H) ≤ min

 3η

64
(
1 +

∑m
i=1

η
αi(t)

)
 .

By the lower bound in (7) and the Proposition 3.3, the number of trajectories n and the truncated horizon H need to be set
as follows:

H = Õ
(
1

η

)
, n = O

(
exp

4

η
ln

1

δ

)
.

Meanwhile, we can further lower bound γt which is

γt := min

{
min
i∈[m]

{
αi(t)√

Miαi(t) + 2|βi(t)|

}
1

∥∇̂θB
θt
η (ρ)∥

,
1

M +
∑m

i=1
10Mη
αi

t
+ 8η

∑m
i=1

(
β
i
t

)2

(αi
t)

2

}
.

Since σ0(n) ≤ αi(t)

8
√

ln 2
δ

and b0(H) ≤ αi(t)
8 , we have P

(
αi(t)
2 ≤ αi(t) ≤ 3

2αi(t)

)
≥ 1− δ using the sub-Gaussian bound in

Proposition 3.3. Together with (7), we have

P (γt ≥ C1) ≥ 1− δ,
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where C1 is defined as

C1 := c21 min

{
3

(
√
6c1M + 4L)(L+mηL)

,
1

c21M + 20mηc1M + 32mηL2

}
which is at the level of O

(
exp −2

η

)
.

Proof of Theorem B.4. We set the values for n, H , and η to satisfy the conditions outlined in Lemma 4.3. Due to our choice
of stepsize, we have P

(
γt ≤ 1

Mt

)
≥ 1− δ, where Mt represents the local smoothness constant of the log barrier function

Bθ
η(ρ). With this, we can bound B

θt+1
η (ρ)−Bθt

η (ρ) with a probability of at least 1− δ as

Bθt+1
η (ρ)−Bθt

η (ρ) ≥γt

〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− Mtγ

2
t

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
≥γt

〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− γt

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
=γt

〈
∇θB

θt
η (ρ),∆t +∇θB

θt
η (ρ)

〉
− γt

2

∥∥∆t +∇θB
θt
η (ρ)

∥∥2
=
γt
2

∥∥∇θB
θt
η (ρ)

∥∥2 − γt
2
∥∆t∥2 . (8)

We divide the analysis into two cases based on the if condition in algorithm 1 line 5.

Case 1: If ∥∇̂θB
θt
η (ρ)∥ ≥ η

2 , then ∥∇θB
θt
η (ρ)∥ ≥ η

4 because ∥∆t∥ ≤ η
4 by Lemma 4.3. We can bound (8) as

Bθt+1
η (ρ)−Bθt

η (ρ) ≥ C1η

8

∥∥∇θB
θt
η (ρ)

∥∥− C1η
2

32
, (9)

where we plug in γt ≥ C1 in the last step. Summing inequality (9) from t = 0 to t = T − 1, we have

BθT
η (ρ)−Bθ0

η (ρ) +
C1η

2T

32
≥

T−1∑
t=0

C1η

8

∥∥∇θB
θt
η (ρ)

∥∥
8(BθT

η (ρ)−Bθ0
η (ρ))

C1ηT
+

η

4
≥ 1

T

T−1∑
t=0

∥∥∇θB
θt
η (ρ)

∥∥ .
Since the value functions V θ

i (ρ) are upper bounded by 1
1−γ , we can further bound the above inequality as

1

T

T−1∑
t=0

∥∥∇θB
θt
η (ρ)

∥∥ ≤
8
(

1
1−γ −mη log(1− γ)−Bθ0

η (ρ))
)

C1ηT
+

η

4

By setting T = O
(

1
C1η2

)
= O

(
exp 2

η

)
, we have

1

T

T−1∑
t=0

∥∥∇θB
θt
η (ρ)

∥∥ ≤ O(η) (10)

Case 2: If ∥∇̂θB
θt
η (ρ)∥ ≤ η

2 , we have

∥∇θB
θt
η (ρ)∥ ≤ ∥∇̂θB

θt
η (ρ)∥+ ∥∆t∥ ≤ 3η

4
. (11)

Applying Lemma 4.8 on (10) and (11), we have

1

T

T−1∑
t=0

(
V π∗

0 (ρ)− V θt
0 (ρ)

)
≤mη +

1

T

T−1∑
t=0

(√
εbias

1− γ

(
1 +

m∑
i=1

η

V θt
i (ρ)

))
+O(η)

=O(η) +O
(
√
εbias exp

1

η

)
,
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where we use V θ
i (ρ) ≥ c1 = O(exp −1

η ) in the last step. Therefore, we can conclude the following: after T = O
(
exp 2

ε

)
iterations of the LB-SGD algorithm with η = ε, we have

1

T

T−1∑
t=0

(
V π∗

0 (ρ)− V θt
0 (ρ)

)
≤ O(ε) +O

(
√
εbias exp

1

ε

)
,

while safe exploration is ensured with a probability of at least 1−mTδ.

C. Policy parameterization
In this section, we delve deeper into widely accepted assumptions and derive conditions under which they may or may not
hold. Specifically, we investigate the relationship between the Fisher non-degenerate assumption and the bounded transfer
error assumption, especially concerning commonly used tabular policy parameterizations. These parameterizations include
softmax, log-linear, and neural softmax policies. These policies are defined as follows:

πθ(a|s) =
exp fθ(s, a)∑

a′∈A exp fθ(s, a′)
.

1. For softmax policy, fθ(s, a) = θ(s, a).

2. For log-linear policy, fθ(s, a) = θT · ϕ(s, a), with θ ∈ Rd and ϕ(s, a) ∈ Rd.

3. For neural softmax policy, fθ(s, a) is parameterized using neural networks.

We first introduce two critical concepts related to policy parameterization: the ε-deterministic policy and richness in the
policy parameterization.

Definition C.1 (ε-deterministic Policy). We define a policy, πθ, as an ε-deterministic policy if πθ ∈ Πε :=
{πθ | for every state s, there exists ais ∈ A such that πθ(ais |s) ≥ 1 − ε}. As ε approaches zero, the policy is said to
approach a deterministic policy.

Definition C.2 (Richness of Policy Parameterization). Define Π as the closure of all stochastically parameterized policies,
denoted by Cl{πθ | θ ∈ Rd}. If we have another policy parameterization Π′, we say Π′ is a richer parameterization
compared to Π if Π′ ⊊ Π.

In the following section, we examine the commonly employed assumptions of Fisher non-degeneracy and bounded transfer
error with tabular policy parameterizations as defined above. In Section C.1, we demonstrate that softmax parameterization
cannot satisfy Assumption 4.4, and log-linear and neural softmax parameterizations fail to meet Assumption 4.4 as the
policy approaches a deterministic policy. This reveals the relationship between the Fisher non-degenerate assumption and
the exploration rate of the policy. In Section C.2, we prove that the transfer error bound can be reduced by increasing the
richness of the policy set for log-linear and neural softmax policy parameterizations, indicating the relationship between the
transfer error bound assumption and the richness of the policy parameterization.

C.1. Discussion on Assumption 4.4

In this section, we divide the analysis into two parts. In Section C.1.1, we prove that softmax parameterization cannot satisfy
Assumption 4.4. Then, in Section C.1.2, we demonstrate that log-linear and neural softmax parameterizations fail to meet
Assumption 4.4 as the policy approaches a deterministic policy. This section reveals the relationship between the Fisher
non-degenerate assumption and the exploration rate of the policy, unveiling the limitations of algorithms that rely on the
satisfaction of Fisher non-degeneracy.

C.1.1. SOFTMAX PARAMETERIZATION

The authors of (Ding et al., 2022b) claim that the softmax parameterization fails to satisfy the Fisher non-degenerate
Assumption when the policy approaches a deterministic policy. In this section, we prove a stronger version of this claim,

Proposition C.3. Softmax parameterization cannot satisfy the Fisher non-degenerate assumption. Furthermore, if ρ(s) > 0
for all s ∈ S, the Fisher information matrix satisfies the following properties:
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• F θ(ρ) has rank (|A| − 1)|S|.

• The kernel space of F θ(ρ) can be computed as Ker(F θ(ρ)) := {1s : s ∈ S}, where 1s ∈ R|S||A| is zero everywhere
except for the positions (s, ai), i ∈ [|A|].

Proof. Note that the Fisher information matrix is computed as:

F θ(ρ) = E(s,a)∼dθ
ρ
[∇θ log πθ(a|s) (∇θ log πθ(a|s))T ]

Therefore, the image of the Fisher information matrix is the span of the linear space {∇θ log πθ(a|s),∀a ∈ A, s ∈ S} if the
state-action occupancy measure dθρ is non-zero for every state-action pair (s, a).

For softmax parameterization, ∇θs′ log πθ(a|s) can be computed as:

∇θs′ log πθ(a|s) = 1s′=s (ea − π(·|s)) ,

where θs′ := {θ(s′, a1), . . . , θ(s′, a|A|)}. Here, ea ∈ R|A| is an elementary vector, with zeros everywhere except in the

a-th position, and π(·|s) :=
(
πθ(a1|s), . . . , πθ(a|A||s)

)T
. Therefore, {∇θ′

s
log πθ(a|s),∀a ∈ A} = {0} if s′ ̸= s and

{∇θs log πθ(a|s),∀a ∈ A} = {ea − π(·|s),∀a ∈ A} = {ea1
− π(·|s)} ∪ {ea1

− eai
,∀i ∈ [|A|]},

where the first equality is written by definition and the second equality is computed by (ea − π(·|s))− (ea′ − π(·|s)). The
rank of {∇θs log πθ(a|s),∀a ∈ A} is at least |A| − 1 since the rank of {ea1

− eai
,∀i ∈ [|A|]} is |A| − 1. Additionally, one

vector 1 ∈ R|A| is orthogonal to {∇θs log πθ(a|s),∀a ∈ A} due to:

1T (ea − π(·|s)) = 1−
∑
a∈A

π(a|s) = 0.

In conclusion, F θ(ρ) has rank at most (|A| − 1)|S|. This indicates that the Fisher information matrix is not a full-rank
matrix and therefore unable to satisfy the Fisher non-degenerate assumption.

Moreover, if ρ(s) > 0 for all s ∈ S, we have dθρ(s, a) ≥ ρ(s)π(a|s) > 0. Therefore, we conclude that F θ(ρ) has rank
(|A| − 1)|S| and Kernel space of F θ(ρ) can be computed as Ker(F θ(ρ)) := {1s, s ∈ S}, 1s ∈ R|S||A| is zero everywhere
except for the position (s, ai), i ∈ [|A|].

C.1.2. LOG-LINEAR AND NEURAL SOFTMAX PARAMETERIZATIONS

It is known that for MDPs, the optimal policy can be deterministic. For CMDPs, the optimal policy can be deterministic if
none of the constraints are active. Furthermore, during the implementation of policy gradient-based algorithms, the algorithm
can be trapped at a stationary point, which can be deterministic. While log-linear and neural softmax parameterizations are
commonly employed for discrete state and action spaces, this section reveals their failure to exhibit Fisher non-degeneracy
when approaching a deterministic policy, indicating the limitation of algorithms that require the satisfaction of Fisher
non-degeneracy.
Proposition C.4. Let ∥∇θfθ(s, a)∥ ≤ M hold for all s ∈ S and a ∈ A, Log-linear, and neural softmax parameterizations
fail to meet Assumption 4.4 as the policy approaches a deterministic policy.

Proof. For a policy πθ ∈ Πε, which is ε-close to a deterministic policy, we first compute ∇θ log πθ(a|s) as follows:

∇θ log πθ(a|s) =∇fθ(s, a)−
∑
a′∈A

∇fθ(s, a
′)πθ(a

′|s)

=
∑

a′∈A,a′ ̸=a

(∇fθ(s, a)−∇fθ(s, a
′))πθ(a

′|s).

To satisfy Assumption 3.1 for log-linear and neural softmax parameterizations, it is commonly assumed that ∥∇fθ(s, a)∥ ≤
M for all a ∈ A and s ∈ S. Under this condition, we can bound ∇θ log πθ(ai|s) into two cases. For i = is, we know that∑

a′∈A,a′ ̸=ais
πθ(a

′|s) ≤ ε, therefore

∥∇θ log πθ(ais |s)∥ = ∥
∑

a′∈A,a′ ̸=ais

(∇fθ(ai|s)−∇fθ(a
′|s))π(a′|s)∥ ≤ 2Mε.
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For i ̸= is, we know that
∑

a′∈A,a′ ̸=ai
πθ(a

′|s) ≤ 1, therefore

∥∇θ log πθ(ai|s)∥ = ∥
∑

a′∈A,a′ ̸=ai

(∇fθ(ai|s)−∇fθ(a
′|s))π(a′|s)∥ ≤ 2M.

Using the above two inequalities, we can upper bound the norm of the Fisher information matrix for the policy πθ as

∥∥F θ(ρ)
∥∥ =∥

∑
s∈S

dθρ(s)

|A|∑
i=1

πθ(ais |s)∇θ log πθ(ais |s) (∇θ log πθ(ais |s))
T ∥

≤∥
∑
s∈S

dθρ(s)πθ(ais |s)∇θ log πθ(ais |s) (∇θ log πθ(ais |s))
T ∥

+ ∥
∑
s∈S

dθρ(s)
∑

a̸=ais ,a∈A

π(a|s)∇ log πθ(a|s) (∇ log πθ(a|s))T ∥

≤4M2ε2∥
∑
s∈S

dθρ(s)∥+ 4M2∥
∑
s∈S

dθρ(s)
∑

ai ̸=ais ,ai∈A

πθ(ai|si)∥

≤4ε2M2 + 4εM2.

Therefore, when a policy πθ approaches a deterministic policy, the norm of Fisher information matrix approaches 0. Then,
we cannot find a positive constant µF such that F θ(ρ) ⪰ µF Id×d.

Discussion For Assumption 4.4, we establish that softmax parameterization cannot satisfy it, while log-linear and neural
softmax policies fail to meet it as the policy approaches determinism. However, log-linear and neural softmax parameteriza-
tions might satisfy this assumption. In particular, the optimal solution of a CMDP differs from that of an MDP when at
least one constraint is active. Consequently, the optimal policy, among the set of policies that satisfy the constraint, can be
stochastic. Furthermore, we can set the parameterized policy to always be randomized or apply ε-greedy policy to limit the
parameterized policy approaching determinism.

C.2. Discussion on Assumption 4.6

Inspired by (Wang et al., 2020), where the authors demonstrated that employing a rich two-layer neural-network parameteri-
zation can yield small εbias values, we generalize their result to demonstrate that increasing the richness of the policy set
can lead to a reduction in the transfer error εbias for the log-linear and neural softmax policy parameterizations.

We consider the log-linear and neural softmax policy parameterization given by

πθ(a|s) =
exp fθ(s, a)∑

a′∈A exp fθ(s, a′)
.

Proposition C.5. For log-linear and neural softmax policy parameterizations, increasing the dimension of the set
{f ′(s, a), s ∈ S, a ∈ A} such that {f(s, a), s ∈ S, a ∈ A} ⊊ {f ′(s, a), s ∈ S, a ∈ A} results in a richer parame-
terization. This richer parameterization leads to a decrease in the transfer error εbias.

Proof. We first upper bound the transfer error as shown in (Agarwal et al., 2021, page 29):

L(µ∗
i , θ, d

π∗

ρ ) ≤ max
s∈S

∑
a∈A dπ

∗

ρ (s, a)

(1− γ)ρ(s)
L(µ∗

i , θ, d
θ
ρ),

where L(µ∗
i , θ, d

θ
ρ) := E(s,a)∼dθ

ρ
[(Aθ

i (s, a) − (1 − γ)µ∗
i
T∇θ log πθ(a|s))2] and µ∗

i :=
(
F θ(ρ)

)−1 ∇θV
θ
i (ρ). In the

following, we demonstrate that L(µ∗
i , θ, d

θ
ρ) can be reduced due to the richer parametrization.

For every policy πθ ∈ Πf , we set a vector-valued function A : Πf → R|S||A| as

Aπθ
i :=


√
dπρ (s1, a1)A

π
i (s1, a1)

...√
dπρ (s|S|, a|A|)A

π
i (s|S|, a|A|)
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and set B as

Bπθ
:=


√
dπρ (s1, a1)∇θ log πθ(a1|s1)

...√
dπρ (s|S|, a|A|)∇θ log πθ(a|A||s|S|)


T

.

Notice that

∇θ log πθ(a|s) =
∑

a′∈A, a′ ̸=a

(∇fθ(s, a)−∇fθ(s, a
′))πθ(a

′|s).

Then the column space of Bπθ
is the span of {∇θf(s, a)}s∈S, a∈A. Using the above notations, we write Fisher information

matrix as

Fπθ (ρ) = E(s,a)∼dπ
ρ
[∇θ log πθ(a|s) (∇θ log πθ(a|s))T ] = Bπθ

BT
πθ
,

and the gradient of value function as

∇θV
θ
i (ρ) =

1

1− γ
E(s,a)∼dπ

ρ

[
∇θ log πθ(a|s)Aθ

i (s, a)
]
=

1

1− γ
Bπθ

Aπθ
i .

and µ∗
i = Fπθ (ρ)−1∇θV

θ
i (ρ) =

1
1−γ (BπBT

π )
−1BπAπ

i . Therefore, we have

L(µ∗
i , π, d

πθ
ρ ) =E(s,a)∼dπ

ρ

[(
Aπθ

i (s, a)− (1− γ)µ∗
i
T∇θ log πθ(a|s)

)2]
=
∑
s,a

(√
dπρ (s, a)

(
Bπθ

BT
πθ

)† Bπθ
Aπθ

i ∇θ log πθ(a|s)−
√
dπρ (s, a)A

πθ
i (s, a)

)2
=
∥∥Aπθ

i − BT
πθ
(Bπθ

BT
πθ
)†Bπθ

Aπθ
i

∥∥2
2

=
∥∥∥Aπθ

i −PBπθ
Aπθ

i

∥∥∥2
2
,

where PBπθ
is the orthogonal projection onto the row space of Bπθ

∈ Rd×|S||A|. If we increase the dimension of
{f ′(s, a), s ∈ S, a ∈ A} such that {f(s, a), s ∈ S, a ∈ A} ⊊ {f ′(s, a), s ∈ S, a ∈ A}, it results in a more richer
parameterization and a decrease in L(µ∗

i , π, d
π
ρ ) since the column rank of Bπθ

has increased.

D. Proofs
D.1. Proof of Proposition 3.3

To set up sub-Gaussian bounds for the gradient estimates in the RL case, we require the following lemma.

Lemma D.1. Vector Bernstein Inequality (Kohler & Lucchi, 2017, Lemma 18): Let xi ∈ Rd be independent vector-valued
random variables for i ∈ [n]. If there exist constants B, σ ≥ 0 such that E[xi] = 0, ∥xi∥ ≤ B and E[∥xi∥2] ≤ σ2, the
following inequality holds:

P
(∥∥∥∥∑n

i=1 xi

n

∥∥∥∥ ≥ ε

)
≤ exp

(
1

4
− nε2

8σ2

)
,

where ε ∈ (0, σ2

B ).

Proof of Proposition 3.3. The first property has been proven in (Bai et al., 2023, Lemma 2) and (Yuan et al., 2022, Lemma
4.4). The bias bound b1(H) has been established in (Yuan et al., 2022, Lemma 4.5).

To establish the upper bound of b0(H) in the second property, we consider i ∈ {0, . . . ,m}:

∣∣∣E [V̂ θ
i (ρ)

]
− V θ

i (ρ)
∣∣∣ ≤ 1

n

∣∣∣∣∣∣E
 n∑
j=1

H−1∑
t=0

γtri(s
j
t , a

j
t )−

n∑
j=1

∞∑
t=0

γtri(s
j
t , a

j
t )

∣∣∣∣∣∣ ≤
∞∑

t=H

γt =
γH

1− γ
.
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Next, we prove that the value function estimator V̂ θ
i (ρ) has a sub-Gaussian bound. For i ∈ {0, . . . ,m}, we note that V̂ θ

i (ρ)
is bounded in the interval [ −1

1−γ ,
1

1−γ ]. Using Hoeffding’s inequality, we have for any ε > 0,

P
(∣∣∣V̂ θ

i (ρ)− E
[
V̂ θ
i (ρ)

]∣∣∣ ≥ ε
)
≤ 2 exp

(
−nε2(1− γ)2

2

)
.

We can rewrite the above inequality as:

P

(∣∣∣V̂ θ
i (ρ)− E

[
V̂ θ
i (ρ)

]∣∣∣ ≤ σ0(n)

√
ln

2

δ

)
≥ 1− δ,

for any δ ∈ (0, 1), where σ0(n) :=
√
2√

n(1−γ)
.

Finally, we prove that the gradient estimator ∇̂V θ
i (ρ) has a sub-Gaussian bound. From (Yuan et al., 2022, Lemma 4.2), we

have

Var
[(

∇̂θV
θ
i (ρ)

)
j

]
≤

M2
g

(1− γ)3
.

We conclude that
∥∥∥∥(∇̂θV

θ
i (ρ)

)
j

∥∥∥∥ ≤ Mg

(1−γ)2 from (Xu et al., 2020, Proposition 4.2) and and
∥∥∥∥E(∇̂θV

θ
i (ρ)

)
j

∥∥∥∥ ≤ Mg

(1−γ)2

from (Liu et al., 2020b, Lemma B.1). Therefore, we have∥∥∥∥(∇̂θV
θ
i (ρ)

)
j
− E

[(
∇̂θV

θ
i (ρ)

)
j

]∥∥∥∥ ≤ 2Mg

(1− γ)2
.

We can apply Lemma D.1 to the estimator ∇̂θV
θ
i (ρ) :=

1
n

∑n
j=1

(
∇̂θV

θ
i (ρ)

)
j
, yielding the inequality

P
(∥∥∥∇̂θV

θ
i (ρ)− E

[
∇̂θV

θ
i (ρ)

]∥∥∥ ≥ ε
)
≤ exp

(
1

4
− nε2(1− γ)3

8M2
g

)
,

where ε ∈ (0,
Mg

2(1−γ) ). We can rewrite this inequality as

P

∥∥∥∇̂θV
θ
i (ρ)− E

[
∇̂θV

θ
i (ρ)

]∥∥∥ ≤ σ1(n)

√
ln

e
1
4

δ

 ≥ 1− δ,

for any δ ∈ (0, 1), where σ1(n) :=
2
√
2Mg

√
n(1−γ)

3
2

.

D.2. Proof of Lemma 3.4

For the rest of the paper, we first define ∆t := ∇̂θB
θt
η (ρ)−∇θB

θt
η (ρ). Now, we start the proof of Lemma 3.4.

Proof of Lemma 3.4. we can bound ∥∆t∥ as

∥∆t∥ (12)

=

∥∥∥∥∥∇θV
θt
0 (ρ)− ∇̂θV

θt
0 (ρ) +

m∑
i=1

[
η
∇̂θV

θt
i (ρ)−∇θV

θt
i (ρ)

α̂i(t)
+ η∇θV

θt
i (ρ)

(
1

α̂i(t)
− 1

αi(t)

)]∥∥∥∥∥
≤
∥∥∥∇θV

θt
0 (ρ)− ∇̂θV

θt
0 (ρ)

∥∥∥+ m∑
i=1

[
η

∥∥∥∇̂θV
θt
i (ρ)−∇θV

θt
i (ρ)

∥∥∥
α̂i(t)

+ η
∥∥∥∇θV

θt
i (ρ)

∥∥∥ ∣∣∣∣ 1

α̂i(t)
− 1

αi(t)

∣∣∣∣
]
. (13)
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Using the sub-Gaussian bound in Proposition 3.3, we have

P

{
|α̂i(t)− αi(t)| ≤ b0(H) + σ0(n)

√
ln

2

δ

}
≥ 1− δ,

P

∥∥∥∇̂θV
θt
i (ρ)−∇θV

θt
i (ρ)

∥∥∥ ≤ b1(H) + σ1(n)

√
ln

e
1
4

δ

 ≥ 1− δ.

Also, we know ∥∇θV
θt
i (ρ)∥ ≤ L by Proposition 3.3. Combining these properties into inequality (13), we finish the

proof.

D.3. Determining stepsize and proof of Lemma 4.3

D.3.1. DETERMINING STEPSIZE USING LOCAL SMOOTHNESS

In this section, we discuss the choice of stepsize γt as introduced in Algorithm 1, specifically in line 10. For simplicity, we
denote

αi(t) := V θt
i (ρ), α̂i(t) := V̂ θt

i (ρ), αi(t) := V̂ θt
i (ρ)− b0(H)− σ0(n)

√
ln

2

δ
.

Recall that the gradient of the log barrier function is defined as ∇θB
θ
η(ρ) = ∇V θ

0 (ρ) + η
∑m

i=1
∇V θ

i (ρ)

V θ
i (ρ)

. The log barrier
function is non-smooth because the norm of the gradient exhibits unbounded growth when θ approaches the boundary
of the feasible domain. However, it has been proven that within a small region around each iterate θt, denoted as

R(θt) = {θ ∈ Θ | V θ
i (ρ) ≥

V
θt
i (ρ)

2 , i ∈ [m]}, the log barrier function is Mt locally smooth around θt which is defined as∥∥∥∇Bθ
η(ρ)−∇Bθ′

η (ρ)
∥∥∥ ≤ Mt∥θ − θ′∥, ∀ θ, θ′ ∈ R(θt).

Therefore, we first need to carefully choose the stepsize γt to ensure that the next iterate θt+1 remains inside the region
R(θt). In (Usmanova et al., 2022, Lemma 3), the authors utilize the smoothness of the constraint functions to provide
suggestions for choosing γt. We restate the lemma as follows:

Lemma D.2. Under Assumption 3.1, if

γt ≤ min
i∈[m]

{
αi(t)√

Mαi(t) + 2|βi(t)|

}
1

∥∇̂θB
θt
η (ρ)∥

,

we have

V
θt+1

i (ρ) ≥ V θt
i (ρ)

2
.

Next, the authors proved the existence of such Mt (Usmanova et al., 2022, Lemma 2), and we restate it as follows:

Lemma D.3. Let Assumption 3.1 hold, the log barrier function Bθ
η(ρ) is Mt locally smooth for θ ∈ R(θt), where

Mt = M +

m∑
i=1

2Mη

αi(t)
+ 4η

m∑
i=1

〈
∇θV

θt+1

i (ρ),
∇θB

θt
η (ρ)

∥∇θB
θt
η (ρ)∥

〉2

(αi(t))
2 .

Moreover, if γt ≤ mini∈[m]

{
αi(t)√

Mαi(t)+2|βi(t)|

}
1

∥∇̂θB
θt
η (ρ)∥

, then

Mt = M +

m∑
i=1

10Mη

αi(t)
+ 8η

m∑
i=1

(βi(t))
2

(αi(t))
2 ,

where βi(t) = ⟨∇V θt
i (ρ),

∇θB
θt
η (ρ)

∥∇θB
θt
η (ρ)∥⟩.
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Using above lemmas, we set γt as

γt := min

{
min
i∈[m]

{
αi(t)√

Mαi(t) + 2|βi(t)|

}
1

∥∇̂θB
θt
η (ρ)∥

,
1

Mt

}
. (14)

Therefore, we can ensure that the next iterate θt+1 always remains within the region R(θt), and prevent overshoot-
ing by utilizing the local smoothness property. Notice that we only have estimates of αi(t) and βi(t), therefore
we replace αi(t) with its lower bound of the estimates as αi(t) and βi(t) with its upper bound of the estimates as

βi(t) :=

∣∣∣∣⟨∇̂θV
θt
i (ρ),

∇̂θB
θt
η (ρ)

∥∇̂θB
θt
η (ρ)∥

⟩
∣∣∣∣+ σ1(n)

√
ln e

1
4

δ + b1(H), i ∈ [m]. Because of the sub-Gaussian bound established in

Proposition 3.3, αi(t) is lower bounded by αi(t) and βi(t) is upper by βi(t) with high probability. Therefore, we choose
the lower bound of (14) to set γt as

γt := min

{
min
i∈[m]

{
αi(t)√

Miαi(t) + 2|βi(t)|

}
1

∥∇̂θB
θt
η (ρ)∥

,
1

M +
∑m

i=1
10Mη
αi

t
+ 8η

∑m
i=1

(
β
i
t

)2

(αi
t)

2

}
.

D.3.2. PROOF OF LEMMA 4.3

To prove Lemma 4.3, we establish the following more general lemma, which will be essential for the proof of Theorem 4.9.
Lemma D.4. Define the events A, B, and C as follows:

A :=

{
∀t ∈ [T ], min

i∈[m]
V θt
i (ρ) ≥ cη

}
,B :=

{
∀t ∈ [T ], min

i∈[m]
γt ≥ Cη

}
, C :=

{
∀t ∈ [T ], ∥∆t∥ ≥ η

4

}
,

where constants c and C are defined in Equations (23) and (24). Let Assumptions 3.1, 4.1, and 4.2 hold, and set η ≤ νemf ,
n = O(η−4 ln 1

δ ), and H = O(ln 1
η ), we have

P {A ∩ B ∩ C} ≥ 1−mTδ.

Our approach to prove Lemma D.4 is as follows: 1) First, we establish P (A) ≥ 1 − δ by considering suitably small
variances σ0(n), σ1(n), and biases b0(H) and b1(H); 2) Second, we guarantee the event B based on the construction of
γt in Section D.3.1; 3) Third, the sub-Gaussian bounds in Proposition 3.3 enable us to establish P (C) ≥ 1− δ, again by
sufficiently bounding the variances σ0(n), σ1(n), and biases b0(H) and b1(H). By combining all of these results, we can
determine the requirements for the variances σ0(n), σ1(n), and the biases b0(H) and b1(H) to satisfy

P {A ∩ B ∩ C} ≥ 1− δ.

All of these factors can be controlled by n and H .

To establish 1) above, we first show that the product of the values of V θt
i (ρ), where i ∈ Bη(θt), does not decrease in the

next iteration, as shown in Lemma D.5. Lemma D.5 implies that if one of these constraint values in Bη(θt) decreases in the
next step, then at least one of the other constraint values in Bη(θt) will increase in the next step. Therefore, Lemma D.5
prevents the constraint values from continuously decreasing during the learning process. Furthermore, due to the chosen

stepsize, each V
θt+1

i (ρ) for i ∈ [m] cannot decrease significantly, as it is always lower bounded by V
θt
i (ρ)

2 . Therefore, we
can establish 1) as demonstrated in (Usmanova et al., 2022, Lemma 6).
Lemma D.5. Let Assumptions 3.1, 4.1, and 4.2 hold with η ≤ νemf , and set

σ0(n) ≤ αi(t)min {2αi(t), η}

8η
√

ln 2
δ

, σ1(n) ≤ Lαi(t)

3η

√
ln e

1
4

δ

, b0(H) ≤ αi(t)min {2αi(t), η}
8η

, b1(H) ≤ Lαi(t)

3η
.

If at iteration t we have mini∈[m] αi(t) ≤ ℓη
L(1+ 4m

3 )
, for the next iteration we have P

(∏
i∈B αi(t+ 1) ≥

∏
i∈B αi(t)

)
≥ 1− δ for any B such that Bη(θt) ⊂ B, where Bη(θt) := {i ∈ [m] | αi(t) ≤ η}.
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Proof of Lemma D.5. Due to the choice of stepsize, P(γt ≤ 1
Mt

) ≥ 1− δ, where Mt is the local smoothness constant of
the log barrier function Bθ

η(ρ). We have

η
∑

i∈Bη(θt)

logαi(t+ 1)− η
∑

i∈Bη(θt)

logαi(t)

≥γt

〈
η

∑
i∈Bη(θt)

∇θV
θt
i (ρ)

αi(t)
, ∇̂θB

θt
η (ρ)

〉
− Mtγ

2
t

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2

≥γt

〈η ∑
i∈Bη(θt)

∇θV
θt
i (ρ)

αi(t)
, ∇̂θB

θt
η (ρ)

〉
− 1

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2


=
γtη

2

2

(
2⟨D1, D1 +D2⟩ − ∥D1 +D2∥2

)
=
γtη

2

2

(
∥D1∥2 − ∥D2∥2

)
, (15)

where D1 :=
∑

i∈Bη(θt)
∇θV

θt
i (ρ)

αi(t)
and D2 :=

∇̂θB
θt
η (ρ)

η −
∑

i∈Bη(θt)
∇θV

θt
i (ρ)

αi(t)
. Under Assumption 4.2, we have

∥D1∥ =

∥∥∥∥∥∥
∑

i∈Bη(θt)

∇θV
θt
i (ρ)

αi(t)

∥∥∥∥∥∥ ≥ ⟨
∑

i∈Bη(θt)

∇θV
θt
i (ρ)

αi(t)
, sθ⟩ ≥

∑
i∈Bη(θt)

ℓ

αi(t)
≥

L(1 + 4m
3 )

η
, (16)

where we use mini∈[m] αi(t) ≤ ℓη
L(1+ 4m

3 )
in the last step. For each i ∈ [m], since σ0(n) ≤ αi(t)

8
√

ln 2
δ

and b0(H) ≤ αi(t)
8 , we

have P
(

3αi(t)
4 ≤ α̂i(t)

)
≥ 1− δ using the sub-Gaussian bound in Proposition 3.3. Therefore, P

(
3η
4 ≤ α̂i(t)

)
≥ 1− δ for

i /∈ Bη(θt). Then, we can upper bound ∥D2∥ with probability at least 1− δ as follows:

∥D2∥ (17)

=

∥∥∥∥∥ ∇̂θV
θt
0 (ρ)

η
+

∑
i/∈Bη(θt)

∇̂θV
θt
i (ρ)

α̂i(t)
+

∑
i∈Bη(θt)

∇̂θV
θt
i (ρ)

α̂i(t)
−

∑
i∈Bη(θt)

∇θV
θt
i (ρ)

αi(t)

∥∥∥∥∥ (18)

≤L

η

(
1 +

4

3
(m− |Bη(θt)|)

)
+

∥∥∥∥∥ ∑
i∈Bη(θt)

(
∇̂θV

θt
i (ρ)

α̂i(t)
− ∇̂θV

θt
i (ρ)

αi(t)
+

∇̂θV
θt
i (ρ)

αi(t)
− ∇θV

θt
i (ρ)

αi(t)

)∥∥∥∥∥ (19)

≤
∑

i∈Bη(θt)

(∥∥∥∇̂θV
θt
i (ρ)−∇θV

θt
i (ρ)

∥∥∥
αi(t)

+

∣∣∣∣ 1

α̂i(t)
− 1

αi(t)

∣∣∣∣ ∥∥∥∇̂θV
θt
i (ρ)

∥∥∥)+
L

η

(
1 +

4

3
(m− |Bη(θt)|)

)
(20)

≤
∑

i∈Bη(θt)

σ1(n)

√
ln e

1
4

δ
+ b1(H)

αi(t)
+ L

σ0(n)
√

ln 2
δ
+ b0(H)

α̂i(t)αi(t)

+
L

η

(
1 +

4

3
(m− |Bη(θt)|)

)
(21)

≤
∑

i∈Bη(θt)

σ1(n)

√
ln e

1
4

δ
+ b1(H)

αi(t)
+ 4L

σ0(n)
√

ln 2
δ
+ b0(H)

3(αi(t))2

+
L

η

(
1 +

4

3
(m− |Bη(θt)|)

)
. (22)

From (18) to (19), we use 3η
4 ≤ α̂i(t) and ∥∇̂θV

θt
0 (ρ)∥ ≤ L by (Xu et al., 2020, Proposition 4.2). From (20) to (21), we

use the sub-Gaussian bound in Proposition 3.3 and ∥∇̂θV
θt
i (ρ)∥ ≤ L for i ∈ [m]. From (21) to (22), we use 3αi(t)

4 ≤ α̂i(t).
Further, if we set the variances and biases in (22) as

σ0(n) ≤ (αi(t))
2

4η
√
ln 2

δ

, σ1(n) ≤ Lαi(t)

3η

√
ln e

1
4

δ

, b0(H) ≤ (αi(t))
2

4η
, b1(H) ≤ Lαi(t)

3η
,

then we can have P
(
∥D2∥ ≤ L(1+ 4m

3 )

η

)
≥ 1− δ. Combining this property with (16), we have P (∥D2∥ ≤ ∥D1∥) ≥ 1− δ.
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Taking this relation into (15), we have

P

 ∏
i∈Bη(θt)

αi(t+ 1) ≥
∏

i∈Bη(θt)

αi(t)

 ≥ 1− δ.

Same result if we replace Bη(θt) with any B such that Bη(θt) ⊂ B.

With the above lemma in place, we are ready to prove Lemma D.4.

Proof of Lemma D.4. First, we need to choose η ≤ νemf and set

σ0(n) ≤ αi(t)min {2αi(t), η}

8η
√

ln 2
δ

, σ1(n) ≤ Lαi(t)

3η

√
ln e

1
4

δ

,

b0(H) ≤ αi(t)min {2αi(t), η}
8η

, b1(H) ≤ Lαi(t)

3η

to satisfy the conditions in Lemma D.5. Then, we can combine the result from Lemma D.5 with the result from (Usmanova
et al., 2022, Lemma 6), and we have

P
{
∀t ∈ [T ], min

i∈[m]
αi(t) ≥ cη, min

i∈[m]
α̂i(t) ≥

3

8
cη and min

i∈[m]
αi(t) ≥

cη

2

}
≥ 1−mTδ, c =

(
ℓ

4L(1 + 4m
3
)

)m

. (23)

Based on the lower bound of α̂i(t), we can further bound γt by (Usmanova et al., 2022, Lemma 6) as

γt ≥ Cη, C :=
c

2L2(1 + m
c )max

{
4 + 5Mc

L2 , 1 +
√

Mc
4L2

} . (24)

Further, if we set

σ0(n) ≤ min

αi(t)min {2αi(t), η}

8η
√

ln 2
δ

,
1(∑m

i=1
16L

αi(t)α̂i(t)

)√
ln 2

δ

 , (25)

σ1(n) ≤ min

 Lαi(t)

3η

√
ln e

1
4

δ

,
η

16
(
1 +

∑m
i=1

η
α̂i(t)

)√
ln e

1
4

δ

 ,

b0(H) ≤ min

αi(t)min {2αi(t), η}
8η

,
1

16
(∑m

i=1
L

αi(t)α̂i(t)

)
 , (26)

b1(H) ≤ min

Lαi(t)

3η
,

η

16
(
1 +

∑m
i=1

η
α̂i(t)

)
 . (27)

By Lemma 3.4, we have

P
(
∥∆t∥ ≥ η

4

)
, (28)

Combing the results from (23) and (24) with inequality (28), we have

P
{
∀t ∈ [T ], min

i∈[m]
V θt
i (ρ) ≥ cη, γt ≥ Cη and ∥∆t∥ ≥ η

4

}
≥ 1−mTδ.
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Based on the above result regarding the lower bound on αi(t) and α̂i(t), we can further set the variances and biases in (27)
as follows:

σ0(n) ≤ min

cηmin {4c, 1}

4
√
ln 2

δ

,
3c2η2

32L
√

ln 2
δ

 , σ1(n) ≤ min

 2cL

3

√
ln e

1
4

δ

,
η

16
(
1 + 4m

3c

)√
ln e

1
4

δ

 ,

b0(H) ≤ min

{
cηmin {4c, 1}

4
,
3c2η2

32L

}
, b1(H) ≤ min

{
2cL

3
,

η

16
(
1 + 4m

3c

)} .

According to Proposition 3.3, the number of trajectories n and the truncated horizon H need to be set as follows:

n := max

{
2048L2ln 2

δ

9(1− γ)2c4η4
,

32ln 2
δ

c2(1− γ)2η2 min {16c2, 1}
,
2048(1 + 4m

3c )
2M2

g ln e
1
4

δ

η2(1− γ)3
18M2

g ln e
1
4

δ

c2L2(1− γ)3

}
,

H := max

{
logγ

(
3(1− γ)c2η2

32L

)
, logγ

(
c(1− γ)ηmin {4c, 1}

4

)
,

O
(
logγ

(1− γ)η

16(1 + 4m
3c )Mg

)
,O
(
logγ

2(1− γ)cL

3Mg

)}
, (N-H)

where the first condition for H is to satisfy b0(H) ≤ min
{

cmin{4c,1}
4 , 3c2

32L

}
and the second condition for H is to satisfy

b1(H) ≤ min

{
2cL
3 , η

16(1+ 4m
3c )

}
. Therefore, we need to set the number of trajectories n of the order O(η−4 ln 1

δ ) and the

truncated horizon H of the order O(ln 1
η ).

D.4. Proof of Lemma 4.8

The proof of Lemma 4.8 is based on the performance difference lemma, provided below for completeness.

Theorem D.6 (The performance difference lemma (Sutton et al., 1999)). ∀θ, θ′ ∈ Rd, ∀i ∈ {0, . . . ,m}, we have

V θ
i (ρ)− V θ′

i (ρ) =
1

1− γ
E(s,a)∼dθ

ρ

[
Aθ′

i (s, a)
]
.

Proof of Lemma 4.8. We can derive the following equality by using the performance difference lemma,

V π∗

0 (ρ)− V θ
0 (ρ) + η

m∑
i=1

(
V π∗

i (ρ)− V θ
i (ρ)

V θ
i (ρ)

)
=

1

1− γ
E(s,a)∼dπ∗

ρ

[
Aθ

0(s, a) + η

m∑
i=1

Aθ
i (s, a)

V θ
i (ρ)

]
. (29)

Applying Jensen’s inequality to Assumption 4.6, we obtain ∀i ∈ {0, . . . ,m},

E(s,a)∼dπ∗
ρ

[
Aθ

i (s, a)− (1− γ)µ∗
i
T∇θ log πθ(a|s)

]
≤

√
εbias. (30)

Plugging inequality (30) into (29), we get

V π∗

0 (ρ)− V θ
0 (ρ) + η

m∑
i=1

(
V π∗

i (ρ)− V θ
i (ρ)

V θ
i (ρ)

)

≤E(s,a)∼dπ∗
ρ

(µ∗
0 +

m∑
i=1

ηµ∗
i

V θ
i (ρ)

)T

∇θ log πθ(a|s)

+

√
εbias

1− γ

(
m∑
i=1

η

V θ
i (ρ)

+ 1

)

=E(s,a)∼dπ∗
ρ

[(
∇θB

θ
η(ρ)

)T (
F θ(ρ)

)−1 ∇θ log πθ(a|s)
]
+

√
εbias

1− γ

(
1 +

m∑
i=1

η

V θ
i (ρ)

)
. (31)

From the above inequality, we divide the analysis into two cases: softmax parameterization and other policy parameterizations
that satisfy Assumptions 3.1, 4.4 and 4.6.
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1. For softmax parameterization, the first property is proved in Proposition C.3. For the second property, we know that
Assumption 4.6 is satisfied with εbias = 0 by (Agarwal et al., 2021). Therefore, we have

E(s,a)∼dπ∗
ρ

[(
∇θB

θ
η(ρ)

)T (
F θ(ρ)

)−1 ∇θ log πθ(a|s)
]

=E(s,a)∼dπ∗
ρ

[(
PKer(F θ(ρ))∇θB

θ
η(ρ) +PIm(F θ(ρ))∇θB

θ
η(ρ)

)T (
F θ(ρ)

)−1 ∇θ log πθ(a|s)
]

=E(s,a)∼dπ∗
ρ

[(
PIm(F θ(ρ))∇θB

θ
η(ρ)

)T (
F θ(ρ)

)−1 ∇θ log πθ(a|s)
]

≤ 1

µF,s

∥∥PIm(F θ(ρ))∇θB
θ
η(ρ)

∥∥ .
In the last step, we use µF,s := infθ∈Θ{second smallest eigenvalue of F θ(ρ)} > 0 and ∥∇θ log πθ(a|s)∥ ≤ 1 (Yuan
et al., 2022, Lemma 4.8). Combining the above inequality with (31), we have

V π∗

0 (ρ)− V θ
0 (ρ) ≤ mη +

1

µF,s

∥∥PIm(F θ(ρ))∇θB
θ
η(ρ)

∥∥
2. For other policy parametrization, we use Assumption 4.4 to bound

∥∥F θ(ρ)
∥∥−1

by 1
µF

and Assumption 3.1 to bound
∥∇ log πθ(a|s)∥ by Mh. Therefore, we can bound (31) as

V π∗
0 (ρ)− V θ

0 (ρ) + η

m∑
i=1

(
V π∗
i (ρ)− V θ

i (ρ)

V θ
i (ρ)

)
≤

√
εbias

1− γ

(
1 +

m∑
i=1

η

V θ
i (ρ)

)
+

Mh

µF

∥∥∥∇θB
θ
η(ρ)

∥∥∥ .
Rearranging the above inequality, we have

V π∗

0 (ρ)− V θ
0 (ρ) ≤mη +

√
εbias

1− γ

(
1 +

m∑
i=1

η

V θ
i (ρ)

)
+

Mh

µF

∥∥∇θB
θ
η(ρ)

∥∥ .

D.5. Proof of Theorem 4.9

Proof of Theorem 4.9: We divide the proof into two parts: one for general parameterizations that satisfy Assumptions 3.1,
4.4 and 4.6, and the other for softmax parameterization.

1. For general parameterizations that satisfies the Assumptions 3.1, 4.4, and 4.6: We set the values for n, H , and η to
satisfy the conditions outlined in Lemma 4.3. Due to our choice of stepsize, we have P

(
γt ≤ 1

Mt

)
≥ 1− δ as showed

in Lemma 4.3, where Mt represents the local smoothness constant of the log barrier function Bθ
η(ρ). With this, we can

bound B
θt+1
η (ρ)−Bθt

η (ρ) with probability at least 1− δ as

Bθt+1
η (ρ)−Bθt

η (ρ) ≥γt

〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− Mtγ

2
t

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
≥γt

〈
∇θB

θt
η (ρ), ∇̂θB

θt
η (ρ)

〉
− γt

2

∥∥∥∇̂θB
θt
η (ρ)

∥∥∥2
=γt

〈
∇θB

θt
η (ρ),∆t +∇θB

θt
η (ρ)

〉
− γt

2

∥∥∆t +∇θB
θt
η (ρ)

∥∥2
=
γt
2

∥∥∇θB
θt
η (ρ)

∥∥2 − γt
2
∥∆t∥2 . (32)

We divide the analysis into two cases based on the if condition in algorithm 1 line 5.

Case 1: If ∥∇̂θB
θt
η (ρ)∥ ≥ η

2 , then ∥∇θB
θt
η (ρ)∥ ≥ η

4 since ∥∆t∥ ≤ η
4 by Lemma 4.3. We can further write (32) as

Bθt+1
η (ρ)−Bθt

η (ρ) ≥ Cη2

8

∥∥∇θB
θt
η (ρ)

∥∥− Cη3

32
, (33)
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where we plug in γt ≥ Cη in the last step. Since mini∈[m] V
θt
i (ρ) ≥ cη, we can rewrite Lemma 4.8 as:

V π∗

0 (ρ)− V θt
0 (ρ) ≤ a+

Mh

µF

∥∥∇θB
θt
η (ρ)

∥∥ , (34)

where a = mη +
√
εbias

1−γ

(
1 + m

c

)
. Plugging (34) into (33), we get

Bθt+1
η (ρ)−Bθt

η (ρ) ≥ CµF η
2

8Mh

(
V π∗

0 (ρ)− V θt
0 (ρ)

)
− Cη3

32
− aCµF η

2

8Mh
,

which can be further simplified to:

V π∗
0 (ρ)− V

θt+1
0 (ρ) ≤

(
1− CµF η

2

8Mh

)(
V π∗
0 (ρ)− V θt

0 (ρ)
)
+

Cη3

32
+

aCµF η
2

8Mh
+ η

m∑
i=1

log
V

θt+1

i (ρ)

V θt
i (ρ)

.

By recursively applying the above inequality and setting CµF η2

8Mh
< 1, we obtain

V π∗

0 (ρ)− V
θt+1

0 (ρ)

≤
(
1− CµF η

2

8Mh

)t+1 (
V π∗

0 (ρ)− V θ0
0 (ρ)

)
+

(
aCµF η

2

8Mh
+

Cη3
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) t∑
i=0

(
1− CµF η

2

8Mh

)i

+ η

m∑
i=1

log V
θt+1

i (ρ)− η

(
1− CµF η

2

8Mh

)t m∑
i=1

log V θ0
i (ρ)

− CµF η
3

8Mh

m∑
i=1

t∑
j=1

(
1− CµF η

2

8Mh

)t−j

log V
θj
i (ρ)

≤
(
1− CµF η

2

8Mh

)t+1 (
V π∗

0 (ρ)− V θ0
0 (ρ)

)
+ a+

Mhη

4µF
+mη log

1

1− γ

−mη

(
1− CµF η

2

8Mh

)t

log νs −
CµF η

3

8Mh

m∑
i=1

t∑
j=1

(
1− CµF η

2

8Mh

)t−j

log(cη)

≤
(
1− CµF η

2

8Mh

)t+1 (
V π∗

0 (ρ)− V θ0
0 (ρ)

)
+ a+

Mhη

4µF
+mη log

1

cη(1− γ)

−mη

(
1− CµF η

2

8Mh

)t

log νs. (35)

Case 2: If ∥∇̂θB
θt
η (ρ)∥ ≤ η

2 , we have ∥∇θB
θt
η (ρ)∥ ≤ ∥∇̂θB

θt
η (ρ)∥+ ∥∆t∥ ≤ 3η

4 . Applying (34), we have

V π∗

0 (ρ)− V θt
0 (ρ) ≤ 3Mhη

4µF
+ a. (36)

Combining the inequalities (35) and (36), we conclude that after T iterations of the Algorithm 1, the output policy πθout
satisfies

V π∗
0 (ρ)− V θout

0 (ρ) ≤
(
1− CµF η

2

8Mh

)T (
V π∗
0 (ρ)− V θ0

0 (ρ)
)
+

√
εbias

1− γ

(
1 +

m

c

)
+mη

(
3Mh

4µFm
+ 1 + log

1

cη(1− γ)
−
(
1− CµF η

2

8Mh

)T−1

log νs

)

=O
(
exp

(
−CµF η

2)) (V π∗
0 (ρ)− V θ0

0 (ρ)
)
+O(

√
εbias) + Õ

(
η

µF

)
with a probability of at least 1−mTδ.
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2. For softmax parameterization, we can further bound inequality (32) as

Bθt+1
η (ρ)−Bθt

η (ρ) ≥γt
2

∥∥∇θB
θt
η (ρ)

∥∥2 − γt
2
∥∆t∥2

≥γt
2

∥∥PIm(F θ(ρ))∇θB
θ
η(ρ)

∥∥2 − γt
2
∥∆t∥2 .

Following the same proof structure, we have

V π∗
0 (ρ)− V θout

0 (ρ) ≤
(
1− CµF,sη

2

8Mh

)T (
V π∗
0 (ρ)− V θ0

0 (ρ)
)

+mη

(
3Mh

4µF,sm
+ 1 + log

1

cη(1− γ)
−
(
1− CµF,sη

2

8Mh

)T−1

log νs

)
.

D.6. Proof of Corollary 4.11

Proof of Corollary 4.11. By analyzing the inequalities, namely (35) and (36), provided in Section D.5, we can prove
Corollary 4.11 as follows: setting n = O(ε−4 ln 1

δ ), H = O(ln 1
ε ), η = ε and T = Õ(ε−2). After T iterations of the

LB-SGD Algorithm, the output θout satisfies

V π∗

0 (ρ)− V θout
0 (ρ) ≤ O(

√
εbias) + Õ(ε), (37)

while safe exploration is ensured with a probability of at least 1−mTδ. To ensure satisfaction of (37) and maintain safe
exploration with a probability of at least 1− β, we need set δ = β

mT = O
(
βε2
)

and sample size n = O(ε−4 ln 1
ε ).

D.7. Proof of Corollary 4.12

Proof of Corollary 4.12. To calculate the regret bound, we sum inequalities (35) and (36) in the proof of Theorem 4.9 from
t = 0 to T − 1, we have

1

T

T−1∑
t=0

(
V π∗
0 (ρ)− V θt

0 (ρ)
)

≤ 1

T

T−1∑
t=0

(
1− CµF η

2

8Mh

)t (
V π∗
0 (ρ)− V θ0

0 (ρ)
)
+

√
εbias

1− γ

(
1 +

m

c

)
+mη

(
3Mh

4µFm
+ 1 + log

1

cη(1− γ)

)

− mη

T

T−2∑
t=0

(
1− CµF η

2

8Mh

)t

log νs

≤ 8Mh

CµF η2T

(
V π∗
0 (ρ)− V θ0

0 (ρ)−mη log νs
)
+ Õ(η) +O(

√
εbias).

with a probability of at least 1−mTδ. Similarly, for softmax parameterization, we have

1

T

T−1∑
t=0

(
V π∗

0 (ρ)− V θt
0 (ρ)

)
≤ 8Mh

CµF,sη2T

(
V π∗

0 (ρ)− V θ0
0 (ρ)−mη log νs

)
+ Õ(η) +O(

√
εbias).

with a probability of at least 1 −mTδ. Moreover, by setting T = O(ε−3), δ = β
mT = O(βε3), and η = ε, we achieve

O(
√
εbias)+ Õ(ε)-optimality concerning the regret bound using O(ε−7) samples in total, which is ensured with probability

at least 1− β.

E. Boundary distance at stationary points
In this section, we prove that the stationary points of the log barrier function is at most Ω(νemf + η) close to the boundary.
Lemma E.1. Let Assumptions 3.1 and 4.2 hold. For any stationary point θst of the log barrier function, we have

min
i∈[m]

{
V θst
i (ρ)

}
≥ min

{
min{η, νemf}ℓ

mL
, νemf

}
.
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Figure 1. Gridworld Environment: The green block denotes the reward, the arrows represent the policies, and the two red-hatched
rectangles indicate the constrained states.

Proof. Since θst is the stationary point, we have

∇θB
θst
η (ρ) = ∇θV

θst
0 (ρ) + η

m∑
i=1

∇θV
θst
i (ρ)

V θst
i (ρ)

= 0.

Rearranging the terms in the above equation, we obtain

∑
i/∈Bνemf

(θst)

∇θV
θst
i (ρ)

V θst
i (ρ)

+
∑

i∈Bνemf
(θst)

∇θV
θst
i (ρ)

V θst
i (ρ)

=
−∇θV

θst
0 (ρ)

η
. (38)

If Bνemf
(θst) is an empty set, then

min
i∈[m]

{
V θst
i (ρ)

}
≥ νemf .

Otherwise, by Assumption 4.2, there exists a unit vector sθst ∈ Rd such that for i ∈ Bνemf
(θst), we have

⟨sθst ,∇θV
θst
i (ρ)⟩ > ℓ.

Taking the dot product of both sides of equation (38) with sθst and using Lipschitz continuity, we obtain

ℓ

mini∈[m]

{
V θst
i (ρ)

} ≤

〈
sθst ,∇θV

θst
i (ρ)

〉
mini∈[m]

{
V θst
i (ρ)

} ∑
i∈Bνemf

(θst)

mini∈[m]

{
V θst
i (ρ)

}
V θst
i (ρ)

=

〈
sθst ,−∇θV

θst
0 (ρ)

〉
η

−
∑

i/∈Bνemf
(θst)

〈
sθst ,∇θV

θst
i (ρ)

〉
V θst
i (ρ)

≥ mL

min{η, νemf}
,

Therefore,

min
i∈[m]

{
V θst
i (ρ)

}
≥ min{η, νemf}ℓ

mL
.

In conclusion, we have mini∈[m]

{
V θst
i (ρ)

}
≥ min

{
min{η,νemf}ℓ

mL , νemf

}
.

F. Experiment
We conducted experiments 2 in a 6× 6 gridworld environment introduced by (Sutton & Barto, 2018) (see Figure 1). We
aim to reach the rewarded cell while controlling the time spent visiting the red rectangles under a certain threshold. We

2All the experiments in this subsection were carried out on a MacBook Pro with an Apple M1 Pro chip and 32 GB of RAM. Our code
is developed based on (Schlaginhaufen & Kamgarpour, 2023, https://github.com/andrschl/cirl).
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define the CMDP as follows: the environment involves four actions: up, right, down, and left. The agent moves in the
specified direction with a 0.9 probability and randomly selects another direction with a 0.1 probability after taking an
action. The constraints are defined as follows: If the agent hits the second-row or the fourth-row red rectangles, the reward
functions r1(s, a) and r2(s, a) receive −10 respectively. Once the agent reaches a rewarded cell, it remains there indefinitely,
receiving a reward of 1 per iteration. We set the discount factor to γ = 0.7. We define the CMDP we solve as follows:

max
πθ

V πθ
0 (ρ) subject to V πθ

i (ρ) ≥ −2, i ∈ [2],

utilizing the softmax policy parameterization. The optimal policy, depicted as arrows in Figure 1, is computed using linear
programming. Notice that the agent needs to learn the optimal policy within the regions highlighted by red rectangles, as
there is always a small probability of ending up there. We apply the LB-SGD algorithm with η = 0.01 and compare it with
the IPO algorithm (Liu et al., 2020a), which uses a fixed stepsize for the log barrier approach. Our primary goals for these
experiments are two-fold:

1. Verification and sample complexity To validate our theoretical results, particularly Theorem 4.9, we aim to confirm the
safe exploration behavior and determine the sample size required for achieving learning with low variance. Our experiments
align with this theoretical result, as shown in Figures 2 and 3. Figure 2 indicates that the LB-SGD algorithm converges
to the optimal policy while maintaining safe exploration at the same time. Meanwhile, in Figure 1, we depict the policy
obtained from our algorithm. While it bears a resemblance to the optimal policy, it is less deterministic to circumvent the
red rectangles. Figure 3 demonstrates that when the point is closer to the boundary, our algorithm requires a higher number
of samples per iteration to obtain accurate estimates of stepsizes and log barrier gradients. Inadequate sampling leads to
relatively smaller estimates of stepsizes with higher variance in gradient and stepsize estimations.

2. Comparative analysis We compare our algorithm with the IPO algorithm, which is also based on the log barrier method
and a policy gradient approach. However, IPO uses a fixed stepsize. Since there is no known fixed stepsize to ensure safety
for this method, we vary the stepsizes of IPO by 1.5, 1, and 0.5. Figure 3 demonstrates that both the IPO algorithm with
well-tuned stepsizes and our LB-SGD algorithm ensure safe exploration. However, the IPO algorithm with well-tuned
stepsizes converges faster and achieves closer proximity to the optimal reward value compared to our LB-SGD algorithm.
This is due to the LB-SGD algorithm’s conservative choice of stepsize to ensure safe exploration. Specifically, the variation
of constraint 2 values is smaller in the LB-SGD algorithm compared to the IPO algorithm, especially when the initial
point is near the boundary. In contrast, tuning the stepsize in the IPO algorithm is essential to prevent constraint violations
during learning. Larger stepsizes may lead to instability and unsafe behavior, while smaller ones ensure safe exploration at
the expense of slower convergence rates. As the fixed stepsizes in the IPO algorithm decrease, the variance of constraint
values increases. Our adaptive stepsize selection in the LB-SGD algorithm does not necessitate manual tuning, ensuring
a balanced approach between safe exploration and convergence speed. Figure 2 illustrates LB-SGD’s adaptive stepsize
behavior, favoring smaller steps near boundaries and larger ones away from them.

Discussion Due to approximation errors, both IPO and LB-SGD may occasionally take a bad step and produce an
infeasible iterate πθt . While sometimes the gradient update (1) remains feasible, allowing the algorithm to recover from its
bad step automatically, in other cases, a recovery method becomes necessary. In our experiments, we implement recovery
by reverting to previous iterates and increasing the sample complexity while simultaneously decreasing the stepsize at
previous iterates. This ensures the safe exploration of subsequent iterates with high probability. These measures align with
the insights derived from the results of Lemma 4.3.

In the LB-SGD Algorithm, we need information about the Lipschitz constants, Mg , and the smoothness parameter, Mh, for
the function log πθ(a|s) to compute the smoothness parameter of the value functions V θ

i (ρ), which is crucial for determining
the stepsizes. When using direct, softmax, or log-linear parameterizations, we can directly compute the values of Mg

and Mh. However, for other policy parameterizations, we can estimate the smoothness parameter using information from
sampled trajectories, as explained in Appendix G. Although for our experiment, Mg and Mh corresponding to the softmax
parameterization are both 1, in the implementation, we used the approach proposed in Appendix G to verify its effectiveness
in calculating the stepsize.

G. Estimation of smoothness parameter
In (Yuan et al., 2022, Proof of Lemma 4.4), the second order of the value functions ∇2V θ

i (ρ) is computed as

∇2V θ
i (ρ)
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Figure 2. The average performance comparison between the IPO algorithm (Liu et al., 2020a) using different stepsizes γt = 0.5, 1, 1.5,
and LB-SGD. The lines indicate the median values obtained from 10 independent experiments, while the shaded areas represent the 10%
and 90% percentiles calculated from 10 different random seeds.

Figure 3. The gradient estimation error for the log barrier function and the computation of stepsize for LB-SGD algorithm with sample
sizes of 100, 300, 500, 700, 900, 1500, and 3000 at varying distances from the boundary.The lines indicate the median values obtained
from 10 independent experiments, while the shaded areas represent the 10% and 90% percentiles calculated from 10 different random
seeds.

=Eτ∼πθ

[
∞∑
t=0

γtri(st, at)
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t∑

k=0

∇2
θ log πθ(ak|sk)

)
+

(
t∑

k=0

∇θ log πθ(ak|sk)

)(
t∑
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.

Using the information of n truncated trajectories, with a fixed horizon H , denoted as τj :=
(
sjt , a

j
t ,
{
ri(s

j
t , a

j
t )
}m

i=0

)H−1

t=0
,

we can estimate ∇2V θ
i (ρ) by the Monte-Carlo method as

∇̂2V θ
i (ρ)

=
1

n

n∑
j=1

[
H∑
t=0

γtri(s
j
t , a

j
t)
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k=0

∇2
θ log πθ(a

j
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j
k)

)
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t∑
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∇θ log πθ(a
j
k|s

j
k)
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j
k|s

j
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.

We estimate the smoothness parameter Mi for the value function V θ
i (ρ) as

Mi = ∥∇̂2V θ
i (ρ)∥.
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