
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OFFLINE REINFORCEMENT LEARNING THROUGH
TRAJECTORY CLUSTERING AND LOWER BOUND
PENALISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a new framework for value regularisation in offline re-
inforcement learning (RL). While most previous methods evade explicit out-of-
distribution (OOD) region identification due to its difficulty, our method explicitly
identifies the OOD region, which can be non-convex depending on datasets, via
a newly proposed trajectory clustering-based behaviour cloning algorithm. With
the obtained explicit OOD region, we then define a Bellman-type operator push-
ing the value in the OOD region to a tight lower bound while operating normally
in the in-distribution region. The value function with this operator can be used
for policy acquisition in various ways. Empirical results on multiple offline RL
benchmarks show that our method yields the state-of-the-art performance.

1 INTRODUCTION

Offline reinforcement learning (RL) has gained significant attention from the RL community due to
its efficiency in cost and safety. Unlike conventional RL, where an agent learns an optimal policy
through interactions with the environment, in offline RL, environmental interactions are not done.
Instead, a set D of trajectories is provided and the agent searches for a competent policy using only
the samples in D. Despite its attractiveness, there exists a critical hurdle to offline RL: overestima-
tion of Q values of the critic network in the out-of-distribution (OOD) action region (Fujimoto et al.,
2019). Since the agent cannot actually perform an overestimated action and gain correction signals
from the environment, the extrapolation error will be corrected directly.

Critic penalisation is one of the main offline approaches to handle this value overestimation problem
in the OOD region (Kumar et al., 2020; Lyu et al., 2022; Mao et al., 2023). By penalising the
critic values of penalized OOD actions, this approach nudges the agent to select in-distribution
(ID) actions with higher critic values rather than OOD ones. Various offline algorithms have been
developed for critic penalisation with various penalisation terms. Due to the difficulty of identifying
the OOD region itself, these methods rely on indirect measures to construct a penalisation term, e.g.,
difference-based penalization (Kumar et al., 2020), importance sampling-based integration (Mao
et al., 2023). However, these indirect penalisation methods have their own shortcomings for the
cost of evading direct OOD region identification. For example, SVR (Mao et al., 2023) uses simple
Gaussian behaviour modelling to compute the required importance sampling ratio. When the dataset
has two equally-strong modes with a reasonable distance, the learned Gaussian-modelled behaviour
density will place a large density value at the centre of the two modes on which the actual density is
very low, and the algorithm will yield significantly degraded performance.

To overcome such limitations resulting from not identifying the precise OOD region, in this paper,
we proposes a novel value regularisation algorithm that explicitly identifies the multi-modal OOD
region and penalises the critic values of the OOD region with a newly-derived lower bound tighter
than previous approaches. Empirical evaluations of our method on the D4RL benchmark (Fu et al.,
2020) show that our method yields high-performing policies from various offline RL datasets. The
main contributions of our work are:

• We introduce a criterion for identifying whether an action is OOD based on its likelihood.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Connecting trajectory clustering in offline RL to task identification in meta RL, we propose an
algorithm that can learn mixture Gaussian approximations to the behaviour policy.

• We develop a new value regulariser that regresses the critic values toward a tight theoretical
lower bound of the optimal action-value function.

2 BACKGROUND

Notation For the list of notations used in this paper and their meanings, refer to Appendix Sec. A.

Markov Decision Process An RL problem is formulated as a Markov Decision Process (MDP),
which is defined as a 6-tupleM = ⟨S,A, P,R, γ, ρ0⟩, where S ⊆ Rds is the state space, A ⊆ Rda
is the action space, P : S × A → P(S) is the transition dynamics, R : S × A × S → P(R) is the
reward function, γ ∈ [0, 1] is the discount factor, and ρ0 ∈ P(S) is the initial state distribution. We
will assume that the support of R(s, a, s′) is bounded above by rmax and bounded below by rmin

for all s, s′ ∈ S and a ∈ A.

Value Functions Given a policy π, the Bellman operator T π on L∞(S × A) is defined by the
followingn equation:

(T πQ)(s, a) = Es′∼P (s,a)

[
Er∼R(s,a,s′)[r]

]
+ Es′∼P (s,a)

[
Ea′∼π(s′) [Q(s′, a′)]

]
.

Then, the action-value function (or Q-function) Qπ : S × A → R is defined as the unique fixed
point of T π , and the state-value function V π : S → R is given by V π(s) = Ea∼π(s) [Qπ(s, a)]. The
objective of RL is to find an optimal policy π∗ such that V π

∗ ⪰ V π for any policy π.

Offline Reinforcement Learning For offline RL, interactions with the environment is prohibited,
and the agent has to learn a policy from a given dataset D of trajectories. Throughout this paper,
we will assume that each trajectory τ ∈ D is sampled with a uni-modal behaviour policy β ∈
{β0, β1, β2, . . . , βK−1}, where the candidate set B = {β0, β1, β2, . . . , βK−1} is fixed but unknown
to the agent.

3 MOTIVATION

Critic penalization or value regularisation penalises the Q-values for OOD actions, while minimizing
the temporal difference error for in-distribution (ID) actions. We may formulate it with the following
equation

min
Q

E(s,a)∼D

[
(Q(s, a)− T πQ(s, a))

2
]
+R,

where R is a regularizer. A crucial requirement of the regularizer is that it should be able to discrim-
inate between ID and OOD actions since we only want to penalise the values of OOD actions. One
of the first approaches was to set the regulariser as (Kumar et al., 2020)

R = Es∼D,a∼µ[Q(s, a)]− Es∼D,a∼β [Q(s, a)],

−1.0−0.5
0.0

0.5
1.0x −1.0

−0.5

0.0
0.5

1.0

y

9.2

9.4

9.6

9.8

10.0

Q
π
∗

(a) Optimal

−1.0−0.5
0.0

0.5
1.0x −1.0

−0.5

0.0
0.5

1.0

y

13.0

13.5

14.0

14.5

15.0

Q
π

(b) Importance sampling

−1.0−0.5
0.0

0.5
1.0x −1.0

−0.5

0.0
0.5

1.0

y

8.4

8.6

8.8

9.0

9.2

Q
π

(c) Hard thresholding

Figure 1: The Q-values on the plane spanned by e1 and e2 estimated by each method, i.e., Q(xe1 +
ye2). Due to the high variance of importance sampling ratios, the importance sampling method fails
to approximate the optimal Q-function accurately.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where β is the behaviour policy and µ is some distribution that satisfies the condition suppµ ⊆
suppβ (Kumar et al., 2020). While minimising the Q values for OOD actions sampled by µ, they
simultaneously maximised the Q values for ID actions sampled from β to compensate for over-
penalisation. However, as Mao et al. (2023) points out, this approach has two shortcomings: (i)
the requirement suppµ ⊆ suppβ may not hold in general; and (ii) if the dataset contains a large
portion of suboptimal actions, their Q values would be overestimated. To address these issues, they
proposed an importance sampling (IS)-based method that utilises the following regulariser:

RIS = Es∼D,a∼µ[(Q(s, a)−Qtarg(s, a))
2]− Es∼D,a∼β

[
µ(a | s)
β(a | s) (Q(s, a)−Qtarg(s, a))

2

]
,

where µ is a probability distribution supported on the entire action space and Qtarg is a regulariser
target, which they set to rmin/(1 − γ) for all s ∈ S, a ∈ A. Since the two terms cancel each other
on suppβ, RIS is equivalent to Es∼D,a∼µ

[
1A\supp β(Q(s, a)−Qtarg(s, a))

2
]
, which corresponds

to the goal of penalising the Q values of OOD actions.

Table 1: The discounted return of the
policies learned with each method. IS
stands for importance sampling and HT
stands for hard thresholding.

Optimal IS HT

10 2.44± 0.83 9.72± 0.14

A significant drawback of RIS is that IS ratios are
known to have high variance, especially for high-
dimensional spaces. Consider a simple single-state
infinite-horizon MDP with a six-dimensional action
space, and an offline RL dataset of size 1 000 000 sam-
pled from a behaviour policy N (0, I6). Suppose the
optimal action is a∗ = e1. Then the IS ratio between
µ = N (a∗, 0.04I6) and β of the samples in the dataset
ranges from 1.88 × 10−225 to 1.93 × 104. As demon-
strated in Figure 1b and Table 1, the IS method yields an
inaccurate Q value estimation and a suboptimal policy
due to this severe fluctuation of IS ratios.

To overcome these limitations of the previous value regularization methods, we here propose to
explicitly identify the set of OOD actions OOD(s) for each state s ∈ S, and set the regulariser to
zero for ID actions. Such hard thresholding (HT) allows a more stable training process, resulting in
a more accurate Q value estimations and better-performing policies, as seen in Fig. 1c and Table 1.

4 PROPOSED METHOD

This section is structured as follows. In Section 4.1, we first discuss how we can compute the set
OOD(s). We then propose a new lower bound of Qπ

∗
and show its effectiveness as a penalisation

target in Section 4.2. Finally, we provide a practical offline RL algorithm in Section 4.3.

4.1 IDENTIFYING THE OUT-OF-DISTRIBUTION ACTION SET

Likelihood is the most natural way to measure how OOD a particular sample is. However, choosing
the threshold value is not trivial. For blunt distributions, we should use a lower threshold value,
whereas for sharp distributions, we can choose a higher value. We propose a systematic method
of setting the threshold value by adopting the concept of highest density region (HDR; Hyndman
1996), which is basically a generalisation of a confidence interval to multivariate random variables.1

Definition 1 (Hyndman 1996). Let f(X) be the pdf of a random variableX . Then, the 100(1−α)%
highest density region (HDR) is the subsetR(fα) of the sample space of X such thatR(fα) = {x :
f(x) ≥ fα }, where fα = sup{ y : P(X ∈ R(y)) ≥ 1− α }.

In the following subsections, we discuss how to compute the HDR under different assumptions.

4.1.1 HOMOGENEOUS DATASETS

We first discuss the case when the offline dataset D is homogeneous, that is, it was generated from a
single uni-modal behaviour policy β. Then, we may obtain a fairly accurate Gaussian approximation

1We provide a diagram (Figure 5) showing the 100(1 − α)% HDR of a normal distribution on page 27 to
aid the understanding of the concept of a HDR.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

β̂ of β through behaviour cloning. Let µ : S → Rda and Σ : S → Rda×da be the mean and
covariance matrix functions of β̂, respectively. Assuming Σ(s) is positive definite for all s ∈ S, the
100(1− α)% HDR has the following closed-form representation (Proposition 4 in Appendix):

Rβ̂(fα; s) =
{
x ∈ Rda : Aβ̂(x; s) ≤ F−1

χ2
d
(1− α)

}
,

where F−1
χ2
da

is the inverse cumulative distribution function of a chi-squared random variable with da

degrees of freedom and Aβ̂(x; s) = (x−µ(s))⊤Σ(s)−1(x−µ(s)). Choosing an appropriate value
of 0 < α < 1, we can define OOD(s) as

OOD(s) = A \Rβ̂(fα; s). (1)

4.1.2 HETEROGENEOUS DATASETS

The definition of OOD(s) for a homogeneous dataset given in (1) can be generalised to the heteroge-
neous case as OOD(s) = A\

(⋃
β∈BRβ(fα; s)

)
for B, where B is the behaviour policy candidate

set. If we could identify and isolate all of the trajectories in the dataset sampled from a particular be-
haviour policy β ∈ B, then obtaining an estimation β̂ of β is straightforward by applying a behaviour
cloning algorithm on those isolated trajectories. Then, with the estimated B̂ = {β̂0, β̂1, . . . , β̂K−1},
we could compute OOD(s) for each state s as above. Therefore, in the rest of this section, we will
propose how to cluster the trajectories. Note that the proposed clustering algorithm is useful not
only for value regularization here but also for other offline real-world data analysis.

Our key idea is that the trajectory clustering problem closely resembles the task inference problem
in meta RL. For each policy π, there is a corresponding Markov reward process (MRP) Mπ =
⟨S, Pπ, Rπ, γ⟩, where for all s, s′ ∈ S and r ∈ R, the transition probability function Pπ : S →
P(S) and the reward probability function Rπ : S × S → P(R) are defined by the equations

Pπ(s′ | s) = Ea∼π(·|s) [P (s′ | s, a)] , (2)

Rπ(r | s, s′) = Ea∼π(·|s) [R(r | s, a, s′)] , (3)

respectively. Since the dataset D can then be viewed as a collection of trajectories, where each
trajectory is sampled from one of the MRPsMβ0 ,Mβ1 ,Mβ2 , . . . ,MβK−1 , trajectory clustering
task can be viewed as an MRP inference problem. As this formulation is almost equivalent to the
MDP inference problem setting in meta RL, we infer the MRP instead of the MDP and apply a
technique similar to variational Bayes-adaptive deep RL (variBAD; Zintgraf et al. 2021).

Our goal is to infer the behaviour policy index given a trajectory. To achieve this objective, we
represent the index as a discrete latent variable m supported on [K] = {0, 1, · · · ,K − 1} and write

P βm(s) ≈ P (s ;m), Rβm(s, s′) ≈ R(s, s′ ;m), βm(s) ≈ β(s ;m),

for all s, s′ ∈ S, sharing P , R, and β across trajectories. The marginal pdf of a trajectory τ:T =
(s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sT−1, aT−1, rT−1, sT) is

p(τ:T) = ρ0(s0)

K−1∑
m=0

p(m)

T−1∏
t=0

P (st+1 | st;m)β(at | st;m)R(rt | st, st+1;m), (4)

where p(m) is the prior distribution on m. Modelling P , R, and β with neural networks
parametrised by θ results in a loss that depends on θ. However, the multi-modality of (4) causes
gradient-based optimisation algorithms to produce sub-optimal solutions. We circumvent this is-
sue by introducing amortised inference network qϕ that takes a variable-length action-less trajectory
τ̃:t = (s0, r0, s1, r1, s2, r2, . . . , st−1, rt−1, st) as an input and outputs a distribution in Pd([K]).
Instead of maximising (4), we maximise the evidence lower bound (ELBO), which can be written
by the following equation (Proposition 5):

ELBOθ,ϕ(τ ; t) = −DKL(qϕ(τ̃:t) ∥ p) +
T−1∑
i=0

Em∼qϕ(τ̃:t) [logRθ(ri | si, si+1 ;m)] (5)

+

T−1∑
i=0

Em∼qϕ(τ̃:t) [log βθ(ai | si ;m)] +

T−1∑
i=0

Em∼qϕ(τ̃:t) [logPθ(si+1 | si ;m)] .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Encoder Decoder

i = 0, 1, 2, . . . , T − 1

st

rt
qϕ

ht−1

bt = qϕ(· | τ̃:t) ∼ m

si+1

si

si

Rθ ri+1

Pθ si+1
si

βθ ai

Figure 2: Overview of our architecture. We also provided a diagram of the variBAD architecture in
Figure 6 for comparison.

The first term log ρ0(s0) in (9) can be omitted because it is constant with respect to θ and ϕ. The
final objective for trajectory clustering is to maximise

Eτ∼D

[
1

Tτ

Tτ−1∑
t=0

ELBOθ,ϕ(τ ; t)

]
, (6)

where Tτ is the length of the trajectory τ sampled from the dataset. An overview of our clustering
algorithm is given in Figure 2.

After we finish training, we compute the behaviour policy estimations and cluster assignments ac-
cording to the equations β̂i = βθ(· ; i) and A(s) = argmaxm qϕ(m | τ̃(s)), respectively, for each
i ∈ [K] and s ∈ D, where τ̃(s) is the action-less trajectory containing the state s.

4.2 LOWER BOUND PENALISATION

In this section, we derive a new lower bound on the value function. As we did in the previous section,
we start with the case where the offline datasetD is generated from a single behaviour policy β. The
ideal penalisation method would be to use Qπ

∗
(s, a) as a target, where π∗ is the optimal policy, but

the value of Qπ
∗

is inaccessible. So we aim to use a lower bound instead. In order to compute a
lower bound, we first need to make some assumptions on the regularity of P and V β .

Assumption 1. There is KP > 0 such that for all s ∈ S and a, a′ ∈ A, W1(P (s, a), P (s, a
′)) <

KP ∥a− a′∥, where W1(P,Q) is the Wasserstein distance of order 1 between two probability distri-
butions P,Q ∈ P(S).
Assumption 2. The value function of the behaviour policy β is KV -Lipschitz, that is, for all s, s′ ∈
S,
∣∣V β(s)− V β(s′)∣∣ < KV ∥s− s′∥.

Then, we can obtain a lower bound of Qπ
∗

with these assumptions.

Proposition 1. Define QLB
β : S ×A → R by the equation

QLB
β (s, a) = max

{
V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] ,

rmin

1− γ

}
. (7)

For any policy π : S → P(A) such that V π ⪰ V β , Qπ ⪰ QLB
β .

Proof. See page 14.

Note that this lower bound is tighter than the previous bound rmin/(1− γ). The lower bound allows
us to define the penalised Bellman optimality operator T πβ for policy π by the equation

(T ∗
β Q)(s, a) =

{
QLB
β (s, a) if a ∈ OOD(s),

(T ∗Q)(s, a) otherwise,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where T ∗ is the Bellman optimality operator defined as

(T ∗Q)(s, a) = Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ sup

a′∈A
Q(s′, a′)

]
.

We can show that through repeated application of T ∗
β , it is possible to obtain a deterministic policy

π∗
β : S → A that is optimal among the policies whose action for each state s ∈ S does not lie in

OOD(s).
Theorem 2. Any initial bounded real-valued function on S×A can converge to a unique fixed point
Q∗
β by repeatedly applying T ∗

β . Suppose for each s ∈ S,

Qβ(s, as) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some as ∈ A \OOD(s). If there exists a deterministic policy π∗

β : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

β(s) = argmaxa∈AQ
∗
β(s, a) for all s ∈ S.

Proof. See page 19.

Now, the penalised Bellman optimality operator can easily be generalised to the heterogeneous
dataset case with the setB of behaviour policy candidates and the set V(s) of valid behaviour policies
given a state s ∈ S.

(T ∗
BQ)(s, a) =

{
QLB

B (s, a) if a ∈ OOD(s),

(T ∗Q)(s, a) otherwise,

where QLB
B : S × A → R is defined as QLB

B (s, a) = maxβ∈V(s)Q
LB
β (s, a) for each s ∈ S and

a ∈ A. We can prove a similar performance guarantee for the policy obtained by repeatedly applying
T ∗
B .

Theorem 3. Any initial bounded real-valued function on S×A can converge to a unique fixed point
Q∗

B by repeatedly applying T ∗
B . Suppose for each β ∈ B and s ∈ S,

Qβ(s, aβs) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some aβs ∈ A \OOD(s). If there exists a deterministic policy π∗

B : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

B(s) = argmaxa∈AQ
∗
B(s, a) for all s ∈ S.

Proof. See page 20.

4.3 PRACTICAL ALGORITHM

The overall flow of our algorithm is as follows:

I. Behaviour policy learning. Run the trajectory clustering algorithm to obtain B̂ and V̂(s). Or if
it is known a priori that the dataset is homogeneous, then run a behaviour cloning algorithm to
obtain β̂.

II. Behaviour value learning. Learn a value function V̂ β̂ for each β̂ ∈ B̂ through temporal differ-
ence learning.

III. Policy learning. Obtain and apply T ∗
B repeatedly on a randomly initialised Q-function until

convergence. Find a policy that maximises the learned Q-function.

This section mainly focuses on the trajectory clustering algorithm of Stage I. Additional details of
our algorithm can be found in Section C of Appendix.

The network architecture used for trajectory clustering consists of three parts: the encoder, the latent
sampler, and the decoder. The architecture is generally similar to that of variBAD except for a few
adaptations. In this section, we will first go over how and why we modified each part. Then, we will
propose a simple technique to adaptively set the number of clusters.

The encoder needs to take an action-less trajectory τ̃ as an input and output the amortised poste-
rior. Since the length of the trajectory may vary from one to another, the network should be capable

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

of taking variable-length sequence as its input. For that purpose, variBAD utilises gated recurrent
units (GRU; Cho et al. 2014). GRUs and other recurrent neural network variants suffer from the van-
ishing gradient problem (Bengio et al., 1994), which hampers their ability to process long sequences.
Truncated backpropagation through time (Williams & Peng, 1990) can mitigate the phenomena to
a certain extent, but we instead adopt the state space model architecture that is recently gaining in-
terest in the area of sequence modelling (Gu et al., 2020; 2021; 2022; Gu & Dao, 2023; Dao & Gu,
2024). In particular, we use the S5 layer (Smith et al., 2023), which is simple and computationally
efficient.

The second modification was made on the way latents are sampled and ELBOs are computed. As
the latent variable in the variBAD architecture is continuous, it is impossible to analytically compute
the expectation, and hence, the reparametrisation trick (Kingma & Welling, 2014) must be used.
Although the latent variable is discrete in our case, exact computation is still inefficient because it
requires multiple forward and backward passes through the decoder. We instead utilise the vector
quantised-variational autoencoder (VQ-VAE; van den Oord et al. 2017) to approximate the ELBO.
Under the VQ-VAE formulation, the amortised posterior qϕ is modelled as

qϕ(m = k | τ̃:t) =
{
1 if k = kϕ(τ̃:t)

0 otherwise,

where e0, e1, . . . , eK−1 are latent embedding vectors and

kϕ(τ̃:t) = argmin
j∈[K]

∥qϕ(τ̃:t)− ek∥2.

Note that for simplicity, we have abused the notation qϕ to denote both the posterior and the encoder.
The gradient flows into the encoder qϕ via the loss function

ℓVQ(ϕ ; τ̃:t) =
∥∥qϕ(τ̃:t)− ekϕ(τ̃:t)∥∥22

and the latent embedding vectors are updated with exponential moving averages.

For the decoder, we use Gaussian distributions with diagonal covariance matrix to represent Pθ,
βθ, and Rθ. Most RL environments have a bounded action space, whereas a Gaussian distribution
has unbounded support. To estimate the behaviour policy more accurately, we first normalize the
actions between −1 and 1 and apply the inverse hyperbolic tangent function on each dimension of
the actions to map them onto Rda . Note that we use the mapped actions when learning the critic, that
is, the critic function takes tanh−1(a) instead of a as input. Finally, instead of taking the summation
over the entire trajectory in (5) and (6), we adopt the implementation trick of variBAD and randomly
subsample Nd transition steps in (5) and Ne ELBO terms in (6). To conclude, the loss function for
the trajectory clustering algorithm is

ℓTC(θ, ϕ ; τ) =
1

NeNd

∑
t∈Ie

∑
i∈Id

Aθ(si, ai, ri, si+1 ; ekϕ(τ̃:t)) + λVQℓVQ(ϕ ; τ̃:t),

where

Aθ(s, a, r, s
′ ;m) = log βθ(a | s ;m) + λT logPθ(s

′ | s ;m) + λR logRθ(r | s, s′ ;m), (8)

Ie and Id are sets of indices sampled uniformly at random with replacement from [Tτ] with sizes
Ne and Nd, respectively, and λVQ, λT , λR are tunable hyperparameters.

Choosing the right number of clusters is crucial for high performance in most clustering algorithms.
To alleviate the burden of hyperparameter tuning, we adopt a two-phase training paradigm. During
the first phase of the paradigm, we set the codebook size to be sufficiently large. After completing the
first phase, we compute the cluster assignments for each state in the dataset. If the number of states
assigned to a particular cluster does not exceed a certain threshold, we remove the corresponding
code from the VQ-VAE codebook. The training is resumed with the remaining codebook. This way,
we could adaptively determine the number of clusters without needing to perform an exhaustive
hyperparameter search.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Average normalised scores on the D4RL benchmark. Note that “ha” means halfcheetah,
“ho” means hopper, “wa” means walker2d, “m” means medium, “r” means replay, “ra” means
random, and “e” means expert.

Dataset BC TD3BC BCQ BEAR CQL IQL MCQ SVR Ours

ha-ra 2.6 11.0 2.2 2.3 17.5 13.1 28.5 27.2 27.0± 1.1

ho-ra 4.1 8.5 7.8 3.9 7.9 7.9 31.8 31.0 31.5± 0.2

wa-ra 1.2 1.6 4.9 12.8 5.1 5.4 17.0 2.2 16.6± 7.9

ha-m 42.0 48.3 46.6 43.0 47.0 47.4 64.3 60.5 63.5± 0.9

ho-m 56.2 59.3 59.4 51.8 53.0 66.2 78.4 103.5 102.8± 0.4

wa-m 71.0 83.7 71.8 −0.2 73.3 78.3 91.0 92.4 94.1± 2.2

ha-m-r 36.4 44.6 42.2 36.3 45.5 44.2 56.8 52.5 52.2± 0.8

ho-m-r 21.8 60.9 60.9 52.2 88.7 94.7 101.6 103.7 102.2± 1.1

wa-m-r 24.9 81.8 57.0 7.0 81.8 73.8 91.3 95.6 95.4± 19.2

ha-m-e 59.6 90.7 95.4 46.0 75.6 86.7 87.5 94.2

ho-m-e 51.7 98.0 106.9 50.6 105.6 91.5 111.2 111.2 112.4± 1.1

wa-m-e 101.2 110.1 107.7 22.1 107.9 109.6 114.2 109.3 108.3± 0.7

ha-e 88.2 81.7 92.7 92.9 96.3 95.0 96.2 96.1 96.6± 0.9

ho-e 110.9 107.8 109.0 54.6 96.5 109.4 111.4 111.1 112.7± 0.9

wa-e 107.7 110.2 106.3 106.6 108.5 109.9 107.2 110.0 113.4± 0.5

Average 52.3 67.5 64.5 38.8 67.3 68.9 79.2 80.0

Table 3: The performance of SVR and our method on the custom heterogeneous dataset.

Algorithm Length Return

SVR 8.00± 0.00 4.05± 0.01

Ours 436.3± 32.1 4062.0 ±24.5

5 EXPERIMENTS

5.1 RESULTS ON THE D4RL BENCHMARK

In order to evaluate how well our algorithm perform on various offline RL tasks, we tested our
method on the D4RL (Fu et al., 2020) benchmark. We compared it with existing offline RL meth-
ods such as BC (Pomerleau, 1988), TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022), MCQ (Lyu et al., 2022), and SVR (Mao et al., 2023). We trained
our method with five different seeds to obtain five different policies and sampled ten trajectories
with each of them. We report the average and standard deviation of the fifty normalized scores in
Table 2. The results show that our algorithm can successfully learn high-performing policies from
most datasets, while attaining state-of-the-art scores on some of them.

5.2 EXPERIMENTS ON A HETEROGENEOUS DATASET

Although D4RL datasets such as “hopper-medium-expert-v2” were sampled with more than one
behaviour policies, the action distributions are actually unimodal on most states due to the state
distribution being so different between the two behaviour policies. Figure 3 presents a visualisa-
tion of the entire and initial state distributions of the “hopper-medium-expert-v2” dataset where we
have used the uniform manifold approximation and projection (UMAP; McInnes & Healy 2018)
technique for dimension reduction. We can see that expert and medium states are clearly separated,
except for the initial states.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Entire state distribution

15.600 15.625 15.650 15.675 15.700 15.725 15.750 15.775

x

14.58

14.60

14.62

14.64

14.66

14.68

14.70

14.72

y

sources

medium

expert

(b) Initial state distribution

Figure 3: The UMAP of the states in the “hopper-medium-expert-v2” dataset.

To demonstrate the effectiveness of our trajectory clustering algorithm, we created a custom dataset
with drastically different initial state behaviours using the “Hopper-v5” environment provided by
Gymnasium library. Half of the samples in the dataset were sampled from an expert policy, and
the other half was sampled from a policy that tripped over within eight timesteps. Table 3 demon-
strates that our method can effectively classify the two datasets and learn an optimal policy from a
heterogeneous dataset.

5.3 ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

Table 4: The impact of hyperparameters λT and
λR on the average performance of our trajec-
tory clustering algorithm evaluated on six custom
D4RL datasets. The performance is measured in
terms of adjusted rand index (ARI) and normal-
ized mutual information score (NMI).

λR λT ARI NMI

0 0 0.98± 0.07 0.98± 0.06

0 1 0.91± 0.21 0.92± 0.17

1 0 0.99± 0.02 0.98± 0.02

1 1 0.86± 0.27 0.87± 0.24

In meta reinforcement learning settings, each
MDP has independent transition and reward dy-
namics, so they must be modelled in order to
infer the MDP from trajectories. Under our
formulation, on the other hand, transition and
reward dynamics of each MRP are correlated
with each other through the policy as we can
see from (2) and (3). Although this implies that
we may identify the MRP solely through mod-
elling the behaviour policy, we hypothesized
that modelling transition and reward dynam-
ics can provide meaningful auxiliary informa-
tion leading to better clustering performance.
Therefore, we compared the performance of
our algorithm under four different configura-
tions (λT , λR) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)},
where λT and λR are the weights for transition
and reward models defined in (8). To evaluate the accuracy of our trajectory clustering algorithm, we
created custom D4RL datasets by concatenating random, medium, and expert datasets. The mean
and standard deviation of adjusted rand indices (ARI; Hubert & Arabie 1985) and normalised mu-
tual information scores (NMI) for each configuration over 5 different seeds are reported in Table 4.
We can see that the configuration (λT , λR) = (1, 0) performs the best on average. Unlike si+1,
which is in the vicinity of si regardless of the ai, ri can vary drastically between policies, making
it difficult to model rewards from different policies with a single neural network. We speculate this
to be the reason why training a reward model negatively affects the performance of our trajectory
clustering algorithm. For experiments on other datasets, refer to Section E.3.

6 CONCLUSION

In this paper, we propose a new value regularisation algorithm for offline RL penalizing their critic
values, based on the OOD action set that we were able to explicitly identify. We determine how OOD
an action is based on its likelihood, where the threshold is set adaptively according to the shape of
the behaviour policy. To enable likelihood analysis for heterogeneous datasets where simple be-
haviour cloning fails, we introduce a novel trajectory clustering technique based on a meta-learning
formulation of the clustering problem. Our method of penalising the critic values for OOD actions
by regressing them towards a lower bound of the optimal Q-value function is proven to be effective
both theoretically and empirically.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166, 1994.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pp. 1724–1734. ACL, 2014.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 20132–20145,
2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pp. 2052–2062. PMLR, 2019.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. In
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 572–585, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
http://github.com/google/flax.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–
218, Dec 1985. ISSN 1432-1343. doi: 10.1007/BF01908075. URL https://doi.org/10.
1007/BF01908075.

Rob J. Hyndman. Computing and graphing highest density regions. The American Statistician, 50
(2):120–126, 1996.

10

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://github.com/google/flax
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang Wang, and William Yang Wang. Offline
reinforcement learning with closed-form policy improvement operators. In International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pp. 20485–20528. PMLR, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning. In Conference on Robot Learn-
ing, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine
Learning Research, pp. 1348–1361. PMLR, 2023.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems 35: Annual Con-
ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
Zhipeng Hu, Yi Wu, Yujing Hu, and Chongjie Zhang. Stylized offline reinforcement learning:
Extracting diverse high-quality behaviors from heterogeneous datasets. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported value regulariza-
tion for offline reinforcement learning. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for di-
mension reduction. CoRR, abs/1802.03426, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Dean Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In Advances in Neural
Information Processing Systems 1, [NIPS Conference, Denver, Colorado, USA, 1988], pp. 305–
313. Morgan Kaufmann, 1988.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers
for sequence modeling. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pp. 2256–2265. JMLR.org, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 6306–
6315, 2017.

Cédric Villani. Cyclical monotonicity and Kantorovich duality, pp. 51–92. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. ISBN 978-3-540-71050-9.

Qiang Wang, Yixin Deng, Francisco Roldan Sanchez, Keru Wang, Kevin McGuinness, Noel E.
O’Connor, and Stephen J. Redmond. Dataset clustering for improved offline policy learning.
CoRR, abs/2402.09550, 2024.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Comput., 2(4):490–501, 1990.

Luisa M. Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep RL via
meta-learning. J. Mach. Learn. Res., 22:289:1–289:39, 2021.

A NOTATIONS

• 0: a zero vector with dimensionality implied by context
• DKL(P1 ∥ P2): the Kullback–Leibler (KL) divergence from a probability distribution P1

to another probability distribution P2

• ei: the i-th standard basis of a Euclidean space
• f(y | x): the value of the pdf (or pmf) of the distribution f(x) at y, where Y is a set and
f : X → P(Y)

• f ⪰ g: f(x) ≥ g(x) for all x ∈ X , where f and g are real-valued functions defined on a
set X

• f ≡ g: f(x) = g(x) for all x ∈ X , where f and g are real-valued functions defined on a
set X

• Id: an identity matrix with d rows and d columns
• L∞(X): the space of bounded real value functions on a setX endowed with the supremum

norm
• [N]: the set {0, 1, . . . , N − 1}, where N is an integer
• N (µ,Σ): a multi-variate Gaussian distribution with mean vector µ and covariance matrix
Σ

• P(E): probability of an event E
• P(X): family of absolutely continuous probability distributions with finite first moments

supported on a subset of X , where X ⊆ Rd

• Pd(X): the family of discrete distributions supported on a subset of X , where X ⊆ Rd

• suppµ: the support of a probability distribution µ
• U(X): the uniform distribution on a Borel setX ⊆ Rd of positive, finite Lebesgue measure
• W1(P1, P2): the Wasserstein distance of order 1 between two probability distributions
P1, P2 ∈ P(X)

We also define a clipping function

clip(x ; y, z) = max{y,min{x, z}}.
The notation can be generalised to dimension-wise clipping, that is, for x ∈ Rd and y, z ∈ R, the
i-th coordinate of clip(x ; y, z) is clip(xi ; y, z).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B PROOFS

Proposition 4. Let X be a multivariate Gaussian random variable with mean vector µ ∈ Rd and
positive definite covariance matrix Σ ∈ Rd×d. The 100(1− α)% HDR is

R(fα) =
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ F−1

χ2
d
(1− α)

}
,

where Fχ2
d

is the cumulative distribution function of a chi-squared random variable with d degrees
of freedom.

Proof. Let Z = (Z1, Z2, . . . , Zd) =
√
Σ−1(X− µ). By the change of variables formula,

pZ(z) =
∣∣∣det(√Σ)

∣∣∣ pX (µ+
√
Σz
)

= det(Σ)1/2(2π)−d/2 det(Σ)−1/2 exp

(
−1

2
z⊤z

)
= (2π)−d/2 exp

(
−1

2
z⊤z

)
,

where pX and pZ are the pdfs of random vectors X and Z, respectively. We can see that Z is a
standard normal random vector. Since

R(y) =
{
x ∈ Rd : (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
≥ y

}
=
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ −2 log y + d log(2π) + log det(Σ)

}
,

we have
P(X ∈ R(y)) = P

(
Z⊤Z ≤ −2 log y + d log(2π) + log det(Σ)

)
= P

(
d∑
i=1

Z2
i ≤ −2 log y + d log(2π) + log det(Σ)

)
.

Z1, Z2, . . . , Zd are independent, so
∑d
i=1 Z

2
i is a chi-squared random variable. This implies

P(X ∈ R(y)) = Fχ2
d
(−2 log y + d log(2π) + log det(Σ)).

P(X ∈ R(y)) ≥ 1− α if and only if

−2 log y + d log(2π) + log det(Σ) ≥ F−1
χ2
d
(1− α).

Therefore,

fα = (2π)d/2 det(Σ)1/2 exp

(
−1

2
Fχ2

d
(1− α)

)
,

which means

R(fα) =
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ F−1

χ2
d
(1− α)

}
.

Proposition 5. Let m be a discrete latent variable supported on [K] and
τ:T = (s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sT−1, aT−1, rT−1, sT)

be a trajectory rolled-out according to the following sampling process: s0 ∼ ρ0, m ∼ p, and for
each t ∈ [T], st+1 ∼ P (st ;m), at ∼ β(st ;m), and rt ∼ R(st, st+1 ;m). The marginal pdf can be
written as

p(τ:T) = ρ0(s0)

K−1∑
m=0

p(m)

T−1∏
t=0

P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)

and for any distribution q on [K],
log p(τ:T) ≥ log ρ0(s0)−DKL(q ∥ p) (9)

+

T−1∑
t=0

Em∼q [logP (st+1 | st ;m) + log β(at | st ;m) + logR(rt | st, st+1 ;m)] .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Let us denote the action-less trajectory by τ̃:T , that is,

τ̃:T = (s0, r0, s1, r1, s2, r2, . . . , sT−1, rT−1, sT).

By Jensen’s inequality,

log p(τ:T)

= log ρ0(s0) + log

K−1∑
m=0

p(m)

T−1∏
t=0

[P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)]

= log ρ0(s0) + log

K−1∑
m=0

q(m) · p(m)

q(m)

T−1∏
t=0

[P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)]

≥ log ρ0(s0) + Em∼q

[
log

p(m)

q(m)
+

T−1∑
t=0

A(st, at, rt, st+1 ;m)

]

= log ρ0(s0)−DKL(q ∥ p) +
T−1∑
t=0

Em∼q [A(st, at, rt, st+1 ;m)] ,

where

A(st, at, rt, st+1 ;m) = logP (st+1 | st ;m) + log β(at | st ;m) + logR(rt | st, st+1 ;m).

We restate the two assumptions we made in Section 4.2 for the reader’s convenience.
Assumption 3. There is KP > 0 such that for all s ∈ S and a1, a2 ∈ A, W1(P (s, a1), P (s, a2)) <
KP ∥a1 − a2∥.
Assumption 4. The value function of the behaviour policy β is KV -Lipschitz.
Lemma 6. For any policy π and s ∈ S,

rmin

1− γ ≤ V
β(s) ≤ rmax

1− γ .

Proof. By the definition of V π , for all s ∈ S,

V π(s) = Eτ∼π|s

[∞∑
t=0

γtrt

]
≥ Eτ∼π|s

[∞∑
t=0

γtrmin

]
=

rmin

1− γ ,

and

V π(s) = Eτ∼π|s

[∞∑
t=0

γtrt

]
≤ Eτ∼π|s

[∞∑
t=0

γtrmax

]
=

rmax

1− γ .

Proposition 7. Define QLB
β : S ×A → R by the equation

QLB
β (s, a) = max

{
V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] ,

rmin

1− γ

}
.

For any policy π : S → P(A) such that V π ⪰ V β , Qπ ⪰ QLB
β .

Proof. By Lemma 6 and the definition of Qπ , for all s ∈ S and a ∈ A,

Qπ(s, a) = Es′∼P (s,a,s′),r∼R(s,a,s′) [r + γV π(s′)]

≥ Es′∼P (s,a,s′),r∼R(s,a,s′)

[
rmin + γ

rmin

1− γ

]
=

rmin

1− γ .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

So we only need to show that for all s ∈ S and a ∈ A,

Qπ(s, a) ≥ V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] .

Let a1, a2 ∈ A. By the Kantorovich–Rubinstein formula (Villani, 2009),∣∣Es′∼P (·|s,a1)[V
β(s′)]− Es′∼P (·|s,a2)[V

β(s′)]
∣∣ ≤ KVW1(P (· | s, a1), P (· | s, a2))
≤ KVKP ∥a1 − a2∥.

Therefore,

Qπ(s, a) = Es′∼P (s,a),r∼R(s,a,s′) [r + γV π(s′)]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γV β(s′)

]
≥ V β(s)− Ea′∼β(·|s)

[
Es′∼P (s,a′),r∼R(s,a′,s′)

[
r + γV β(s′)

]]
+ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γV β(s′)

]
≥ V β(s)− rmax + rmin + γ Ea′∼β(s)

[
Es′∼P (s,a)

[
V β(s′)

]
− Es′∼P (s,a′)

[
V β(s′)

]]
≥ V β(s)− rmax + rmin − γKVKP Ea′∼β(·|s) [∥a− a′∥] .

Note that we have used the fact that

V β(s) = Ea′∼β(s),s′∼P (s,a′),r∼R(s,a′,s′)

[
r + γV β(s′)

]
.

Theorem 8. Let {As}s∈S be a family of subsets of A, Q̃ ∈ L∞(S ×A), and TA be an operator on
the space of real-valued functions on S ×A defined by the equation

(TAQ)(s, a) =

{
(T ∗Q)(s, a) if a ∈ As,
Q̃(s, a) otherwise,

for each Q ∈ L∞(S ×A). Then any bounded real-valued function on S ×A converges to a unique
fixed point QA by repeatedly applying TA.

Proof. Fix s ∈ S, a ∈ A, and Q ∈ L∞(S ×A). If a ∈ As,

|(TAQ)(s, a)| = |(T ∗Q)(s, a)|

=

∣∣∣∣Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ sup

a′∈A
Q(s′, a′)

]∣∣∣∣
≤ Es′∼P (s,a),r∼R(s,a,s′)

[∣∣∣∣r + γ sup
a′∈A

Q(s′, a′)

∣∣∣∣]
≤ Es′∼P (s,a),r∼R(s,a,s′)

[
|r|+ γ

∣∣∣∣ sup
a′∈A

Q(s′, a′)

∣∣∣∣]
≤ Es′∼P (s,a),r∼R(s,a,s′) [max {|rmax| , |rmin|}+ γ∥Q∥∞] ,

= max {|rmax| , |rmin|}+ γ∥Q∥∞.

Otherwise,

|(TAQ)(s, a)| =
∣∣∣Q̃(s, a)

∣∣∣ ≤ ∥Q̃∥∞.
So

∥TAQ∥∞ ≤ max
{
∥Q̃∥∞,max {|rmax| , |rmin|}+ γ∥Q∥∞

}
<∞,

that is, TAQ ∈ L∞(S×A). So the restriction of TA onto L∞(S×A) is an operator on L∞(S×A).
With a slight abuse of notation, we will just denote the restriction by TA from now on.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Now we go on and prove that TA is a contraction operator. Fix s ∈ S , a ∈ A and Q1, Q2 ∈
L∞(S ×A). If a ∈ As,

|(TAQ1)(s, a)− (TAQ2)(s, a)| = |(T ∗Q1)(s, a)− (T ∗Q2)(s, a)|

= γ

∣∣∣∣Es′∼P (s,a)

[
sup
a′∈A

Q1(s
′, a′)− sup

a′′∈A
Q2(s

′, a′′)

]∣∣∣∣
≤ γ Es′∼P (s,a)

[∣∣∣∣ sup
a′∈A

Q1(s
′, a′)− sup

a′′∈A
Q2(s

′, a′′)

∣∣∣∣]
≤ γ Es′∼P (s,a)

[
sup
a′∈A

|Q1(s
′, a′)−Q2(s

′, a′)|
]

≤ γ∥Q1 −Q2∥∞.
Otherwise,

|(TAQ1)(s, a)− (TAQ2)(s, a)| =
∣∣∣Q̃(s, a)− Q̃(s, a)

∣∣∣ = 0 ≤ γ∥Q1 −Q2∥∞.
Therefore, and TA is a contraction mapping on L∞(S × A). By the contraction mapping theorem,
any initial-bounded Q-function would converge to a unique fixed point QA.

Lemma 9. Let π1 and π2 be two policies. If Ea∼π1(s)[Q
π2(s, a)] ≥ V π2(s) for all s ∈ S, then

V π1 ⪰ V π2 .

Proof. We define a sequence (Qn) of bounded real-valued functions on S × A by the recurrence
relation

Qn =

{
Qπ2 if n = 0,

T π1Qn−1 otherwise.
We first show that Qn ⪰ Qπ2 by mathematical induction. The base case is trivial because Q0 ≡
Qπ2 . Suppose Qn−1 ⪰ Qπ2 . Then for each s ∈ S and a ∈ A,

Qn(s, a) = (T π1Qn−1)(s, a)

= Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π1(s′) [Qn−1(s

′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π1(s′) [Q

π2(s′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π2(s′) [Q

π2(s′, a′)]
]

= (T π2Qπ2)(s, a)

= Qπ2(s, a).

So Qn ⪰ Qπ2 . By mathematical induction, Qn ⪰ Qπ2 for all n. For all s ∈ S and a ∈ A,

Qπ1(s, a) = lim
n→∞

Qn(s, a) ≥ Qπ2(s, a).

Therefore, for all s ∈ S,

V π1(s) = Ea∼π1(s) [Q
π1(s, a)] ≥ Ea∼π1(s) [Q

π2(s, a)] ≥ V π2(s),

that is, V π1 ⪰ V π2 .

Theorem 10. Let {As}s∈S be a family of subsets of A, Q̃ ∈ L∞(S × A), and QA be a bounded
real-valued function that satisfies the relation

QA(s, a) =

{
(T ∗QA)(s, a) if a ∈ As,
Q̃(s, a) otherwise,

(10)

for all s ∈ S and a ∈ A. Suppose there is a policy π such that for all s ∈ S,

V π(s) ≥ sup
a∈A

Q̃(s, a)

and
Qπ(s, as) ≥ V π(s)

for some as ∈ As. If there exists a deterministic policy π∗
A : S → A that is optimal under the

constraint πA(s) ∈ As for all s ∈ S, then

π∗
A(s) = argmax

a∈A
QA(s, a).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Define TA as in Theorem 8. We can see that there is a unique bounded real-valued function
QA that satisfies (10), because by Theorem 8, TA has unique fixed point QA.

We proceed to prove that for each s ∈ S , QA(s, π∗
A(s)) ≥ V π

∗
A(s). Define a sequence (Qn) of

bounded real-valued functions on S ×A by the recurrence relation

Qn =

{
Q0 if n = 0,

TAQn−1 otherwise,
(11)

where Q0 : S ×A → R is defined as

Q0(s, a) =

{
Qπ

∗
A(s, a) if a ∈ As,

Q̃(s, a) otherwise.

When n = 0, for all s ∈ S
Q0(s, π

∗
A(s)) = Qπ

∗
A(s, π∗

A(s)) = V π
∗
A(s),

because π∗
A(s) ∈ As. Assume Qn−1(s, π

∗
A(s)) ≥ V π

∗
A(s) for all s ∈ S. Then for all s ∈ S,

Qn(s, π
∗
A(s)) = Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′)

[
r + γ sup

a′∈A
Qn−1(s

′, a′)

]
≥ Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′) [r + γQn−1(s

′, π∗
A(s

′))]

≥ Es′∼P (s,π∗
A(s)),r∼R(s,π∗

A(s),s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′)

[
r + γ Ea′∼π∗

A(s′)

[
Qπ

∗
A(s′, a′)

]]
= (T π∗

AQπ
∗
A)(s, π∗

A(s))

= Qπ
∗
A(s, π∗

A(s))

= V π
∗
A(s).

So by mathematical induction, Qn(s, π∗
A(s)) ≥ V π

∗
A(s) for all s ∈ S and n ≥ 0. Therefore,

QA(s, π
∗
A(s)) = lim

n→∞
Qn(s, π

∗
A(s)) ≥ V π

∗
A(s).

Since for all s ∈ S and a ∈ As,
QA(s, a) = (TAQA)(s, a) = Q̃(s, a) ≤ V π(s).

We can define a deterministic policy πA : S → A that maps s ∈ S to as. Since πA(s) = as ∈ As
for all s ∈ S and π∗

A is the optimal policy among the policies that satisfy this constraint, we have
V π

∗
A ⪰ V πA . So we may conclude that for all s ∈ S,

sup
a∈A\As

QA(s, a) ≤ V π(s) ≤ V πA(s) ≤ V π∗
A(s) = QA(s, π

∗
A(s)). (12)

We finish the proof by showing that for all s ∈ S,

QA(s, π
∗
A(s)) = max

a∈A
QA(s, a).

Recall the sequence (Qn) we previously defined by the recurrence relation (11). We will prove that
for every n, s ∈ S, and a ∈ A,

Qn(s, a) ≤ V π
∗
A(s) = Qn(s, π

∗
A(s)).

Assume n = 0. Fix s† ∈ S and a† ∈ A. If a† ̸∈ As† , then by the observation we made in (12),

Q0(s
†, a†) = Q̃(s†, a†) ≤ V π∗

A(s†).

If a† ∈ As† , consider a policy π† : S → A defined as

π†(s) =

{
a† if s = s†,

π∗
A(s) otherwise.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For all s ∈ S, π†(s) ∈ As, so V π
∗
A ⪰ V π

†
. If Q0(s

†, a†) < V π
∗
A(s†), it satisfies our hypothesis.

Otherwise,
Qπ

∗
A(s†, π†(s†)) = Q0(s

†, a†) ≥ V π∗
A(s†) = Qπ

∗
A(s†, π∗

A(s
†))

and for s ̸= s†,
Qπ

∗
A(s, π†(s)) = Qπ

∗
A(s, π∗

A(s)),

so by Lemma 9, V π
† ⪰ V π∗

A , which means V π
† ≡ V π∗

A . Then

Qπ
∗
A(s†, a†) = (T π∗

AQπ
∗
β)(s†, a†)

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γQπ

∗
A(s′, π∗

A(s
′))
]

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γV π

†
(s′)
]

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γQπ

†
(s′, π†(s′))

]
= (T π†

Qπ
†
)(s†, a†)

= Qπ
†
(s†, π†(s†))

= V π
†
(s†)

= V π
∗
A(s†).

So Q0(s
†, a†) ≤ V π∗

A(s†) in both cases. Since it is obvious that

Q0(s
†, π∗

A(s
†)) = Qπ

∗
A(s†, π∗

A(s
†)) = V π

∗
A(s†),

our hypothesis holds for n = 0.

Assume the hypothesis holds for n− 1. Fix s† ∈ S and a† ∈ A. If a† ̸∈ As† ,

Qn(s
†, a†) = (T ∗

β Qn−1)(s
†, a†) = QLB

β (s†, a†) ≤ V π∗
β (s†)

by (12). Otherwise,

Qn(s
†, a†) = (TAQn−1)(s

†, a†)

= (T ∗Qn−1)(s
†, a†)

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γ sup

a′∈A
Qn−1(s

′, a′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γmax

a′∈A
Qn−1(s

′, a′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γ Ea′∼π∗

A(s′)

[
Qπ

∗
A(s′, a′)

]]
= (T π∗

AQπ
∗
A)(s†, a†)

= Qπ
∗
A(s†, a†)

= Q0(s
†, a†)

≤ V π∗
A(s†).

When a† = π∗
A(s

†), the inequality becomes equality. So by mathematical induction, for every n,
s ∈ S, and a ∈ A,

Qn(s, a) ≤ V π
∗
A(s) = Qn(s, π

∗
A(s)).

Sending n to infinity, we can see that for all s ∈ S and a ∈ A,

QA(s, a) = lim
n→∞

Qn(s, a) ≤ V π
∗
A(s) = lim

n→∞
Qn(s, π

∗
A(s)) = QA(s, π

∗
A(s)).

Therefore,
QA(s, π

∗
A(s)) = max

a∈A
QA(s, a).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem 11. Any initial bounded real-valued function on S × A can converge to a unique fixed
point Q∗

β by repeatedly applying T ∗
β . Suppose for each s ∈ S,

Qβ(s, as) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some as ∈ A \OOD(s). If there exists a deterministic policy π∗

β : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

β(s) = argmaxa∈AQ
∗
β(s, a) for all s ∈ S.

Proof. First observe that for all s ∈ S and a ∈ A,

QLB
β (s, a) ≥ rmin

1− γ ,

and
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤

rmax

1− γ − rmax + rmin,

by Lemma 6. This impliesQLB
β ∈ L∞(S×A). Since Q̃ = QLB

β andAs = A\OOD(s) satisfies the
conditions of Lemma 8, any initially bounded real-valued function on S × A converges to a unique
fixed point, which we denote by Q∗

β , through repeated application of TA, which is in fact, T ∗
β .

For all s ∈ S,
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ V β(s),

which means

sup
a∈A

QLB
β (s, a). ≤ V β(s) = Ea∼β(s)

[
Qβ(s, a)

]
< sup
a∈A\OOD(s)

Qβ(s, a).

Now we can see that the second part of the theorem is a special case of Theorem 10, where As =
A \OOD(s), Q̃ = QLB

β , QA = Q∗
β , π = β, and π∗

A = π∗
β .

Lemma 12. Let Π = {π0, π1, π2, . . . , πN−1} be a finite set of policies. If π∗ is a policy such that
for each s ∈ S, there is i ∈ [N] such that π∗(s) = πi(s) and V πi(s) = maxπ∈Π V

π(s), then
V π

∗ ⪰ V π for every π ∈ Π.

Proof. Define a sequence (Qn) of bounded real-valued functions by the recurrence relation

Qn =

{
maxπ∈ΠQ

π if n = 0,

T π∗
Qn−1, otherwise.

We want to show that Qn ⪰ maxπ∈ΠQ
π for all n ≥ 0. The base case is trivial. Assume

Qn−1 ⪰ maxπ∈ΠQ
π . For each s ∈ S , there is i ∈ [N] such that π∗(s) = πi(s) and

V πi(s) = maxπ∈Π V
π(s), which implies

Ea∼π∗(s) [Qn−1(s, a)] ≥ Ea∼πi(s) [Q
πi(s)] = V πi(s) = max

π∈Π
V π(s).

Now for all s ∈ S and a ∈ A,

Qn(s, a) = (T π∗
Qn−1)(s, a)

= Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π∗(s′) [Qn−1(s

′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γmax

π∈Π
V π(s′)

]
= max

π∈Π
Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π(s′) [Qπ(s′, a′)]

]
= max

π∈Π
(T πQπ)(s, a)

= max
π∈Π

Qπ(s, a).

By mathematical induction, Qn ⪰ maxπ∈ΠQ
π for all n ≥ 0. Therefore,

Qπ
∗
(s, a) = lim

n→∞
Qn(s, a) ≥ max

π∈Π
Qπ(s, a)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

for all s ∈ S and a ∈ A.

Fix s ∈ S. There is i ∈ [N] such that π∗(s) = πi(s) and V πi(s) = maxπ∈Π V
π(s). Then

V π
∗
(s) = Ea∼π∗(s)

[
Qπ

∗
(s, a)

]
≥ Ea∼πi(s) [Q

πi(s, a)] = V πi(s) = max
π∈Π

V π(s).

Our choice of s was arbitrary, so V π
∗ ⪰ maxπ∈Π V

π .

Theorem 13. Any initial bounded real-valued function on S × A can converge to a unique fixed
point Q∗

B by repeatedly applying T ∗
B . Suppose for each β ∈ B and s ∈ S,

Qβ(s, aβs) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some aβs ∈ A \OOD(s). If there exists a deterministic policy π∗

B : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

B(s) = argmaxa∈AQ
∗
B(s, a) for all s ∈ S.

Proof. First observe that for all s ∈ S, a ∈ A, and β ∈ B,

QLB
β (s, a) ≥ rmin

1− γ ,

and
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤

rmax

1− γ − rmax + rmin,

by Lemma 6. So obviously,

QLB
B (s, a) = max

β∈B
QLB
β (s, a) ≥ rmin

1− γ ,

and
QLB

B (s, a) = max
β∈B

QLB
β (s, a) ≤ rmax

1− γ − rmax + rmin,

for all s ∈ S and A. This implies QLB
B ∈ L∞(S × A). Since Q̃ = QLB

B and As = A \ OOD(s)
satisfies the conditions of Lemma 8, any initially bounded real-valued function on S ×A converges
to a unique fixed point, which we denote by Q∗

B, through repeated application of TA, which is in
fact, T ∗

B .

For each β ∈ B define a deterministic policy β′ : S → A so that β′(s) = aβs for each s ∈ S. Then

Qβ(s, β′(s)) = Qβ(s, aβs) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for all s ∈ S, so V β

′ ⪰ V β by Lemma 9. We will denote the set {β′ : β ∈ B } by B′. Consider a
policy β∗ : S → A defined as

β∗(s) =

(
argmax
β′∈B′

V β
′
(s)

)
(s),

that is, for each state, we follow the β′ with the highest value. Obviously, β∗(s) ∈ A \OOD(s) for
all s ∈ S, and by Lemma 12, for all s ∈ S, a ∈ A, and β ∈ B,

QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ V β(s) ≤ V β

′
(s) ≤ V β∗

(s),

which means
V β

∗
(s) ≥ sup

a∈A
max
β∈B

QLB
β (s, a) = sup

a∈A
QLB

B (s, a).

Now we can see that the second part of the theorem is a special case of Theorem 10, where As =
A \OOD(s), Q̃ = QLB

B , QA = Q∗
B, π = β∗, and π∗

A = π∗
β .

Proposition 14. Let X be a non-degenerate multivariate Gaussian random vector with mean µ ∈
Rd and a diagonal covariance matrix diag(σ)2 ∈ Rd×d. For y ∈ Rd,

E [∥X− y∥1] =
d∑
i=1

[
(yi − µi) erf

(
yi − µi
σi
√
2

)
+

√
2

π
σi exp

(
− (yi − µi)2

2σ2
i

)
.

]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Let X = (X1, X2, . . . , Xd), y = (y1, y2, . . . , yd), µ = (µ1, µ2, . . . , µd), and σ =
(σ1, σ2, . . . , σd). We may assume that σ1, σ2, . . . , σd > 0. Then

E [∥X− y∥1] = E

[
d∑
i=1

|Xi − yi|
]
=

d∑
i=1

E [|Xi − yi|] .

Define gi(y) = E [|Xi − y|].

g′i(y) = E
[
d

dy
|Xi − y|

]
= E[1Xi<y − 1Xi>y] = FXi

(y)− (1− FXi
(y)) = 2FXi

(y)− 1,

where FXi is the cumulative distribution function of Xi. So

g′i(y) = erf

(
y − µi
σi
√
2

)
.

Observe that

gi(µi) = E [|Xi − µi|]

=
1√
2πσi

∫ ∞

µi

(xi − µi) exp
(
− (xi − µi)2

2σ2
i

)
dxi

− 1√
2πσi

∫ µi

−∞
(xi − µi) exp

(
− (xi − µi)2

2σ2
i

)
dxi.

Substituting ui = (xi − µi)/σi,

gi(µi) =
1√
2πσi

[∫ ∞

0

σiuie
− 1

2u
2
i σi dui −

∫ 0

−∞
σiuie

− 1
2u

2
i σi dui

]
=

σi√
2π

[∫ ∞

0

uie
− 1

2u
2
i dui −

∫ 0

−∞
uie

− 1
2u

2
i dui

]
=

√
2

π
σi.

By the fundamental theorem of calculus,

gi(y) = gi(µi) +

∫ y

µi

g′i(v) dv =

√
2

π
σi +

∫ y

µi

erf

(
v − µi
σi
√
2

)
dv.

Substituting z = (v − µi)/(σi
√
2),∫ y

µi

erf

(
v − µi
σi
√
2

)
dv =

∫ (y−µi)/(σi

√
2)

0

erf(z)σi
√
2 dz

=
√
2σi

[(
y − µi
σi
√
2

)
erf

(
y − µi
σi
√
2

)
+

1√
π
exp

(
− (y − µi)2

2σ2
i

)
− 1√

π

]
.

Therefore,

gi(y) = (y − µi) erf
(
y − µi
σi
√
2

)
+

√
2

π
σi exp

(
− (y − µi)2

2σ2
i

)
,

which implies

E [∥X− y∥1] =
d∑
i=1

gi(yi) =

d∑
i=1

[
(yi − µi) erf

(
yi − µi
σi
√
2

)
+

√
2

π
σi exp

(
− (yi − µi)2

2σ2
i

)
.

]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C PRACTICAL ALGORITHM

C.1 STAGE I: BEHAVIOUR POLICY LEARNING

In theory, each behaviour policy is well-defined on every state s ∈ S. However, in practice, we can
trust our estimations only in the vicinity of the states they were trained on. The problem is, we train
each β̂ only on the states they are assigned to. Therefore, we need a mechanism to determine which
behaviour policy estimates we can trust given a state s ∈ S. For this purpose, we additionally train a
classifier fψ : S → Pd([K]) using the computed assignments and determine the credible set by the
equation

V̂(s) =
{
β̂i ∈ B̂ : fψ(i | s) ≥

1

b
max
j∈[K]

fψ(j | s)
}
,

where b > 0 is a hyperparameter. We accordingly modify the definition of QLB
B̂ to

QLB
B̂ (s, a) = max

β̂∈V̂(s)
QLB
β̂

(s, a),

for all s ∈ S and a ∈ A.

C.2 STAGE II: BEHAVIOUR VALUE LEARNING

To learn the value functions of all K behaviour policies in parallel, we leverage a network Vζ : S →
RK with K outputs. The per sample temporal difference (TD) loss function can be written by the
equation

ℓV (ζ ; s, r, s
′) = (Vζ(s)[A(s)]− r − γVζ′(s′)[A(s′)])2 , (13)

where s, r, and s′ are the state, reward, and next state sampled from the dataset, respectively, ζ ′ is
the target network parameter that is updated by polyak averaging as in Lillicrap et al. (2016), and
Vζ(s)[i] is the i-th coordinate of Vζ(s). Note that A(s), the cluster assignment of s, is equal to A(s′),
because we assign each trajectory to the same cluster.

C.3 STAGE III: POLICY LEARNING

In practice, it is infeasible to compute the superior term in the penalised Bellman operator T ∗
B . We

instead adopt the actor-critic formulation that alternates between the policy improvement step and
the critic learning step. The goal of the policy improvement step is to find an action that maximises
the critic for each state. The challenge is that the critic is highly non-convex due to the penalisation
of critic values for actions between the means of the behaviour policies, causing gradient methods to
yield suboptimal solutions. Hence, we search for the optimal action in the vicinity of each behaviour
policy’s mean simultaneously. This is done by training a network to output not the optimal action
itself but the difference between the optimal action and one of the behaviour policy means. Using a
network gψπ

: S → R2da , we encode a Gaussian distribution π̃ with a da-dimensional mean vector
and da × da diagonal covariance matrix. For a given state s, we choose the best behaviour policy
β∗ among V̂(s) with respect to the current critic function QψQ

, that is,

β̂∗ = argmax
β̂∈V̂(s)

QψQ
(s,µβ̂(s) + δ(s)),

where µβ̂ is the mean vector of the behaviour policy estimate β̂ and δ is a vector sampled from π̃.
Our current policy can be computed according to the following equation:

π(s) = µβ̂∗(s) + δ.

The loss function for the policy improvement step can be written by the following equation:

ℓπ(ψπ ; s) = − max
β̂∈V̂(s)

QψQ

(
s,µβ̂(s) + gψπ (s)

)
.

The critic learning step has two objectives: minimising the TD error and penalising the OOD actions.
For the first objective, we adopt the conventional TD loss adapted to match the way we defined our
policy, which is represented by the equation

ℓTD
Q (ψQ ; s, a, r, s′) =

(
QψQ

(s, a)− T (r, s′)
)2
,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where s, a, r, and s′ are the state, action, reward, and next state sampled from the dataset, respec-
tively, and the TD target T (r, s′) is defined as

T (r, s′) = r + γ max
β̂∈V̂(s)

Qψ′
Q

(
s′,µβ̂(s

′) + gψ′
π
(s′)
)
.

ψ′
Q and ψ′

π in the preceding equation are the target critic network parameters and target actor net-
work parameters, respectively, which are updated by polyak averaging to gradually follow ψQ and
ψπ .

The second objective of the critic learning step is to penalise the critic values of OOD actions towards
QLB

B̂ (s, a). To achieve this goal, we need to be able to sample an action a from U(OOD(s)) and
computeQLB

B̂ (s, a). In general, it is difficult to sample uniformly from an arbitrary set, so we sample
an action from A instead and ignore it if it does not lie in OOD(s). Since we are working with
actions mapped via the inverse hyperbolic tangent function, we need to sample from tanh−1(A) =
Rda , which is unbounded. We circumvent this issue by sampling from a sufficiently large hypercube
[−L,L]da . In particular, we set L = 20 based on the observation that tanh(10) ≈ 1.00 under the
32-bit floating point representation, where we doubled 10 to secure a safety margin.

In order to compute QLB
B̂ , we need to compute QLB

β̂
for each β̂ ∈ B̂. However, computing QLB

β̂

is not straightforward, due to the term Ea′∼β̂(s)[∥a − a′∥] in (7). We discovered that if β̂ has a
diagonal covariance matrix and we use a 1-norm, the expectation has the following closed-form
expression (Proposition 14):

Ea′∼β̂(s) [∥a− a′∥1] =
da∑
i=1

(yi − µi(s)) erf
(
ai − µi(s)
σi(s)

√
2

)
+

√
2

π

da∑
i=1

σi exp

(
− (ai − µi(s))2

2σ2
i (s)

)
,

where a = (a1, a2, . . . , ada) and β̂(s) is a Gaussian distribution with a state-dependent mean vector
µ(s) = (µ1(s), µ2(s), . . . , µda(s)) and a state-dependent covariance matrix whose main diagonal
is σ(s) = (σ1(s), σ2(s), . . . , σda(s)). For rmin and rmax, following Mao et al. (2023), we estimate
them by the minimum and maximum rewards in all of the datasets of a given task, that is, for example
rmin and rmax for a hopper-v2 dataset is computed by the minimum and maximum of the rewards
in hopper-expert-v2, hopper-medium-v2, and hopper-random-v2. To sum up, the loss function for
regularisation is

ℓregQ (ψQ ; s̃, ã) = 1ã∈OOD(s̃)

(
QψQ

(s̃, ã)−QLB
B̂ (s̃, ã)

)2
,

where s̃ is a state sampled from the dataset and ã is an action sampled from πalg. The resulting total
loss can be written by the following equation

ℓQ(ψQ) = ℓTD
Q (ψQ) + wQℓ

reg
Q (ψQ), (14)

where wQ is a tuneable hyperparameter. We have omitted the samples in the preceding equation for
simplicity.

For πalg we adopted

πalg(a | s) =
1

2
β̃(a | s) + 1

2
π(a | s),

where π is the current policy and β̃ is defined as

β̃(· | s) = N (µβ̂∗(s), 4Σβ̂∗(s)).

Here, µβ̂∗(s) and Σβ̂∗(s) are the mean vector and covariance matrix of the selected behaviour policy

β̂∗. The first term regularises the critic values over a broad range of actions to guide a randomly
initialised network gψπ

towards producing near-zero values. The second term regularises the critic
values in the vicinity of the current policy allowing delicate control near the boundary of OOD(s).

D DIDACTIC EXPERIMENT

To show the importance of trajectory clustering, we also evaluated our algorithm on a simple navi-
gation environment shown in Figure 4. The agent should output a two-dimensional velocity vector

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Agent

Goal
Behavior 0
Behavior 1
Penalty area

Figure 4: The agent receives a reward of −1 until it reaches the goal and an additional penalty of
−1 when it is inside the penalty area. The offline dataset consists of trajectories sampled using two
behaviour policies β0 (Behaviour 0) and β1 (Behaviour 1).

as an action based on the two-dimensional position vector given as state. The episode terminates
when the agent reaches the goal, and until then, it receives a reward of −1. When the agent is inside
the penalty area, it receives an additional penalty of −1, that is, the reward is −2 every time-step.
We created an offline dataset that consists of trajectories sampled using two behaviour policies.
Table 5 shows the mean and standard deviation of episode returns for three different algorithms:
TD3+BC (Fujimoto & Gu, 2021), SVR (Mao et al., 2023), and ours. Due to the multi-modality of
the dataset, SVR, which relies on simple behaviour cloning, fails to learn an optimal policy. Our
algorithm can successfully recover the behaviour policies and thus outperforms other baselines.

D.1 IMPLEMENTATION DETAILS

We normalised the observations following Fujimoto & Gu (2021) and scaled the rewards following
Kostrikov et al. (2022). Note that we used the naive behaviour cloning algorithm for expert and
medium datasets, instead of our trajectory clustering method, because we know a priori that they are
homogeneous. The algorithm was implemented upon the JAX (Bradbury et al., 2018) framework
using the Flax (Heek et al., 2024) library. The scikit-learn (Pedregosa et al., 2011) library was used
to compute ARIs and NMIs for Sections 5.3 and E.3.

E EXPERIMENT DETAILS

E.1 DIDACTIC EXPERIMENTS

The observation space is S = [0, 30]× [0, 30], the action space isA = [−0.2, 0.2]× [−0.2, 0.2], and
the penalty area is Sp = [15, 30] × [0, 10]. The starting location of the agent is sampled uniformly
at random from [0, 0.1] × [0, 0.1] and the goal position is fixed to g = (30, 30). If the current state
is s = (s0, s1) ∈ S and the action is a = (a0, a1) ∈ A, the next state s′ = (s′0, s

′
1) ∈ S is

s′ = clip(s+ a ; 0, 30).

The reward function is

r(s, a, s′) =


0 if ∥s′ − g∥2 < 0.1,

−2 if s′ ∈ Sp,
−1 otherwise.

Table 5: Average returns on the navigation dataset.

Algorithm Return

TD3+BC −622.82± 185.72

SVR −1000.00± 0.00

Ours −173.50± 25.32

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The episode terminates if either the agent has approached the goal (∥s′ − g∥2 < 0.1) or the number
of time-steps exceeded 1000.

The offline RL datasets was generated using subgoal-reaching policies. A subgoal-reaching policy
π(s ; gs) for a subgoal gs is defined as

π(s ; gs) = clip(clip(gs − s ;−0.2, 0.2) + 0.1ε ;−0.2, 0.2), (15)

were ε is a two-dimensional standard Gaussian noise. We generated the samples according to
Algorithm 1 using two different list of subgoals: [(0, 30), (10, 30), (10, 0), (20, 0), (20, 30)] and
[(10, 0), (10, 15), (20, 15), (20, 0), (30, 0)].

Algorithm 1 Dataset generation from a list of subgoals

1: Input: a list of subgoals [g(1)s , g
(2)
s , . . . , g

(N)
s]

2: Initialize an empty dataset D
3: while D has less than 1 000 000 elements do
4: s← env.reset()
5: for gs ← [g

(1)
s , g

(2)
s , . . . , g

(N)
s] do

6: while ∥s− gs∥2 ≥ 0.1 do
7: a← π(s ; gs) ▷ (15)
8: s′, r, d← env.step(a)
9: Add (s, a, r, d) to D

10: s← s′

11: end while
12: end for
13: while ∥s− g∥2 ≥ 0.1 do
14: a← π(s ; g) ▷ (15)
15: s′, r, d← env.step(a)
16: Add (s, a, r, d) to D
17: s← s′

18: end while
19: end while

E.2 MOTIVATION EXPERIMENT

E.3 ADDITIONAL ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

Aside from the three random-medium-expert datasets mentioned in Section 5.3, we also created
custom D4RL datasets by concatenating medium and expert datasets of halfcheetah, hopper, and
walker2d tasks. The mean and standard deviation of ARIs and NMIs for each configuration over 5
different seeds are reported in Table 6. The configuration (λT , λR) = (1, 0) performs the best on
average even after we include the three medium-expert datasets.

F ADDITIONAL FIGURES

G RELATED WORK

Value regularisation Value regularisation aims to discourage the actor from choosing OOD ac-
tions by penalising their critic values. Conservative Q learning (CQL; Kumar et al. 2020) was one
of the first works in this line of research, where they minimise the standard TD error together with
the Q-values of OOD actions. Lyu et al. (2022) pointed out that the CQL excessively regularsies the
OOD Q-values to the extent that hampers the learning process. They suggested a milder regularisa-
tion term based on the critic values of ID actions. Supported value regularisation (SVR; Mao et al.
2023) proposed a penalisation scheme that maintains standard Bellman updates for ID actions while
selectively penalising OOD actions’ critic values. Most existing value regularisation algorithm, in-
cluding the three works introduced in this section, sample the OOD actions from the current policy.
However, as training progresses, the current policy will start to produce ID samples, so it is crucial to

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: The impact of hyperparameters λT and λR on the performance of our trajectory clustering
algorithm evaluated on custom D4RL datasets. The performance is measured in terms of adjusted
rand index (ARI) and normalised mutual information score (NMI).

λT = 1 λT = 0

λR = 1 λR = 0 λR = 1 λR = 0

halfcheetah-medium-expert
ARI 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

NMI 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

halfcheetah-random-medium-expert
ARI 0.97± 0.04 0.99± 0.00 0.91± 0.19 0.91± 0.17

NMI 0.97± 0.03 0.97± 0.01 0.93± 0.12 0.92± 0.12

hopper-medium-expert
ARI 0.80± 0.44 1.00± 0.00 0.99± 0.01 1.00± 0.00

NMI 0.80± 0.42 1.00± 0.00 0.97± 0.03 1.00± 0.00

hopper-random-medium-expert
ARI 0.49± 0.29 0.98± 0.02 0.59± 0.33 0.97± 0.06

NMI 0.57± 0.26 0.97± 0.02 0.66± 0.29 0.98± 0.04

walker2d-medium-expert
ARI 0.99± 0.01 1.00± 0.00 0.99± 0.02 1.00± 0.00

NMI 0.99± 0.02 1.00± 0.01 0.98± 0.04 1.00± 0.00

walker2d-random-medium-expert
ARI 0.88± 0.16 0.98± 0.05 0.98± 0.03 1.00± 0.00

NMI 0.90± 0.11 0.98± 0.03 0.97± 0.04 1.00± 0.00

Average ARI 0.86± 0.27 0.99± 0.02 0.91± 0.21 0.98± 0.07

NMI 0.87± 0.24 0.98± 0.02 0.92± 0.17 0.98± 0.06

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

fα

R(fα)

Figure 5: A diagram showing the probability density function and the 100(1−α)% highest density
region of a normal distribution. The probability of the corresponding normal random variable to lie
insideR(fα), which corresponds to the area of the coloured region, is 1− α.

i = 0, 1, 2, . . . , T − 1

Encoder Decoder

st
at−1

rt

qϕ

ht−1

bt = qϕ(· | τ:t) ∼ m
si+1

ai
si

si
ai

Rθ ri+1

Pθ si+1

Policy

πψ
st

at

Figure 6: VariBAD architecture. This figure is a redrawn version of Figure 2 in Zintgraf et al.
(2021).

prevent unnecessary penalisation for those actions. CQL circumvents this issue through maximising
the critic values for actions in the dataset. SVR does it by soft thresholding the regulariser based on
the importance sampling ratio. In contrary, our method adopts a hard thresholding mechanism where
ID actions are not penalised at all. This is possible due to our capability of explicitly identifying the
OOD action set.

Heterogeneous datasets There are multiple prior work concerned with offline RL datasets with
heterogeneous behaviours. Wang et al. (2023) utilises a diffusion model (Sohl-Dickstein et al., 2015;
Ho et al., 2020) to capture the multi-modality of the true behaviour policy. Li et al. (2023) trains
a mixture of Gaussian policy on the dataset via likelihood maximisation and then obtains a closed-
form estimate of the best possible action near the behaviour policy. These two works ignores the
trajectory information and handles each transition individually. Mao et al. (2024) incorporates an
expectation–maximisation algorithm to learn diverse policies from a given offline RL dataset. Wang
et al. (2024) proposes a learning-based trajectory clustering algorithm that can also automatically
determine the cluster size. Although these two works leverage the trajectory information, they obtain
the trajectory representation by simply averaging the samples, causing a substantial loss of informa-
tion. We incorporate a sequence modelling technique instead to learn an effective representation of
each trajectory.

VQ-VAE State-conditioned action quantisation (SAQ; Luo et al. 2023) is closely related to our
work in the sense that they also leverage a VQ-VAE in the offline RL setting. However, their main
focus is to discretise the actions because most of the challenges in offline RL originates from the
ambiguity of continuous distributions. On the other hand, our algorithm uses VQ-VAE to cluster

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

the trajectories and recover the behaviour policies. Also, SAQ discretises the actions individually,
ignoring the trajectory information.

H LIMITATIONS

Our work is built upon the assumption that each trajectory in the dataset was sampled from a single
behaviour policy. Although this assumption does not hold in general, as the behaviour policy may
change mid-trajectory, the change is subtle enough for our algorithm to perform reasonably well.
However, this might not be the case for real world scenarios. Future work could explore mechanisms
to detect behaviour policy change and split the trajectory at those transition points.

28

	Introduction
	Background
	Motivation
	Proposed Method
	Identifying the Out-of-Distribution Action Set
	Homogeneous Datasets
	Heterogeneous Datasets

	Lower Bound Penalisation
	Practical Algorithm

	Experiments
	Results on the D4RL benchmark
	Experiments on a Heterogeneous Dataset
	Analysis on the Trajectory Clustering Algorithm

	Conclusion
	Notations
	Proofs
	Practical Algorithm
	Stage I: Behaviour Policy Learning
	Stage II: Behaviour Value Learning
	Stage III: Policy Learning

	Didactic Experiment
	Implementation Details

	Experiment Details
	Didactic Experiments
	Motivation Experiment
	Additional Analysis on the Trajectory Clustering Algorithm

	Additional Figures
	Related Work
	Limitations

