

000 001 002 003 004 005 006 007 008 009 010 011 012 OFFLINE REINFORCEMENT LEARNING THROUGH TRAJECTORY CLUSTERING AND LOWER BOUND PENALISATION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
Anonymous authors

Paper under double-blind review

024 025 026 027 028 029 030 ABSTRACT

031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
In this paper, we propose a new framework for value regularisation in offline reinforcement learning (RL). While most previous methods evade explicit out-of-distribution (OOD) region identification due to its difficulty, our method explicitly identifies the OOD region, which can be non-convex depending on datasets, via a newly proposed trajectory clustering-based behaviour cloning algorithm. With the obtained explicit OOD region, we then define a Bellman-type operator pushing the value in the OOD region to a tight lower bound while operating normally in the in-distribution region. The value function with this operator can be used for policy acquisition in various ways. Empirical results on multiple offline RL benchmarks show that our method yields the state-of-the-art performance.

046 047 048 049 050 1 INTRODUCTION

051
052
053
Offline reinforcement learning (RL) has attracted significant attention due to its sample efficiency and safety. Unlike conventional RL, where an agent learns an optimal policy through interactions with the environment, offline RL disallows any environmental interactions. Instead, the agent is provided with a fixed dataset \mathcal{D} of trajectories and should derive a competent policy solely from these samples.

054
055
056
057
058
059
060
Although offline RL also relies on off-policy data, standard off-policy RL algorithms often fail in this setting. The primary cause is the extrapolation error of the critic, which cannot be corrected, as the agent is unable to re-evaluate overestimated out-of-distribution (OOD) actions through environmental interactions (Fujimoto et al., 2019). These errors not only persist but also accumulate through bootstrapping, making careful handling of OOD actions crucial for stable training.

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100
Value regularisation has emerged as one of the main strategies for addressing the extrapolation issue (Kumar et al., 2020; Lyu et al., 2022; Mao et al., 2023). By penalising the critic values of OOD actions, these methods encourage the agent to prefer in-distribution (ID) actions over OOD ones. A variety of algorithms have been proposed within this paradigm, differing mainly in their choice of regularisation term. However, most rely on indirect proxies to determine the OOD-ness of actions. For example, Mao et al. (2023) approximates the behaviour policy with a Gaussian model to compute importance-sampling ratios. When the dataset contains multiple disparate behaviour policies, such unimodal approximation misrepresent the underlying multimodal structure. They assign spuriously high densities to the inter-modal region, distorting the OOD-ness estimates, eventually degrading the regularisation’s effectiveness.

0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
07010
07011
07012
07013
07014
07015
07016
07017
07018
07019
07020
07021
07022
07023
07024
07025
07026
07027
07028
07029
07030
07031
07032
07033
07034
07035
07036
07037
07038
07039
07040
07041
07042
07043
07044
07045
07046
07047
07048
07049
07050
07051
07052
07053
07054
07055
07056
07057
07058
07059
07060
07061
07062
07063
07064
07065
07066
07067
07068
07069
07070
07071
07072
07073
07074
07075
07076
07077
07078
07079
07080
07081
07082
07083
07084
07085
07086
07087
07088
07089
07090
07091
07092
07093
07094
07095
07096
07097
07098
07099
07100
07101
07102
07103
07104
07105
07106
07107
07108
07109
07110
07111
07112
07113
07114
07115
07116
07117
07118
07119
07120
07121
07122
07123
07124
07125
07126
07127
07128
07129
07130
07131
07132
07133
07134
07135
07136
07137
07138
07139
07140
07141
07142
07143
07144
07145
07146
07147
07148
07149
07150
07151
07152
07153
07154
07155
07156
07157
07158
07159
07160
07161
07162
07163
07164
07165
07166
07167
07168
07169
07170
07171
07172
07173
07174
07175
07176
07177
07178
07179
07180
07181
07182
07183
07184
07185
07186
07187
07188
07189
07190
07191
07192
07193
07194
07195
07196
07197
07198
07199
07200
07201
07202
07203
07204
07205
07206
07207
07208
07209
07210
07211
07212
07213
07214
07215
07216
07217
07218
07219
07220
07221
07222
07223
07224
07225
07226
07227
07228
07229
07230
07231
07232
07233
07234
07235
07236
07237
07238
07239
07240
07241
07242
07243
07244
07245
07246
07247
07248
07249
07250
07251
07252
07253
07254
07255
07256
07257
07258
07259
07260
07261
07262
07263
07264
07265
07266
07267
07268
07269
07270
07271
07272
07273
07274
07275
07276
07277
07278
07279
07280
07281
07282
07283
07284
07285
07286
07287
07288
07289
07290
07291
07292
07293
07294
07295
07296
07297
07298
07299
07300
07301
07302
07303
07304
07305
07306
07307
07308
07309
07310
07311
07312
07313
07314
07315
07316
07317
07318
07319
07320
07321
07322
07323
07324
07325
07326
07327
07328
07329
07330
07331
07332
07333
07334
07335
07336
07337
07338
07339
07340
07341
07342
07343
07344
07345
07346
07347
07348
07349
07350
07351
07352
07353
07354
07355
07356
07357
07358
07359
07360
07361
07362
07363
07364
07365
07366
07367
07368
07369
07370
07371
07372
07373
07374
07375
07376
07377
07378
07379
07380
07381
07382
07383
07384
07385
07386
07387
07388
07389
07390
07391
07392
07393
07394
07395
07396
07397
07398
07399
07400
07401
07402
07403
07404
07405
07406
07407
07408
07409
07410
07411
07412
07413
07414
07415
07416
07417
07418
07419
07420
07421
07422
07423
07424
07425
07426
07427
07428
07429
07430
07431
07432
07433
07434
07435
07436
07437
07438
07439
07440
07441
07442
07443
07444
07445
07446
07447
07448
07449
07450
07451
07452
07453
07454
07455
07456
07457
07458
07459
07460
07461
07462
07463
07464
07465
07466
07467
07468
07469
07470
07471
07472
07473
07474
07475
07476
07477
07478
07479
07480
07481
07482
07483
07484
07485
07486
07487
07488
07489
07490
07491
07492
07493
07494
07495
07496
07497
07498
07499
07500
07501
07502
07503
07504
07505
07506
07507
07508
07509
07510
07511
07512
07513
07514
07515
07516
07517
07518
07519
07520
07521
07522
07523
07524
07525
07526
07527
07528
07529
07530
07531
07532
07533
07534
07535
07536
07537
07538
07539
07540
07541
07542
07543
07544
07545
07546
07547
07548
07549
07550
07551
07552
07553
07554
07555
07556
07557
07558
07559
07560
07561
07562
07563
07564
07565
07566
07567
07568
07569
07570
07571
07572
07573
07574
07575
07576
07577
07578
07579
07580
07581
07582
07583
07584
07585
07586
07587
07588
07589
07590
07591
07592
07593
07594
07595
07596
07597
07598
07599
07600
07601
07602
07603
07604
07605
07606
07607
07608
07609
07610
07611
07612
07613
07614
07615
07616
07617
07618
07619
07620
07621
07622
07623
07624
07625
07626
07627
07628
07629
07630
07631
07632
07633
07634
07635
07636
07637
07638
07639
07640
07641
07642
07643
07644
07645
07646
07647
07648
07649
07650
07651
07652
07653
07654
07655
07656
07657
07658
07659
07660
07661
07662
07663
07664
07665
07666
07667
07668
07669
07670
07671
07672
07673
07674
07675
07676
07677
07678
07679
07680
07681
07682
07683
07684
07685
07686
07687
07688
07689
07690
07691
07692
07693
07694
07695
07696
07697
07698
07699
07700
07701
07702
07703
07704
07705
07706
07707
07708
07709
07710
07711
07712
07713
07714
07715
07716
07717
07718
07719
07720
07721
07722
07723
07724
07725
07726
07727
07728
07729
07730
07731
07732
07733
07734
07735
07736
07737
07738
07739
07740
07741
07742
07743
07744
07745
07746
07747
07748
07749
07750
07751
07752
07753
07754
07755
07756
07757
07758
07759
07760
07761
07762
07763
07764
07765
07766
07767
07768
07769
07770
07771
07772
07773
07774
07775
07776
07777
07778
07779
07780
07781
07782
07783
07784
07785
07786
07787
07788
07789
07790
07791
07792
07793
07794
07795
07796
07797
07798
07799
07800
07801
07802
07803
07804
07805
07806
07807
07808
07809
07810
07811
07812
07813
07814
07815
07816
07817
07818
07819
07820
07821
07822
07823
07824
07825
07826
07827
07828
07829
07830
07831
07832
07833
07834
07835
07836
07837
07838
07839
07840
07841
07842
07843
07844
07845
07846
07847
07848
07849
07850
07851
07852
07853
07854
07855
07856
07857
07858
07859
07860
07861
07862
07863
07864
07865
07866
07867
07868
07869
07870
07871
07872
07873
07874
07875
07876
07877
07878
07879
07880
07881
07882
07883
07884
07885
07886
07887
07888
07889
07890
07891
07892
07893
07894
07895
07896
07897
07898
07899
07900
07901
07902

054

- **Behaviour policy modelling via trajectory clustering.**
055 By linking trajectory clustering in offline RL to task identification in meta RL, we propose
056 an algorithm that learns a Gaussian mixture model of the dataset, enabling accurate density
057 estimation in multimodal datasets.

058

- **A tight lower-bound-based value regulariser.**
059 We theoretically derive a tight lower bound on the optimal action-value function and incor-
060 porate it into a value regulariser.

061

062 2 BACKGROUND

063

064 **Notation** For the list of notations used in this paper and their meanings, refer to Appendix Sec. A.

065

066 **Markov Decision Process** An RL problem is formulated as a Markov Decision Process (MDP),
067 which is defined as a 6-tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, R, \gamma, \rho_0 \rangle$, where $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ is the state space, $\mathcal{A} \subseteq \mathbb{R}^{d_a}$
068 is the action space, $P: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$ is the transition dynamics, $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathcal{P}(\mathbb{R})$ is the
069 reward function, $\gamma \in [0, 1]$ is the discount factor, and $\rho_0 \in \mathcal{P}(\mathcal{S})$ is the initial state distribution. We
070 will assume that the support of $R(s, a, s')$ is bounded above by r_{\max} and bounded below by r_{\min}
071 for all $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}$.

072 **Value Functions** Given a policy π , the Bellman operator \mathcal{T}^π on $L^\infty(\mathcal{S} \times \mathcal{A})$ is defined by the
073 following equation:

$$074 (\mathcal{T}^\pi Q)(s, a) = \mathbb{E}_{s' \sim P(s, a)} [\mathbb{E}_{r \sim R(s, a, s')} [r]] + \mathbb{E}_{s' \sim P(s, a)} [\mathbb{E}_{a' \sim \pi(s')} [Q(s', a')]].$$

075

076 Then, the action-value function (or Q-function) $Q^\pi: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is defined as the unique fixed
077 point of \mathcal{T}^π , and the state-value function $V^\pi: \mathcal{S} \rightarrow \mathbb{R}$ is given by $V^\pi(s) = \mathbb{E}_{a \sim \pi(s)} [Q^\pi(s, a)]$. The
078 objective of RL is to find an optimal policy π^* such that $V^{\pi^*} \succeq V^\pi$ for any policy π .

079 **Offline Reinforcement Learning** For offline RL, interactions with the environment is prohibited,
080 and the agent has to learn a policy from a given dataset \mathcal{D} of trajectories. Throughout this paper,
081 we will assume that each trajectory $\tau \in \mathcal{D}$ is sampled with a uni-modal behaviour policy $\beta \in$
082 $\{\beta_0, \beta_1, \beta_2, \dots, \beta_{K-1}\}$, where the candidate set $\mathcal{B} = \{\beta_0, \beta_1, \beta_2, \dots, \beta_{K-1}\}$ is fixed but unknown
083 to the agent.

084 3 MOTIVATION

085

086 Critic penalization or value regularisation penalises the Q-values for OOD actions, while minimizing
087 the temporal difference error for in-distribution (ID) actions. We may formulate it with the following
088 equation

$$089 \min_Q \mathbb{E}_{(s, a) \sim \mathcal{D}} [(Q(s, a) - \mathcal{T}^\pi Q(s, a))^2] + \mathfrak{R},$$

090

091 where \mathfrak{R} is a regularizer. A crucial requirement of the regularizer is that it should be able to discrim-
092 inate between ID and OOD actions since we only want to penalise the values of OOD actions. One

093

094
095
096
097
098
099
100
101
102
103
104
105
106
107 Figure 1: The Q-values on the plane spanned by \mathbf{e}_1 and \mathbf{e}_2 estimated by each method, i.e., $Q(x\mathbf{e}_1 +$
108 $y\mathbf{e}_2)$. Due to the high variance of importance sampling ratios, the importance sampling method fails
109 to approximate the optimal Q-function accurately.

108 of the first approaches was to set the regulariser as (Kumar et al., 2020)
 109

$$110 \quad \mathfrak{R} = \mathbb{E}_{s \sim \mathcal{D}, a \sim \mu} [Q(s, a)] - \mathbb{E}_{s \sim \mathcal{D}, a \sim \beta} [Q(s, a)],$$

111 where β is the behaviour policy and μ is some distribution that satisfies the condition $\text{supp } \mu \subseteq$
 112 $\text{supp } \beta$ (Kumar et al., 2020). While minimising the Q values for OOD actions sampled by μ , they
 113 simultaneously maximised the Q values for ID actions sampled from β to compensate for over-
 114 penalisation. However, as Mao et al. (2023) points out, this approach has two shortcomings: (i)
 115 the requirement $\text{supp } \mu \subseteq \text{supp } \beta$ may not hold in general; and (ii) if the dataset contains a large
 116 portion of suboptimal actions, their Q values would be overestimated. To address these issues, they
 117 proposed an importance sampling (IS)-based method that utilises the following regulariser:
 118

$$119 \quad \mathfrak{R}_{\text{IS}} = \mathbb{E}_{s \sim \mathcal{D}, a \sim \mu} [(Q(s, a) - Q_{\text{targ}}(s, a))^2] - \mathbb{E}_{s \sim \mathcal{D}, a \sim \beta} \left[\frac{\mu(a | s)}{\beta(a | s)} (Q(s, a) - Q_{\text{targ}}(s, a))^2 \right],$$

120 where μ is a probability distribution supported on the entire action space and Q_{targ} is a regulariser
 121 target, which they set to $r_{\min}/(1 - \gamma)$ for all $s \in \mathcal{S}, a \in \mathcal{A}$. Since the two terms cancel each other
 122 on $\text{supp } \beta$, \mathfrak{R}_{IS} is equivalent to $\mathbb{E}_{s \sim \mathcal{D}, a \sim \mu} [\mathbf{1}_{\mathcal{A} \setminus \text{supp } \beta} (Q(s, a) - Q_{\text{targ}}(s, a))^2]$, which corresponds
 123 to the goal of penalising the Q values of OOD actions.
 124

125 A significant drawback of \mathfrak{R}_{IS} is that IS ratios are
 126 known to have high variance, especially for high-
 127 dimensional spaces. Consider a simple single-state
 128 infinite-horizon MDP with a six-dimensional action
 129 space, and an offline RL dataset of size 1 000 000 sam-
 130 pled from a behaviour policy $\mathcal{N}(\mathbf{0}, \mathbf{I}_6)$. Suppose the
 131 optimal action is $\mathbf{a}^* = \mathbf{e}_1$. Then the IS ratio between
 132 $\mu = \mathcal{N}(\mathbf{a}^*, 0.04\mathbf{I}_6)$ and β of the samples in the dataset
 133 ranges from 1.88×10^{-225} to 1.93×10^4 . As demon-
 134 strated in Figure 1b and Table 1, the IS method yields an
 135 inaccurate Q value estimation and a suboptimal policy
 136 due to this severe fluctuation of IS ratios.

137 To overcome these limitations of the previous value regularization methods, we here propose to
 138 explicitly identify the set of OOD actions $\text{OOD}(s)$ for each state $s \in \mathcal{S}$, and set the regulariser to
 139 zero for ID actions. Such hard thresholding (HT) allows a more stable training process, resulting in
 140 a more accurate Q value estimations and better-performing policies, as seen in Fig. 1c and Table 1.
 141

142 4 PROPOSED METHOD

144 This section is structured as follows. In Section 4.1, we first discuss how we can compute the set
 145 $\text{OOD}(s)$. We then propose a new lower bound of Q^{π^*} and show its effectiveness as a penalisation
 146 target in Section 4.2. Finally, we provide a practical offline RL algorithm in Section 4.3.
 147

148 4.1 IDENTIFYING THE OUT-OF-DISTRIBUTION ACTION SET

150 Likelihood is the most natural way to measure how OOD a particular sample is. However, choosing
 151 the threshold value is not trivial. For blunt distributions, we should use a lower threshold value,
 152 whereas for sharp distributions, we can choose a higher value. We propose a systematic method
 153 of setting the threshold value by adopting the concept of *highest density region* (HDR; Hyndman
 154 1996), which is basically a generalisation of a confidence interval to multivariate random variables.¹

155 **Definition 1** (Hyndman 1996). Let $f(X)$ be the pdf of a random variable X . Then, the $100(1 - \alpha)\%$
 156 *highest density region (HDR)* is the subset $\mathcal{R}(f_\alpha)$ of the sample space of X such that $\mathcal{R}(f_\alpha) = \{x : f(x) \geq f_\alpha\}$, where $f_\alpha = \sup\{y : \mathbb{P}(X \in \mathcal{R}(y)) \geq 1 - \alpha\}$.
 157

159 In the following subsections, we discuss how to compute the HDR under different assumptions.
 160

161 ¹We provide a diagram (Figure 10) showing the $100(1 - \alpha)\%$ HDR of a normal distribution on page 28 to
 162 aid the understanding of the concept of a HDR.

162 4.1.1 HOMOGENEOUS DATASETS
163

164 We first discuss the case when the offline dataset \mathcal{D} is homogeneous, that is, it was generated from a
165 single uni-modal behaviour policy β . Then, we may obtain a fairly accurate Gaussian approximation
166 $\hat{\beta}$ of β through behaviour cloning. Let $\mu: \mathcal{S} \rightarrow \mathbb{R}^{d_a}$ and $\Sigma: \mathcal{S} \rightarrow \mathbb{R}^{d_a \times d_a}$ be the mean and
167 covariance matrix functions of $\hat{\beta}$, respectively. Assuming $\Sigma(s)$ is positive definite for all $s \in \mathcal{S}$, the
168 $100(1 - \alpha)\%$ HDR has the following closed-form representation (Proposition 4 in Appendix):

$$169 \mathcal{R}_{\hat{\beta}}(f_{\alpha}; s) = \left\{ \mathbf{x} \in \mathbb{R}^{d_a} : A_{\hat{\beta}}(\mathbf{x}; s) \leq F_{\chi_{d_a}^2}^{-1}(1 - \alpha) \right\},$$

170 where $F_{\chi_{d_a}^2}^{-1}$ is the inverse cumulative distribution function of a chi-squared random variable with d_a
171 degrees of freedom and

$$172 A_{\hat{\beta}}(\mathbf{x}; s) = (\mathbf{x} - \mu(s))^{\top} \Sigma(s)^{-1} (\mathbf{x} - \mu(s)).$$

173 Choosing an appropriate value of $0 < \alpha < 1$, we can define $\text{OOD}(s)$ as

$$174 \text{OOD}(s) = \mathcal{A} \setminus \mathcal{R}_{\hat{\beta}}(f_{\alpha}; s). \quad (1)$$

175 4.1.2 HETEROGENEOUS DATASETS

176 The definition of $\text{OOD}(s)$ for a homogeneous dataset given in (1) can be generalised to the hetero-
177 geneous case as

$$178 \text{OOD}(s) = \mathcal{A} \setminus \left(\bigcup_{\beta \in \mathcal{B}} \mathcal{R}_{\beta}(f_{\alpha}; s) \right)$$

179 for \mathcal{B} , where \mathcal{B} is the behaviour policy candidate set. If we could identify and isolate all of the
180 trajectories in the dataset sampled from a particular behaviour policy $\beta \in \mathcal{B}$, then obtaining an
181 estimation $\hat{\beta}$ of β is straightforward by applying a behaviour cloning algorithm on those isolated
182 trajectories. Then, with the estimated $\hat{\mathcal{B}} = \{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{K-1}\}$, we could compute $\text{OOD}(s)$ for
183 each state s as above. Therefore, in the rest of this section, we will propose how to cluster the
184 trajectories. Note that the proposed clustering algorithm is useful not only for value regularization
185 here but also for other offline real-world data analysis.

186 Our key idea is that the trajectory clustering problem closely resembles the task inference problem
187 in meta RL. For each policy π , there is a corresponding Markov reward process (MRP) $\mathcal{M}^{\pi} =$
188 $\langle \mathcal{S}, P^{\pi}, R^{\pi}, \gamma \rangle$, where for all $s, s' \in \mathcal{S}$ and $r \in \mathbb{R}$, the transition probability function $P^{\pi}: \mathcal{S} \rightarrow$
189 $\mathcal{P}(\mathcal{S})$ and the reward probability function $R^{\pi}: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{P}(\mathbb{R})$ are defined by the equations

$$190 P^{\pi}(s' | s) = \mathbb{E}_{a \sim \pi(\cdot | s)} [P(s' | s, a)], \quad (2)$$

$$191 R^{\pi}(r | s, s') = \mathbb{E}_{a \sim \pi(\cdot | s)} [R(r | s, a, s')], \quad (3)$$

192 respectively. Since the dataset \mathcal{D} can then be viewed as a collection of trajectories, where each
193 trajectory is sampled from one of the MRPs $\mathcal{M}^{\beta_0}, \mathcal{M}^{\beta_1}, \mathcal{M}^{\beta_2}, \dots, \mathcal{M}^{\beta_{K-1}}$, trajectory clustering
194 task can be viewed as an MRP inference problem. As this formulation is almost equivalent to the
195 MDP inference problem setting in meta RL, we infer the MRP instead of the MDP and apply a
196 technique similar to variational Bayes-adaptive deep RL (variBAD; Zintgraf et al. 2021).

197 Our goal is to infer the behaviour policy index given a trajectory. To achieve this objective, we
198 represent the index as a discrete latent variable m supported on $[K] = \{0, 1, \dots, K-1\}$ and write

$$199 P^{\beta_m}(s) \approx P(s | m), \quad R^{\beta_m}(s, s') \approx R(s, s' | m), \quad \beta_m(s) \approx \beta(s | m),$$

200 for all $s, s' \in \mathcal{S}$, sharing P , R , and β across trajectories. The marginal pdf of a trajectory $\tau_{:T} =$
201 $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ is

$$202 p(\tau_{:T}) = \rho_0(s_0) \sum_{m=0}^{K-1} p(m) \prod_{t=0}^{T-1} P(s_{t+1} | s_t; m) \beta(a_t | s_t; m) R(r_t | s_t, s_{t+1}; m), \quad (4)$$

203 where $p(m)$ is the prior distribution on m . Modelling P , R , and β with neural networks
204 parametrised by θ results in a loss that depends on θ . However, the multi-modality of (4) causes

Figure 2: Overview of our architecture. We also provided a diagram of the variBAD architecture in Figure 11 for comparison.

gradient-based optimisation algorithms to produce sub-optimal solutions. We circumvent this issue by introducing amortised inference network q_ϕ that takes a variable-length action-less trajectory $\tilde{\tau}_{:t} = (s_0, r_0, s_1, r_1, s_2, r_2, \dots, s_{t-1}, r_{t-1}, s_t)$ as an input and outputs a distribution in $\mathcal{P}_d([K])$. Instead of maximising (4), we maximise the evidence lower bound (ELBO), which can be written by the following equation (Proposition 5):

$$\begin{aligned} \text{ELBO}_{\theta, \phi}(\tau; t) = & \\ & - D_{\text{KL}}(q_\phi(\tilde{\tau}_{:t}) \parallel p) + \sum_{i=0}^{T-1} \mathbb{E}_{m \sim q_\phi(\tilde{\tau}_{:t})} [\log R_\theta(r_i | s_i, s_{i+1}; m)] \\ & + \sum_{i=0}^{T-1} \mathbb{E}_{m \sim q_\phi(\tilde{\tau}_{:t})} [\log \beta_\theta(a_i | s_i; m)] + \sum_{i=0}^{T-1} \mathbb{E}_{m \sim q_\phi(\tilde{\tau}_{:t})} [\log P_\theta(s_{i+1} | s_i; m)]. \end{aligned} \quad (5)$$

The first term $\log \rho_0(s_0)$ in (9) can be omitted because it is constant with respect to θ and ϕ . The final objective for trajectory clustering is to maximise

$$\mathbb{E}_{\tau \sim \mathcal{D}} \left[\frac{1}{T_\tau} \sum_{t=0}^{T_\tau-1} \text{ELBO}_{\theta, \phi}(\tau; t) \right], \quad (6)$$

where T_τ is the length of the trajectory τ sampled from the dataset. An overview of our clustering algorithm is given in Figure 2.

After we finish training, we compute the behaviour policy estimations and cluster assignments according to the equations $\hat{\beta}_i = \beta_\theta(\cdot; i)$ and $\mathbb{A}(s) = \arg \max_m q_\phi(m | \tilde{\tau}(s))$, respectively, for each $i \in [K]$ and $s \in \mathcal{D}$, where $\tilde{\tau}(s)$ is the action-less trajectory containing the state s .

4.2 LOWER BOUND PENALISATION

In this section, we derive a new lower bound on the value function. As we did in the previous section, we start with the case where the offline dataset \mathcal{D} is generated from a single behaviour policy β . The ideal penalisation method would be to use $Q^{\pi^*}(s, a)$ as a target, where π^* is the optimal policy, but the value of Q^{π^*} is inaccessible. So we aim to use a lower bound instead. In order to compute a lower bound, we first need to make some assumptions on the regularity of P and V^β .

Assumption 1. There is $K_P > 0$ such that for all $s \in \mathcal{S}$ and $a, a' \in \mathcal{A}$, $W_1(P(s, a), P(s, a')) < K_P \|a - a'\|$, where $W_1(P, Q)$ is the Wasserstein distance of order 1 between two probability distributions $P, Q \in \mathcal{P}(\mathcal{S})$.

Assumption 2. The value function of the behaviour policy β is K_V -Lipschitz, that is, for all $s, s' \in \mathcal{S}$, $|V^\beta(s) - V^\beta(s')| < K_V \|s - s'\|$.

Then, we can obtain a lower bound of Q^{π^*} with these assumptions.

Proposition 1. Define $Q_\beta^{\text{LB}}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ by the equation

$$Q_\beta^{\text{LB}}(s, a) = \max \left\{ V^\beta(s) - r_{\max} + r_{\min} - \gamma K_V K_P \mathbb{E}_{a' \sim \beta(s)} [\|a - a'\|], \frac{r_{\min}}{1 - \gamma} \right\}. \quad (7)$$

270 For any policy $\pi: \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$ such that $V^\pi \succeq V^\beta, Q^\pi \succeq Q_\beta^{\text{LB}}$.
 271

272 *Proof.* See page 15. □
 273

274 Note that this lower bound is tighter than the previous bound $r_{\min}/(1 - \gamma)$. The lower bound allows
 275 us to define the penalised Bellman optimality operator \mathcal{T}_β^π for policy π by the equation
 276

$$277 \quad (\mathcal{T}_\beta^* Q)(s, a) = \begin{cases} Q_\beta^{\text{LB}}(s, a) & \text{if } a \in \text{OOD}(s), \\ (\mathcal{T}^* Q)(s, a) & \text{otherwise,} \end{cases}$$

279 where \mathcal{T}^* is the Bellman optimality operator defined as
 280

$$281 \quad (\mathcal{T}^* Q)(s, a) = \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} \left[r + \gamma \sup_{a' \in \mathcal{A}} Q(s', a') \right].$$

284 We can show that through repeated application of \mathcal{T}_β^* , it is possible to obtain a deterministic policy
 285 $\pi_\beta^*: \mathcal{S} \rightarrow \mathcal{A}$ that is optimal among the policies whose action for each state $s \in \mathcal{S}$ does not lie in
 286 $\text{OOD}(s)$.

287 **Theorem 2.** Any initial bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ can converge to a unique fixed point
 288 Q_β^* by repeatedly applying \mathcal{T}_β^* . Suppose for each $s \in \mathcal{S}$,

$$289 \quad Q^\beta(s, a_s) \geq \mathbb{E}_{a \sim \beta(s)} [Q^\beta(s, a)]$$

291 for some $a_s \in \mathcal{A} \setminus \text{OOD}(s)$. If there exists a deterministic policy $\pi_\beta^*: \mathcal{S} \rightarrow \mathcal{A}$ that is optimal under
 292 the constraint $\pi(s) \notin \text{OOD}(s)$ for all $s \in \mathcal{S}$, then $\pi_\beta^*(s) = \arg \max_{a \in \mathcal{A}} Q_\beta^*(s, a)$ for all $s \in \mathcal{S}$.
 293

294 *Proof.* See page 20. □
 295

296 Now, the penalised Bellman optimality operator can easily be generalised to the heterogeneous
 297 dataset case with the set \mathcal{B} of behaviour policy candidates and the set $\mathcal{V}(s)$ of valid behaviour policies
 298 given a state $s \in \mathcal{S}$.

$$299 \quad (\mathcal{T}_\mathcal{B}^* Q)(s, a) = \begin{cases} Q_\mathcal{B}^{\text{LB}}(s, a) & \text{if } a \in \text{OOD}(s), \\ (\mathcal{T}^* Q)(s, a) & \text{otherwise,} \end{cases}$$

301 where $Q_\mathcal{B}^{\text{LB}}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is defined as $Q_\mathcal{B}^{\text{LB}}(s, a) = \max_{\beta \in \mathcal{V}(s)} Q_\beta^{\text{LB}}(s, a)$ for each $s \in \mathcal{S}$ and
 302 $a \in \mathcal{A}$. We can prove a similar performance guarantee for the policy obtained by repeatedly applying
 303 $\mathcal{T}_\mathcal{B}^*$.
 304

305 **Theorem 3.** Any initial bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ can converge to a unique fixed point
 306 $Q_\mathcal{B}^*$ by repeatedly applying $\mathcal{T}_\mathcal{B}^*$. Suppose for each $\beta \in \mathcal{B}$ and $s \in \mathcal{S}$,

$$307 \quad Q^\beta(s, a_s^\beta) \geq \mathbb{E}_{a \sim \beta(s)} [Q^\beta(s, a)]$$

309 for some $a_s^\beta \in \mathcal{A} \setminus \text{OOD}(s)$. If there exists a deterministic policy $\pi_\mathcal{B}^*: \mathcal{S} \rightarrow \mathcal{A}$ that is optimal under
 310 the constraint $\pi(s) \notin \text{OOD}(s)$ for all $s \in \mathcal{S}$, then $\pi_\mathcal{B}^*(s) = \arg \max_{a \in \mathcal{A}} Q_\mathcal{B}^*(s, a)$ for all $s \in \mathcal{S}$.
 311

312 *Proof.* See page 21. □
 313

4.3 PRACTICAL ALGORITHM

315 The overall flow of our algorithm is as follows:
 316

- 317 **I. Behaviour policy learning.** Run the trajectory clustering algorithm to obtain $\hat{\mathcal{B}}$ and $\hat{\mathcal{V}}(s)$. Or if
 318 it is known a priori that the dataset is homogeneous, then run a behaviour cloning algorithm to
 319 obtain $\hat{\beta}$.
- 320 **II. Behaviour value learning.** Learn a value function $\hat{V}^{\hat{\beta}}$ for each $\hat{\beta} \in \hat{\mathcal{B}}$ through temporal differ-
 321 ence learning.
- 322 **III. Policy learning.** Obtain and apply $\mathcal{T}_{\hat{\mathcal{B}}}^*$ repeatedly on a randomly initialised Q-function until
 323 convergence. Find a policy that maximises the learned Q-function.

324 This section mainly focuses on the trajectory clustering algorithm of Stage I. Additional details of
 325 our algorithm can be found in Section C of Appendix.

326
 327 The network architecture used for trajectory clustering consists of three parts: the encoder, the latent
 328 sampler, and the decoder. The architecture is generally similar to that of variBAD except for a few
 329 adaptations. In this section, we will first go over how and why we modified each part. Then, we will
 330 propose a simple technique to adaptively set the number of clusters.

331 The encoder needs to take an action-less trajectory $\tilde{\tau}$ as an input and output the amortised poste-
 332 rior. Since the length of the trajectory may vary from one to another, the network should be capable
 333 of taking variable-length sequence as its input. For that purpose, variBAD utilises gated recurrent
 334 units (GRU; Cho et al. 2014). GRUs and other recurrent neural network variants suffer from the van-
 335 ishing gradient problem (Bengio et al., 1994), which hampers their ability to process long sequences.
 336 Truncated backpropagation through time (Williams & Peng, 1990) can mitigate the phenomena to
 337 a certain extent, but we instead adopt the state space model architecture that is recently gaining in-
 338 terest in the area of sequence modelling (Gu et al., 2020; 2021; 2022; Gu & Dao, 2023; Dao & Gu,
 339 2024). In particular, we use the S5 layer (Smith et al., 2023), which is simple and computationally
 340 efficient.

341 The second modification was made on the way latents are sampled and ELBOs are computed. As
 342 the latent variable in the variBAD architecture is continuous, it is impossible to analytically compute
 343 the expectation, and hence, the reparametrisation trick (Kingma & Welling, 2014) must be used.
 344 Although the latent variable is discrete in our case, exact computation is still inefficient because it
 345 requires multiple forward and backward passes through the decoder. We instead utilise the vector
 346 quantised-variational autoencoder (VQ-VAE; van den Oord et al. 2017) to approximate the ELBO.
 347 Under the VQ-VAE formulation, the amortised posterior q_ϕ is modelled as

$$q_\phi(m = k \mid \tilde{\tau}_{:t}) = \begin{cases} 1 & \text{if } k = k_\phi(\tilde{\tau}_{:t}) \\ 0 & \text{otherwise,} \end{cases}$$

350 where e_0, e_1, \dots, e_{K-1} are latent embedding vectors and

$$k_\phi(\tilde{\tau}_{:t}) = \arg \min_{j \in [K]} \|q_\phi(\tilde{\tau}_{:t}) - e_k\|_2.$$

354 Note that for simplicity, we have abused the notation q_ϕ to denote both the posterior and the encoder.
 355 The gradient flows into the encoder q_ϕ via the loss function

$$\ell_{\text{VQ}}(\phi; \tilde{\tau}_{:t}) = \|q_\phi(\tilde{\tau}_{:t}) - e_{k_\phi(\tilde{\tau}_{:t})}\|_2^2$$

358 and the latent embedding vectors are updated with exponential moving averages (EMA).

359
 360 For the decoder, we use Gaussian distributions with diagonal covariance matrix to represent P_θ ,
 361 β_θ , and R_θ . Most RL environments have a bounded action space, whereas a Gaussian distribution
 362 has unbounded support. To estimate the behaviour policy more accurately, we first normalize the
 363 actions between -1 and 1 and apply the inverse hyperbolic tangent function on each dimension of
 364 the actions to map them onto \mathbb{R}^{d_a} . Note that we use the mapped actions when learning the critic, that
 365 is, the critic function takes $\tanh^{-1}(a)$ instead of a as input. Finally, instead of taking the summation
 366 over the entire trajectory in (5) and (6), we adopt the implementation trick of variBAD and randomly
 367 subsample N_d transition steps in (5) and N_e ELBO terms in (6). To conclude, the loss function for
 368 the trajectory clustering algorithm is

$$\ell_{\text{TC}}(\theta, \phi; \tau) = \frac{1}{N_e N_d} \sum_{t \in \mathcal{I}_e} \sum_{i \in \mathcal{I}_d} A_\theta(s_i, a_i, r_i, s_{i+1}; e_{k_\phi(\tilde{\tau}_{:t})}) + \lambda_{\text{VQ}} \ell_{\text{VQ}}(\phi; \tilde{\tau}_{:t}),$$

371 where

$$A_\theta(s, a, r, s'; m) = \log \beta_\theta(a \mid s; m) + \lambda_T \log P_\theta(s' \mid s; m) + \lambda_R \log R_\theta(r \mid s, s'; m), \quad (8)$$

373
 374 \mathcal{I}_e and \mathcal{I}_d are sets of indices sampled uniformly at random with replacement from $[T_\tau]$ with sizes
 375 N_e and N_d , respectively, and λ_{VQ} , λ_T , λ_R are tunable hyperparameters.

377 Choosing the right number of clusters is crucial for high performance in most clustering algorithms.
 To alleviate the burden of hyperparameter tuning, we adopt a two-phase training paradigm. During

378 Table 2: Average normalised scores on the D4RL benchmark. Note that “ha” means halfcheetah,
 379 “ho” means hopper, “wa” means walker2d, “m” means medium, “r” means replay, “ra” means
 380 random, and “e” means expert.

Dataset	BC	TD3BC	BCQ	BEAR	CQL	IQL	MCQ	SVR	Ours
ha-ra	2.6	11.0	2.2	2.3	17.5	13.1	28.5	27.2	27.0 ± 1.1
ho-ra	4.1	8.5	7.8	3.9	7.9	7.9	31.8	31.0	31.5 ± 0.2
wa-ra	1.2	1.6	4.9	12.8	5.1	5.4	17.0	2.2	16.6 ± 7.9
ha-m	42.0	48.3	46.6	43.0	47.0	47.4	64.3	60.5	63.5 ± 1.2
ho-m	56.2	59.3	59.4	51.8	53.0	66.2	78.4	103.5	103.4 ± 0.9
wa-m	71.0	83.7	71.8	-0.2	73.3	78.3	91.0	92.4	96.5 ± 13.9
ha-m-r	36.4	44.6	42.2	36.3	45.5	44.2	56.8	52.5	52.2 ± 0.8
ho-m-r	21.8	60.9	60.9	52.2	88.7	94.7	101.6	103.7	102.2 ± 1.1
wa-m-r	24.9	81.8	57.0	7.0	81.8	73.8	91.3	95.6	95.4 ± 19.2
ha-m-e	59.6	90.7	95.4	46.0	75.6	86.7	87.5	94.2	90.9 ± 4.2
ho-m-e	51.7	98.0	106.9	50.6	105.6	91.5	111.2	111.2	112.4 ± 1.1
wa-m-e	101.2	110.1	107.7	22.1	107.9	109.6	114.2	109.3	108.3 ± 0.7
ha-e	88.2	81.7	92.7	92.9	96.3	95.0	96.2	96.1	96.6 ± 0.9
ho-e	110.9	107.8	109.0	54.6	96.5	109.4	111.4	111.1	112.7 ± 0.9
wa-e	107.7	110.2	106.3	106.6	108.5	109.9	107.2	110.0	113.4 ± 0.5
Average	52.3	67.5	64.5	38.8	67.3	68.9	79.2	80.0	81.5

402
 403 the first phase of the paradigm, we set the codebook size to be sufficiently large. After completing the
 404 first phase, we compute the cluster assignments for each state in the dataset. If the number of states
 405 assigned to a particular cluster does not exceed a certain threshold, we remove the corresponding
 406 code from the VQ-VAE codebook. The training is resumed with the remaining codebook. This way,
 407 we could adaptively determine the number of clusters without needing to perform an exhaustive
 408 hyperparameter search.
 409

410 5 EXPERIMENTS

413 5.1 RESULTS ON THE D4RL BENCHMARK

414 In order to evaluate how well our algorithm perform on various offline RL tasks, we tested our
 415 method on the D4RL (Fu et al., 2020) benchmark. We compared it with existing offline RL methods
 416 such as BC (Pomerleau, 1988), TD3+BC (Fujimoto & Gu, 2021), BCQ (Fujimoto et al., 2019),
 417 CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019), IQL (Kostrikov et al., 2022), MCQ (Lyu
 418 et al., 2022), and SVR (Mao et al., 2023). We trained our method with five different seeds to obtain
 419 five different policies and sampled ten trajectories with each of them. We report the average and
 420 standard deviation of the fifty normalized scores in Table 2. The results show that our algorithm
 421 can successfully learn high-performing policies from most datasets, while attaining state-of-the-art
 422 scores on some of them.

424 5.2 EXPERIMENTS ON A HETEROGENEOUS DATASET

425 Although D4RL datasets such as “hopper-medium-expert-v2” were sampled with more than one
 426 behaviour policies, the action distributions are actually unimodal on most states due to the state dis-
 427 tribution being so different between the trajectories of the two behaviour policies. Figure 3 presents
 428 a visualisation of the entire and initial state distributions of the “hopper-medium-expert-v2” dataset
 429 where we have used the uniform manifold approximation and projection (UMAP; McInnes & Healy
 430 2018) technique for dimension reduction. We can see that expert and medium states are clearly
 431 separated, except for the initial states.

432
433
434
435
436
437
438
439
440
441
442
443

(a) Entire state distribution

(b) Initial state distribution

444
445
446
447
448
Figure 3: The UMAP of the states in the “hopper-medium-expert-v2” dataset.

449
450
451
452
453
454
455
456
457
458
459
To demonstrate the effectiveness of our trajectory clustering algorithm, we created a custom dataset with drastically different initial state behaviours using the “Hopper-v5” environment provided by the Gymnasium library (Towers et al., 2024). Half of the samples in the dataset were sampled from an expert policy, and the other half was sampled from a policy that tripped over within eight timesteps. Table 3 demonstrates that our method can effectively classify the two datasets and learn an optimal policy from a truly heterogeneous dataset.

460

461
5.3 ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
In meta reinforcement learning settings, each MDP has independent transition and reward dynamics, so they must be modelled in order to infer the MDP from trajectories. Under our formulation, on the other hand, transition and reward dynamics of each MRP are correlated with each other through the policy as we can see from (2) and (3). Although this implies that we may identify the MRP solely through modelling the behaviour policy, we hypothesized that modelling transition and reward dynamics can provide meaningful auxiliary information leading to better clustering performance. Therefore, we compared the performance of our algorithm under four different configurations $(\lambda_T, \lambda_R) \in \{(1, 1), (1, 0), (0, 1), (0, 0)\}$, where λ_T and λ_R are the weights for transition and reward models defined in (8). To evaluate the accuracy of our trajectory clustering algorithm, we created custom D4RL datasets by concatenating random, medium, and expert datasets. The mean and standard deviation of adjusted rand indices (ARI; Hubert & Arabie 1985) and normalised mutual information scores (NMI) for each configuration over 5 different seeds are reported in Table 4. We can see that the configuration $(\lambda_T, \lambda_R) = (1, 0)$ performs the best on average. Unlike s_{i+1} , which is in the vicinity of s_i regardless of the a_i , r_i can vary drastically between policies, making it difficult to model rewards from different policies with a single neural network. We speculate this to be the reason why training a reward model negatively affects the performance of our trajectory clustering algorithm. For experiments on other datasets, refer to Section D.2.

449
450
451
452
453
454
455
456
457
458
459
Table 3: The performance of SVR and our method on the custom heterogeneous dataset.

Algorithm	Length	Return
SVR	8.00 ± 0.00	4.05 ± 0.01
Ours	436.3 ± 32.1	4062.0 ± 24.5

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 4: The impact of hyperparameters λ_T and λ_R on the average performance of our trajectory clustering algorithm evaluated on six custom D4RL datasets. The performance is measured in terms of adjusted rand index (ARI) and normalised mutual information score (NMI).

λ_R	λ_T	ARI	NMI
0	0	0.98 ± 0.07	0.98 ± 0.06
0	1	0.91 ± 0.21	0.92 ± 0.17
1	0	0.99 ± 0.02	0.98 ± 0.02
1	1	0.86 ± 0.27	0.87 ± 0.24

486
 487 Table 5: The impact of the hyperparameter α on the average normalised score on three different
 488 datasets in the D4RL benchmark. Note that “ha” means halfcheetah, “ho” means hopper, “wa”
 489 means walker2d, and “m” means medium.

Dataset	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.7$	$\alpha = 0.9$
ha-m	63.2 \pm 1.1	62.4 \pm 1.4	63.5 \pm 1.2	63.3 \pm 1.0	62.5 \pm 1.2
ho-m	102.2 \pm 0.5	103.3 \pm 0.9	103.4 \pm 0.9	102.4 \pm 0.7	103.1 \pm 0.5
wa-m	93.0 \pm 22.9	91.3 \pm 22.4	96.1 \pm 13.9	94.2 \pm 20.4	97.0 \pm 15.2

496
 497 Table 6: The impact of the hyperparameter K on the average normalised score on three different
 498 datasets in the D4RL benchmark. Note that “ha” means halfcheetah, “ho” means hopper, “wa”
 499 means walker2d, and “m” means medium.

Dataset	$K = 0.1$	$K = 0.2$	$K = 0.5$	$K = 1.0$	$K = 2.0$
ha-m	62.5 \pm 0.7	63.1 \pm 1.4	63.5 \pm 1.2	63.4 \pm 0.9	63.1 \pm 1.1
ho-m	102.1 \pm 2.8	102.6 \pm 0.7	102.2 \pm 0.8	102.0 \pm 5.7	103.4 \pm 0.9
wa-m	86.9 \pm 27.6	90.6 \pm 25.0	93.1 \pm 26.7	96.1 \pm 13.9	93.9 \pm 15.6

Dataset	$K = 5.0$	$K = 10.0$	$K = 20.0$	$K = 50.0$	$K = 100.0$
ha-m	63.3 \pm 1.3	62.8 \pm 0.8	63.2 \pm 1.2	62.6 \pm 1.0	62.1 \pm 1.2
ho-m	102.3 \pm 3.9	102.5 \pm 1.5	100.0 \pm 6.8	84.1 \pm 20.7	92.5 \pm 21.1
wa-m	92.3 \pm 1.6	89.5 \pm 1.5	88.0 \pm 1.6	81.7 \pm 9.1	78.4 \pm 13.7

518 5.4 ABLATION STUDY

520 We investigate the impact of the choice of hyperparameters α and $K = K_V K_P$ on the performance
 521 of our method on three different datasets: halfcheetah-medium-v2, hopper-medium-v2, and
 522 walker2d-medium-v2. As shown in Table 5, the performance is robust to a wide range of α values.
 523 Similarly, we can see from Table 6 that the performance remains stable for moderate choices of
 524 K . While large values ($K \geq 50$) lead to degradation, particularly for hopper-medium-v2. Overall,
 525 the result indicate that our method does not require precise tuning on α and K to achieve strong
 526 performance.

530 6 CONCLUSION

533 In this paper, we propose a new value regularisation algorithm for offline RL penalizing their critic
 534 values, based on the OOD action set that we were able to explicitly identify. We determine how OOD
 535 an action is based on its likelihood, where the threshold is set adaptively according to the shape of
 536 the behaviour policy. To enable likelihood analysis for heterogeneous datasets where simple be-
 537 haviour cloning fails, we introduce a novel trajectory clustering technique based on a meta-learning
 538 formulation of the clustering problem. Our method of penalising the critic values for OOD actions
 539 by regressing them towards a lower bound of the optimal Q-value function is proven to be effective
 both theoretically and empirically.

540 REFERENCES
541

542 Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies with
543 gradient descent is difficult. *IEEE Trans. Neural Networks*, 5(2):157–166, 1994.

544 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
545 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
546 Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

547 Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
548 ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
549 for statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods
550 in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
551 SIGDAT, a Special Interest Group of the ACL*, pp. 1724–1734. ACL, 2014.

552 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
553 structured state space duality. In *Forty-first International Conference on Machine Learning, ICML
554 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.

555 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
556 data-driven reinforcement learning. *CoRR*, abs/2004.07219, 2020.

557 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
558 *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Infor-
559 mation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 20132–20145,
560 2021.

561 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
562 exploration. In *Proceedings of the 36th International Conference on Machine Learning, ICML
563 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine
564 Learning Research*, pp. 2052–2062. PMLR, 2019.

565 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *CoRR*,
566 abs/2312.00752, 2023.

567 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
568 with optimal polynomial projections. In *Advances in Neural Information Processing Systems 33:
569 Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
570 6-12, 2020, virtual*, 2020.

571 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
572 bining recurrent, convolutional, and continuous-time models with linear state space layers. In
573 *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Infor-
574 mation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 572–585, 2021.

575 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
576 state spaces. In *The Tenth International Conference on Learning Representations, ICLR 2022,
577 Virtual Event, April 25-29, 2022*. OpenReview.net, 2022.

578 Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
579 Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024.

580 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances
581 in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
582 cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

583 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of Classification*, 2(1):193–218,
584 Dec 1985. ISSN 1432-1343.

585 Rob J. Hyndman. Computing and graphing highest density regions. *The American Statistician*, 50
586 (2):120–126, 1996.

587 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *2nd International
588 Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
589 Conference Track Proceedings*, 2014.

594 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 595 learning. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual*
 596 *Event, April 25-29, 2022*. OpenReview.net, 2022.

597

598 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 599 q-learning via bootstrapping error reduction. In *Advances in Neural Information Processing Sys-*
 600 *tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,*
 601 *December 8-14, 2019, Vancouver, BC, Canada*, pp. 11761–11771, 2019.

602 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 603 reinforcement learning. In *Advances in Neural Information Processing Systems 33: Annual Con-*
 604 *ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,*
 605 *virtual*, 2020.

606

607 Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang Wang, and William Yang Wang. Offline
 608 reinforcement learning with closed-form policy improvement operators. In *International Confer-*
 609 *ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202
 610 *of Proceedings of Machine Learning Research*, pp. 20485–20528. PMLR, 2023.

611

612 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 613 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In *4th*
 614 *International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May*
 615 *2-4, 2016, Conference Track Proceedings*, 2016.

616

617 Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
 618 quantized offline reinforcement learning for robotic skill learning. In *Conference on Robot Learn-*
 619 *ing, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA*, volume 229 of *Proceedings of Machine*
 620 *Learning Research*, pp. 1348–1361. PMLR, 2023.

621

622 Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
 623 reinforcement learning. In *Advances in Neural Information Processing Systems 35: Annual Con-*
 624 *ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,*
 625 *November 28 - December 9, 2022*, 2022.

626

627 Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
 628 Zhipeng Hu, Yi Wu, Yujing Hu, and Chongjie Zhang. Stylized offline reinforcement learning:
 629 Extracting diverse high-quality behaviors from heterogeneous datasets. In *The Twelfth Interna-*
 630 *tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
 631 OpenReview.net, 2024.

632

633 Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported value regulariza-
 634 tion for offline reinforcement learning. In *Advances in Neural Information Processing Systems*
 635 *36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New*
 636 *Orleans, LA, USA, December 10 - 16, 2023*, 2023.

637

638 Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for di-
 639 *mension reduction*. *CoRR*, abs/1802.03426, 2018.

640

641 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 642 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 643 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 644 12:2825–2830, 2011.

645

646 Dean Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In *Advances in Neural*
 647 *Information Processing Systems 1, [NIPS Conference, Denver, Colorado, USA, 1988]*, pp. 305–
 648 313. Morgan Kaufmann, 1988.

649

650 Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers
 651 for sequence modeling. In *The Eleventh International Conference on Learning Representations,*
 652 *ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

648 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015*, volume 37 of *JMLR Workshop and Conference Proceedings*, pp. 2256–2265. JMLR.org, 2015.

652 Mark Towers, Ariel Kwiatkowski, Jordan K. Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
 653 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-
 654 drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A
 655 standard interface for reinforcement learning environments. *CoRR*, abs/2407.17032, 2024.

657 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 658 ing. In *Advances in Neural Information Processing Systems 30: Annual Conference on Neural*
 659 *Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 6306–
 660 6315, 2017.

661 Cédric Villani. *Cyclical monotonicity and Kantorovich duality*, pp. 51–92. Springer Berlin Hei-
 662 delberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-71050-9.

664 Qiang Wang, Yixin Deng, Francisco Roldan Sanchez, Keru Wang, Kevin McGuinness, Noel E.
 665 O’Connor, and Stephen J. Redmond. Dataset clustering for improved offline policy learning.
 666 *CoRR*, abs/2402.09550, 2024.

667 Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 668 class for offline reinforcement learning. In *The Eleventh International Conference on Learning*
 669 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

671 Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
 672 recurrent network trajectories. *Neural Comput.*, 2(4):490–501, 1990.

673 Luisa M. Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
 674 Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep RL via
 675 meta-learning. *J. Mach. Learn. Res.*, 22:289:1–289:39, 2021.

678 A NOTATIONS

- 680 • $\mathbf{0}$: a zero vector with dimensionality implied by context
- 681 • $D_{\text{KL}}(P_1 \parallel P_2)$: the Kullback–Leibler (KL) divergence from a probability distribution P_1
 682 to another probability distribution P_2
- 683 • \mathbf{e}_i : the i -th standard basis of a Euclidean space
- 684 • $f(y \mid x)$: the value of the pdf (or pmf) of the distribution $f(x)$ at y , where Y is a set and
 685 $f: X \rightarrow \mathcal{P}(Y)$
- 686 • $f \succeq g$: $f(x) \geq g(x)$ for all $x \in X$, where f and g are real-valued functions defined on a
 687 set X
- 688 • $f \equiv g$: $f(x) = g(x)$ for all $x \in X$, where f and g are real-valued functions defined on a
 689 set X
- 690 • \mathbf{I}_d : an identity matrix with d rows and d columns
- 691 • $L^\infty(X)$: the space of bounded real value functions on a set X endowed with the supremum
 692 norm
- 693 • $[N]$: the set $\{0, 1, \dots, N - 1\}$, where N is an integer
- 694 • $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$: a multi-variate Gaussian distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix
 695 $\boldsymbol{\Sigma}$
- 696 • $\mathbb{P}(E)$: probability of an event E
- 697 • $\mathcal{P}(X)$: family of absolutely continuous probability distributions with finite first moments
 698 supported on a subset of X , where $X \subseteq \mathbb{R}^d$
- 699 • $\mathcal{P}_d(X)$: the family of discrete distributions supported on a subset of X , where $X \subseteq \mathbb{R}^d$

702 • $\text{supp } \mu$: the support of a probability distribution μ
 703 • $W_1(P_1, P_2)$: the Wasserstein distance of order 1 between two probability distributions
 704 $P_1, P_2 \in \mathcal{P}(X)$
 705

706 B PROOFS
 707

709 **Proposition 4.** *Let \mathbf{X} be a multivariate Gaussian random variable with mean vector $\boldsymbol{\mu} \in \mathbb{R}^d$ and
 710 positive definite covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$. The $100(1 - \alpha)\%$ HDR is*

711
$$\mathcal{R}(f_\alpha) = \left\{ \mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \leq F_{\chi_d^2}^{-1}(1 - \alpha) \right\},$$

 712

713 *where $F_{\chi_d^2}$ is the cumulative distribution function of a chi-squared random variable with d degrees
 714 of freedom.*

716 *Proof.* Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_d) = \sqrt{\boldsymbol{\Sigma}^{-1}}(\mathbf{X} - \boldsymbol{\mu})$. By the change of variables formula,

717
$$\begin{aligned} p_{\mathbf{Z}}(\mathbf{z}) &= \left| \det(\sqrt{\boldsymbol{\Sigma}}) \right| p_{\mathbf{X}}\left(\boldsymbol{\mu} + \sqrt{\boldsymbol{\Sigma}}\mathbf{z}\right) \\ 718 &= \det(\boldsymbol{\Sigma})^{1/2} (2\pi)^{-d/2} \det(\boldsymbol{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}\mathbf{z}^\top \mathbf{z}\right) \\ 719 &= (2\pi)^{-d/2} \exp\left(-\frac{1}{2}\mathbf{z}^\top \mathbf{z}\right), \end{aligned}$$

 720
 721
 722
 723

724 *where $p_{\mathbf{X}}$ and $p_{\mathbf{Z}}$ are the pdfs of random vectors \mathbf{X} and \mathbf{Z} , respectively. We can see that \mathbf{Z} is a
 725 standard normal random vector. Since*

726
$$\begin{aligned} \mathcal{R}(y) &= \left\{ \mathbf{x} \in \mathbb{R}^d : (2\pi)^{-d/2} \det(\boldsymbol{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \geq y \right\} \\ 727 &= \left\{ \mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) \leq -2 \log y + d \log(2\pi) + \log \det(\boldsymbol{\Sigma}) \right\}, \end{aligned}$$

 728
 729

730 *we have*

731
$$\begin{aligned} \mathbb{P}(\mathbf{X} \in \mathcal{R}(y)) &= \mathbb{P}(\mathbf{Z}^\top \mathbf{Z} \leq -2 \log y + d \log(2\pi) + \log \det(\boldsymbol{\Sigma})) \\ 732 &= \mathbb{P}\left(\sum_{i=1}^d Z_i^2 \leq -2 \log y + d \log(2\pi) + \log \det(\boldsymbol{\Sigma})\right). \end{aligned}$$

 733
 734

735 *Z_1, Z_2, \dots, Z_d are independent, so $\sum_{i=1}^d Z_i^2$ is a chi-squared random variable. This implies*

736
$$\mathbb{P}(\mathbf{X} \in \mathcal{R}(y)) = F_{\chi_d^2}(-2 \log y + d \log(2\pi) + \log \det(\boldsymbol{\Sigma})).$$

737 *$\mathbb{P}(\mathbf{X} \in \mathcal{R}(y)) \geq 1 - \alpha$ if and only if*

738
$$-2 \log y + d \log(2\pi) + \log \det(\boldsymbol{\Sigma}) \geq F_{\chi_d^2}^{-1}(1 - \alpha).$$

739 *Therefore,*

740
$$f_\alpha = (2\pi)^{d/2} \det(\boldsymbol{\Sigma})^{1/2} \exp\left(-\frac{1}{2}F_{\chi_d^2}^{-1}(1 - \alpha)\right),$$

741 *which means*

742
$$\mathcal{R}(f_\alpha) = \left\{ \mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) \leq F_{\chi_d^2}^{-1}(1 - \alpha) \right\}.$$

 743
 744

745 □

746 **Proposition 5.** *Let m be a discrete latent variable supported on $[K]$ and*

747
$$\tau_{:T} = (s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

748 *be a trajectory rolled-out according to the following sampling process: $s_0 \sim \rho_0$, $m \sim p$, and for
 749 each $t \in [T]$, $s_{t+1} \sim P(s_t ; m)$, $a_t \sim \beta(s_t ; m)$, and $r_t \sim R(s_t, s_{t+1} ; m)$. The marginal pdf can be
 750 written as*

751
$$p(\tau_{:T}) = \rho_0(s_0) \sum_{m=0}^{K-1} p(m) \prod_{t=0}^{T-1} P(s_{t+1} \mid s_t ; m) \beta(a_t \mid s_t ; m) R(r_t \mid s_t, s_{t+1} ; m)$$

 752
 753

756 and for any distribution q on $[K]$,

757

$$758 \log p(\tau_{:T}) \geq \log \rho_0(s_0) - D_{\text{KL}}(q \parallel p) \quad (9)$$

759

$$760 + \sum_{t=0}^{T-1} \mathbb{E}_{m \sim q} [\log P(s_{t+1} \mid s_t; m) + \log \beta(a_t \mid s_t; m) + \log R(r_t \mid s_t, s_{t+1}; m)].$$

761

762 *Proof.* Let us denote the action-less trajectory by $\tilde{\tau}_{:T}$, that is,

763

$$\tilde{\tau}_{:T} = (s_0, r_0, s_1, r_1, s_2, r_2, \dots, s_{T-1}, r_{T-1}, s_T).$$

764

765 By Jensen's inequality,

766

$$\log p(\tau_{:T})$$

767

$$768 = \log \rho_0(s_0) + \log \sum_{m=0}^{K-1} p(m) \prod_{t=0}^{T-1} [P(s_{t+1} \mid s_t; m) \beta(a_t \mid s_t; m) R(r_t \mid s_t, s_{t+1}; m)]$$

769

$$770 = \log \rho_0(s_0) + \log \sum_{m=0}^{K-1} q(m) \cdot \frac{p(m)}{q(m)} \prod_{t=0}^{T-1} [P(s_{t+1} \mid s_t; m) \beta(a_t \mid s_t; m) R(r_t \mid s_t, s_{t+1}; m)]$$

771

$$772 \geq \log \rho_0(s_0) + \mathbb{E}_{m \sim q} \left[\log \frac{p(m)}{q(m)} + \sum_{t=0}^{T-1} A(s_t, a_t, r_t, s_{t+1}; m) \right]$$

773

$$774 = \log \rho_0(s_0) - D_{\text{KL}}(q \parallel p) + \sum_{t=0}^{T-1} \mathbb{E}_{m \sim q} [A(s_t, a_t, r_t, s_{t+1}; m)],$$

775

776 where

777

$$A(s_t, a_t, r_t, s_{t+1}; m) = \log P(s_{t+1} \mid s_t; m) + \log \beta(a_t \mid s_t; m) + \log R(r_t \mid s_t, s_{t+1}; m).$$

778

□

780 We restate the two assumptions we made in Section 4.2 for the reader's convenience.

781 **Assumption 3.** There is $K_P > 0$ such that for all $s \in \mathcal{S}$ and $a_1, a_2 \in \mathcal{A}$, $W_1(P(s, a_1), P(s, a_2)) < K_P \|a_1 - a_2\|$.

782 **Assumption 4.** The value function of the behaviour policy β is K_V -Lipschitz.

783 **Lemma 6.** For any policy π and $s \in \mathcal{S}$,

784

$$\frac{r_{\min}}{1-\gamma} \leq V^\beta(s) \leq \frac{r_{\max}}{1-\gamma}.$$

785

786 *Proof.* By the definition of V^π , for all $s \in \mathcal{S}$,

787

$$V^\pi(s) = \mathbb{E}_{\tau \sim \pi|s} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] \geq \mathbb{E}_{\tau \sim \pi|s} \left[\sum_{t=0}^{\infty} \gamma^t r_{\min} \right] = \frac{r_{\min}}{1-\gamma},$$

788

789 and

790

$$V^\pi(s) = \mathbb{E}_{\tau \sim \pi|s} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] \leq \mathbb{E}_{\tau \sim \pi|s} \left[\sum_{t=0}^{\infty} \gamma^t r_{\max} \right] = \frac{r_{\max}}{1-\gamma}.$$

791

□

792 **Proposition 7.** Define $Q_\beta^{\text{LB}}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ by the equation

793

$$Q_\beta^{\text{LB}}(s, a) = \max \left\{ V^\beta(s) - r_{\max} + r_{\min} - \gamma K_V K_P \mathbb{E}_{a' \sim \beta(s)} [\|a - a'\|], \frac{r_{\min}}{1-\gamma} \right\}.$$

794

795 For any policy $\pi: \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$ such that $V^\pi \succeq V^\beta$, $Q^\pi \succeq Q_\beta^{\text{LB}}$.

810 *Proof.* By Lemma 6 and the definition of Q^π , for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$\begin{aligned} 812 \quad Q^\pi(s, a) &= \mathbb{E}_{s' \sim P(s, a, s'), r \sim R(s, a, s')} [r + \gamma V^\pi(s')] \\ 813 \quad &\geq \mathbb{E}_{s' \sim P(s, a, s'), r \sim R(s, a, s')} \left[r_{\min} + \gamma \frac{r_{\min}}{1 - \gamma} \right] \\ 814 \quad &= \frac{r_{\min}}{1 - \gamma}. \\ 815 \end{aligned}$$

816 So we only need to show that for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$817 \quad Q^\pi(s, a) \geq V^\beta(s) - r_{\max} + r_{\min} - \gamma K_V K_P \mathbb{E}_{a' \sim \beta(s)} [\|a - a'\|]. \\ 818$$

819 Let $a_1, a_2 \in \mathcal{A}$. By the Kantorovich–Rubinstein formula (Villani, 2009),

$$\begin{aligned} 820 \quad &|\mathbb{E}_{s' \sim P(\cdot | s, a_1)} [V^\beta(s')] - \mathbb{E}_{s' \sim P(\cdot | s, a_2)} [V^\beta(s')]| \leq K_V W_1(P(\cdot | s, a_1), P(\cdot | s, a_2)) \\ 821 \quad &\leq K_V K_P \|a_1 - a_2\|. \\ 822 \end{aligned}$$

823 Therefore,

$$\begin{aligned} 824 \quad Q^\pi(s, a) &= \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma V^\pi(s')] \\ 825 \quad &\geq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma V^\beta(s')] \\ 826 \quad &= V^\beta(s) - \mathbb{E}_{a' \sim \beta(\cdot | s)} [\mathbb{E}_{s' \sim P(s, a'), r \sim R(s, a', s')} [r + \gamma V^\beta(s')]] \\ 827 \quad &\quad + \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma V^\beta(s')] \\ 828 \quad &\geq V^\beta(s) - r_{\max} + r_{\min} + \gamma \mathbb{E}_{a' \sim \beta(s)} [\mathbb{E}_{s' \sim P(s, a)} [V^\beta(s')] - \mathbb{E}_{s' \sim P(s, a')} [V^\beta(s')]] \\ 829 \quad &\geq V^\beta(s) - r_{\max} + r_{\min} - \gamma K_V K_P \mathbb{E}_{a' \sim \beta(\cdot | s)} [\|a - a'\|]. \\ 830 \end{aligned}$$

831 Note that we have used the fact that

$$832 \quad V^\beta(s) = \mathbb{E}_{a' \sim \beta(s), s' \sim P(s, a'), r \sim R(s, a', s')} [r + \gamma V^\beta(s')]. \\ 833$$

834 \square

835 **Theorem 8.** Let $\{A_s\}_{s \in \mathcal{S}}$ be a family of subsets of \mathcal{A} , $\tilde{Q} \in L^\infty(\mathcal{S} \times \mathcal{A})$, and \mathcal{T}_A be an operator on
836 the space of real-valued functions on $\mathcal{S} \times \mathcal{A}$ defined by the equation

$$837 \quad (\mathcal{T}_A Q)(s, a) = \begin{cases} (\mathcal{T}^* Q)(s, a) & \text{if } a \in A_s, \\ \tilde{Q}(s, a) & \text{otherwise,} \end{cases}$$

838 for each $Q \in L^\infty(\mathcal{S} \times \mathcal{A})$. Then any bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ converges to a unique
839 fixed point Q_A by repeatedly applying \mathcal{T}_A .

840 *Proof.* Fix $s \in \mathcal{S}$, $a \in \mathcal{A}$, and $Q \in L^\infty(\mathcal{S} \times \mathcal{A})$. If $a \in A_s$,

$$\begin{aligned} 841 \quad |(\mathcal{T}_A Q)(s, a)| &= |(\mathcal{T}^* Q)(s, a)| \\ 842 \quad &= \left| \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} \left[r + \gamma \sup_{a' \in \mathcal{A}} Q(s', a') \right] \right| \\ 843 \quad &\leq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} \left[\left| r + \gamma \sup_{a' \in \mathcal{A}} Q(s', a') \right| \right] \\ 844 \quad &\leq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} \left[|r| + \gamma \left| \sup_{a' \in \mathcal{A}} Q(s', a') \right| \right] \\ 845 \quad &\leq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [\max \{|r_{\max}|, |r_{\min}|\} + \gamma \|Q\|_\infty], \\ 846 \quad &= \max \{|r_{\max}|, |r_{\min}|\} + \gamma \|Q\|_\infty. \\ 847 \end{aligned}$$

848 Otherwise,

$$849 \quad |(\mathcal{T}_A Q)(s, a)| = |\tilde{Q}(s, a)| \leq \|\tilde{Q}\|_\infty.$$

850 So

$$851 \quad \|\mathcal{T}_A Q\|_\infty \leq \max \left\{ \|\tilde{Q}\|_\infty, \max \{|r_{\max}|, |r_{\min}|\} + \gamma \|Q\|_\infty \right\} < \infty,$$

864 that is, $\mathcal{T}_A Q \in L^\infty(\mathcal{S} \times \mathcal{A})$. So the restriction of \mathcal{T}_A onto $L^\infty(\mathcal{S} \times \mathcal{A})$ is an operator on $L^\infty(\mathcal{S} \times \mathcal{A})$.
 865 With a slight abuse of notation, we will just denote the restriction by \mathcal{T}_A from now on.
 866

867 Now we go on and prove that \mathcal{T}_A is a contraction operator. Fix $s \in \mathcal{S}$, $a \in \mathcal{A}$ and $Q_1, Q_2 \in$
 868 $L^\infty(\mathcal{S} \times \mathcal{A})$. If $a \in A_s$,

$$\begin{aligned} |(\mathcal{T}_A Q_1)(s, a) - (\mathcal{T}_A Q_2)(s, a)| &= |(\mathcal{T}^* Q_1)(s, a) - (\mathcal{T}^* Q_2)(s, a)| \\ &= \gamma \left| \mathbb{E}_{s' \sim P(s, a)} \left[\sup_{a' \in \mathcal{A}} Q_1(s', a') - \sup_{a'' \in \mathcal{A}} Q_2(s', a'') \right] \right| \\ &\leq \gamma \mathbb{E}_{s' \sim P(s, a)} \left[\left| \sup_{a' \in \mathcal{A}} Q_1(s', a') - \sup_{a'' \in \mathcal{A}} Q_2(s', a'') \right| \right] \\ &\leq \gamma \mathbb{E}_{s' \sim P(s, a)} \left[\sup_{a' \in \mathcal{A}} |Q_1(s', a') - Q_2(s', a')| \right] \\ &\leq \gamma \|Q_1 - Q_2\|_\infty. \end{aligned}$$

879 Otherwise,

$$880 |(\mathcal{T}_A Q_1)(s, a) - (\mathcal{T}_A Q_2)(s, a)| = \left| \tilde{Q}(s, a) - \tilde{Q}(s, a) \right| = 0 \leq \gamma \|Q_1 - Q_2\|_\infty.$$

882 Therefore, and \mathcal{T}_A is a contraction mapping on $L^\infty(\mathcal{S} \times \mathcal{A})$. By the contraction mapping theorem,
 883 any initial-bounded Q-function would converge to a unique fixed point Q_A . \square
 884

885 **Lemma 9.** *Let π_1 and π_2 be two policies. If $\mathbb{E}_{a \sim \pi_1(s)}[Q^{\pi_2}(s, a)] \geq V^{\pi_2}(s)$ for all $s \in \mathcal{S}$, then*
 886 $V^{\pi_1} \succeq V^{\pi_2}$.

887 *Proof.* We define a sequence (Q_n) of bounded real-valued functions on $\mathcal{S} \times \mathcal{A}$ by the recurrence
 888 relation

$$889 Q_n = \begin{cases} Q^{\pi_2} & \text{if } n = 0, \\ 890 \mathcal{T}^{\pi_1} Q_{n-1} & \text{otherwise.} \end{cases}$$

892 We first show that $Q_n \succeq Q^{\pi_2}$ by mathematical induction. The base case is trivial because $Q_0 \equiv$
 893 Q^{π_2} . Suppose $Q_{n-1} \succeq Q^{\pi_2}$. Then for each $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$\begin{aligned} 894 Q_n(s, a) &= (\mathcal{T}^{\pi_1} Q_{n-1})(s, a) \\ 895 &= \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma \mathbb{E}_{a' \sim \pi_1(s')} [Q_{n-1}(s', a')]] \\ 896 &\geq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma \mathbb{E}_{a' \sim \pi_1(s')} [Q^{\pi_2}(s', a')]] \\ 897 &\geq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma \mathbb{E}_{a' \sim \pi_2(s')} [Q^{\pi_2}(s', a')]] \\ 898 &= (\mathcal{T}^{\pi_2} Q^{\pi_2})(s, a) \\ 899 &= Q^{\pi_2}(s, a). \end{aligned}$$

900 So $Q_n \succeq Q^{\pi_2}$. By mathematical induction, $Q_n \succeq Q^{\pi_2}$ for all n . For all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$901 Q^{\pi_1}(s, a) = \lim_{n \rightarrow \infty} Q_n(s, a) \geq Q^{\pi_2}(s, a).$$

902 Therefore, for all $s \in \mathcal{S}$,

$$903 V^{\pi_1}(s) = \mathbb{E}_{a \sim \pi_1(s)} [Q^{\pi_1}(s, a)] \geq \mathbb{E}_{a \sim \pi_1(s)} [Q^{\pi_2}(s, a)] \geq V^{\pi_2}(s),$$

904 that is, $V^{\pi_1} \succeq V^{\pi_2}$. \square

905 **Theorem 10.** *Let $\{A_s\}_{s \in \mathcal{S}}$ be a family of subsets of \mathcal{A} , $\tilde{Q} \in L^\infty(\mathcal{S} \times \mathcal{A})$, and Q_A be a bounded
 906 real-valued function that satisfies the relation*

$$907 Q_A(s, a) = \begin{cases} (\mathcal{T}^* Q_A)(s, a) & \text{if } a \in A_s, \\ 908 \tilde{Q}(s, a) & \text{otherwise,} \end{cases} \quad (10)$$

909 for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$. Suppose there is a policy π such that for all $s \in \mathcal{S}$,

$$910 V^\pi(s) \geq \sup_{a \in \mathcal{A}} \tilde{Q}(s, a)$$

918 and

919
$$Q^\pi(s, a_s) \geq V^\pi(s)$$

920 for some $a_s \in A_s$. If there exists a deterministic policy $\pi_A^* : \mathcal{S} \rightarrow \mathcal{A}$ that is optimal under the
921 constraint $\pi_A(s) \in A_s$ for all $s \in \mathcal{S}$, then

922
$$\pi_A^*(s) = \arg \max_{a \in \mathcal{A}} Q_A(s, a).$$

924

925 *Proof.* Define \mathcal{T}_A as in Theorem 8. We can see that there is a unique bounded real-valued function
926 Q_A that satisfies (10), because by Theorem 8, \mathcal{T}_A has unique fixed point Q_A .
927

928 We proceed to prove that for each $s \in \mathcal{S}$, $Q_A(s, \pi_A^*(s)) \geq V^{\pi_A^*}(s)$. Define a sequence (Q_n) of
929 bounded real-valued functions on $\mathcal{S} \times \mathcal{A}$ by the recurrence relation

930
$$Q_n = \begin{cases} Q_0 & \text{if } n = 0, \\ \mathcal{T}_A Q_{n-1} & \text{otherwise,} \end{cases} \quad (11)$$

932

933 where $Q_0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is defined as

934
$$Q_0(s, a) = \begin{cases} Q_A^{\pi_A^*}(s, a) & \text{if } a \in A_s, \\ \tilde{Q}(s, a) & \text{otherwise.} \end{cases}$$

936

937 When $n = 0$, for all $s \in \mathcal{S}$

938
$$Q_0(s, \pi_A^*(s)) = Q^{\pi_A^*}(s, \pi_A^*(s)) = V^{\pi_A^*}(s),$$

939

940 because $\pi_A^*(s) \in A_s$. Assume $Q_{n-1}(s, \pi_A^*(s)) \geq V^{\pi_A^*}(s)$ for all $s \in \mathcal{S}$. Then for all $s \in \mathcal{S}$,

941
$$\begin{aligned} Q_n(s, \pi_A^*(s)) &= \mathbb{E}_{s' \sim P(s, \pi_A^*(s)), r \sim R(s, \pi_A^*(s), s')} \left[r + \gamma \sup_{a' \in \mathcal{A}} Q_{n-1}(s', a') \right] \\ &\geq \mathbb{E}_{s' \sim P(s, \pi_A^*(s)), r \sim R(s, \pi_A^*(s), s')} [r + \gamma Q_{n-1}(s', \pi_A^*(s'))] \\ &\geq \mathbb{E}_{s' \sim P(s, \pi_A^*(s)), r \sim R(s, \pi_A^*(s), s')} \left[r + \gamma V^{\pi_A^*}(s') \right] \\ &= \mathbb{E}_{s' \sim P(s, \pi_A^*(s)), r \sim R(s, \pi_A^*(s), s')} \left[r + \gamma \mathbb{E}_{a' \sim \pi_A^*(s')} \left[Q^{\pi_A^*}(s', a') \right] \right] \\ &= (\mathcal{T}^{\pi_A^*} Q^{\pi_A^*})(s, \pi_A^*(s)) \\ &= Q^{\pi_A^*}(s, \pi_A^*(s)) \\ &= V^{\pi_A^*}(s). \end{aligned}$$

952

953 So by mathematical induction, $Q_n(s, \pi_A^*(s)) \geq V^{\pi_A^*}(s)$ for all $s \in \mathcal{S}$ and $n \geq 0$. Therefore,
954

955
$$Q_A(s, \pi_A^*(s)) = \lim_{n \rightarrow \infty} Q_n(s, \pi_A^*(s)) \geq V^{\pi_A^*}(s).$$

956

957 Since for all $s \in \mathcal{S}$ and $a \in A_s$,

958
$$Q_A(s, a) = (\mathcal{T}_A Q_A)(s, a) = \tilde{Q}(s, a) \leq V^\pi(s).$$

959

960 We can define a deterministic policy $\pi_A : \mathcal{S} \rightarrow \mathcal{A}$ that maps $s \in \mathcal{S}$ to a_s . Since $\pi_A(s) = a_s \in A_s$
961 for all $s \in \mathcal{S}$ and π_A^* is the optimal policy among the policies that satisfy this constraint, we have
962 $V^{\pi_A^*} \succeq V^{\pi_A}$. So we may conclude that for all $s \in \mathcal{S}$,

963
$$\sup_{a \in \mathcal{A} \setminus A_s} Q_A(s, a) \leq V^\pi(s) \leq V^{\pi_A}(s) \leq V^{\pi_A^*}(s) = Q_A(s, \pi_A^*(s)). \quad (12)$$

965

966 We finish the proof by showing that for all $s \in \mathcal{S}$,

967
$$Q_A(s, \pi_A^*(s)) = \max_{a \in \mathcal{A}} Q_A(s, a).$$

968

969 Recall the sequence (Q_n) we previously defined by the recurrence relation (11). We will prove that
970 for every $n, s \in \mathcal{S}$, and $a \in \mathcal{A}$,

971
$$Q_n(s, a) \leq V^{\pi_A^*}(s) = Q_n(s, \pi_A^*(s)).$$

972

18

972 Assume $n = 0$. Fix $s^\dagger \in \mathcal{S}$ and $a^\dagger \in \mathcal{A}$. If $a^\dagger \notin A_{s^\dagger}$, then by the observation we made in (12),
 973

$$974 Q_0(s^\dagger, a^\dagger) = \tilde{Q}(s^\dagger, a^\dagger) \leq V^{\pi_A^*}(s^\dagger).$$

975 If $a^\dagger \in A_{s^\dagger}$, consider a policy $\pi^\dagger: \mathcal{S} \rightarrow \mathcal{A}$ defined as
 976

$$977 \pi^\dagger(s) = \begin{cases} a^\dagger & \text{if } s = s^\dagger, \\ 978 \pi_A^*(s) & \text{otherwise.} \end{cases}$$

979 For all $s \in \mathcal{S}$, $\pi^\dagger(s) \in A_s$, so $V^{\pi_A^*} \succeq V^{\pi^\dagger}$. If $Q_0(s^\dagger, a^\dagger) < V^{\pi_A^*}(s^\dagger)$, it satisfies our hypothesis.
 980 Otherwise,

$$981 Q^{\pi_A^*}(s^\dagger, \pi^\dagger(s^\dagger)) = Q_0(s^\dagger, a^\dagger) \geq V^{\pi_A^*}(s^\dagger) = Q^{\pi_A^*}(s^\dagger, \pi_A^*(s^\dagger))$$

982 and for $s \neq s^\dagger$,

$$983 Q^{\pi_A^*}(s, \pi^\dagger(s)) = Q^{\pi_A^*}(s, \pi_A^*(s)),$$

984 so by Lemma 9, $V^{\pi^\dagger} \succeq V^{\pi_A^*}$, which means $V^{\pi^\dagger} \equiv V^{\pi_A^*}$. Then

$$\begin{aligned} 985 Q^{\pi_A^*}(s^\dagger, a^\dagger) &= (\mathcal{T}^{\pi_A^*} Q^{\pi_A^*})(s^\dagger, a^\dagger) \\ 986 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, a^\dagger, s')} \left[r + \gamma Q^{\pi_A^*}(s', \pi_A^*(s')) \right] \\ 987 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, a^\dagger, s')} \left[r + \gamma V^{\pi_A^*}(s') \right] \\ 988 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, a^\dagger, s')} \left[r + \gamma V^{\pi^\dagger}(s') \right] \\ 989 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, a^\dagger, s')} \left[r + \gamma Q^{\pi^\dagger}(s', \pi^\dagger(s')) \right] \\ 990 &= (\mathcal{T}^{\pi^\dagger} Q^{\pi^\dagger})(s^\dagger, a^\dagger) \\ 991 &= Q^{\pi^\dagger}(s^\dagger, \pi^\dagger(s^\dagger)) \\ 992 &= V^{\pi^\dagger}(s^\dagger) \\ 993 &= V^{\pi_A^*}(s^\dagger). \end{aligned}$$

994 So $Q_0(s^\dagger, a^\dagger) \leq V^{\pi_A^*}(s^\dagger)$ in both cases. Since it is obvious that
 995

$$996 Q_0(s^\dagger, \pi_A^*(s^\dagger)) = Q^{\pi_A^*}(s^\dagger, \pi_A^*(s^\dagger)) = V^{\pi_A^*}(s^\dagger),$$

997 our hypothesis holds for $n = 0$.

998 Assume the hypothesis holds for $n - 1$. Fix $s^\dagger \in \mathcal{S}$ and $a^\dagger \in \mathcal{A}$. If $a^\dagger \notin A_{s^\dagger}$,
 999

$$1000 Q_n(s^\dagger, a^\dagger) = (\mathcal{T}_\beta^* Q_{n-1})(s^\dagger, a^\dagger) = Q_\beta^{\text{LB}}(s^\dagger, a^\dagger) \leq V^{\pi_\beta^*}(s^\dagger)$$

1001 by (12). Otherwise,

$$\begin{aligned} 1002 Q_n(s^\dagger, a^\dagger) &= (\mathcal{T}_A Q_{n-1})(s^\dagger, a^\dagger) \\ 1003 &= (\mathcal{T}^* Q_{n-1})(s^\dagger, a^\dagger) \\ 1004 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, a^\dagger, s')} \left[r + \gamma \sup_{a' \in \mathcal{A}} Q_{n-1}(s', a') \right] \\ 1005 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, s^\dagger, s')} \left[r + \gamma \max_{a' \in \mathcal{A}} Q_{n-1}(s', a') \right] \\ 1006 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, s^\dagger, s')} \left[r + \gamma V^{\pi_A^*}(s') \right] \\ 1007 &= \mathbb{E}_{s' \sim P(s^\dagger, a^\dagger), r \sim R(s^\dagger, s^\dagger, s')} \left[r + \gamma \mathbb{E}_{a' \sim \pi_A^*(s')} \left[Q^{\pi_A^*}(s', a') \right] \right] \\ 1008 &= (\mathcal{T}^{\pi_A^*} Q^{\pi_A^*})(s^\dagger, a^\dagger) \\ 1009 &= Q^{\pi_A^*}(s^\dagger, a^\dagger) \\ 1010 &= Q_0(s^\dagger, a^\dagger) \\ 1011 &\leq V^{\pi_A^*}(s^\dagger). \end{aligned}$$

1026 When $a^\dagger = \pi_A^*(s^\dagger)$, the inequality becomes equality. So by mathematical induction, for every n ,
 1027 $s \in \mathcal{S}$, and $a \in \mathcal{A}$,

$$1028 \quad Q_n(s, a) \leq V^{\pi_A^*}(s) = Q_n(s, \pi_A^*(s)).$$

1030 Sending n to infinity, we can see that for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$1031 \quad Q_A(s, a) = \lim_{n \rightarrow \infty} Q_n(s, a) \leq V^{\pi_A^*}(s) = \lim_{n \rightarrow \infty} Q_n(s, \pi_A^*(s)) = Q_A(s, \pi_A^*(s)).$$

1033 Therefore,

$$1035 \quad Q_A(s, \pi_A^*(s)) = \max_{a \in \mathcal{A}} Q_A(s, a).$$

1037 \square

1038 **Theorem 11.** Any initial bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ can converge to a unique fixed
 1039 point Q_β^* by repeatedly applying \mathcal{T}_β^* . Suppose for each $s \in \mathcal{S}$,

$$1041 \quad Q^\beta(s, a_s) \geq \mathbb{E}_{a \sim \beta(s)} [Q^\beta(s, a)]$$

1043 for some $a_s \in \mathcal{A} \setminus \text{OOD}(s)$. If there exists a deterministic policy $\pi_\beta^* : \mathcal{S} \rightarrow \mathcal{A}$ that is optimal under
 1044 the constraint $\pi(s) \notin \text{OOD}(s)$ for all $s \in \mathcal{S}$, then $\pi_\beta^*(s) = \arg \max_{a \in \mathcal{A}} Q_\beta^*(s, a)$ for all $s \in \mathcal{S}$.

1046 *Proof.* First observe that for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$1048 \quad Q_\beta^{\text{LB}}(s, a) \geq \frac{r_{\min}}{1 - \gamma},$$

1050 and

$$1052 \quad Q_\beta^{\text{LB}}(s, a) \leq V^\beta(s) - r_{\max} + r_{\min} \leq \frac{r_{\max}}{1 - \gamma} - r_{\max} + r_{\min},$$

1054 by Lemma 6. This implies $Q_\beta^{\text{LB}} \in L^\infty(\mathcal{S} \times \mathcal{A})$. Since $\tilde{Q} = Q_\beta^{\text{LB}}$ and $A_s = \mathcal{A} \setminus \text{OOD}(s)$ satisfies the
 1055 conditions of Lemma 8, any initially bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ converges to a unique
 1056 fixed point, which we denote by Q_β^* , through repeated application of \mathcal{T}_A , which is in fact, \mathcal{T}_β^* .

1057 For all $s \in \mathcal{S}$,

$$1058 \quad Q_\beta^{\text{LB}}(s, a) \leq V^\beta(s) - r_{\max} + r_{\min} \leq V^\beta(s),$$

1060 which means

$$1062 \quad \sup_{a \in \mathcal{A}} Q_\beta^{\text{LB}}(s, a) \leq V^\beta(s) = \mathbb{E}_{a \sim \beta(s)} [Q^\beta(s, a)] < \sup_{a \in \mathcal{A} \setminus \text{OOD}(s)} Q^\beta(s, a).$$

1064 Now we can see that the second part of the theorem is a special case of Theorem 10, where $A_s =$
 1065 $\mathcal{A} \setminus \text{OOD}(s)$, $\tilde{Q} = Q_\beta^{\text{LB}}$, $Q_A = Q_\beta^*$, $\pi = \beta$, and $\pi_A^* = \pi_\beta^*$. \square

1067 **Lemma 12.** Let $\Pi = \{\pi_0, \pi_1, \pi_2, \dots, \pi_{N-1}\}$ be a finite set of policies. If π^* is a policy such that
 1068 for each $s \in \mathcal{S}$, there is $i \in [N]$ such that $\pi^*(s) = \pi_i(s)$ and $V^{\pi_i}(s) = \max_{\pi \in \Pi} V^\pi(s)$, then
 1069 $V^{\pi^*} \succeq V^\pi$ for every $\pi \in \Pi$.

1071 *Proof.* Define a sequence (Q_n) of bounded real-valued functions by the recurrence relation
 1072

$$1073 \quad Q_n = \begin{cases} \max_{\pi \in \Pi} Q^\pi & \text{if } n = 0, \\ \mathcal{T}^{\pi^*} Q_{n-1}, & \text{otherwise.} \end{cases}$$

1076 We want to show that $Q_n \succeq \max_{\pi \in \Pi} Q^\pi$ for all $n \geq 0$. The base case is trivial. Assume
 1077 $Q_{n-1} \succeq \max_{\pi \in \Pi} Q^\pi$. For each $s \in \mathcal{S}$, there is $i \in [N]$ such that $\pi^*(s) = \pi_i(s)$ and
 1078 $V^{\pi_i}(s) = \max_{\pi \in \Pi} V^\pi(s)$, which implies

$$1079 \quad \mathbb{E}_{a \sim \pi^*(s)} [Q_{n-1}(s, a)] \geq \mathbb{E}_{a \sim \pi_i(s)} [Q^{\pi_i}(s)] = V^{\pi_i}(s) = \max_{\pi \in \Pi} V^\pi(s).$$

1080 Now for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$\begin{aligned}
 Q_n(s, a) &= (\mathcal{T}^{\pi^*} Q_{n-1})(s, a) \\
 &= \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma \mathbb{E}_{a' \sim \pi^*(s')} [Q_{n-1}(s', a')]] \\
 &\geq \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} \left[r + \gamma \max_{\pi \in \Pi} V^{\pi}(s') \right] \\
 &= \max_{\pi \in \Pi} \mathbb{E}_{s' \sim P(s, a), r \sim R(s, a, s')} [r + \gamma \mathbb{E}_{a' \sim \pi(s')} [Q^{\pi}(s', a')]] \\
 &= \max_{\pi \in \Pi} (\mathcal{T}^{\pi} Q^{\pi})(s, a) \\
 &= \max_{\pi \in \Pi} Q^{\pi}(s, a).
 \end{aligned}$$

1092 By mathematical induction, $Q_n \succeq \max_{\pi \in \Pi} Q^{\pi}$ for all $n \geq 0$. Therefore,

$$Q^{\pi^*}(s, a) = \lim_{n \rightarrow \infty} Q_n(s, a) \geq \max_{\pi \in \Pi} Q^{\pi}(s, a)$$

1095 for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$.

1097 Fix $s \in \mathcal{S}$. There is $i \in [N]$ such that $\pi^*(s) = \pi_i(s)$ and $V^{\pi_i}(s) = \max_{\pi \in \Pi} V^{\pi}(s)$. Then

$$V^{\pi^*}(s) = \mathbb{E}_{a \sim \pi^*(s)} [Q^{\pi^*}(s, a)] \geq \mathbb{E}_{a \sim \pi_i(s)} [Q^{\pi_i}(s, a)] = V^{\pi_i}(s) = \max_{\pi \in \Pi} V^{\pi}(s).$$

1100 Our choice of s was arbitrary, so $V^{\pi^*} \succeq \max_{\pi \in \Pi} V^{\pi}$. \square

1102 **Theorem 13.** Any initial bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ can converge to a unique fixed
1103 point $Q_{\mathcal{B}}^*$ by repeatedly applying $\mathcal{T}_{\mathcal{B}}^*$. Suppose for each $\beta \in \mathcal{B}$ and $s \in \mathcal{S}$,

$$Q^{\beta}(s, a_s^{\beta}) \geq \mathbb{E}_{a \sim \beta(s)} [Q^{\beta}(s, a)]$$

1106 for some $a_s^{\beta} \in \mathcal{A} \setminus \text{OOD}(s)$. If there exists a deterministic policy $\pi_{\mathcal{B}}^* : \mathcal{S} \rightarrow \mathcal{A}$ that is optimal under
1107 the constraint $\pi(s) \notin \text{OOD}(s)$ for all $s \in \mathcal{S}$, then $\pi_{\mathcal{B}}^*(s) = \arg \max_{a \in \mathcal{A}} Q_{\mathcal{B}}^*(s, a)$ for all $s \in \mathcal{S}$.

1109 *Proof.* First observe that for all $s \in \mathcal{S}$, $a \in \mathcal{A}$, and $\beta \in \mathcal{B}$,

$$Q_{\beta}^{\text{LB}}(s, a) \geq \frac{r_{\min}}{1 - \gamma},$$

1113 and

$$Q_{\beta}^{\text{LB}}(s, a) \leq V^{\beta}(s) - r_{\max} + r_{\min} \leq \frac{r_{\max}}{1 - \gamma} - r_{\max} + r_{\min},$$

1116 by Lemma 6. So obviously,

$$Q_{\mathcal{B}}^{\text{LB}}(s, a) = \max_{\beta \in \mathcal{B}} Q_{\beta}^{\text{LB}}(s, a) \geq \frac{r_{\min}}{1 - \gamma},$$

1119 and

$$Q_{\mathcal{B}}^{\text{LB}}(s, a) = \max_{\beta \in \mathcal{B}} Q_{\beta}^{\text{LB}}(s, a) \leq \frac{r_{\max}}{1 - \gamma} - r_{\max} + r_{\min},$$

1122 for all $s \in \mathcal{S}$ and \mathcal{A} . This implies $Q_{\mathcal{B}}^{\text{LB}} \in L^{\infty}(\mathcal{S} \times \mathcal{A})$. Since $\tilde{Q} = Q_{\mathcal{B}}^{\text{LB}}$ and $A_s = \mathcal{A} \setminus \text{OOD}(s)$
1123 satisfies the conditions of Lemma 8, any initially bounded real-valued function on $\mathcal{S} \times \mathcal{A}$ converges
1124 to a unique fixed point, which we denote by $Q_{\mathcal{B}}^*$, through repeated application of $\mathcal{T}_{\mathcal{A}}$, which is in
1125 fact, $\mathcal{T}_{\mathcal{B}}^*$.

1126 For each $\beta \in \mathcal{B}$ define a deterministic policy $\beta' : \mathcal{S} \rightarrow \mathcal{A}$ so that $\beta'(s) = a_s^{\beta}$ for each $s \in \mathcal{S}$. Then

$$Q^{\beta}(s, \beta'(s)) = Q^{\beta}(s, a_s^{\beta}) \geq \mathbb{E}_{a \sim \beta(s)} [Q^{\beta}(s, a)]$$

1130 for all $s \in \mathcal{S}$, so $V^{\beta'} \succeq V^{\beta}$ by Lemma 9. We will denote the set $\{\beta' : \beta \in \mathcal{B}\}$ by \mathcal{B}' . Consider a
1131 policy $\beta^* : \mathcal{S} \rightarrow \mathcal{A}$ defined as

$$\beta^*(s) = \left(\arg \max_{\beta' \in \mathcal{B}'} V^{\beta'}(s) \right) (s),$$

1134 that is, for each state, we follow the β' with the highest value. Obviously, $\beta^*(s) \in \mathcal{A} \setminus \text{OOD}(s)$ for
 1135 all $s \in \mathcal{S}$, and by Lemma 12, for all $s \in \mathcal{S}$, $a \in \mathcal{A}$, and $\beta \in \mathcal{B}$,

$$1137 Q_{\beta}^{\text{LB}}(s, a) \leq V^{\beta}(s) - r_{\max} + r_{\min} \leq V^{\beta}(s) \leq V^{\beta'}(s) \leq V^{\beta^*}(s),$$

1138 which means

$$1139 V^{\beta^*}(s) \geq \sup_{a \in \mathcal{A}} \max_{\beta \in \mathcal{B}} Q_{\beta}^{\text{LB}}(s, a) = \sup_{a \in \mathcal{A}} Q_{\mathcal{B}}^{\text{LB}}(s, a).$$

1140 Now we can see that the second part of the theorem is a special case of Theorem 10, where $A_s =$
 1141 $\mathcal{A} \setminus \text{OOD}(s)$, $\tilde{Q} = Q_{\mathcal{B}}^{\text{LB}}$, $Q_A = Q_{\mathcal{B}}^*$, $\pi = \beta^*$, and $\pi_A^* = \pi_{\beta}^*$. \square

1143 **Proposition 14.** *Let \mathbf{X} be a non-degenerate multivariate Gaussian random vector with mean $\mu \in$
 1144 \mathbb{R}^d and a diagonal covariance matrix $\text{diag}(\sigma)^2 \in \mathbb{R}^{d \times d}$. For $\mathbf{y} \in \mathbb{R}^d$,*

$$1146 \mathbb{E} [\|\mathbf{X} - \mathbf{y}\|_1] = \sum_{i=1}^d \left[(y_i - \mu_i) \text{erf} \left(\frac{y_i - \mu_i}{\sigma_i \sqrt{2}} \right) + \sqrt{\frac{2}{\pi}} \sigma_i \exp \left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2} \right) \right].$$

1149 *Proof.* Let $\mathbf{X} = (X_1, X_2, \dots, X_d)$, $\mathbf{y} = (y_1, y_2, \dots, y_d)$, $\mu = (\mu_1, \mu_2, \dots, \mu_d)$, and $\sigma =$
 1150 $(\sigma_1, \sigma_2, \dots, \sigma_d)$. We may assume that $\sigma_1, \sigma_2, \dots, \sigma_d > 0$. Then

$$1152 \mathbb{E} [\|\mathbf{X} - \mathbf{y}\|_1] = \mathbb{E} \left[\sum_{i=1}^d |X_i - y_i| \right] = \sum_{i=1}^d \mathbb{E} [|X_i - y_i|].$$

1154 Define $g_i(y) = \mathbb{E} [|X_i - y|]$.

$$1156 g'_i(y) = \mathbb{E} \left[\frac{d}{dy} |X_i - y| \right] = \mathbb{E} [\mathbf{1}_{X_i < y} - \mathbf{1}_{X_i > y}] = F_{X_i}(y) - (1 - F_{X_i}(y)) = 2F_{X_i}(y) - 1,$$

1158 where F_{X_i} is the cumulative distribution function of X_i . So

$$1160 g'_i(y) = \text{erf} \left(\frac{y - \mu_i}{\sigma_i \sqrt{2}} \right).$$

1162 Observe that

$$1163 g_i(\mu_i) = \mathbb{E} [|X_i - \mu_i|]$$

$$1164 = \frac{1}{\sqrt{2\pi}\sigma_i} \int_{\mu_i}^{\infty} (x_i - \mu_i) \exp \left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2} \right) dx_i$$

$$1167 - \frac{1}{\sqrt{2\pi}\sigma_i} \int_{-\infty}^{\mu_i} (x_i - \mu_i) \exp \left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2} \right) dx_i.$$

1169 Substituting $u_i = (x_i - \mu_i)/\sigma_i$,

$$1171 g_i(\mu_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \left[\int_0^{\infty} \sigma_i u_i e^{-\frac{1}{2}u_i^2} \sigma_i du_i - \int_{-\infty}^0 \sigma_i u_i e^{-\frac{1}{2}u_i^2} \sigma_i du_i \right]$$

$$1174 = \frac{\sigma_i}{\sqrt{2\pi}} \left[\int_0^{\infty} u_i e^{-\frac{1}{2}u_i^2} du_i - \int_{-\infty}^0 u_i e^{-\frac{1}{2}u_i^2} du_i \right]$$

$$1177 = \sqrt{\frac{2}{\pi}} \sigma_i.$$

1178 By the fundamental theorem of calculus,

$$1180 g_i(y) = g_i(\mu_i) + \int_{\mu_i}^y g'_i(v) dv = \sqrt{\frac{2}{\pi}} \sigma_i + \int_{\mu_i}^y \text{erf} \left(\frac{v - \mu_i}{\sigma_i \sqrt{2}} \right) dv.$$

1182 Substituting $z = (v - \mu_i)/(\sigma_i \sqrt{2})$,

$$1184 \int_{\mu_i}^y \text{erf} \left(\frac{v - \mu_i}{\sigma_i \sqrt{2}} \right) dv = \int_0^{(y - \mu_i)/(\sigma_i \sqrt{2})} \text{erf}(z) \sigma_i \sqrt{2} dz$$

$$1186 = \sqrt{2} \sigma_i \left[\left(\frac{y - \mu_i}{\sigma_i \sqrt{2}} \right) \text{erf} \left(\frac{y - \mu_i}{\sigma_i \sqrt{2}} \right) + \frac{1}{\sqrt{\pi}} \exp \left(-\frac{(y - \mu_i)^2}{2\sigma_i^2} \right) - \frac{1}{\sqrt{\pi}} \right].$$

1188 Therefore,

$$1189 \quad g_i(y) = (y - \mu_i) \operatorname{erf} \left(\frac{y - \mu_i}{\sigma_i \sqrt{2}} \right) + \sqrt{\frac{2}{\pi}} \sigma_i \exp \left(-\frac{(y - \mu_i)^2}{2\sigma_i^2} \right),$$

1190 which implies

$$1191 \quad \mathbb{E} [\|\mathbf{X} - \mathbf{y}\|_1] = \sum_{i=1}^d g_i(y_i) = \sum_{i=1}^d \left[(y_i - \mu_i) \operatorname{erf} \left(\frac{y_i - \mu_i}{\sigma_i \sqrt{2}} \right) + \sqrt{\frac{2}{\pi}} \sigma_i \exp \left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2} \right) \right].$$

1192 \square

1193 C PRACTICAL ALGORITHM

1194 C.1 STAGE I: BEHAVIOUR POLICY LEARNING

1195 In theory, each behaviour policy is well-defined on every state $s \in \mathcal{S}$. However, in practice, we can
 1196 trust our estimations only in the vicinity of the states they were trained on. The problem is, we train
 1197 each $\hat{\beta}$ only on the states they are assigned to. Therefore, we need a mechanism to determine which
 1198 behaviour policy estimates we can trust given a state $s \in \mathcal{S}$. For this purpose, we additionally train a
 1199 classifier $f_\psi: \mathcal{S} \rightarrow \mathcal{P}_d([K])$ using the computed assignments and determine the credible set by the
 1200 equation

$$1201 \quad \hat{\mathcal{V}}(s) = \left\{ \hat{\beta}_i \in \hat{\mathcal{B}} : f_\psi(i \mid s) \geq \frac{1}{b} \max_{j \in [K]} f_\psi(j \mid s) \right\},$$

1202 where $b > 0$ is a hyperparameter. We accordingly modify the definition of $Q_{\hat{\mathcal{B}}}^{\text{LB}}$ to

$$1203 \quad Q_{\hat{\mathcal{B}}}^{\text{LB}}(s, a) = \max_{\hat{\beta} \in \hat{\mathcal{V}}(s)} Q_{\hat{\beta}}^{\text{LB}}(s, a),$$

1204 for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$.

1205 C.2 STAGE II: BEHAVIOUR VALUE LEARNING

1206 To learn the value functions of all K behaviour policies in parallel, we leverage a network $V_\zeta: \mathcal{S} \rightarrow \mathbb{R}^K$ with K outputs. The per sample temporal difference (TD) loss function can be written by the
 1207 equation

$$1208 \quad \ell_V(\zeta; s, r, s') = (V_\zeta(s)[\mathbb{A}(s)] - r - \gamma V_{\zeta'}(s')[\mathbb{A}(s')])^2,$$

1209 where s , r , and s' are the state, reward, and next state sampled from the dataset, respectively, ζ' is
 1210 the target network parameter that is updated by polyak averaging as in Lillicrap et al. (2016), and
 1211 $V_\zeta(s)[i]$ is the i -th coordinate of $V_\zeta(s)$. Note that $\mathbb{A}(s)$, the cluster assignment of s , is equal to $\mathbb{A}(s')$,
 1212 because we assign each trajectory to the same cluster.

1213 C.3 STAGE III: POLICY LEARNING

1214 In practice, it is infeasible to compute the supremum term in the penalised Bellman operator $\mathcal{T}_{\hat{\mathcal{B}}}^*$. We
 1215 instead adopt the actor-critic formulation that alternates between the policy improvement step and
 1216 the critic learning step. The goal of the policy improvement step is to find an action that maximises
 1217 the critic for each state. The challenge is that the critic is highly non-convex due to the penalisation
 1218 of critic values for actions between the means of the behaviour policies, causing gradient methods to
 1219 yield suboptimal solutions. Hence, we search for the optimal action in the vicinity of each behaviour
 1220 policy's mean simultaneously. This is done by training a network to output not the optimal action
 1221 itself but the difference between the optimal action and one of the behaviour policy means. Utilising
 1222 an ensemble of K neural networks $g_{\psi_\pi^0}, g_{\psi_\pi^1}, \dots, g_{\psi_\pi^{K-1}}$, we can compute K action candidates
 1223 a_0, a_1, \dots, a_{K-1} , where

$$1224 \quad a_i = \boldsymbol{\mu}_{\hat{\beta}_i}(s) + g_{\psi_\pi^i}(s),$$

1225 and $\boldsymbol{\mu}_{\hat{\beta}}$ is the mean vector of the behaviour policy estimate $\hat{\beta}$. Then we choose the best action $a_{i_s^*}$
 1226 with respect to the current critic function Q_{ψ_Q} , that is,

$$1227 \quad i_s^* = \arg \max_{i \in \hat{\mathcal{I}}(s)} Q_{\psi_Q}(s, a_i),$$

1242 where

$$\hat{\mathcal{I}}(s) = \left\{ i \in [K] : \hat{\beta}_i \in \hat{\mathcal{V}}(s) \right\}.$$

1245 The loss function for the policy improvement step can be written by the following equation:

$$\ell_\pi(\psi_\pi; s) = -\max_{i \in \hat{\mathcal{I}}^*} Q_{\psi_Q} \left(s, \boldsymbol{\mu}_{\hat{\beta}_i}(s) + g_{\psi_\pi^i}(s) \right).$$

1249 The critic learning step has two objectives: minimising the TD error and penalising the OOD actions.
1250 For the first objective, we adopt the conventional TD loss adapted to match the way we defined our
1251 policy, which is represented by the equation

$$\ell_Q^{\text{TD}}(\psi_Q; s, a, r, s') = (Q_{\psi_Q}(s, a) - T(r, s'))^2,$$

1254 where s , a , r , and s' are the state, action, reward, and next state sampled from the dataset, respectively,
1255 and the TD target $T(r, s')$ is defined as

$$T(r, s') = r + \gamma \max_{\hat{\beta} \in \hat{\mathcal{V}}(s)} Q_{\psi_Q'} \left(s', \boldsymbol{\mu}_{\hat{\beta}}(s') + g_{\psi_\pi'}(s') \right).$$

1259 ψ_Q' and ψ_π' in the preceding equation are the target critic network parameters and target actor net-
1260 work parameters, respectively, which are updated by polyak averaging to gradually follow ψ_Q and
1261 ψ_π .

1262 The second objective of the critic learning step is to penalise the critic values of OOD actions to-
1263 wards $Q_{\hat{\mathcal{B}}}^{\text{LB}}(s, a)$. In order to compute $Q_{\hat{\mathcal{B}}}^{\text{LB}}$, we need to compute $Q_{\hat{\beta}}^{\text{LB}}$ for each $\hat{\beta} \in \hat{\mathcal{B}}$. However,
1264 computing $Q_{\hat{\beta}}^{\text{LB}}$ is not straightforward, due to the term $\mathbb{E}_{a' \sim \hat{\beta}(s)} [\|a - a'\|]$ in (7). We discovered
1266 that if we use a 1-norm and assume that $\hat{\beta}$ has a diagonal covariance matrix, the expectation has the
1267 following closed-form expression (Proposition 14):

$$\mathbb{E}_{a' \sim \hat{\beta}(s)} [\|a - a'\|_1] = \sum_{i=1}^{d_a} (y_i - \mu_i(s)) \operatorname{erf} \left(\frac{a_i - \mu_i(s)}{\sigma_i(s) \sqrt{2}} \right) + \sqrt{\frac{2}{\pi}} \sum_{i=1}^{d_a} \sigma_i \exp \left(-\frac{(a_i - \mu_i(s))^2}{2\sigma_i^2(s)} \right),$$

1271 where $a = (a_1, a_2, \dots, a_{d_a})$ and $\hat{\beta}(s)$ is a Gaussian distribution with a state-dependent mean vector
1272 $\boldsymbol{\mu}(s) = (\mu_1(s), \mu_2(s), \dots, \mu_{d_a}(s))$ and a state-dependent covariance matrix whose main diagonal
1273 is $\boldsymbol{\sigma}(s) = (\sigma_1(s), \sigma_2(s), \dots, \sigma_{d_a}(s))$. For r_{\min} and r_{\max} , following Mao et al. (2023), we estimate
1275 them by the minimum and maximum rewards in all of the datasets of a given task, that is, for example
1276 r_{\min} and r_{\max} for a hopper-v2 dataset is computed by the minimum and maximum of the rewards
1277 in hopper-expert-v2, hopper-medium-v2, and hopper-random-v2. To sum up, the loss function for
1278 regularisation is

$$\ell_Q^{\text{reg}}(\psi_Q; \tilde{s}, \tilde{a}) = \mathbf{1}_{\tilde{a} \in \text{OOD}(\tilde{s})} (Q_{\psi_Q}(\tilde{s}, \tilde{a}) - Q_{\hat{\mathcal{B}}}^{\text{LB}}(\tilde{s}, \tilde{a}))^2,$$

1280 where \tilde{s} is a state sampled from the dataset and \tilde{a} is an action sampled from π_{alg} . The resulting total
1281 loss can be written by the following equation

$$\ell_Q(\psi_Q) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} [\ell_Q^{\text{TD}}(\psi_Q; s, a, r, s')] + w_Q \mathbb{E}_{\tilde{s} \sim \mathcal{D}, \tilde{a} \sim \pi_{\text{alg}}(\cdot | \tilde{s})} [\ell_Q^{\text{reg}}(\psi_Q; \tilde{s}, \tilde{a})], \quad (13)$$

1285 where w_Q is a tunable hyperparameter. For π_{alg} we adopted

$$\pi_{\text{alg}}(a | s) = \frac{1}{2} \tilde{\beta}(a | s) + \frac{1}{2} \pi(a | s),$$

1288 where π is the current policy and $\tilde{\beta}$ is defined as

$$\tilde{\beta}(\cdot | s) = \mathcal{N}(\boldsymbol{\mu}_{\hat{\beta}^*}(s), \kappa^2 \boldsymbol{\Sigma}_{\hat{\beta}^*}(s)).$$

1290 Here, $\boldsymbol{\mu}_{\hat{\beta}^*}(s)$ and $\boldsymbol{\Sigma}_{\hat{\beta}^*}(s)$ are the mean vector and covariance matrix of the selected behaviour policy
1292 $\hat{\beta}^*$ and κ is a tunable hyperparameter, which we set to 2 in most of our experiments. The first term
1293 regularises the critic values over a broad range of actions to guide a randomly initialised network
1294 g_{ψ_π} towards producing near-zero values. The second term regularises the critic values in the vicinity
1295 of the current policy allowing delicate control near the boundary of $\text{OOD}(s)$.

1296 C.4 IMPLEMENTATION DETAILS
1297

1298 We standardised the observations following Fujimoto & Gu (2021) and normalised the rewards
1299 so that the average empirical discounted return becomes \hat{V} , which we set to 100 for most of our
1300 experiments. The algorithm was implemented upon the JAX (Bradbury et al., 2018) framework
1301 using the Flax (Heek et al., 2024) library. The scikit-learn (Pedregosa et al., 2011) library was used
1302 to compute ARIs and NMIs for Sections 5.3 and D.2.

1303

1304 D EXPERIMENT DETAILS
13051306 D.1 MOTIVATION EXPERIMENT
1307

1308 For the experiment in Section 3, we created a single-state infinite-horizon MDP with $\gamma = 0.9$ and a
1309 deterministic reward function

$$1310 R(\mathbf{a}) = \frac{1}{2} \exp(\|\mathbf{a} - \mathbf{a}^*\|_2^2).$$

1311 The optimal action is obviously \mathbf{a}^* and the optimal discounted return is $1/(1 - \gamma) = 10$. Since it
1312 is a single-state MDP, we adopted a trainable six-dimensional vector instead of a policy network.
1313 Similarly, the critic network $Q_\psi: \mathcal{A} \rightarrow \mathbb{R}$ only takes the action as its input. The loss function
1314 functions for the two algorithms are

$$1316 \ell_{\text{IS}}(\psi) = \mathbb{E}_{(r, \mathbf{a}) \sim \mathcal{D}} \left[(Q_\psi(\mathbf{a}) - r - \gamma Q_{\bar{\psi}}(\mathbf{a}_\phi))^2 + \rho_\phi(\mathbf{a}) Q_\psi(\mathbf{a})^2 + \alpha \mathbb{E}_{\mathbf{a}' \sim \mathcal{N}(\mathbf{a}, \sigma^2 \mathbf{I}_6)} [Q_\psi(\mathbf{a}')^2] \right]$$

$$1318 \ell_{\text{HT}}(\psi) = \mathbb{E}_{(r, \mathbf{a}) \sim \mathcal{D}} \left[(Q_\psi(\mathbf{a}) - r - \gamma Q_{\bar{\psi}}(\mathbf{a}_\phi))^2 + \alpha \mathbb{E}_{\mathbf{a}' \sim \pi_{\text{alg}}} [\mathbf{1}_{\mathbf{a}' \in \text{OOD}} Q_\psi(\mathbf{a}')^2] \right],$$

1320 where \mathbf{a}_ϕ is the current policy, $\bar{\psi}$ is the target critic parameter updated in an EMA fashion, $\rho_\phi(\mathbf{a})$ is
1321 the importance sampling ratio defined as

$$1322 \rho_\phi(\mathbf{a}) = \frac{\mu_\phi(\mathbf{a})}{\beta(\mathbf{a})} = \frac{1}{\sigma^6} \exp \left(\frac{1}{2} \|\mathbf{a}\|^2 - \frac{1}{2\sigma^2} \|\mathbf{a} - \mathbf{a}_\phi\|^2 \right),$$

1325 π_{alg} is the sampling policy defined as

$$1327 \pi_{\text{alg}} = \frac{1}{2} \mathcal{N}(\mathbf{0}, \mathbf{I}_6) + \frac{1}{2} \mathcal{N}(\mathbf{a}_\phi, \sigma^2 \mathbf{I}_6),$$

1329 and

$$1330 \text{OOD} = \left\{ \mathbf{a} \in \mathbb{R}^6 : \|\mathbf{a}\|_2^2 \leq F_{\chi_6^2}^{-1}(0.5) \right\}.$$

1331 For the actor loss, we used

$$1332 \ell_\pi(\phi) = -Q_\psi(\mathbf{a}_\phi)$$

1334 in both cases.

1335 D.2 ADDITIONAL ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM
1336

1337 Aside from the three random-medium-expert datasets mentioned in Section 5.3, we also created
1338 custom D4RL datasets by concatenating medium and expert datasets of halfcheetah, hopper, and
1339 walker2d tasks. The mean and standard deviation of ARIs and NMIs for each configuration over 5
1340 different seeds are reported in Table 7. The configuration $(\lambda_T, \lambda_R) = (1, 0)$ performs the best on
1341 average even after we include the three medium-expert datasets.

1342 We also provide visualisations of our clustering results on different datasets of the D4RL benchmark
1343 (Figures 4–9). Each row represents a different trajectory in the dataset.

1344

1345

1346

1347

1348

1349

1350
 1351 Table 7: The impact of hyperparameters λ_T and λ_R on the performance of our trajectory clustering
 1352 algorithm evaluated on custom D4RL datasets. The performance is measured in terms of adjusted
 1353 rand index (ARI) and normalised mutual information score (NMI).
 1354

	$\lambda_T = 1$		$\lambda_T = 0$	
	$\lambda_R = 1$	$\lambda_R = 0$	$\lambda_R = 1$	$\lambda_R = 0$
halfcheetah-medium-expert				
ARI	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00
NMI	1.00 \pm 0.00	0.99 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00
halfcheetah-random-medium-expert				
ARI	0.97 \pm 0.04	0.99 \pm 0.00	0.91 \pm 0.19	0.91 \pm 0.17
NMI	0.97 \pm 0.03	0.97 \pm 0.01	0.93 \pm 0.12	0.92 \pm 0.12
hopper-medium-expert				
ARI	0.80 \pm 0.44	1.00 \pm 0.00	0.99 \pm 0.01	1.00 \pm 0.00
NMI	0.80 \pm 0.42	1.00 \pm 0.00	0.97 \pm 0.03	1.00 \pm 0.00
hopper-random-medium-expert				
ARI	0.49 \pm 0.29	0.98 \pm 0.02	0.59 \pm 0.33	0.97 \pm 0.06
NMI	0.57 \pm 0.26	0.97 \pm 0.02	0.66 \pm 0.29	0.98 \pm 0.04
walker2d-medium-expert				
ARI	0.99 \pm 0.01	1.00 \pm 0.00	0.99 \pm 0.02	1.00 \pm 0.00
NMI	0.99 \pm 0.02	1.00 \pm 0.01	0.98 \pm 0.04	1.00 \pm 0.00
walker2d-random-medium-expert				
ARI	0.88 \pm 0.16	0.98 \pm 0.05	0.98 \pm 0.03	1.00 \pm 0.00
NMI	0.90 \pm 0.11	0.98 \pm 0.03	0.97 \pm 0.04	1.00 \pm 0.00
Average		ARI	0.86 \pm 0.27	0.99 \pm 0.02
		NMI	0.87 \pm 0.24	0.98 \pm 0.02
				0.98 \pm 0.07
				0.98 \pm 0.06

Figure 4: Clustering visualisations for halfcheetah-medium-expert-v2

Figure 5: Clustering visualisations for halfcheetah-random-medium-expert-v2

Figure 6: Clustering visualisations for hopper-medium-expert-v2

Figure 7: Clustering visualisations for hopper-random-medium-expert-v2

Figure 8: Clustering visualisations for walker2d-medium-expert-v2

Figure 9: Clustering visualisations for walker2d-random-medium-expert-v2

1458 E ADDITIONAL FIGURES
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
14701471
1472 Figure 10: A diagram showing the probability density function and the $100(1 - \alpha)\%$ highest density
1473 region of a normal distribution. The probability of the corresponding normal random variable to lie
1474 inside $\mathcal{R}(f_\alpha)$, which corresponds to the area of the coloured region, is $1 - \alpha$.
1475
1476
14771478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492 Figure 11: VariBAD architecture. This figure is a redrawn version of Figure 2 in Zintgraf et al.
1493 (2021).
1494
1495
1496
1497

F RELATED WORK

1498 **Value regularisation** Value regularisation aims to discourage the actor from choosing OOD actions by penalising their critic values. Conservative Q learning (CQL; Kumar et al. 2020) was one of the first works in this line of research, where they minimise the standard TD error together with the Q-values of OOD actions. Lyu et al. (2022) pointed out that the CQL excessively regularises the OOD Q-values to the extent that hampers the learning process. They suggested a milder regularisation term based on the critic values of ID actions. Supported value regularisation (SVR; Mao et al. 2023) proposed a penalisation scheme that maintains standard Bellman updates for ID actions while selectively penalising OOD actions' critic values. Most existing value regularisation algorithm, including the three works introduced in this section, sample the OOD actions from the current policy. However, as training progresses, the current policy will start to produce ID samples, so it is crucial to prevent unnecessary penalisation for those actions. CQL circumvents this issue through maximising the critic values for actions in the dataset. SVR does it by soft thresholding the regulariser based on the importance sampling ratio. In contrary, our method adopts a hard thresholding mechanism where ID actions are not penalised at all. This is possible due to our capability of explicitly identifying the OOD action set.

1512 **Heterogeneous datasets** There are multiple prior work concerned with offline RL datasets with
 1513 heterogeneous behaviours. Wang et al. (2023) utilises a diffusion model (Sohl-Dickstein et al., 2015;
 1514 Ho et al., 2020) to capture the multi-modality of the true behaviour policy. Li et al. (2023) trains
 1515 a mixture of Gaussian policy on the dataset via likelihood maximisation and then obtains a closed-
 1516 form estimate of the best possible action near the behaviour policy. These two works ignores the
 1517 trajectory information and handles each transition individually. Mao et al. (2024) incorporates an
 1518 expectation–maximisation algorithm to learn diverse policies from a given offline RL dataset. Wang
 1519 et al. (2024) proposes a learning-based trajectory clustering algorithm that can also automatically
 1520 determine the cluster size. Although these two works leverage the trajectory information, they obtain
 1521 the trajectory representation by simply averaging the samples, causing a substantial loss of informa-
 1522 tion. We incorporate a sequence modelling technique instead to learn an effective representation of
 1523 each trajectory.

1524 **VQ-VAE** State-conditioned action quantisation (SAQ; Luo et al. 2023) is closely related to our
 1525 work in the sense that they also leverage a VQ-VAE in the offline RL setting. However, their main
 1526 focus is to discretise the actions because most of the challenges in offline RL originates from the
 1527 ambiguity of continuous distributions. On the other hand, our algorithm uses VQ-VAE to cluster
 1528 the trajectories and recover the behaviour policies. Also, SAQ discretises the actions individually,
 1529 ignoring the trajectory information.

1531 G LIMITATIONS

1533 Our work is built upon the assumption that each trajectory in the dataset was sampled from a single
 1534 behaviour policy. Although this assumption does not hold in general, as the behaviour policy may
 1535 change mid-trajectory, the change is subtle enough for our algorithm to perform reasonably well.
 1536 However, this might not be the case for real world scenarios. Future work could explore mechanisms
 1537 to detect behaviour policy change and split the trajectory at those transition points.

1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565