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ABSTRACT

As large language models (LLMs) have demonstrated remarkable performance,
parameter-efficient fine-tuning (PEFT) has emerged as an important paradigm.
As a solution, low-rank adaptation (LoRA) freezes the pre-trained weights and in-
troduces small learnable adapters instead of fine-tuning the full set of parameters.
However, LoRA suffers from catastrophic forgetting, where pre-trained knowl-
edge is overwhlemed and forgotten as new information is learned. One cause of
this issue is implicit regularization, where deep learning models tend to favor more
generalized solutions. This tendency leads to a significant increase in the largest
singular values of the weights, which correspond to low-frequency components.
To address this problem, we propose an advanced LoRA that balances the reten-
tion of pre-trained knowledge with the learning of new information. Since fine-
tuning involves learning fine-grained details, which correspond to high-frequency
information, we designed HiLoRA, a method that injects learnable high-frequency
components into the pre-trained model. By leveraging the parameterized SVD
and constraining singular values to appropriate levels, HiLoRA adapts to new
tasks by focusing on the high-frequency domain with minimal change from the
pre-trained weights. To evaluate the effectiveness of HiLoRA, we conduct exten-
sive experiments on natural language understanding and question answering tasks.
The results show that HiLoRA not only improves performance but also effectively
retains pre-trained knowledge compared to baseline models.

1 INTRODUCTION

Pre-trained language models (PLMs) have achieved remarkable performance in various natural lan-
guage processing tasks (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2019; Radford et al., 2019;
He et al., 2020; Touvron et al., 2023; Achiam et al., 2023; Anil et al., 2023). The common way to
adapt pre-trained language models to downstream tasks is fine-tuning. However, fine-tuning all pa-
rameters of the model requires substantial resources. Especially, as the size of language models has
grown to billions of parameters, storing copies of the large model for each downstream task results
in significant memory consumption. To address this issue, recent studies suggest parameter-efficient
fine-tuning (PEFT) methods (Hu et al., 2021; Zhang et al., 2023; Liu et al., 2024; Jiang et al., 2024;
Meng et al., 2024; Wang et al., 2024), fine-tuning with only a small number of trainable parameters.

Low-Rank Adaptation (LoRA) (Hu et al., 2021), which updates parameters using low-rank matrices,
has shown promising performance over other methods such as prompt tuning (Lester et al., 2021) or
prefix tuning (Li & Liang, 2021). LoRA keeps the pre-trained weights frozen and updates only small
number of parameters, which makes LoRA both storage- and compute-efficient. LoRA is designed
based on the assumption that pre-trained language models are inherently low-dimensional and can
learn efficiently even with random projections into smaller subspaces. The low-rank matrices serve
as adapters, amplifying features that were learned but not emphasized during pre-training.

However, the LoRA-based fine-tuning methods have limitations. In general, deep learning-based
models exhibit implicit regularization, a tendency for optimization algorithms and neural networks
to favor more generalized solutions without overfitting (Arora et al., 2019; Cao et al., 2022; Zhao,
2022; Li et al., 2024). As a result, the larger singular values of the learnable weights tend to increase
more significantly as training progresses (see Proposition 3.1). In Figure 1 (a), while the largest
singular value increases during training, the test accuracy on pre-trained tasks decreases inversely.
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Figure 1: (a) The trade-off between the largest singular value and accuracy on the pre-trained task
(BookCorpus) of LoRA fine-tuned on the STS-B dataset of the GLUE benchmark for RoBERTabase,
(b) the comparison of the fitted singular values σ′ from the exponential decay function with the nor-
malized singular values for: i) the last output projection layer weight in the self-attention mechanism
of DeBERTaV3base, and ii) an ideal low-rank matrix with rank r = 64. Additionally, Figure 6 in
Appendix C illustrates the low-rank approximation error rates for the two matrices.

This suggests that implicit regularization is also observed in LoRA, where the largest singular value
increases during the fine-tuning process of the pre-trained model. Consequently, the low-frequency
components corresponding to large singular values of the introduced modules exert a significant
influence on the new task, overshadowing the pre-trained knowledge. The model gradually adapts
to the new task as their dominance grows, leading to catastrophic forgetting where the pre-trained
knowledge is overwhelmed and forgotten as the model learns new information.

To overcome this limitation, we propose a High-frequency augmented Low-Rank Adaptation
method, called HiLoRA, which effectively learns new knowledge while retaining the pre-trained
knowledge. It is known that the low-frequency components are associated with large singular val-
ues and handle global information while high-frequency components correspond to smaller singular
values and capture fine-grained details (Cooley et al., 1969; Deng & Cahill, 1993; Pan et al., 2022).
The pre-trained model has already learned high-frequency components during its pre-training phase,
and the high-frequency components contain valuable information, rather than simply representing
noise. In Figure 1 (b), we compare the results of fitting an exponential decay function to the singular
values in the pre-trained weights and those of an ideal low-rank matrix. The decay rate α of the
weights of model is significantly smaller than that of the ideal low-rank matrix, indicating that the
lower singular values retain relatively large magnitudes. Therefore, the high-frequency components
in the pre-trained weights play a crucial role in retaining fine-grained information.

Fine-tuning, literally, is the process of injecting new knowledge on top of the pre-trained informa-
tion, allowing the model to handle task-specific fine-grained details based on the major pre-trained
information. Therefore, to efficiently fine-tune the pre-trained models, we propose to augment an
appropriate level of high-frequency components into the pre-trained model through learnable mod-
ules. At this point, by limiting the singular values of the augmented components from becoming
excessively large, the introduced modules can maintain its focus on the high-frequency domain.
Through this process, the information is augmented in the high-frequency domain, allowing the
model to effectively learn the new task while retaining its pre-trained knowledge with only minimal
deviation. We conduct extensive experiments to evaluate the effectiveness of HiLoRA, demonstrat-
ing that it consistently outperforms LoRA and its variants across various tasks. Additionally, we
assess catastrophic forgetting across multiple baseline models, showing that HiLoRA significantly
mitigates the forgetting of pre-trained knowledge. Moreover, we achieved the outstanding results
with introducing at most 12 new high-frequency components, which is negligible w.r.t. the original
model size. Our key contributions can be summarized as follows:
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• We propose a simple yet effective low-rank adaptation method, called HiLoRA, which
balances the retention of pre-trained knowledge with the learning of new information and
mitigates catastrophic forgetting problem in LoRA.

• As the fine-tuning process learns fine-grained information on top of pre-trained knowledge,
we augment the model with high-frequency components using parameterized SVDs. This
approach ensures that the introduced learnable module adapts to new tasks without over-
whelming the pre-trained knowledge.

• We perform comprehensive experiments across various tasks, including both natural lan-
guage understanding and question answering, demonstrating that HiLoRA outperforms
baseline models and effectively mitigates catastrophic forgetting.

2 RELATED WORK & PRELIMINARIES

2.1 TRANSFORMERS

Transformers can be understood from two key submodules: multi-head attention (MHA) and feed-
forward network (FFN). The MHA with h parallel heads performs the attention function as follows:

MHA(X) = Concat(head1, . . . , headh)Wo, headi = Softmax
(
XWqi(XWki)

⊺

√
dk

)
XWvi , (1)

where Wo ∈ Rd×d is an output projection weight and Wqi ,Wki ,Wvi ∈ Rd×dh are query, key,
and value projection weights for each head i. dh is typically set to d/h. FFN performs two linear
transformations with a ReLU activation as follows:

FFN(X) = ReLU(XWf1 + b1)Wf2 + b2, (2)

where Wf1 ∈ Rd×dm and Wf2 ∈ Rdm×d. These architectures enable a model to understand the
language patterns and generate human-like texts in natural language processing.

2.2 LOW-RANK ADAPTATION

LoRA (Hu et al., 2021) suggests the low-rank update of the pre-trained weights by the product of
two low-rank matrices. For h = w0x, the modified forward pass becomes:

h = W0x+∆Wx = W0x+BAx, (3)

where W0,∆W ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ Rd1×r with r ≪ {d1, d2}. A is initialized with a
random Gaussian initialization and B with zero, so ∆W = BA is zero at the beginning of training.
After fine-tuning, the learnable adapter ∆W can be integrated into the pre-trained weight W without
modifying the original model architecture or adding any additional inference overhead.

Directly modifying the components of ∆W . Recent studies have used SVD to analyze the com-
ponents of pre-trained weights. PiSSA (Meng et al., 2024) assumes that the principal components
have important information and enables faster convergence by updating only the top r principal
components while keeping the residual parts fixed. However, PiSSA directly modifies the principal
components of the original model weights W0, altering the major information previously learned.
This modification leads to catastrophic forgetting, where the pre-trained knowledge is forgotten dur-
ing fine-tuning. Conversely, MiLoRA (Wang et al., 2024) proposes directly modifying the r minor
components, assuming that they are noisy and less important, in order to better preserve the pre-
trained knowledge. However, existing models lack of consideration for changes in the frequency of
introduced modules allows their influence to grow during fine-tuning, potentially overwhelming and
forgetting the pre-trained knowledge.

Adaptively adjusting the rank r. To adaptively adjust the rank r in each layer, AdaLoRA (Zhang
et al., 2023) parameterizes SVD and allocates the rank for each LoRA layer based on a sensitivity-
driven importance score. SoRA (Ding et al., 2023) reduces the rank of each layer by introducing
a sparsifying scheduler. These studies focus on pruning the number of ranks to meet a predefined
budget using heuristic importance scores. However, these methods are designed for dynamically
adjusting the rank of the weight, and does not consider its frequency structure.
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High rank update of ∆W . Recent studies focus on increasing the number of rank r while avoid-
ing any additional inference overhead. MoRA (Jiang et al., 2024) introduces a non-parametric opera-
tor that reduces the input dimension and increases the output dimension, allowing high-rank updates
without significantly increasing the number of learnable parameters. The number of eigenvalues in
the learnable adapters is larger, improving the capability of updates required to handle more com-
plex tasks. ReLoRA (Lialin et al., 2023) achieves high-rank updates by leveraging the rank of sum
property through multiple low-rank updates.

3 PROPOSED METHOD

3.1 MOTIVATIONS

In general, deep learning-based models demonstrate an implicit bias, a tendency for optimization
algorithms and neural networks to favor simpler and more generalizable solutions without overfit-
ting. The following theory explains the change of singular values of the learnable matrix W in the
absence of explicit regularization:
Proposition 3.1 (Gradient descent induces large singular values via implicit regularization (Zhao,
2022)). Under the assumptions specified in (Arora et al., 2019), the trajectory of the singular values
σn of the end-product matrix W can be approximately characterized as:

σ̇n = −vec(VnU
⊺
n )

⊺PW,Gvec(∇WL(W )), (4)

vec(Ẇ ) = −PW,Gvec(∇WL(W )), (5)

where σ̇ is the derivative of σn(t), {Un, Vn} are the left/right singular vectors of W (t) cor-
responding to σn(t), N is the depth of network and vec(·) denotes vectorization. PW,G =∑N

j=1

(
(WW ⊺)

j−1
N ⊗ (W ⊺W )

N−j
N

)
Gj , where Gj = diag(vec(Sj)) is a positive semi-definite

diagonal matrix for j-th layer, [Sj ] =
(
∇WjL(W )2 + s2j

)−1/2
, s2j = var(∇WjL(W )) and

∇Wj
L(W ) is the loss gradient of j-th layer.

Proposition 3.1 demonstrates that the large singular values of networks tend to become larger and the
small singular values tend to become smaller. As revealed in (Zhao, 2022), the eigenvalue of PW,G

is derived as (1+ η2)
−1/2
n,n′ and dynamically adjusted based on the magnitude of the gradient and the

weight scale. In the directions with the large singular values, the gradient magnitude is relatively
large, resulting in a smaller η2, which enhances the contribution of those directions. Conversely, in
the directions of the small singular values, η2 becomes larger, suppressing learning towards those
directions. As depth increases, the weighted combination of the preconditioning matrices across lay-
ers accumulates, further emphasizing the directions of the large singular values and the gap among
singular values becomes more distinct. However, as illustrated in Figure 1 (a), the tendency for sin-
gular values to increase as training progresses is directly related to the degradation of performance
in pre-trained tasks. This phenomenon is called catastrophic forgetting, where the model forgets
pre-trained knowledge as it learns new information, leading to the performance degradation on pre-
trained task. Catastrophic forgetting hinders the continuous performance and consistency of LLMs,
making it crucial to prevent this issue.

3.2 HIGH-FREQUENCY AUGMENTED LOW-RANK ADAPTATION

Our goal is to enable the model to effectively learn new tasks while retaining its pre-trained knowl-
edge. We have identified that one of the critical causes of catastrophic forgetting in LoRA-based
methods is the increase in the singular values of ∆W during fine-tuning for new tasks, which am-
plifies the influence of low-frequency components. Therefore, we aim to address this issue by effec-
tively managing the frequency spectrum of the learned model.

In general, deep learning models including LoRA-based models, are biased towards the spectrum,
called spectral bias (Cao et al., 2019; Rahaman et al., 2019), meaning that the original model W0

tends to learn low-frequency information first and high-frequency information during the later stages
of pre-training. Specifically, certain patterns with high-frequency information are learned based on
the global patterns with low-frequency information during in later stages. Fine-tuning is the process
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Figure 2: The overall architectures of LoRA and HiLoRA in composing W . (a) Traditional LoRA,
where the learnable adapter ∆W is treated as a residual adapter to the original weights W0. (b)
The conceptual illustration of HiLoRA, where ∆W represents new high-frequency components
augmented into W0. (c) The overall architecture of HiLoRA for implementation. HiLoRA does not
directly decompose or reconstruct W0 during fine-tuning.

of precisely adjusting the model to a new task based on the patterns learned during pre-training.
Thus, the information during fine-tuning should be captured in the high-frequency domain. Specif-
ically, to illustrate that the high-frequency components of the pre-trained model hold meaningful
information rather than mere noise, we apply the Kolmogorov n-width (Pinkus, 2012) to the pre-
trained weights. The Kolmogorov n-width measures how well complex data can be represented
in an n-dimensional subspace. As shown in Figure 1 (b), the pre-trained weights have a much
slower decay rate compared to an ideal low-rank matrix. This slower decay causes the singular
values to decrease more gradually, making it difficult for the data to be fully represented in a small
n-dimensional space. Consequently, the Kolmogorov n-width increases, indicating that the small
singular values carry significant information.

Building upon this insight, we propose a high-frequency-augmented LoRA method. Figure 2 illus-
trates the difference in how traditional LoRA and our proposed HiLoRA handle ∆W . While LoRA
interprets ∆W as an adapter residual to the original pre-trained weights W0, HiLoRA treats ∆W
as an augmented high-frequency component to W0. To define ∆W as a matrix of learnable com-
ponents with appropriate frequency characteristics, we parameterize the introduced modules in the
form of singular value decomposition as follows:

W = W0 +∆W = W0 + UΣV ⊺, (6)

where U ∈ Rd1×r, V ⊺ ∈ Rr×d2 are parameterized left/right singular vectors, respectively, and Σ ∈
Rr contains the parameterized singular values {σn}1≤n≤min{d1,d2}. From the perspective of matrix
operations, Equation 6 can be written as W0+∆W = UW0

ΣW0
V ⊺
W0

+UΣV ⊺, where UW0
ΣW0

V ⊺
W0

represents the actual SVD of the pre-trained weights. This shows that new components UΣV ⊺ are
augmented to the pre-trained weights W0, as illustrated in Figure 2 (b). Note that SVD on W0 is
performed only once before fine-tuning to initialize σ̄ whereas existing methods (Wang et al., 2024;
Meng et al., 2024) extract singular vectors of W0. The actual operation does not involve any explicit
decomposition or reconstruction of W0 during the fine-tuning process (see Appendix D). U, V can
be initialized with random r singular vectors of W0, or U is initialized with zero and V with a
random Gaussian initialization. As mentioned earlier, we maintain the frequency components of
the introduced modules at an appropriate level to prevent them from overwhelming the pre-trained
knowledge. According to the definition of singular value decomposition, singular values must be
non-negative, and we clamp them to the upper bound of augmented frequency σ̄ to prevent the
weights from becoming too large. This can be expressed by the following equation:

σn = min(max(σn, 0), σ̄), (7)

where σ̄ can be set as a hyperparameter. The degenerate case of the proposed method occurs when
all components hold the same information under the constraints on the parametrized singular values.
This happens when the parameterized singular vectors align in the same direction, and all singular
values converge to σ̄, which significantly impacts the original model. Specifically, the maximum
Frobenius norm of ∆W , denoted as ∥∆W∥F , occurs when all singular values are equal to σ̄. In
this case, the Frobenius norm ∥∆W∥F is given as ∥∆W∥F =

√∑r
n=1 σ

2
n =

√
rσ̄2 = σ̄

√
r. Thus,

the maximum possible Frobenius norm of ∆W is σ̄
√
r, representing the scenario where the matrix

has been transformed to have all singular values equal to the upper bound σ̄. This result implies that
when the singular values are constrained by σ̄, The Frobenius norm of ∆W may increase by up to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

σ̄
√
r at most, which characterizes the degerate case in which the structure of ∆W has been fully

altered by pushing all singular values to their upper bound. To prevent such degenerate cases, we
ensure that the components of the learned ∆W do not capture the same information. We achieve
this by applying orthogonal regularization to the singular vectors during training, forcing them to be
orthogonal to each other and thus capturing distinct information. To enforce the orthogonality of U
and V , i.e., U⊺U = V V ⊺ = I , we apply the following regularization term:

R(U, V ) = ∥U⊺U − I∥+ ∥V V ⊺ − I∥ (8)

where I ∈ Rr×r indicates an identity matrix. This regularization term is controlled by the orthog-
onal regularization coefficient γ. We verify the orthogonality of the parameterized singular vectors
in Appendix F.2. We summarize the detailed algorithm in Algorithm 1.

Algorithm 1 How to train HiLoRA
Input: Dataset D; total iterations T ; learning rate η, γ, σ̄.
for t = 1, . . . , T do

Σ
(t)
k = min(max(Σ(t)

k , 0), σ̄)

W
(t)
k = W0 + U

(t)
k Σ

(t)
k (V

(t)
k )⊺

Update U
(t+1)
k = U

(t)
k − η∇Uk

(L(U (t)
k ,Σ

(t)
k , V

(t)
k ) + γR(U

(t)
k , V

(t)
k ))

Update V
(t+1)
k = V

(t)
k − η∇Vk

(L(U (t)
k ,Σ

(t)
k , V

(t)
k ) + γR(U

(t)
k , V

(t)
k ))

Update Σ
(t+1)
k = Σ

(t)
k − η∇Σk

L(U (t)
k ,Σ

(t)
k , V

(t)
k )

end
Output: The fine-tuned parameters {U (T ),Σ(T ), V (T )}, W (T ) = W0 + U (T )Σ(T )(V (T ))⊺.

3.3 COMPARISON WITH LORA-BASED METHODS

In this section, we highlight the distinctions between our approach and other LoRA-based methods.

Directly modifying the components of ∆W . PiSSA (Meng et al., 2024) and MiLoRA (Wang
et al., 2024) assume that the principal components contain the major information, while the minor
components hold long-tail information or noise. They directly modify r principal/minor components
of W0 to learn new information. However, after initializing ∆W with these r components, no further
constraints are applied during training. Due to implicit regularization, the principal components of
∆W grow larger, exerting greater influence over the original information and causing the model to
forget pre-trained knowledge. In contrast, HiLoRA preserves the entire pre-trained model and injects
new knowledge with generated high-frequency components through parameterized SVD, effectively
retaining the pre-trained knowledge by regulating the influence of ∆W from becoming too large.

Adaptively adjusting the rank r & High rank update of ∆W . AdaLoRA (Zhang et al., 2023)
and SoRA (Ding et al., 2023) are designed to dynamically prune the number of ranks in each layer
using SVD for stable training. On the other hand, some approaches, such as MoRA (Jiang et al.,
2024) and ReLoRA (Lialin et al., 2023), aim to increase the rank of ∆W to enhance model capacity
and improve performance. While these methods primarily focus on the rank r itself, our proposed
method focuses on regulating the frequency of ∆W for a given predefined rank r, allowing to
efficiently adapts to new tasks without altering the overall rank.

4 EXPERIMENTS

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

4.1.1 EXPERIMENTAL SETUP

We evaluate HiLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018a), which includes 3 categories of natural language understanding tasks:
i) single-sentence (CoLA and SST-2); ii) similarity and paraphrasing (MRPC, QQP, and STS-B);
iii) natural language inference tasks (MNLI, QNLI, and RTE). For a fair comparsion, following
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Table 1: Comparison of various methods with RoBERTabase on GLUE tasks with 4 different random
seeds. Full results with standard deviations are provided in Appendix E.1.3.

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

LoRA 87.95 94.81 63.95 90.95 92.75 79.96 89.22 90.84 86.30
AdaLoRA 87.23 94.95 61.35 89.74 92.52 81.59 89.22 90.60 85.90
PiSSA 87.94 94.47 64.17 90.99 92.45 76.99 89.89 90.87 85.97
MiLoRA 87.95 94.61 64.62 91.00 92.87 81.77 89.46 91.03 86.66
HiLoRA 87.94 95.10 64.66 90.73 93.12 82.85 90.20 91.16 86.97

Table 2: Comparison of various methods with DeBERTaV3base on SQuAD datasets

SQuADv1.1 SQuADv2.0

0.08% 0.16% 0.32% 0.65% Avg. 0.08% 0.16% 0.32% 0.65% Avg.

Full FT* 86.0 / 92.7 85.4 / 88.4

HAdapter 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 85.6/92.3 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3 84.5/87.5
PAdapter 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 85.8/92.5 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 86.6/93.0 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0 84.4/87.4
AdaLoRA 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 87.4/93.6 85.6/88.7 85.7/88.8 85.5/88.6 86.0/88.9 85.7/88.8
HiLoRA 87.9/93.8 88.0/93.9 88.0/94.0 87.7/93.7 87.9/93.8 85.6/88.6 85.7/88.6 85.7/88.7 85.8/88.8 85.7/88.7

Hu et al. (2021), we adopt the pre-trained RoBERTabase as the backbone model. We use 1 GPU
of NVIDIA RTX A6000 for experiments. We report Matthews correlation for CoLA, Spearman
correlations for STS-B, and accuracy scores for the other tasks.

4.1.2 EXPERIMENTAL RESULT

Table 1 shows the experimental results of fine-tuning RoBERTabase on the GLUE task. MiLoRA,
which freezes the low-frequency components while directly modifying the high-frequency compo-
nents, showed the best performance among the other baselines. However, MiLoRA shows subopti-
mal performance due to the information loss caused by directly altering the high-frequency compo-
nents in the pre-trained weights. However, HiLoRA shows the best average performance compared
to other baselines, achieving the average accuracy of 86.97, Indicating that the new information of
the fine-tuned dataset is effectively captured in the high-frequency components.

4.2 EXPERIMENTS ON QUESTION ANSWERING

4.2.1 EXPERIMENTAL SETUP

We evaluate HiLoRA on two question answering (QA) tasks: SQuAD v1.1 (Rajpurkar, 2016) and
SQuADv2.0 (Rajpurkar et al., 2018). Following (Zhang et al., 2023), we fine-tune a pre-trained
DeBERTaV3base (He et al., 2021) with HiLoRA and set the rank r of LoRA as {2, 4, 6, 12}. These
tasks are considered as a sequence labeling problem, where the goal is to predict the probability of
each token being the start and end of the answer span. We measured the performance of model using
the Exact Match (EM) and F1 metrics. We use 1 GPU of NVIDA RTX 3090 24GB for experiments.

4.2.2 EXPERIMENTAL RESULT

Table 2 reports the experimental results on fine-tuning DeBERTabase on QA tasks. Both datasets
showed significant improvements in average performance compared to full finetuning and LoRA.
This suggests that the augmented high-frequency information played a crucial role. In particular,
SQuADv1.1 exhibited notable improvements even with a small rank r. AdaLoRA and our model
performed similarly on SQuADv2.0, indicating that each method plays a crucial role in different
ways. AdaLoRA adapts by dynamically adjusting the rank r, while HiLoRA focuses on learning the
high-frequency components with a fixed r. As a result, both methods optimize the model in different
ways, leading to similar average outcomes, but with distinct advantages.
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Table 3: The Frobenius norm of U⊺WV , where U and V are the left and right top r singular vector
directions of either: (1) ∆Wq , (2) Wq , or (3) a random matrix. (4) The Frobenius norm of U⊺∆WV ,
where U and V are from Wq . (5) The Frobenius norm of ∆W . (6,7) The introduced factors. The
weights are taken from the last query layer of RoBERTabase, fine-tuned on STS-B dataset with r = 8.

Model ∥U⊺WV ∥F ∥U⊺
Wq

∆WVWq∥F ∥∆W∥F FactorW → ∆W Factor∆W → W

∆Wq Wq Random

LoRA 0.48 11.22 0.32 0.16 3.81 7.94 23.82
PiSSA 0.38 11.22 0.35 0.11 2.49 6.54 22.60

MiLoRA 0.45 11.22 0.35 0.08 3.11 6.91 38.86
HiLoRA 0.36 11.22 0.38 0.03 0.94 2.60 31.18

5 ANALYSES ON HILORA

In this section, we aim to analyze the three characteristics of our model: i) the frequency analysis
of ∆W ; ii) the relationship between ∆W and the pre-trained weights W ; and iii) how HiLoRA
effectively retains pre-trained knowledge while adapting to new tasks.

5.1 FREQUENCY ANALYSIS OF ∆W
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Figure 3: Largest singular value of ∆W

As shown in Proposition 3.1, the deep learning-based
models exhibit implicit regularization, and the largest sin-
gular value increases as training progresses. To empir-
ically validate that this tendency exists in LoRA-based
methods, and that our proposed HiLoRA learns modules
in the high-frequency domain, which leads to smaller sin-
gular values, Figure 3 illustrates the changes in the largest
singular value of ∆W across various methods. While
LoRA and its variants tend to increase the largest singu-
lar values as training progresses, our proposed HiLoRA
maintains smaller singular values throughout training.
This suggests that ∆W of HiLoRA primarily captures the
information in the high-frequency domain.

5.2 HOW DOES THE ADAPTATION MATRIX ∆W COMPARED TO W ?

We explore the relationship between ∆W and W by measuring the correlation between ∆W and
W as well as the magnitude of ∆W in comparison to its corresponding directions in the pre-trained
weight W . To do so, we introduce two key factors:

• FactorW → ∆W is a factor formulated as ∥∆W∥F /∥U⊺
∆WWV∆W ∥F , which indicates

the ratio of the norm of difference over the norm of projected W on the r-dimensional
subspace of ∆W . This factor is also called amplification factor (Hu et al., 2021), measuring
how the new information of ∆W is related to the existing information of W . A larger ratio
refers that the task-specific information of W has been amplified in ∆W .

• Factor∆W → W is a factor formulated as ∥∆W∥F /∥U⊺
W∆WVW ∥F , which is the ratio

of the norm of difference over the norm of projected ∆W on the r-dimensional subspace
of W . It indicates the extent to which the change aligns with W . A larger ratio refers that
∆W has learned new information that is not present in W .

Following (Hu et al., 2021), we project W onto the r-dimensional subspace of ∆W by computing
U⊺WV , where U and V are the left and right singular vectors of ∆W , W , and the random matrix.
Additionally, we project ∆W onto the subspace of W by computing U⊺∆WV . As shown in Ta-
ble 3, HiLoRA and other methods exhibit similar Frobenius norms when W is projected onto the
subspace of ∆W , W and random matrix. However, compared to the baselines, the projection of
∆W onto the subspace of W in HiLoRA shows the lowest correlation with a value of 0.02, which
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Figure 4: Changes during fine-tuning RoBERTabase on the MRPC dataset of GLUE benchmark: (a)
Frobenius norm of ∆W in the query layer, (b) accuracy on the pre-trained task (BookCorpus), and
(c) evaluation loss on the pre-trained task.

is less than half of the smallest baseline. This suggests that HiLoRA processes the existing informa-
tion in W similarly to other methods, while being better at learning independent new information
without relying on the existing information in W . Furthermore, considering the Frobenius norm of
∆W , both LoRA and PiSSA exhibit a large FactorW→∆W and a small Factor∆W→W , indi-
cating that ∆W primarily amplifies information already present in W . MiLoRA also shows a large
Factor∆W→W , but this results from the large magnitude of ∆W , leading to significant changes
from the pre-trained weights. In contrast, HiLoRA exhibits a relatively small FactorW→∆W of
4.25 but a large Factor∆W→W of 46.77. Given the small magnitude of ∆W , this indicates that
HiLoRA stands out for its ability to learn new information that is not already in W with minimal
deviation from the pre-trained weights.

5.3 HOW HILORA MITIGATES CATASTROPHIC FORGETTING

Unlike existing methods, we constrain the information on the new task to prevent it from over-
whelming the pre-trained knowledge. To do, the injected frequency of ∆W has the upper bound
of appropriate frequency value. In this section, we investigate how HiLoRA mitigates the catas-
trophic forgetting during fine-tuning. The magnitude of the change in weights is used to measure
the change from pre-trained knowledge to new knowledge . Figure 4 (a) shows the evolution of
the Frobenius norm with respect to the difference between original and learned weights during fine-
tuning of RoBERTa on the STS-B dataset of GLUE task. LoRA and its variants show a rapid
increase in change as the epochs increase. In contrast, HiLoRA maintains a constant level of change
even with increasing epochs. Furthermore, Fig 4 (b) and (c) show the accuracy and evaluation loss
on pre-trained knowledge from the BookCorpus dataset, which is the source dataset for the pre-
trained RoBERTa model. As the number of epochs increases, LoRA and its variants rapidly degrade
the accuracy on the pre-trained knowledge, dropping from the original performance of 0.6 to below
0.1, and the loss function increases by about 5 times. As mentioned earlier, without restrictions on
the frequency domain during training, the model undergoes significant changes, leading to catas-
trophic forgetting of the pre-trained knowledge. On the other hand, HiLoRA effectively mitigates
this phenomenon, minimizing the performance degradation on the pre-trained task.

6 ADDITIONAL STUDIES

As the sensitivity analysis, we examine the effects of σ̄ and γ, with the results for γ provided in
Appendix F.1. In the ablation study, we investigate the impact of the augmented components.

6.1 SENSITIVITY STUDY ON THE UPPER BOUND OF AUGMENTED FREQUENCY σ̄

We constraint the maximum value of the parameterized singular values with the hyperparameter σ̄
to learn the augmented high-frequency components. To analyze the impact of σ̄ on performance, we
fine-tune the DeBERTaV3base model on the SQuADv2.0 dataset and report EM/F1 score according
to σ̄. In our experiments, σ̄ holds the q-th quantile value of the singular values distribution of W0,
denoted as σ(q). As illustrated in Figure 5, the performance peaks when σ̄ = σ(3), indicating
that σ̄ at the appropriately small value level allows the model to optimally learn the augmented

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(1) (2) (3) (4)85
.0

85
.2

85
.4

85
.6

85
.8

EM

EM F1

88
.0

88
.2

88
.4

88
.6

88
.8

F1

Figure 5: Sensitivity on σ̄

Model MRPC SST-2

Acc.fine-tune Acc.pre-train Acc.fine-tune Acc.pre-train

Pre-trained - 61.64 - 61.64

LoRA 89.22 3.77 94.81 32.35
LoRAUV ⊺ 89.95 3.12 94.75 39.39
LoRASVD 89.58 17.57 95.04 49.65
HiLoRA 90.20 32.00 95.10 51.29

Table 4: Ablation on the augmented components

high-frequency components while maintaining best accuracy. However, reducing or increasing σ̄
too much leads to a degradation in both EM and F1 scores, suggesting that an inappropriate scale
disrupts the capability of model to learn fine-grained details effectively.

6.2 ABLATION STUDY ON THE AUGMENTED COMPONENTS

To analyze the influence of the injected components in HiLoRA on the performance of both pre-
trained and fine-tuned knowledge, we conduct an ablation study on the following variants: i) LoRA
refers to the traditional LoRA method; ii) LoRAUV ⊺ applies orthogonal regularization to the singu-
lar vectors without considering the singular values; iii) LoRASVD initializes the singular values as
ones, allowing them to be learnable from LoRAUV ⊺ ; and iv) HiLoRA refers to the proposed method.
We measure the accuracy on both the fine-tuned tasks, using the MRPC and SST-2 datasets from
the GLUE benchmark, and the pre-trained task, using the BookCorpus dataset on RoBERTabase. As
reported in Table 4, LoRA significantly sacrifices pre-training performance to improve performance
on fine-tuned tasks. For the MRPC dataset, accuracy on the pre-trained task drops from 61.64 to
3.77, while it achieves comparable accuracy on the fine-tuned task. LoRAUV ⊺ has limited expres-
siveness because its singular values are fixed at one. As a result, it may sacrifice either pre-trained
or fine-tuned knowledge depending on the task. For the MRPC dataset, it outperforms LoRA but
has lower accuracy on the pre-trained task, while for SST-2, it shows lower performance on the
fine-tuned task but better accuracy on the pre-trained task compared to LoRA. LoRASVD performs
better due to its learnable singular values, enabling it to retain more pre-trained information than the
original LoRA. Notably, HiLoRA constraints the singular values to learn in the high-frequency do-
main, ensuring both superior expressiveness and efficient retention of pre-trained information. For
both datasets, HiLoRA achieves the best performance on both fine-tuned and pre-trained tasks.

7 CONCLUSION

We propose a simple yet effective low-rank adaptation method called HiLoRA, to address the prob-
lem of catastrophic forgetting in LoRA, where pre-trained knowledge is overwhelmed and forgotten
as the model learns new information. Since fine-tuning incorporates fine-grained knowledge on top
of the pre-trained information, we augment the pre-trained model with new high-frequency compo-
nents, minimizing the impact on the pre-trained knowledge. HiLoRA achieves this by employing
parameterized SVD and maintaining the augmented frequency components at appropriate levels.
Our experimental results demonstrate that HiLoRA achieves promising performance on new tasks.
Unlike traditional LoRA-based models, the learned models effectively capture high-frequency com-
ponents and adapt to new information, rather than relying solely on pre-trained knowledge. With
minimal changes, HiLoRA successfully integrates new information into the pre-trained weights,
balancing between retaining pre-trained knowledge and adapting to new tasks.

Limitations. Despite the advantages of HiLoRA, there are a few limitations. First, while HiLoRA
focuses on effectively capturing high-frequency components, in certain scenarios, it may under-
represent some low-frequency information. Additionally, the optimal level of high-frequency com-
ponents may vary across different datasets, requiring further tuning in some cases.
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A REPRODUCIBILITY STATEMENT

In an effort to ensure reproducibility, we report the description of dataset in Appendices E.1.1
and E.2.1. Also we report the best hyperparameters of our experiments in Appendices E.1.2 and
E.2.2. Our HiLoRA code to reproduce the experiment can be found at https://bit.ly/
4gGHlVs.

B ETHICAL STATEMENT

We utilized publicly available datasets, including SQuAD and GLUE, which are commonly em-
ployed in academic research, and all sources have been appropriately cited. This research does not
involve any personal or confidential information, thereby eliminating concerns related to privacy.
Our proposed approach and the resulting insights contribute to the advancement of artificial intelli-
gence while adhering to principles of ethical innovation and responsibility.
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Figure 6: The error rate of the normalized singular values for: (i) the final output projection layer
weights W0 in the self-attention mechanism of DeBERTaV3base, and (ii) an ideal low-rank matrix
with rank r = 64. The marker indicates the n-value where the approximation error reaches 5%.

To find the best possible n-dimensional subspace Vn such that the closest approximation v ∈ Vn to
W minimizes the error ∥W − v∥X , the definition of Kolmogorov n-width is formulated as follows:

dn(W,X) = inf
Vn⊂X

dimVn=n

inf
v∈Vn

∥W − v∥X , (9)

where Vn is n-dimensional subspace of X , v is an element from the subspace Vn. ‘inf’ stands
for infimum. When using the Frobenius norm (or spectral norm) with matrices, the Kolmogorov
n-width is computed by the singular values of W as follows:

dn(W,X) = σn+1, (10)
where σn+1 is the (n + 1)-th largest singular value of the matrix W . The Kolmogorov n-width
measures how well a set W can be approximated by an n-dimensional subspace. In other words, it
represents the minimal maximum error when approximating with an n-dimensional subspace. Then
we can determine the optimal dimensionality needed to achieve a desired approximation accuracy.

If the singular values decrease rapidly, W can be well approximated even for small n, and the
Kolmogorov n-width also decreases quickly. Therefore, the singular value decay rate α, which
plays a pivotal role in determining how effectively a matrix can be approximated, is commonly
modeled by an exponential decay function as follows:

σ′
n = Ce−αn, (11)

where σ′
n represents the n-th modeled singular values, C > 0 is a constant, and α > 0 is the decay

rate. When the decay rate α is low, the singular values decrease gradually, resulting in large errors
when approximating with the same n dimensions. To minimize the approximation errors, a larger n
is required, indicating that significant information is contained in the lower singular values.
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Pre-trained
Weights

Frozen Trainable

Figure 7: The overall architecture of HiLoRA for implementation. HiLoRA does not directly de-
compose or reconstruct W0 during fine-tuning.

Empirical analysis of the Kolmogorov n-width. To empirically analyze the Kolmogorov n-
width of the pre-trained language model, we present error rates based on low-rank approximation
under the same conditions as shown in Figure 1 (b) of Introduction. The formulation of error rates
EW (n) is as follows:

EW (n) =

(
∥W − v∥F
∥W∥F

)
× 100%, (12)

where W is the original matrix and v is the approximated matrix obtained by truncating the SVD
to rank n. The error rates for the pre-trained model and the ideal low-rank matrix are presented in
Figure 6, with markers indicating the n-value where the error rate reaches 5%. For the ideal low-rank
matrix, the rank at which the error rate reaches 5% is 63. This suggests that the matrix has a low-
dimensional structure, with the most important information concentrated in the top singular values.
The lower singular values have little effect on the approximation and can be considered noise. In
contrast, for the pre-trained model, the n-value required to reach 95% approximation is 661, which
is significantly larger than ideal row rank matrix. This indicates that the data is complex and high-
dimensional, and the lower singular values contain important information rather than merely noise.

D AUGMENTATION OF THE NEW COMPONENTS

We augment the high-frequency components ∆W to the pre-trained weights W0. From the per-
spective of matrix operations, the summation of two matrices can be regarded as augmenting new
components as:

W = W0 +∆W = UW0
ΣW0

V ⊺
W0

+ UΣV ⊺ = [UW0
U ]

[
diag(ΣW0) 0

0 diag(Σ)

] [
V ⊺
W0

V ⊺

]
, (13)

where W0 = UW0
ΣW0

V ⊺
W0

∈ Rd1×d2 , where UW0
∈ Rd1×r, ΣW0

∈ Rr×r, and V ⊺
W0

∈ Rr×d2 ,
represent the singular vectors and singular values of the pre-trained weight matrix W0. Note that,
the singular value decomposition of W0 is performed only once before fine-tuning to initialize σ̄,
and as illustrated in Figure 7, the actual implementation does not involve the explicit decomposition
or reconstruction of W0 during the fine-tuning process.

E EXPERIMENTAL SETTINGS

E.1 NATURAL LANGUAGE UNDERSTANDING

E.1.1 DATASET DESCRIPTION

We describe the benchmark datasets of GLUE (Wang et al., 2018a) below.

• CoLA. The Corpus of Linguistic Acceptability (Warstadt et al., 2019) provides a dataset of
English sentences, where each sentence is judged for grammatical acceptability based on
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data from books and journal articles. The objective is a binary classification to determine
whether a sentence is grammatically correct or incorrect. The dataset consists of 8.5k
samples for training, 1k samples for validation, and 1k samples for test.

• SST-2. The Stanford Sentiment Treebank (Socher et al., 2013) includes sentences from
movie reviews, along with human-provided sentiment annotations. The goal is to classify
the sentiment of each sentence as either positive or negative. The dataset consists of 67k
samples for training, 872 samples for validation, and 1.8k samples for test.

• MRPC. The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains
pairs of sentences automatically extracted from online news sources. Human annotators
label each pair, and the task is to identify whether the two sentences in a pair convey
the same meaning. The dataset consists of 3.7k samples for training, 408 samples for
validation, and 1.7k samples for test.

• QQP. The Quora Question Pairs dataset (Chen et al., 2018) consists of question pairs taken
from Quora, a community-driven question-and-answer platform. The task is to determine
if two given questions are semantically identical. The dataset consists of 364k samples for
training, 40k samples for validation, and 391k samples for test.

• MNLI. The Multi-Genre Natural Language Inference Corpus (Williams et al., 2017) in-
cludes sentence pairs with textual entailment annotations collected through crowdsourcing.
Given a premise and a hypothesis, the task is to predict whether the premise entails the hy-
pothesis, contradicts it, or is neutral. The dataset includes both in-domain and cross-domain
evaluations using a hidden test set. The dataset consists of 393k samples for training, 20k
samples for validation, and 20k samples for test.

• QNLI. The Question-Answering Natural Language Inference dataset (Wang et al., 2018b)
consists of question-paragraph pairs from which an answer must be found. The task in-
volves determining whether a specific sentence from the paragraph answers the correspond-
ing question. The dataset consists of 108k samples for training, 5.7k samples for validation,
and 5.7k samples for test.

• RTE. The Recognizing Textual Entailment dataset (Bentivogli et al., 2009) comes from
a series of annual challenges focusing on textual entailment. The task is to classify sen-
tence pairs as either entailment or non-entailment. The dataset consists of 2.5k samples for
training, 276 samples for validation, and 3k samples for test.

• STS-B. The Semantic Textual Similarity Benchmark (Cer et al., 2017) features sentence
pairs drawn from various sources, including news headlines and image captions, with
human-assigned similarity scores. The task is a regression problem where the model must
predict a similarity score ranging from 0 to 5. The dataset consists of 7k samples for train-
ing, 1.5k samples for validation, and 1.4k samples for test.

E.1.2 HYPERPARAMETERS

To tune HiLoRA, We search for the learning rate from {4 × 10−4, 5 × 10−4}, σ̄ from
{σ(2), σ(3), σ(4)} and γ from {1 × 10−1, 7 × 10−2, 5 × 10−2, 3 × 10−2, 1 × 10−2, 1 × 10−3}.
The learnable singular vectors U/V can be initialized as i) random r singular vectors of W0, ii) U
with zero, V with random Gaussian initialization. We report the best hyperparameters of HiLoRA
in Table 5 below.

E.1.3 EXPERIMENTAL RESULT WITH STANDARD DEVIATIONS

We report the experimental results on GLUE tasks with standard deviation in Table 6.

E.2 QUESTION ANSWERING

E.2.1 DATASET DESCRIPTION

We describe the benchmark dataset of SQuAD (Rajpurkar, 2016; Rajpurkar et al., 2018). The Stan-
ford Question Answering Dataset (SQuAD) is a benchmark for reading comprehension, featuring
questions based on Wikipedia articles. Each question is answered with a specific text segment (or
span) from the corresponding passage, though some questions may have no answer at all.
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Table 5: Best hyperparameters for HiLoRA in natural language understanding

Dataset Learning rate Batch size #Epochs Metric σ̄ γ How to initialize U, V

CoLA 4× 10−4 32 25 Matthews correlation σ(2) 3× 10−2 random r singular vectors
MNLI 5× 10−4 32 7 Accuracy σ(2) 1× 10−1 0, random Gaussian
MRPC 4× 10−4 16 30 Accuracy σ(2) 7× 10−2 random r singular vectors
QNLI 4× 10−4 32 5 Accuracy σ(2) 1× 10−2 random r singular vectors
QQP 5× 10−4 32 5 Accuracy σ(2) 1× 10−3 0, random Gaussian
RTE 5× 10−4 32 50 Accuracy σ(2) 5× 10−2 0, random Gaussian
SST-2 5× 10−4 32 24 Accuracy σ(3) 1× 10−2 0, random Gaussian
STS-B 4× 10−4 32 25 Pearson correlation σ(3) 1× 10−1 0, random Gaussian

Table 6: Comparison of various methods on GLUE tasks with 4 different random seeds.

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg

LoRA 87.95±0.13 94.81±0.10 63.95±1.08 90.95±0.04 92.75±0.10 66.88±14.20 89.22±0.30 90.84±0.09 86.30
AdaLoRA 87.94±0.01 94.47±0.20 64.17±1.19 90.99±0.05 92.45±0.18 73.01±10.70 89.89±1.23 90.87±0.17 85.90
PiSSA 87.23±0.05 94.95±0.34 61.35±0.87 89.74±0.09 92.52±0.08 81.59±1.11 89.22±0.39 90.60±0.10 85.97
MiLoRA 87.95±0.16 94.61±0.29 64.62±0.99 91.00±0.05 92.87±0.24 81.77±1.29 89.46±0.30 91.03±0.13 86.66
HiLoRA 87.94±0.11 95.10±0.15 64.66±0.65 90.76±0.07 93.12±0.11 82.85±0.79 90.20±0.52 91.16±0.21 86.97

• SQuADv1.1. Over 100,000 question-answer pairs derived from more than 500 articles.
The dataset consists of 87,599 samples for training and 10,570 for validation.

• SQuADv2.0. Combines the 100,000 questions in SQuADv1.1 with over 50,000 unan-
swerable questions to closely resemble answerable ones. To perform well on SQuADv2.0,
systems must not only provide correct answers when available but also recognize when a
question cannot be answered based on the given passage and abstain from responding. The
dataset consists of 130,319 samples for training and 11,873 for validation.

E.2.2 HYPERPARAMETERS

To tune HiLoRA, We search for the learning rate from {1 × 10−3, 5 × 10−3}, σ̄ from
{σ(2), σ(3), σ(4)} and γ from {7 × 10−1, 5 × 10−1, 1 × 10−1, 7 × 10−2, 5 × 10−2, 1 × 10−2}.
The learnable singular vectors U/V can be initialized as i) random r singular vectors of W , ii) U
with zero, V with random Gaussian initialization. We report the best hyperparameters of HiLoRA
in Table 7 below.

Table 7: Best hyperparameters for HiLoRA in question answering

Dataset Learning rate Batch size #Epochs Metric σ̄ γ How to initialize U, V

SQuADv1.1

1× 10−3

16

10

EM/F1

σ(2) 1× 10−2 0, random Gaussian
1× 10−3 10 σ(2) 1× 10−2 0, random Gaussian
1× 10−3 10 σ(2) 1× 10−1 0, random Gaussian
1× 10−3 10 σ(2) 5× 10−1 0, random Gaussian

SQuADv2.0

1× 10−3

16

12

EM/F1

σ(3) 5× 10−1 0, random Gaussian
5× 10−3 12 σ(3) 5× 10−1 0, random Gaussian
1× 10−3 12 σ(2) 1× 10−1 random r singular vectors
1× 10−3 12 σ(3) 7× 10−2 0, random Gaussian
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Figure 8: Sensitivity study on γ

F ADDITIONAL STUDIES

F.1 SENSITIVITY STUDY ON THE ORTHOGONAL REGULARIZATION COEFFICIENT γ

The orthogonal regularization applied to U and V is used to learn the singular values that consists the
augmented high-frequency components. We further conduct sensitivity study on the effect of the or-
thogonal regularization coefficient γ. We fine-tuned the DeBERTaV3base model on the SQuADv2.0
dataset. As shown in Figure 8, appropriate regularization induces the orthogonalization of singular
values, leading to improved convergence during fine-tuning and enhanced performance. However,
excessive regularization results in performance degradation, indicating the need for an optimal bal-
ance that maximizes the benefits of regularization without hindering the ability of model to learn
task-specific patterns.

F.2 ORTHOGONAL REGULARIZATION ON PARAMETERIZED SINGULAR VECTORS
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(b) Orthogonal loss of V ⊺

Figure 9: The orthogonal loss curves of parameterized singular vectors U and V when fine-tuning
RoBERTabase on STS-B dataset

Figure 9 shows the orthogonal loss curve of parameter singular vectors U and V of RoBERTabase
fine-tuned on STS-B dataset. The singular vectors are orthogonally optimized as indicated by the
consistent reduction in orthogonal loss throughout the fine-tuning process.

G COMPARISON OF COMPUTATIONAL COMPLEXITY

Table 8 summarizes the empirical training time (min per epoch) and peak GPU usage (GB) of
RoBERTabase fine-tuned on GLUE tasks. The GPU usage showed a very slight increase compared
to the original LoRA, and the additional runtime occurs in HiLoRA and AdaLoRA. This increase
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arises from the orthogonal regularization of singular vectors generated by parameterized SVD. How-
ever, fine-tuning typically requires fewer epochs, and considering the improved performance and the
ability to retain pre-trained knowledge compared to the baseline model, this increase is negligible.

Table 8: Comparison of “training time (min per epoch)/peak GPU usage (GB)”

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

LoRA 105.9/24.9 18.2/24.9 2.3/24.9 98.1/24.9 28.3/24.9 0.7/24.9 1.0/12.5 1.6/24.9
PiSSA 106.2/24.9 18.1/24.9 2.3/24.9 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9
AdaLoRA 123.4/25.6 21.1/25.6 2.7/25.6 114.4/25.6 33.1/25.6 0.8/25.6 1.3/13.1 1.8/25.6
MiLoRA 106.0/24.9 18.1/24.9 2.3/24.9 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9
HiLoRA 128.9/25.2 22.1/25.2 2.8/25.2 119.4/25.2 34.3/25.2 0.8/25.2 1.3/12.8 1.9/25.2

H CATASTROPHIC FORGETTING IN ADALORA

We measure the catastrophic forgetting phenomenon in AdaLoRA using the MRPC and STS-B
datasets in the GLUE task. Specifically, we measure the largest singular value and Frobenius norm
of the difference between the pre-trained model and the fine-tuned model. Also, we evaluate the ac-
curacy and the evaluation loss on the pre-trained task, denoted as ‘Acc.pre-train’ and ‘Eval. losspre-train’.
For each dataset, the metrics are measured every 5 epochs during the fine-tuning of AdaLoRA, and
the metrics at the point where AdaLoRA and HiLoRA achieved their best accuracy are also reported,
respectively, denoted as ‘Best’ and ‘BestHiLoRA’.

Table 9: Catastrophic forgetting in AdaLoRA fine-tuned on MRPC dataset

Epoch 5 10 15 20 25 30 Best BestHiLoRA

Largest singular value 2.0177 2.0069 2.0016 2.0009 2.0004 2.0001 2.0177 0.9358
Frobenius norm 2.0201 2.0050 2.0014 2.0011 2.0005 2.0001 2.0201 0.9284
Acc.pre-train 25.578 14.879 8.962 16.794 10.591 11.343 25.58 32.00
Eval. losspre-train 5.231 6.696 7.617 6.178 7.103 7.007 5.2308 4.3496

Table 10: Catastrophic forgetting in AdaLoRA fine-tuned on STS-B dataset

Epoch 5 10 15 20 25 Best BestHiLoRA

Largest singular value 2.0064 2.0034 2.0056 2.0021 2.0001 2.0001 0.9351
Frobenius norm 2.0087 2.0030 2.0065 2.0013 2.0001 2.0001 0.9312
Acc.pre-train 33.526 34.118 29.61 28.19 28.485 28.49 43.72
Eval. losspre-train 3.984 3.951 4.426 4.566 4.525 4.5248 3.1785

According to Tables 9 and 10, AdaLoRA also experiences catastrophic forgetting as its fine-tuning
progresses. The Frobenius norm increases from 0 to 2 in the early fine-tuning phase, with the perfor-
mance on the pre-trained task decreases. Even at its peak performance during fine-tuning, the model
still exhibits low performance on the pre-trained task. This can be attributed to the lack of consid-
eration for frequency components of adapters, leading to a tendency for learning the low-frequency
components while forgetting the pre-trained information. In contrast, the proposed model regu-
larizes the frequency components in the adapter, injecting the new knowledge into high-frequency
components during fine-tuning. As a result, the proposed model retains pre-trained information
more effectively.

I LARGE-SCALE EXPERIMENTS ON COMMONSENSE REASONING

We conduct the experiments for the commonsense reasoning task on LLaMA-7B. Following (Hu
et al., 2023), we amalgamate the training datasets from 8 sub-tasks to create the final training dataset,
and conduct evaluations on the individual testing dataset for each task.
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Table 11: Accuracy comparison on eight commonsense reasoning datasets

LLaMA-7B BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c QBQA Avg.

LoRA 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
HiLoRA 62.2 82.7 78.3 81.0 80.9 83.3 66.8 78.6 76.7

As reported in Table 11, HiLoRA demonstrates improved performance over LoRA on average
in large-scale models, highlighting its stability and effectiveness while maintaining strong results
across diverse downstream tasks.

J EFFECT OF RANK r ON CATASTROPHIC FORGETTING

To verify whether HiLoRA maintains its performance and continues to mitigate forgetting as the
rank increases, we conduct sensitivity study on the rank r on MRPC and STS-B dataset. Specifically,
we measured the largest singular value and Frobenius norm of the difference between the pre-trained
model and the fine-tuned model. Also, we evaluated the accuracy and the evaluation loss on the pre-
trained task, and accuracy on the fine-tuned task.

Table 12: The effect of rank r on catastrophic forgetting

r Metric 8 16 64

MRPC

Largest singular value 0.93 0.69 0.36
Frobenius norm 0.94 0.70 0.36
Eval. losspre-train 4.35 4.18 3.20
Acc.pre-train 32.00 33.58 41.32
Acc.fine-tune 90.20 88.73 88.73

STSB

Largest singular value 0.93 1.40 1.08
Frobenius norm 0.94 1.40 1.12
Eval. losspre-train 3.18 2.49 2.53
Acc.pre-train 43.72 51.15 48.79
Acc.fine-tune 91.16 91.02 91.03

As reported in Table 12, as r changes, the largest singular value also varies, which, in turn affects
the performance on the pre-trained task. The performance on the pre-trained task, however, does not
degrade but rather shows an improvement. This indicates that the proposed model retains its ability
to effectively mitigate catastrophic forgetting even as the rank increases.

K ADDITIONAL EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

We conduct the experiments on the GLUE task with various LoRA-based methods applied to the
DeBERTaV3base, following the experimental environments in (Benedek & Wolf, 2024). The results
are reported in Table 13.

Table 13: Performance comparison of various methods with DeBERTaV3base on GLUE tasks with 3
different random seeds. The results for the baselines are copied from (Benedek & Wolf, 2024).

Method CoLA RTE MRPC STS-B

LoRA 69.82 85.20 89.95 88.50
AdaLoRA 71.45 88.09 90.69 89.46
PRILoRA 72.79 89.05 92.49 90.01
HiLoRA 72.84 89.89 92.57 92.00
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