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ABSTRACT

In this paper, we propose a new framework for value regularisation in offline re-
inforcement learning (RL). While most previous methods evade explicit out-of-
distribution (OOD) region identification due to its difficulty, our method explicitly
identifies the OOD region, which can be non-convex depending on datasets, via
a newly proposed trajectory clustering-based behaviour cloning algorithm. With
the obtained explicit OOD region, we then define a Bellman-type operator push-
ing the value in the OOD region to a tight lower bound while operating normally
in the in-distribution region. The value function with this operator can be used
for policy acquisition in various ways. Empirical results on multiple offline RL
benchmarks show that our method yields the state-of-the-art performance.

1 INTRODUCTION

Offline reinforcement learning (RL) has gained significant attention from the RL community due to
its efficiency in cost and safety. Unlike conventional RL, where an agent learns an optimal policy
through interactions with the environment, in offline RL, environmental interactions are not done.
Instead, a set D of trajectories is provided and the agent searches for a competent policy using only
the samples in D. Despite its attractiveness, there exists a critical hurdle to offline RL: overestima-
tion of Q values of the critic network in the out-of-distribution (OOD) action region (Fujimoto et al.,
2019). Since the agent cannot actually perform an overestimated action and gain correction signals
from the environment, the extrapolation error will be corrected directly.

Critic penalisation is one of the main offline approaches to handle this value overestimation problem
in the OOD region (Kumar et al. [2020; Lyu et al.| 2022; [Mao et al., 2023). By penalising the
critic values of penalized OOD actions, this approach nudges the agent to select in-distribution
(ID) actions with higher critic values rather than OOD ones. Various offline algorithms have been
developed for critic penalisation with various penalisation terms. Due to the difficulty of identifying
the OOD region itself, these methods rely on indirect measures to construct a penalisation term, e.g.,
difference-based penalization (Kumar et al., 2020), importance sampling-based integration (Mao
et al. 2023). However, these indirect penalisation methods have their own shortcomings for the
cost of evading direct OOD region identification. For example, SVR (Mao et al.,|2023) uses simple
Gaussian behaviour modelling to compute the required importance sampling ratio. When the dataset
has two equally-strong modes with a reasonable distance, the learned Gaussian-modelled behaviour
density will place a large density value at the centre of the two modes on which the actual density is
very low, and the algorithm will yield significantly degraded performance.

To overcome such limitations resulting from not identifying the precise OOD region, in this paper,
we proposes a novel value regularisation algorithm that explicitly identifies the multi-modal OOD
region and penalises the critic values of the OOD region with a newly-derived lower bound tighter
than previous approaches. Empirical evaluations of our method on the D4RL benchmark (Fu et al.,
2020) show that our method yields high-performing policies from various offline RL datasets. The
main contributions of our work are:

* We introduce a criterion for identifying whether an action is OOD based on its likelihood.
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» Connecting trajectory clustering in offline RL to task identification in meta RL, we propose an
algorithm that can learn mixture Gaussian approximations to the behaviour policy.

* We develop a new value regulariser that regresses the critic values toward a tight theoretical
lower bound of the optimal action-value function.

2 BACKGROUND

Notation For the list of notations used in this paper and their meanings, refer to Appendix Sec. [A]

Markov Decision Process An RL problem is formulated as a Markov Decision Process (MDP),
which is defined as a 6-tuple M = (S, A, P, R,~, po), where S C R% is the state space, A C R%
is the action space, P: S x A — P(S) is the transition dynamics, R: S x A x § — P(R) is the
reward function, -y € [0, 1] is the discount factor, and py € P(S) is the initial state distribution. We
will assume that the support of R(s,a, s’) is bounded above by 7y,.x and bounded below by 7min
forall s,s’ € Sanda € A.

Value Functions Given a policy 7, the Bellman operator 77 on L*°(S x .A) is defined by the
followingn equation:

(TWQ)(S,CL) = ES’~P(s,a) [ETNR(S,(LS/)[T]] +Es’~P(s,a) [Ea’wﬁ(s’) [Q($I7al)]] .

Then, the action-value function (or Q-function) Q™: S x A — R is defined as the unique fixed
point of 77, and the state-value function V™ : & — Ris given by V7 (s) = Eqr(s) [@™ (5, a)]. The
objective of RL is to find an optimal policy 7* such that V™ = V™ for any policy .

Offline Reinforcement Learning For offline RL, interactions with the environment is prohibited,
and the agent has to learn a policy from a given dataset D of trajectories. Throughout this paper,
we will assume that each trajectory 7 € D is sampled with a uni-modal behaviour policy 5 €
{Bo, P1, B2, - - -, Bx—1}, where the candidate set B = {fq, 51, B2, - - ., Bx—1} is fixed but unknown
to the agent.

3 MOTIVATION

Critic penalization or value regularisation penalises the Q-values for OOD actions, while minimizing
the temporal difference error for in-distribution (ID) actions. We may formulate it with the following
equation

nrgnIE(s’a)ND [(Q(s,a) —T7Q(s, a))Q} + R,

where $R is a regularizer. A crucial requirement of the regularizer is that it should be able to discrim-
inate between ID and OOD actions since we only want to penalise the values of OOD actions. One
of the first approaches was to set the regulariser as (Kumar et al., [2020)

R = ESN'D,aN/L [Q(Sa a)] - ESN'D,aNB[Q(Sa a)]v
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Figure 1: The Q-values on the plane spanned by e; and e; estimated by each method, i.e., Q(ze; +
yez). Due to the high variance of importance sampling ratios, the importance sampling method fails
to approximate the optimal Q-function accurately.
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where [ is the behaviour policy and p is some distribution that satisfies the condition supp p C
supp £ (Kumar et al.| 2020). While minimising the Q values for OOD actions sampled by p, they
simultaneously maximised the Q values for ID actions sampled from (8 to compensate for over-
penalisation. However, as [Mao et al.,| (2023)) points out, this approach has two shortcomings: (i)
the requirement supp ¢ C supp 8 may not hold in general; and (ii) if the dataset contains a large
portion of suboptimal actions, their Q values would be overestimated. To address these issues, they
proposed an importance sampling (IS)-based method that utilises the following regulariser:

wla|s
mIS - ESND,aNM[(Q(Sv a) - Qtarg(57 a))Q] - ESND,aNB BECL | S; (Q(Sa a) - Qtarg(s7 CL))2 )
where p is a probability distribution supported on the entire action space and Qg is a regulariser
target, which they set to rmin/(1 — ) forall s € S,a € A. Since the two terms cancel each other
on supp 3, Ris is equivalent to B, p vy [1a\supp 5(Q(S, @) — Qrarg (s, a))?], which corresponds
to the goal of penalising the Q values of OOD actions.

A significant drawback of 9ig is that IS ratios are

known to have high variance, especially for high- Tuble 1: The discounted return of the
fiimqnsiona'l spaces. C(.)nsider.a s?mple.single—st.ate policies learned with each method. IS
infinite-horizon MDP with a six-dimensional action gtands for importance sampling and HT
space, and an offline RL dataset of size 1000000 sam-  stands for hard thresholding.

pled from a behaviour policy NV (0, I). Suppose the
optimal action is a* = e;. Then the IS ratio between -
= N(a*,0.04I5) and 2ﬁ2 5of the samples4in the dataset ~_ Optimal IS HT
ranges from 1.88 x 107““° to 1.93 x 10*. As demon-

strated in Figure[Tb|and Table[T] the IS method yields an 10 2444083 9.72+0.14
inaccurate Q value estimation and a suboptimal policy
due to this severe fluctuation of IS ratios.

To overcome these limitations of the previous value regularization methods, we here propose to
explicitly identify the set of OOD actions OOD(s) for each state s € S, and set the regulariser to
zero for ID actions. Such hard thresholding (HT) allows a more stable training process, resulting in
a more accurate Q value estimations and better-performing policies, as seen in Fig. [Ic|and Table[l]

4 PROPOSED METHOD

This section is structured as follows. In Section [d.1] we first discuss how we can compute the set
OOD(s). We then propose a new lower bound of Q™ and show its effectiveness as a penalisation
target in Section[4.2] Finally, we provide a practical offline RL algorithm in Section[4.3]

4.1 IDENTIFYING THE OUT-OF-DISTRIBUTION ACTION SET

Likelihood is the most natural way to measure how OOD a particular sample is. However, choosing
the threshold value is not trivial. For blunt distributions, we should use a lower threshold value,
whereas for sharp distributions, we can choose a higher value. We propose a systematic method
of setting the threshold value by adopting the concept of highest density region (HDR; Hyndman
1996)), which is basically a generalisation of a confidence interval to multivariate random variables

Definition 1 (Hyndman|1996). Let f(X) be the pdf of a random variable X . Then, the 100(1—«) %
highest density region (HDR) is the subset R( f) of the sample space of X such that R(f,) = { = :
F(2) > fo b where fo = sup{y : P(X € R(3)) > 1 —a}.

In the following subsections, we discuss how to compute the HDR under different assumptions.

4.1.1 HOMOGENEOUS DATASETS

We first discuss the case when the offline dataset D is homogeneous, that is, it was generated from a
single uni-modal behaviour policy 3. Then, we may obtain a fairly accurate Gaussian approximation

"We provide a diagram (Figure |5) showing the 100(1 — «) % HDR of a normal distribution on page [27|to
aid the understanding of the concept of a HDR.
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/3 of B through behaviour cloning. Let p: & — R% and £: & — R%*de be the mean and

covariance matrix functions of 3, respectively. Assuming X(s) is positive definite for all s € S, the
100(1 — o) % HDR has the following closed-form representation (Propositiond]in Appendix):

Rj(fais) = {x € R% : As(xi5) < F3'(1- ) |,

where Fx_21 is the inverse cumulative distribution function of a chi-squared random variable with d,,
da

degrees of freedom and A 5(x; s) = (x — 1(s)) T 2(s) " (x — p(s)). Choosing an appropriate value
of 0 < o < 1, we can define OOD(s) as

4.1.2 HETEROGENEOUS DATASETS

The definition of OOD(s) for a homogeneous dataset given in (T)) can be generalised to the heteroge-
neous case as OOD(s) = A\ (UBGB Ra(fas s)) for B, where B is the behaviour policy candidate

set. If we could identify and isolate all of the trajectories in the dataset sampled from a particular be-
haviour policy 8 € B, then obtaining an estimation B of B1is stra1ghtf0rward by applymg a behaviour
cloning algorithm on those isolated trajectories. Then, with the estimated B= { Bo, [31, ey B K—1}s

we could compute OOD(s) for each state s as above. Therefore, in the rest of this section, we will
propose how to cluster the trajectories. Note that the proposed clustering algorithm is useful not
only for value regularization here but also for other offline real-world data analysis.

Our key idea is that the trajectory clustering problem closely resembles the task inference problem
in meta RL. For each policy m, there is a corresponding Markov reward process (MRP) M™ =
(S, P™ R™, ~), where for all s,s’ € S and r € R, the transition probability function P™: S —
P(S) and the reward probability function R™: S x S — P(R) are defined by the equations

Pﬂ-(sl ‘ S) = ]Earwr(-\s) [P(Sl | 570’)]7 2
R™(r|s,5") =Equn(s) [R(r | s,a,5)], (3)

respectively. Since the dataset D can then be viewed as a collection of trajectories, where each
trajectory is sampled from one of the MRPs M¥P0, MP1 MPB2 . MPBr-1_ trajectory clustering
task can be viewed as an MRP inference problem. As this formulation is almost equivalent to the
MDP inference problem setting in meta RL, we infer the MRP instead of the MDP and apply a
technique similar to variational Bayes-adaptive deep RL (variBAD; [Zintgraf et al.|2021)).

Our goal is to infer the behaviour policy index given a trajectory. To achieve this objective, we
represent the index as a discrete latent variable m supported on [K] = {0,1,--- , K — 1} and write

PPr(s) ~ P(s;m), RP(s,s') = R(s,s';m), Bm(s) ~ B(s;m),

for all s,s’ € S, sharing P, R, and 3 across trajectories. The marginal pdf of a trajectory 7. =
(S0, 00,70, $1,G1,7T1, 82,042,732, - . . 5T—17QT—1,TT—175T) is

K-1
p(r) = po(s0) Y p(m H P(sir1 | s;m)Bag | se;m)R(ry | se, se415m), 4)
m=0

where p(m) is the prior distribution on m. Modelling P, R, and § with neural networks
parametrised by 6 results in a loss that depends on 6. However, the multi-modality of (@) causes
gradient-based optimisation algorithms to produce sub-optimal solutions. We circumvent this is-
sue by introducing amortised inference network g, that takes a variable-length action-less trajectory
7.+ = (80,70,51,71,82,T2,...,8—1,Tt—1, S¢) as an input and outputs a distribution in Py([K]).
Instead of maximising {@), we maximise the evidence lower bound (ELBO), which can be written
by the following equation (Proposition [3)):

T-1
ELBOg ¢ (7;t) = — Dxr(ap(7e) | ) + D gy 08 Ro(ri | 5i, 5011 ;m)] o)
=0
T-1 T-1
+ Z Emw(m(f':z) [log ﬁ@(ai | Si vm)] + Z E771Nq¢(7::t) [log P9(8i+1 | Si 7m)] :
=0 =0
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Figure 2: Overview of our architecture. We also provided a diagram of the variBAD architecture in
Figure 6| for comparison.

The first term log po(so) in (9) can be omitted because it is constant with respect to 6 and ¢. The
final objective for trajectory clustering is to maximise

T,—1
Erno | 7 ; ELBOg (7:t)| , (6)

where T’ is the length of the trajectory 7 sampled from the dataset. An overview of our clustering
algorithm is given in Figure 2}

After we finish training, we compute the behaviour policy estimations and cluster assignments ac-
cording to the equations 3; = [y (- ;%) and A(s) = argmax,, ¢s(m | 7(s)), respectively, for each
i € [K] and s € D, where 7(s) is the action-less trajectory containing the state s.

4.2 LOWER BOUND PENALISATION

In this section, we derive a new lower bound on the value function. As we did in the previous section,
we start with the case where the offline dataset D is generated from a single behaviour policy 5. The
ideal penalisation method would be to use Q™ (s,a) as a target, where 7* is the optimal policy, but
the value of Q™ is inaccessible. So we aim to use a lower bound instead. In order to compute a
lower bound, we first need to make some assumptions on the regularity of P and V5.

Assumption 1. There is Kp > 0 such that for all s € S and a,a’ € A, W1 (P(s,a), P(s,a’)) <
Kp|la—a'||, where W1 (P, Q) is the Wasserstein distance of order 1 between two probability distri-
butions P, Q € P(S).

Assumption 2. The value function of the behaviour policy 3 is Ky -Lipschitz, that is, for all s, s" €
S, |VP(s) = VA(s)| < Kv|s— 5.

Then, we can obtain a lower bound of Q™ with these assumptions.
Proposition 1. Define Q%B : S x A = R by the equation

Tmin
QII(;B(S, a) = max {Vﬁ(s) — Pmax + Tmin — YEVEpEo o) [la —a'|]] - ’y} .

For any policy 7: S — P(A) such that V™ = V8, Q™ = QIB“B.
Proof. See page|[[4] O

Note that this lower bound is tighter than the previous bound 7, /(1 — 7). The lower bound allows
us to define the penalised Bellman optimality operator 75" for policy 7 by the equation

Q5" (s, a) if a € OOD(s),

(T5Q)(s,a) = {(T*Q)(s,a) otherwise,



Under review as a conference paper at ICLR 2026

where 7* is the Bellman optimality operator defined as

(T*Q)(Sa a) = ]ES’NP(s,a),'r'NR(s,a,s’) T+ SuI_/)LX Q(Slv a/)
a’'e
We can show that through repeated application of 7, it is possible to obtain a deterministic policy
m5: S — A that is optimal among the policies whose action for each state s € S does not lie in
0O0D(s).

Theorem 2. Any initial bounded real-valued function on S X A can converge to a unique fixed point
Q} by repeatedly applying Tﬂ* Suppose for each s € S,

Q’B(S#ls) > Eanp(s) [Qﬂ(s,a)]

for some a5 € A\ OOD(s). If there exists a deterministic policy mjy: S — A that is optimal under
the constraint 7t(s) ¢ OOD(s) forall s € S, then w3(s) = argmax,¢ 4 Qj5(s, a) forall s € S.

Proof. See page O

Now, the penalised Bellman optimality operator can easily be generalised to the heterogeneous
dataset case with the set 3 of behaviour policy candidates and the set V() of valid behaviour policies
given astate s € S.

" Q%B(s,a if a € OOD(s),
(T5Q)(s.0) = { 75, (52 OOD(s)

(T*Q)(s,a) otherwise,
where Q5": S x A — R is defined as Qi®(s,a) = maxgey(s) Q5" (s,a) for each s € S and
a € A. We can prove a similar performance guarantee for the policy obtained by repeatedly applying
T5.
Theorem 3. Any initial bounded real-valued function on S X A can converge to a unique fixed point
Q% by repeatedly applying T . Suppose for each § € Band s € S,

Qﬁ(s,af) 2 Eqanpis) [Qﬁ(s,a)}

for some a? € A\ OOD(s). If there exists a deterministic policy 7t S = Athat is optimal under
the constraint w(s) ¢ OOD(s) for all s € S, then mj(s) = argmax,c 4 Q5(s,a) forall s € S.

Proof. See page O

4.3 PRACTICAL ALGORITHM

The overall flow of our algorithm is as follows:

1. Behaviour policy learning. Run the trajectory clustering algorithm to obtain B and f/(s) Or if
it is known a priori that the dataset is homogeneous, then run a behaviour cloning algorithm to
obtain f3.

II. Behaviour value learning. Learn a value function V? for each B eB through temporal differ-
ence learning.

II. Policy learning. Obtain and apply 7, repeatedly on a randomly initialised Q-function until
convergence. Find a policy that maximises the learned Q-function.

This section mainly focuses on the trajectory clustering algorithm of Stage[ll Additional details of
our algorithm can be found in Section|C|of Appendix.

The network architecture used for trajectory clustering consists of three parts: the encoder, the latent
sampler, and the decoder. The architecture is generally similar to that of variBAD except for a few
adaptations. In this section, we will first go over how and why we modified each part. Then, we will
propose a simple technique to adaptively set the number of clusters.

The encoder needs to take an action-less trajectory 7 as an input and output the amortised poste-
rior. Since the length of the trajectory may vary from one to another, the network should be capable
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of taking variable-length sequence as its input. For that purpose, variBAD utilises gated recurrent
units (GRU;|Cho et al.[2014). GRUs and other recurrent neural network variants suffer from the van-
ishing gradient problem (Bengio et al.,{1994), which hampers their ability to process long sequences.
Truncated backpropagation through time (Williams & Peng] |1990) can mitigate the phenomena to
a certain extent, but we instead adopt the state space model architecture that is recently gaining in-
terest in the area of sequence modelling (Gu et al.| 2020; 2021} 2022; |Gu & Daol, 2023; Dao & Gul,
2024). In particular, we use the S5 layer (Smith et al.l 2023)), which is simple and computationally
efficient.

The second modification was made on the way latents are sampled and ELBOs are computed. As
the latent variable in the variBAD architecture is continuous, it is impossible to analytically compute
the expectation, and hence, the reparametrisation trick (Kingma & Welling, 2014) must be used.
Although the latent variable is discrete in our case, exact computation is still inefficient because it
requires multiple forward and backward passes through the decoder. We instead utilise the vector
quantised-variational autoencoder (VQ-VAE; van den Oord et al.[[2017) to approximate the ELBO.
Under the VQ-VAE formulation, the amortised posterior g4 is modelled as

_ 1 ifk=Fky(Ty)
9p(m | 7:2) {0 otherwise,

where eg, €1, ..., ex_1 are latent embedding vectors and

ky(T:) = argmin || g4 (T:) — ex||2.
JEIK]

Note that for simplicity, we have abused the notation g4 to denote both the posterior and the encoder.
The gradient flows into the encoder g4 via the loss function

ZVQ((b?%:t) = H‘Lb(ft) - em(h)”;

and the latent embedding vectors are updated with exponential moving averages.

For the decoder, we use Gaussian distributions with diagonal covariance matrix to represent Py,
By, and Ry. Most RL environments have a bounded action space, whereas a Gaussian distribution
has unbounded support. To estimate the behaviour policy more accurately, we first normalize the
actions between —1 and 1 and apply the inverse hyperbolic tangent function on each dimension of
the actions to map them onto R% . Note that we use the mapped actions when learning the critic, that
is, the critic function takes tanh ! (a) instead of a as input. Finally, instead of taking the summation
over the entire trajectory in (3 and (6)), we adopt the implementation trick of variBAD and randomly
subsample N, transition steps in (3)) and N. ELBO terms in (6). To conclude, the loss function for
the trajectory clustering algorithm is

1 -
bre(0,¢;7) = NN, t; EXI: Ag(8i,ai, 74, 8i41 ;€i~c¢(it)) + Avalva(¢; Tit),
e? d

where
Ag(s,a,r, s ;m) =logBy(a| s;m) + Arlog Py(s' | s;m) + Aglog Re(r | 5,8 ;m),  (8)

Z. and 7, are sets of indices sampled uniformly at random with replacement from [T;] with sizes
N, and Ny, respectively, and Avq, AT, A are tunable hyperparameters.

Choosing the right number of clusters is crucial for high performance in most clustering algorithms.
To alleviate the burden of hyperparameter tuning, we adopt a two-phase training paradigm. During
the first phase of the paradigm, we set the codebook size to be sufficiently large. After completing the
first phase, we compute the cluster assignments for each state in the dataset. If the number of states
assigned to a particular cluster does not exceed a certain threshold, we remove the corresponding
code from the VQ-VAE codebook. The training is resumed with the remaining codebook. This way,
we could adaptively determine the number of clusters without needing to perform an exhaustive
hyperparameter search.
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Table 2: Average normalised scores on the DARL benchmark. Note that “ha” means halfcheetah,

669 [T3e]

“ho” means hopper, “wa” means walker2d, “m” means medium, “r” means replay, “ra” means

9

random, and “e” means expert.

Dataset BC TD3BC BCQ BEAR CQL IQL MCQ SVR Ours

ha-ra 2.6 11.0 2.2 2.3 17.5 13.1 285 272 2710+ 1.1
ho-ra 4.1 8.5 7.8 3.9 7.9 79 318 31.0 315+ 0.2
wa-ra 1.2 1.6 4.9 12.8 5.1 5.4 17.0 2.2 16.6 = 7.9
ha-m 42.0 48.3 46.6 43.0 470 474 643 605 635+ 0.9
ho-m 96.2 59.3 59.4 51.8 53.0 66.2 784 103.5 1028+ 04
wa-m 71.0 83.7 71.8 —0.2 73.3 783 91.0 924 941+ 22

ha-m-r 36.4 44.6 42.2 36.3 455 442  56.8 525 522+ 0.8
ho-m-r 21.8 60.9 60.9 52.2 88.7 94.7 101.6 103.7 1022+ 1.1
wa-m-r 24.9 81.8 57.0 7.0 81.8 73.8 913 956 95.4+19.2
ha-m-e 99.6 90.7 95.4 46.0 75.6  86.7 875 94.2

ho-m-e 51.7 98.0 106.9 50.6 105.6 915 111.2 111.2 1124+ 1.1
wa-m-e 101.2  110.1  107.7 22.1 1079 109.6 114.2 109.3 108.3+ 0.7
ha-e 88.2 81.7 92.7 92.9 96.3  95.0 96.2  96.1 96.6 £ 0.9
ho-e 1109  107.8  109.0 54.6 96.5 109.4 1114 111.1 11274+ 0.9
wa-e 10v.7 110.2 106.3 106.6 108.5 109.9 107.2 110.0 1134+ 0.5

Average  52.3 67.5 64.5 38.8 67.3 689 79.2  80.0

Table 3: The performance of SVR and our method on the custom heterogeneous dataset.

Algorithm Length Return
SVR 8.00 + 0.00 4.05+0.01
Ours 436.3 £32.1  4062.0 £24.5

5 EXPERIMENTS

5.1 RESULTS ON THE D4RL BENCHMARK

In order to evaluate how well our algorithm perform on various offline RL tasks, we tested our
method on the D4RL (Fu et al., 2020) benchmark. We compared it with existing offline RL meth-
ods such as BC (Pomerleau, [1988)), TD3+BC (Fujimoto & Gul [2021), CQL (Kumar et al., [2020),
IQL (Kostrikov et al., [2022), MCQ (Lyu et al., 2022), and SVR (Mao et al., [2023). We trained
our method with five different seeds to obtain five different policies and sampled ten trajectories
with each of them. We report the average and standard deviation of the fifty normalized scores in
Table 2] The results show that our algorithm can successfully learn high-performing policies from
most datasets, while attaining state-of-the-art scores on some of them.

5.2 EXPERIMENTS ON A HETEROGENEOUS DATASET

Although D4RL datasets such as “hopper-medium-expert-v2” were sampled with more than one
behaviour policies, the action distributions are actually unimodal on most states due to the state
distribution being so different between the two behaviour policies. Figure [3] presents a visualisa-
tion of the entire and initial state distributions of the “hopper-medium-expert-v2” dataset where we
have used the uniform manifold approximation and projection (UMAP; Mclnnes & Healy|[2018))
technique for dimension reduction. We can see that expert and medium states are clearly separated,
except for the initial states.
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(a) Entire state distribution (b) Initial state distribution

Figure 3: The UMAP of the states in the “hopper-medium-expert-v2” dataset.

To demonstrate the effectiveness of our trajectory clustering algorithm, we created a custom dataset
with drastically different initial state behaviours using the “Hopper-v5” environment provided by
Gymnasium library. Half of the samples in the dataset were sampled from an expert policy, and
the other half was sampled from a policy that tripped over within eight timesteps. Table [3]demon-
strates that our method can effectively classify the two datasets and learn an optimal policy from a
heterogeneous dataset.

5.3 ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

In meta reinforcement learning settings, each

MDP has independent transition and reward dy-  Table 4: The impact of hyperparameters A and
namics, so they must be modelled in order to ), on the average performance of our trajec-
infer the MDP from trajectories. Under our tory clustering algorithm evaluated on six custom
formulation, on the other hand, transition and D4RL datasets. The performance is measured in
reward dynamics of each MRP are correlated  (ermg of adjusted rand index (ARI) and normal-

with each other through the policy as we can  jzed mutual information score (NMI).
see from (2) and (@). Although this implies that

we may identify the MRP solely through mod-

elling the behaviour policy, we hypothesized AR Ar ARI NMI
that modelling transition and reward dynam- 0 0 0.98+£0.07 0.98+0.06
ics can provide meaningful auxiliary informa-

tion leading to better clustering performance. 0 1 091+021 092+0.17
Therefore, we compared the performance of 1 0 0.994+0.02 0.98=£0.02
our algorithm under four different conﬁgura— 1 1 0.86 4+ 0.27 0.87 +0.24

tions (Ar, Ag) € {(1,1),(1,0),(0,1),(0,0)},
where A and Ag are the weights for transition
and reward models defined in (§)). To evaluate the accuracy of our trajectory clustering algorithm, we
created custom D4RL datasets by concatenating random, medium, and expert datasets. The mean
and standard deviation of adjusted rand indices (ARI; [Hubert & Arabie|[1985) and normalised mu-
tual information scores (NMI) for each configuration over 5 different seeds are reported in Table 4]
We can see that the configuration (Ar, Ag) = (1,0) performs the best on average. Unlike s;1,
which is in the vicinity of s; regardless of the a;, r; can vary drastically between policies, making
it difficult to model rewards from different policies with a single neural network. We speculate this
to be the reason why training a reward model negatively affects the performance of our trajectory
clustering algorithm. For experiments on other datasets, refer to Section[E.3]

6 CONCLUSION

In this paper, we propose a new value regularisation algorithm for offline RL penalizing their critic
values, based on the OOD action set that we were able to explicitly identify. We determine how OOD
an action is based on its likelihood, where the threshold is set adaptively according to the shape of
the behaviour policy. To enable likelihood analysis for heterogeneous datasets where simple be-
haviour cloning fails, we introduce a novel trajectory clustering technique based on a meta-learning
formulation of the clustering problem. Our method of penalising the critic values for OOD actions
by regressing them towards a lower bound of the optimal Q-value function is proven to be effective
both theoretically and empirically.
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A  NOTATIONS

* 0: a zero vector with dimensionality implied by context

* Dk1(P; || Py): the Kullback-Leibler (KL) divergence from a probability distribution P;
to another probability distribution P,

* ¢;: the ¢-th standard basis of a Euclidean space

* f(y | x): the value of the pdf (or pmf) of the distribution f(x) at y, where Y is a set and
f: X —=PY)

* [ =g f(z) > g(x) forall z € X, where f and g are real-valued functions defined on a
set X

s f =g f(z) = g(x) for all z € X, where f and g are real-valued functions defined on a
set X

* I;: an identity matrix with d rows and d columns

* L°°(X): the space of bounded real value functions on a set X endowed with the supremum
norm

* [N]: the set {0,1,..., N — 1}, where N is an integer
e N(p,X): a multi-variate Gaussian distribution with mean vector g and covariance matrix

* P(E): probability of an event E

* P(X): family of absolutely continuous probability distributions with finite first moments
supported on a subset of X, where X C R?

» P4(X): the family of discrete distributions supported on a subset of X, where X C R¢

* supp u: the support of a probability distribution p

* U(X): the uniform distribution on a Borel set X C R? of positive, finite Lebesgue measure

o W1(P1, P2): the Wasserstein distance of order 1 between two probability distributions
P, P, e P(X)

We also define a clipping function

clip(z;y, z) = max{y, min{z, z}}.
The notation can be generalised to dimension-wise clipping, that is, for x € R? and y, z € R, the
i-th coordinate of clip(x;y, z) is clip(z; ; y, 2).
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B PROOFS

Proposition 4. Let X be a multivariate Gaussian random variable with mean vector p € R¢ and
positive definite covariance matrix ¥ € R™*?. The 100(1 — «) % HDR is

Rifa) = {x €RY: (x— ) B (x — ) S Fl(1—a) },

where sz is the cumulative distribution function of a chi-squared random variable with d degrees
of freedom.

Proof. LetZ = (Z1,2Zs,...,24) = VE~1(X — w). By the change of variables formula,
pz(z) = ‘det(\/i)‘px (,u + \/Ez)
1
= det(2)2(27) "2 det(2) "/ exp (—2ZTZ>

1
= (27r)_‘7l/2 exp <—2ZTZ> ,

where px and pz are the pdfs of random vectors X and Z, respectively. We can see that Z is a
standard normal random vector. Since

R(5) = { x € B (2m) 2 der(®) 2 exp (-5 )T x - 0)) 2 |

={xeR’: (x—p)' = (x—p) < —2logy + dlog(2r) + log det(X) } ,

we have
P(X € R(y)) =P (Z"Z < —2logy + dlog(27) + log det(X))
d
=P (Z Z} < —2logy + dlog(27) + log det(2)> .
i=1
Z1,2s, ..., 24, are independent, so 2?21 Z? is a chi-squared random variable. This implies

P(X € R(y)) = F\z2(—2logy + dlog(2m) + log det(X)).
P(X € R(y)) > 1 — aif and only if
—2logy + dlog(2m) + log det(X) > F;?ll(l —a).
Therefore,
o = 2 det(2) 2 exp (- g1 - ).
which means
R(fa) = {x eR: (x—p) S (x - p) S FSH(1- ) }

d

Proposition 5. Let m be a discrete latent variable supported on [K| and
T.r = (50,G0,70,51,01,71,52,02,T2, -+ ., 871,47 —1,TT—1,5T)

be a trajectory rolled-out according to the following sampling process: sq ~ pg, m ~ p, and for
eacht € [T), s¢41 ~ P(st;m), ar ~ B(st;m), and ry ~ R(s¢, S¢11; m). The marginal pdf can be
written as

K—1 T-1
p(rir) = po(s0) Y p(m) [] P(sear | seim)Blar | spsm)R(re | se, sp413m)
m=0 t=0
and for any distribution q on [K)|,
log p(r.7) > log po(so) — Dkw(q || p) ©)
T-1
+ Z Ern~g [log P(si41 | s¢3m) +log B(at | s¢3m) +log R(r | ¢, 5441 3m)] .
t=0
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Proof. Let us denote the action-less trajectory by 7.7, that is,

71 = (80,70, 81,1, 82,72, - - - , ST—1,TT—1, ST)-
By Jensen’s inequality,
log p(7:7)
K-1 T-1
= log po(so) + log Z p(m) [T [P(sesr [ sesm)Blas | se;m)R(re | si,50015m)]
m=0 t=0
_ RLGOR § . . :
= log po(so) + 10% q(m T H (st41 [ se3m)Blac | se;m)R(re | se, Se415m)]
m=0 t=0
T-1
p(m)

> log po(s0) + Em~g |log + A(st,a8,7¢,5¢415m)
t=

L=}
—_
3
~
(=)

T-1

=log po(s0) = Dki(q || P) + Y Ermwg [Alst, ar, 74, s1413m)]
t=0

where

A(styap, e, se413m) = log P(se41 | s¢5m) +log B(ay | s¢3m) + log R(ry | s¢, $¢415m).

We restate the two assumptions we made in Section[d.2] for the reader’s convenience.

Assumption 3. There is Kp > O such that forall s € S and a;,as € A, Wi(P(s,a1), P(s,a2)) <
Kp||a1 — CLQ”.

Assumption 4. The value function of the behaviour policy 3 is Ky -Lipschitz.
Lemma 6. For any policy m and s € S,

Tmin B Tmax
<VhA(s) < .
11—~ (s) < 1—7

Proof. By the definition of V™, forall s € S,

oo r 00 -
o
and ] ] ] _
e oo
T
Vﬂ—(s) - IE:‘r"’ﬂ'|$ ;f}/trt < ]ETNW\S ;’Ytrmax = lria),;.

Proposition 7. Define Q5" : S x A — R by the equation

T'min
QIEB(Sv 0,) = max {Vﬁ('s) — Tmax 1 Tmin — ’-YKVKP Ea’wﬁ(s) [HCL - a/”] ' 'Y} .

For any policy w: S — P(A) such that V™ = VP, Q™ = QEB.

Proof. By Lemmalf|and the definition of Q, forall s € Sand a € A,
er(57 0,) = ]ES’NP(s,a,s’),TNR(s,a,s’) [T + ,-YVW (Sl)]

> Es’wP(s,a,s’),rwR(s,a,s/) |:Tm1n + 1 mll’lry:|

Tmin

1—7v
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So we only need to show that for all s € S and a € A,

Q”(s, CL) > VB(S) — Tmax T "'min — ’}/KVKP IEa’wﬁ(s) [HCL - a/H] '

Let a1, as € A. By the Kantorovich-Rubinstein formula (Villani, [2009),
’ES’NP(-\S,M)[Vﬂ(SI)} - ES’NP(AIS,M)[VB(S/)H < KVWl(P(' ‘ S7a1)7P(' | 37a2))
< Ky Kplla; — az].
Therefore,
Qﬂ—(87 a) = Es’wP(s,a),rr\aR(s,a,s’) [T + ’VVW(S/)]
> IEs’NP(S,a),rwR(s,a,s’) [T + Fyvﬁ(sl)jl
> V() = Earmp(ls) [Esimp(s,ar)rmrisarsy [T+ 7V (s)]]
+ Es’wP(s,a),rwR(s,a,s’) [’I’ + ’VVB (S/)}
> Vﬁ(s) — Tmax + "min + ’YEa’NB(s) [Es’~P(s,a) [Vﬂ(sl)] - IEs’r\zl—"(s,a’) [Vﬁ(sl)]]
> Vﬁ(s) — Tmax + "min — YEvEKp Eqp(s) [[la — al]].
Note that we have used the fact that
VA(s) = Easns(s),s'~P(s,a)reR(s,a,s") [T+ VVﬂ(SI)] :
O]

Theorem 8. Let { A;}scs be a family of subsets of A, Q € L>(S x A), and Tx be an operator on
the space of real-valued functions on S x A defined by the equation

(TaQ)(s,a) = {<T “Q)(s,a) ifac A,

Q(s,a) otherwise,
Soreach Q € L (S x A). Then any bounded real-valued function on S X A converges to a unique
fixed point Q) s by repeatedly applying T 4.
Proof. Fixs€ S,a€ A,and Q € L™(S x A). Ifa € A,
(TaQ)(s,a)| = [(T*Q)(s, )|

= ESINP(S,LL),TNR(S,&,S/) |:T + Suli‘ Q(Sla a/):|
a’e

|

B
a’€A

< Es’wP(s,a),rwR(s,a,s’) [max{|71max| ; |Tmin‘} + ’VHQHOO] ;
= max {|rmax/ s [Tmin|} + Y[ Qlloo-

< Es’wP(s,a),rrvR(s,a,s’) |: T+ 7y sup Q(S/, a/)
a’€A

< Es’wP(s,a),rrvR(s,a,s’) |:|7” +

Otherwise,
(TaQ)(s,0)] = |Q(s,)| < Q.
So
ITa@le < max {1 @loc max {rmax!  [rinl} + Qoo } < o0,

that is, 7T4Q € L (S x A). So the restriction of T4 onto L>°(S x A) is an operator on L>(S x A).
With a slight abuse of notation, we will just denote the restriction by 74 from now on.
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Now we go on and prove that 74 is a contraction operator. Fix s € S, a € A and Q1,Q2 €
L*(S x A). If a € As,

(TaQ1)(s,a) = (TaQ2)(s,a)| = (T Q1)(s,a) = (T"Q2)(s, a)|

Eg o p(s,0) [sup Q1(s',a’) — sup Qg(s’,a”)”
a’eA a’’eA

=7

<YEsynp(sa) San1(8’7a/) — sup Qo(s’,a")
a’'e

a’e A
<AEyris {sug‘ Qu(sa') — Q2<s’,a'>|}
a’ €

<YQ1 — Q2||o-

Otherwise,
(Ta@1)(s,a) = (TaQ2) (s, )| = |Q(s, @) = Qls,a)| =0 < 7]Q1 — Qs

Therefore, and T4 is a contraction mapping on L>°(S x A). By the contraction mapping theorem,
any initial-bounded Q-function would converge to a unique fixed point () 4.

Lemma 9. Let 7, and my be two policies. If By r, (5[Q™*(s,a)] > V7™ (s) for all s € S, then
V- U,

Proof. We define a sequence (Q),,) of bounded real-valued functions on S x A by the recurrence

relation
QT2 ifn =0,
Qn = o .
T™Q,_1 otherwise.

We first show that (),, > Q@™ by mathematical induction. The base case is trivial because Qy =
Q™. Suppose Q,,_1 = Q™. Then foreach s € Sand a € A,

Qn(s7 a’) = (Tﬂl anl)(& a)
=Eyp(s,0),r~R(s,0,5") |7+ 7 Earom (s7) [@n-1(s",a")]]
> By p(s,a),r~R(s,0,5) [T+ 7 Barmomy (51 [Q7 (87, 0/
> By p(s,a),r~R(s,0,5) [T+ 7 Barmy (s [QT (5, a
= (T™Q™)(s,a)
= Q™ (s, a).
So @, = Q™. By mathematical induction, @),, = Q™2 for all n. Forall s € Sand a € A,
Q™ (s,a) = nhﬁnolo Qn(s,a) > Q™(s,a).
Therefore, for all s € S,
VTH(8) = Egrry () [RT (5, 0)] 2 Egromy (5) [Q (5, 0)] > V™ (s),
thatis, V™ = V72, O

Theorem 10. Ler {A,} cs be a family of subsets of A, Q € L>®(S x A), and Q4 be a bounded
real-valued function that satisfies the relation

(T*Qa)(s,a) ifa € As,
=V 10
@als,a) {Q(s7 a) otherwise, (10)

forall s € S and a € A. Suppose there is a policy 7 such that for all s € S,

V7 (s) > sup Q(s, a)

acA
and
Q"(s,as) =2 V7 (s)

for some a; € A,. If there exists a deterministic policy 7% : S — A that is optimal under the
constraint T4 (s) € Ag forall s € S, then

75 (s) = argmax Q (s, a).
acA
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Proof. Define T as in Theorem[8] We can see that there is a unique bounded real-valued function
Q 4 that satisfies (I0), because by Theorem|[8] 74 has unique fixed point Q 4.

We proceed to prove that for each s € S, Qa(s,7%(s)) > V™a(s). Define a sequence (Q,,) of
bounded real-valued functions on S x A by the recurrence relation

QnZ{QO ifn=0, (1

TaQ,_1 otherwise,
where QQp: S x A — R is defined as

_ [Q7a(s,a) ifac€ A,,
Qols,a) = {Q(s,a) otherwise.
Whenn =0, foralls € S
Qo(s, i (s)) = Q4 (s, ma(s)) = V7™ (s),

because 77 (s) € A,. Assume Q,,_1(s, 7% (s)) > V7a(s) forall s € S. Then forall s € S,

Qn(57 71-;1(5)) = ES'NP(S,TFZ (s)),r~R(s,m% (s),s") |T +y SuI_,)4 Qn—l(slv CL,):|
L a’'e

> ES'NP(S,TFZ (s)),r~R(s,m%(s),s") [T + ’YQTL—l(SS ﬂ-j{(sl))}

> ES/NP(S,TFZ (s)),r~R(s,7% (s),s") r+ ’VVTFZ (8/):|

= By p(s,m% () o~ R(s,m3 (5),7) :7" +VEarnrs (s) {Qﬂz (s, a')“
= (T™4Q™)(s,ma(s))
= QA (s, mi(s))
=V7™a(s).
So by mathematical induction, @, (s, 7% (s)) > VTa (s) forall s € S and n > 0. Therefore,
Qs w4(s)) = lim Qu(s,m3(s)) = V()
Since forall s € Sanda € A,,
Qa(s,a) = (TaQa)(s,a) = Q(s,a) < V7(s).

We can define a deterministic policy 74 : S — A that maps s € S to a,. Since m4(s) = as € A;
for all s € S and 77 is the optimal policy among the policies that satisfy this constraint, we have
V™4 = V™, So we may conclude that for all s € S,

sup Qa(s,a) < V7™(s) < V™ (s) < V™ (s) = Qa(s, m4(s)). (12)
acA\Ag

We finish the proof by showing that for all s € S,
Qals,ma(s)) = max Qa(s, a).

Recall the sequence (Q,,) we previously defined by the recurrence relation (TT). We will prove that
foreveryn, s € S,and a € A,

Qnls,a) < V™ (s) = Qu(s, mi(s)).

Assume n = 0. Fix s' € Sand a' € A. If a' & A+, then by the observation we made in (12),
Qo(st,a®) = Q(sT,ah) < Vma(sh).

If at € A+, consider a policy 7f: S — A defined as

ﬂ'T(S)— al if s = st,
~ |#%(s) otherwise.
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Forall s € S, nf(s) € Ay, s0 V™4 = V™ If Qo(st,at) < V™a(st), it satisfies our hypothesis.

Otherwise, i i X
Q4 (s", 7l (s1) = Qo(s',al) = V™a(sh) = Qa(s", mi (s1))
and for s # st,
Q™4 (s,m'(5)) = Q4 (s, 4 (5)),
so by Lemma@ V”f b V”z, which means V’Tf = V™4, Then
Q™4 (sT,al) = (T™4Q™)(s, al)
= ES’NP(ST,aT),rwR(sT,aT,s/) T+ ’YQWZ (8/7 ,/le(sl)):|
= ES’NP(ST,aT),TNR(st,aT,s/) T+ ’Yvﬂ-z (S/):|

= Es’wP(sf,aT),rwR(sT,aT,s’) I:r + ,YVTFT (S/>:|

= Egp(st,at),ruR(stat,s) QT (s, WT(S/))}
= (77 Q" )(s",a)
= Q" (s 7(s1))
=V (sh
= V7a(sh).
So Qo(st,af) < V™a(st) in both cases. Since it is obvious that
Qo(s', mia(sh)) = Qma(st, wi(sh)) = Vma(sh),
our hypothesis holds for n = 0.
Assume the hypothesis holds for n — 1. Fix st € Sand af € A. Ifaf ¢ A,
Qn(s',a") = (T3 Qu-1)(s",a") = QP (s',a’) < VT (s1)
by (12). Otherwise,
Qn(s',a") = (TaQn-1)(s",a")
= (T"Qn-1)(s",a")

o
= ES’NP(ST,aT),TNR(sT,aT,s') T+ 7y sup Qn—l(s y @ )
L a’e A
o
= Egop(st,at),r~R(st,st,s) [T+ lr}/lgﬁ Qn-1(s,a )}

- Es/wP(sT,aT),rwR(sT,sT,s/) T+ 7V7r2 (S/)}

=Ky p(st,at)rmR(st st ,s7) I+ YEarmrs, (1) [Q”Z (s, a')”
= (T™4Q™)(s", al)
=Qm™ (st,ah)
- QQ(ST, aT)
< VTa(sh.
When af = 7% (s"), the inequality becomes equality. So by mathematical induction, for every n,

s€S,anda € A, i
@n(s,a) VT4 (s) = Qn(s, ma(s)).
Sending n to infinity, we can see that for all s € S and a € A,

Qas.) = lim Qu(s,a) < V™(s) = Tim Quls,mi(s)) = Quls, i (5)):

Therefore,
Qal(s,mh(s)) = I;leaj( Qa(s,a).
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Theorem 11. Any initial bounded real-valued function on S X A can converge to a unique fixed
point Qf; by repeatedly applying T Suppose for each s € S,

QB(Syas) > anﬁ(s) [QB(S7 CL)]

Sor some as € A\ OOD(s). If there exists a deterministic policy TS = A that is optimal under
the constraint 7(s) ¢ OOD(s) for all s € S, then w5(s) = arg max,c 4 Q3(s,a) forall s € S.

Proof. First observe that forall s € S and a € A,

Q5" (s,0) = T8,

and

r
QEB(Sa a’) < Vﬂ(s) — Tmax T "min < 1ma>’cy — Tmax T "'min,

by Lemma@ This implies QI‘;B € L®(Sx A). Since Q = QIB‘B and A; = A\ OOD(s) satisfies the
conditions of Lemmalg] any initially bounded real-valued function on S x A converges to a unique
fixed point, which we denote by @}, through repeated application of 74, which is in fact, 7.

Forall s € S,
QEB(S, a) < VB(S) — Tmax T "min < Vﬁ(3)7

which means

sup Q,IEB(Sa a)‘ < VB(S) = anﬁ(s) [Qﬁ(sv a)] < sup Qﬂ(s’ a’)'
acA a€ A\OOD(s)

Now we can see that the second part of the theorem is a special case of Theorem [I0] where A, =
A\ 0OD(s), Q = Q55, Q4 = Qj. m = B, and 7}y = 75 O

Lemma 12. Let 11 = {mg, w1, 72, ..., TN_1} be a finite set of policies. If ™ is a policy such that
foreach s € S, there is i € [N] such that 7*(s) = m;(s) and V™i(s) = maxren V" (s), then
V™ = VT forevery w € 1L

Proof. Define a sequence (Q,,) of bounded real-valued functions by the recurrence relation

0, - max,e @7 ifn =0,
"7 Qn_1, otherwise.

We want to show that Q,, > max,cp Q7 for all n > 0. The base case is trivial. Assume
Qn—1 = maxren Q7. For each s € &, there is ¢ € [N] such that 7*(s) = m(s) and
V™i(s) = maxrerr V™ (s), which implies

IEa~71"‘(s) [anl(saa)] > ]Ea~7ri(s) [Qﬂ'l (S)] = Vﬂ-%(s) = ngﬁ{ Vﬂ'(s)

Now forall s € Sanda € A,
Qn(s,a) = (T™ Qn-1)(s,q)
= ES’NP(s,a),TNR(s,a,s’) [T + ’YEG/N’T\'*(S,) [Qn—l (8/7 a/)H

> ]Es'NP(s,a),rNR(s,a,s’) T+ ’VIT?EE%( Vﬂ-(sl)

= maxX By p(s0), rh(s,a,8) [T+ Barr(s) [Q7 (', a)]
= max(T7Q")(s,a)

_ T
= ]gléiﬁ(@ (s,a).

By mathematical induction, @Q,, = max,cr Q™ for all n > 0. Therefore,

Q™ (s,a) = lim Qn(s,a) > maxQ™(s,a)

n— oo mell
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forall s € Sand a € A.
Fix s € S. There is i € [N] such that 7*(s) = m;(s) and V™ (s) = maxem V7 (s). Then

*

VT (8) = Equne(s) [Q”*(S, a)] > Egor,(s) [QT (5,a)] = V™ (s) = max V" (s).

mell
Our choice of s was arbitrary, so V™ > max e V™. O

Theorem 13. Any initial bounded real-valued function on S x A can converge to a unique fixed
point Q3 by repeatedly applying ‘Tz. Suppose for each B € Band s € S,

Qﬁ(sa af) > Eafvﬂ(s) [Qﬁ(sv a)}

for some a? € A\ OOD(s). If there exists a deterministic policy 5 S = Athat is optimal under
the constraint w(s) ¢ OOD(s) for all s € S, then mj(s) = argmax,c 4 Q5(s,a) forall s € S.

Proof. First observe that forall s € S,a € A, and 8 € B,

LB Tmin
>
QB (Sa a) =1 ")”

and

r
Q]BB(Sa a‘) < Vﬁ(s) — Tmax T "min < lria); — Tmax 1 T'min;

by Lemmal[6] So obviously,

LB LB T'min
= >
Qg (s,a) rﬂnggcQB (s,a) > ,

and

r
gB(& a’) = %leag QEB(& a’) < lmaX — "max + "min,

for all s € S and A. This implies QE® € L>(S x A). Since Q = Q}" and A, = A\ OOD(s)
satisfies the conditions of Lemma|8] any initially bounded real-valued function on S x A converges
to a unique fixed point, which we denote by @3, through repeated application of T4, which is in
fact, 73.

For each 3 € B define a deterministic policy 3’: S — A so that 3'(s) = a? for each s € S. Then
Q7(s,0'(s) = Q°(5,07) = Eanps) [Q7(5,0)]

forall s € S, s0 VP = VP by Lemma@ We will denote the set { 3’ : 3 € B} by B'. Consider a
policy g*: & — A defined as

B*(s) = <argmax vﬁ’<s>> (5),
pB’eB’

that is, for each state, we follow the 8’ with the highest value. Obviously, 8*(s) € A\ OOD(s) for
all s € S, and by Lemmal(I2] forall s € S,a € A, and § € B,

QIEB(&CL) S Vﬁ(S) — T'max + T'min S VB(S) S VB,(S) S VIB* (5)7

which means
Ve (s) > 5upmaXQﬂ (s,a) = sup Q%B(s,a).

acA PEB acA
Now we can see that the second part of the theorem is a special case of Theorem [[0] where A, =
A\ 0OD(s), Q@ = QLB, Q4 = Qf, = 8%, and 7% =Th. O

Proposition 14. Let X be a non-degenerate multivariate Gaussian random vector with mean p €
R? and a diagonal covariance matrix diag(a)? € R4*4. Fory € RY,

E (X - yll,) Z[ ~ ) f(ya‘fg)ﬂ/fap(—@;j))]

i=1
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PVOOf: Let X = (X17X27"'7Xd)’ y = (y17y27"'1yd)’ K = (/1“17/'027"'7/*“1)’ and o =

(01,09,...,04). We may assume that 01,09, ...,04 > 0. Then

d
Z|X ] ZZEHXi—in

EfIX —yl,]

Define g;(y) = E [|X; — y]].

dy) = E [d X - y@ — E[Lx,cy — 1x.oy] = Fx,(y) — (1— Py, () = 2Fx, () — 1,

where F'x, is the cumulative distribution function of X;. So

dit) = et (L2,

Observe that
9i(pi) = E[|Xi — pil]

1 = (i — pui)?
o / (z; — ps) exp (—M dz;

i

L (i — pa)?

Substituting u; = (z; — ;) /o3,

o0 1.2 0 1,,2
gi(;) = / oiue 2%ig; duy, 7/ oiue 2Y%ig; du,
\/27rc7Z —o0
00 0
o; 1,2 1,2
! / w;e” 2% du; —/ ue” 2% du;
V2T 0 —o0

/2
= —0;.
™

By the fundamental theorem of calculus,
Yy 2 Yy v — L
i(y) = gi(pi) + ‘(v) dv = fai—i—/ erf( Z)dv.
9i(y) = gi(1s) /mg() \V 5 o3

Substituting z = (v — )/ (04V/2),

y . T (y=pi)/(0:V2) . /8
er ') dv = erf(z)o; V2 dz
2
— 1 1

| (R) e (R e () )
9:(y) = (y — i) ext (iﬂg) + \/zm exp (W) :
which implies

E[IX -yl ;gzyz Z[ ~ ) f(gﬁ%ﬂap(—(y;j))]

i=1

Therefore,

O
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C PRACTICAL ALGORITHM

C.1 STAGE I: BEHAVIOUR POLICY LEARNING

In theory, each behaviour policy is well-defined on every state s € S. However, in practice, we can
trust our estimations only in the vicinity of the states they were trained on. The problem is, we train
each B only on the states they are assigned to. Therefore, we need a mechanism to determine which
behaviour policy estimates we can trust given a state s € S. For this purpose, we additionally train a
classifier f,,: S — P4([K]) using the computed assignments and determine the credible set by the
equation

. R R 1
V(6 = { A€ B2 futi] 9> 3 max £u(i 9)
where b > 0 is a hyperparameter. We accordingly modify the definition of QIéB to
QP (s.0) = max Q4%(s.a).
BeV(s)

forall s € Sand a € A.

C.2 STAGE II: BEHAVIOUR VALUE LEARNING

To learn the value functions of all K behaviour policies in parallel, we leverage a network V;: S —
RX with K outputs. The per sample temporal difference (TD) loss function can be written by the

equation
2

by (Css,m,8") = (Ve(s)[A(s)] — 7 = Ve (sIA(S])”, (13)
where s, r, and s’ are the state, reward, and next state sampled from the dataset, respectively, ¢’ is
the target network parameter that is updated by polyak averaging as in |[Lillicrap et al.| (2016)), and
Ve (s)[d] is the i-th coordinate of V¢ (s). Note that A(s), the cluster assignment of s, is equal to A(s"),
because we assign each trajectory to the same cluster.

C.3 STAGE III: POLICY LEARNING

In practice, it is infeasible to compute the superior term in the penalised Bellman operator 7. We
instead adopt the actor-critic formulation that alternates between the policy improvement step and
the critic learning step. The goal of the policy improvement step is to find an action that maximises
the critic for each state. The challenge is that the critic is highly non-convex due to the penalisation
of critic values for actions between the means of the behaviour policies, causing gradient methods to
yield suboptimal solutions. Hence, we search for the optimal action in the vicinity of each behaviour
policy’s mean simultaneously. This is done by training a network to output not the optimal action
itself but the difference between the optimal action and one of the behaviour policy means. Using a
network gy : S — R24a we encode a Gaussian distribution 7 with a d,-dimensional mean vector
and d, X d, diagonal covariance matrix. For a given state s, we choose the best behaviour policy
£* among ]A)(s) with respect to the current critic function QwQ, that is,

B* = arg max Quo (5, p,ﬁ"(s) +4(s)),
BEV(s)

where p 4 is the mean vector of the behaviour policy estimate /3 and § is a vector sampled from 7.
Our current policy can be computed according to the following equation:

7(s) = 1. (s) + 6.
The loss function for the policy improvement step can be written by the following equation:

belibr ) = = max Que (5,145(5) +90.(9))

The critic learning step has two objectives: minimising the TD error and penalising the OOD actions.
For the first objective, we adopt the conventional TD loss adapted to match the way we defined our
policy, which is represented by the equation

0P (g 55,a,7,58') = (Qug(s,a) — T(r, ")),
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where s, a, r, and s’ are the state, action, reward, and next state sampled from the dataset, respec-
tively, and the TD target T'(r, s') is defined as

T(r,s') =r+7v max Qy, (s’,p,/;(s') +g¢;(s’)> :
BeV(s)
w’Q and .. in the preceding equation are the target critic network parameters and target actor net-
work parameters, respectively, which are updated by polyak averaging to gradually follow g and

Y.

The second objective of the critic learning step is to penalise the critic values of OOD actions towards
QZ,B(S, a). To achieve this goal, we need to be able to sample an action a from &/(OOD(s)) and
compute QIZ%,B (s,a). In general, it is difficult to sample uniformly from an arbitrary set, so we sample
an action from A instead and ignore it if it does not lie in OOD(s). Since we are working with
actions mapped via the inverse hyperbolic tangent function, we need to sample from tanh ™" (A) =
R?, which is unbounded. We circumvent this issue by sampling from a sufficiently large hypercube
[~ L, L)% In particular, we set L = 20 based on the observation that tanh(10) ~ 1.00 under the
32-bit floating point representation, where we doubled 10 to secure a safety margin.

LB

In order to compute , we need to compute QEB for each B € B. However, computing QEB

is not straightforward, due to the term E, 5 [lla — o’[]] in (7). We discovered that if /3 has a
diagonal covariance matrix and we use a 1-norm, the expectation has the following closed-form
expression (Proposition [T4):

da
(ai — pi(s))?
E oo la = a'll] = (0 = ui(s)) ext ( )+ \f Z miesp (-1 T3 )
i=1
where a = (ay, as,. . .,aq,) and 3(s) is a Gaussian distribution with a state-dependent mean vector
p(s) = (u1(s), ua(s), ..., ua,(s)) and a state-dependent covariance matrix whose main diagonal
iso(s) = (01(8),02(8),...,04,(8)). For rmin and rmax, following [Mao et al.[(2023), we estimate

them by the minimum and maximum rewards in all of the datasets of a given task, that is, for example
Tmin and Tmax for a hopper-v2 dataset is computed by the minimum and maximum of the rewards
in hopper-expert-v2, hopper-medium-v2, and hopper-random-v2. To sum up, the loss function for
regularisation is

(55 (Vq;8,a) = licoon(s) (Quo (3,a) — QLB(~ ~))2,

where 5 is a state sampled from the dataset and a is an action sampled from 7,1,. The resulting total
loss can be written by the following equation

lo(Yq) = 65" (1) + walyt (vq), (14)

where wg is a tuneable hyperparameter. We have omitted the samples in the preceding equation for
simplicity.

For 7,1 we adopted
1~ 1
SBlals)+5(als),
where T is the current policy and f is defined as

B(-18) = N(pg.(5),485.(5)).

Here, 5. (s)and X e (s) are the mean vector and covariance matrix of the selected behaviour policy

Taig(a | 5) =

B*. The first term regularises the critic values over a broad range of actions to guide a randomly
initialised network g, towards producing near-zero values. The second term regularises the critic
values in the vicinity of the current policy allowing delicate control near the boundary of OOD(s).

D DIDACTIC EXPERIMENT

To show the importance of trajectory clustering, we also evaluated our algorithm on a simple navi-
gation environment shown in Figure [d} The agent should output a two-dimensional velocity vector
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B Agent
X  Goal
----- Behavior 0

-+ Behavior 1
Penalty area

Figure 4: The agent receives a reward of —1 until it reaches the goal and an additional penalty of
—1 when it is inside the penalty area. The offline dataset consists of trajectories sampled using two
behaviour policies 3y (Behaviour 0) and 3; (Behaviour 1).

as an action based on the two-dimensional position vector given as state. The episode terminates
when the agent reaches the goal, and until then, it receives a reward of —1. When the agent is inside
the penalty area, it receives an additional penalty of —1, that is, the reward is —2 every time-step.
We created an offline dataset that consists of trajectories sampled using two behaviour policies.
Table [5] shows the mean and standard deviation of episode returns for three different algorithms:
TD3+BC (Fujimoto & Gul 2021), SVR (Mao et al., [2023)), and ours. Due to the multi-modality of
the dataset, SVR, which relies on simple behaviour cloning, fails to learn an optimal policy. Our
algorithm can successfully recover the behaviour policies and thus outperforms other baselines.

D.1 IMPLEMENTATION DETAILS

We normalised the observations following |Fujimoto & Gu|(2021) and scaled the rewards following
Kostrikov et al.| (2022). Note that we used the naive behaviour cloning algorithm for expert and
medium datasets, instead of our trajectory clustering method, because we know a priori that they are
homogeneous. The algorithm was implemented upon the JAX (Bradbury et al. 2018) framework
using the Flax (Heek et al., [2024) library. The scikit-learn (Pedregosa et al., 2011) library was used
to compute ARIs and NMIs for Sections[5.3]and [E.3]

E EXPERIMENT DETAILS

E.1 DIDACTIC EXPERIMENTS

The observation space is S = [0, 30] x [0, 30], the action space is A = [—0.2,0.2] x [-0.2,0.2], and
the penalty area is S, = [15, 30] x [0, 10]. The starting location of the agent is sampled uniformly
at random from [0, 0.1] x [0,0.1] and the goal position is fixed to ¢ = (30, 30). If the current state
is s = (s0,s1) € S and the action is @ = (ag,a1) € A, the next state s’ = (s(,,s]) € S'is

s' = clip(s + a0, 30).

The reward function is
0 if|ls —gll2 <0.1,
r(s,a,8')=¢ -2 ifs' €S,
—1 otherwise.

Table 5: Average returns on the navigation dataset.

Algorithm Return

TD3+BC —622.82 £ 185.72
SVR —1000.00 £ 0.00
Ours —173.50 £ 25.32
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The episode terminates if either the agent has approached the goal (||s’ — g||2 < 0.1) or the number
of time-steps exceeded 1000.

The offline RL datasets was generated using subgoal-reaching policies. A subgoal-reaching policy
m(s;gs) for a subgoal g; is defined as

m(s;gs) = clip(clip(gs — $;—0.2,0.2) + 0.1 ;—0.2,0.2), (15)

were ¢ is a two-dimensional standard Gaussian noise. We generated the samples according to
Algorithm [1] using two different list of subgoals: [(0,30), (10, 30), (10, 0), (20, 0), (20, 30)] and
[(10,0), (10,15), (20,15), (20,0), (30, 0)].

Algorithm 1 Dataset generation from a list of subgoals

1: Input: a list of subgoals [ggl),gf), e ,ggN)}
2: Initialize an empty dataset D
3: while D has less than 1 000 000 elements do

4 § < env.reset ()

5. for g, + [0, 97, .. Y] do

6: while ||s — gs||2 > 0.1 do

7: a+ 7(s;9gs) > (13)
8: s',r,d + env.step(a)

9: Add (s,a,r,d) to D

10: 5+ s

11: end while

12: end for
13:  while |[s — g||> > 0.1 do

14: a< m(s;q) > (13)
15: s',r,d < env.step(a)

16: Add (s,a,r,d)to D

17: s s

18: end while
19: end while

E.2 MOTIVATION EXPERIMENT
E.3 ADDITIONAL ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

Aside from the three random-medium-expert datasets mentioned in Section [5.3] we also created
custom D4RL datasets by concatenating medium and expert datasets of halfcheetah, hopper, and
walker2d tasks. The mean and standard deviation of ARIs and NMIs for each configuration over 5
different seeds are reported in Table 6] The configuration (A7, Ag) = (1,0) performs the best on
average even after we include the three medium-expert datasets.

F ADDITIONAL FIGURES

G RELATED WORK

Value regularisation Value regularisation aims to discourage the actor from choosing OOD ac-
tions by penalising their critic values. Conservative Q learning (CQL; |[Kumar et al.|2020) was one
of the first works in this line of research, where they minimise the standard TD error together with
the Q-values of OOD actions. |[Lyu et al.| (2022)) pointed out that the CQL excessively regularsies the
OOD Q-values to the extent that hampers the learning process. They suggested a milder regularisa-
tion term based on the critic values of ID actions. Supported value regularisation (SVR;|Mao et al.
2023)) proposed a penalisation scheme that maintains standard Bellman updates for ID actions while
selectively penalising OOD actions’ critic values. Most existing value regularisation algorithm, in-
cluding the three works introduced in this section, sample the OOD actions from the current policy.
However, as training progresses, the current policy will start to produce ID samples, so it is crucial to
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Table 6: The impact of hyperparameters A7 and A on the performance of our trajectory clustering
algorithm evaluated on custom D4RL datasets. The performance is measured in terms of adjusted
rand index (ARI) and normalised mutual information score (NMI).

Ar=1 Ar =0

Ar=1 Ar=0 Ar=1 Ar=0

halfcheetah-medium-expert

ARI 1.00+£0.00 1.00+0.00 1.0040.00 1.00 =+ 0.00

NMI 1.00£0.00 0.994+0.01 1.00£0.00 1.0040.00
halfcheetah-random-medium-expert

ARI 0.97+£0.04 0.99-+0.00 0.914+0.19 0.91+0.17

NMI 0.97£0.03 0.97+0.01 0.93+£0.12 0.92+0.12
hopper-medium-expert

ARI 0.80+0.44 1.00+£0.00 0.994+0.01 1.00+0.00

NMI 0.80£0.42 1.004+0.00 0.97£0.03 1.0040.00
hopper-random-medium-expert

ARI 0.49+£0.29 098+0.02 0.59+0.33 0.97+£0.06

NMI 0.57£0.26 0.97+0.02 0.66£0.29 0.9840.04
walker2d-medium-expert

ARI 0.99+£0.01 1.00£0.00 0.994+0.02 1.00=£0.00

NMI 0.99£0.02 1.004+0.01 0.98£0.04 1.0040.00
walker2d-random-medium-expert

ARI 0.88+£0.16 0.98+0.05 0.98+0.03 1.00=£0.00

NMI 0.90£0.11 0.98+0.03 0.97£0.04 1.0040.00

Average ARI 0.86+0.27 0.99+£0.02 091+0.21 0.98+0.07
NMI 087£0.24 0.98+0.02 0.92+£0.17 0.98+0.06
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R(fa)

Figure 5: A diagram showing the probability density function and the 100(1 — &) % highest density
region of a normal distribution. The probability of the corresponding normal random variable to lie
inside R( f ), which corresponds to the area of the coloured region, is 1 — c.
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Figure 6: VariBAD architecture. This figure is a redrawn version of Figure 2 in Zintgraf et al.
(2021).

prevent unnecessary penalisation for those actions. CQL circumvents this issue through maximising
the critic values for actions in the dataset. SVR does it by soft thresholding the regulariser based on
the importance sampling ratio. In contrary, our method adopts a hard thresholding mechanism where
ID actions are not penalised at all. This is possible due to our capability of explicitly identifying the
OOD action set.

Heterogeneous datasets There are multiple prior work concerned with offline RL. datasets with
heterogeneous behaviours. Wang et al.|(2023)) utilises a diffusion model (Sohl-Dickstein et al., 2015;
Ho et al., 2020) to capture the multi-modality of the true behaviour policy. [Li et al.| (2023)) trains
a mixture of Gaussian policy on the dataset via likelihood maximisation and then obtains a closed-
form estimate of the best possible action near the behaviour policy. These two works ignores the
trajectory information and handles each transition individually. Mao et al.| (2024)) incorporates an
expectation—maximisation algorithm to learn diverse policies from a given offline RL dataset. Wang
et al.| (2024) proposes a learning-based trajectory clustering algorithm that can also automatically
determine the cluster size. Although these two works leverage the trajectory information, they obtain
the trajectory representation by simply averaging the samples, causing a substantial loss of informa-
tion. We incorporate a sequence modelling technique instead to learn an effective representation of
each trajectory.

VQ-VAE State-conditioned action quantisation (SAQ; [Luo et al.[2023)) is closely related to our
work in the sense that they also leverage a VQ-VAE in the offline RL setting. However, their main
focus is to discretise the actions because most of the challenges in offline RL originates from the
ambiguity of continuous distributions. On the other hand, our algorithm uses VQ-VAE to cluster
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the trajectories and recover the behaviour policies. Also, SAQ discretises the actions individually,
ignoring the trajectory information.

H LIMITATIONS

Our work is built upon the assumption that each trajectory in the dataset was sampled from a single
behaviour policy. Although this assumption does not hold in general, as the behaviour policy may
change mid-trajectory, the change is subtle enough for our algorithm to perform reasonably well.
However, this might not be the case for real world scenarios. Future work could explore mechanisms
to detect behaviour policy change and split the trajectory at those transition points.
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