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ABSTRACT

In this paper, we propose a new framework for value regularisation in offline re-
inforcement learning (RL). While most previous methods evade explicit out-of-
distribution (OOD) region identification due to its difficulty, our method explicitly
identifies the OOD region, which can be non-convex depending on datasets, via
a newly proposed trajectory clustering-based behaviour cloning algorithm. With
the obtained explicit OOD region, we then define a Bellman-type operator push-
ing the value in the OOD region to a tight lower bound while operating normally
in the in-distribution region. The value function with this operator can be used
for policy acquisition in various ways. Empirical results on multiple offline RL
benchmarks show that our method yields the state-of-the-art performance.

1 INTRODUCTION

Offline reinforcement learning (RL) has attracted significant attention due to its sample efficiency
and safety. Unlike conventional RL, where an agent learns an optimal policy through interactions
with the environment, offline RL disallows any environmental interactions. Instead, the agent is
provided with a fixed dataset D of trajectories and should derive a competent policy solely from
these samples.

Although offline RL also relies on off-policy data, standard off-policy RL algorithms often fail in
this setting. The primary cause is the extrapolation error of the critic, which cannot be corrected,
as the agent is unable to re-evaluate overestimated out-of-distribution (OOD) actions through en-
vironmental interactions (Fujimoto et al., 2019). These errors not only persist but also accumulate
through bootstrapping, making careful handling of OOD actions crucial for stable training.

Value regularisation has emerged as one of the main strategies for addressing the extrapolation issue
(Kumar et al., 2020; Lyu et al., 2022; Mao et al., 2023). By penalising the critic values of OOD
actions, these methods encourage the agent to prefer in-distribution (ID) actions over OOD ones. A
variety of algorithms have been proposed within this paradigm, differing mainly in their choice of
regularisation term. However, most rely on indirect proxies to determine the OOD-ness of actions.
For example, Mao et al. (2023) approximates the behaviour policy with a Gaussian model to compute
importance-sampling ratios. When the dataset contains multiple disparate behaviour policies, such
unimodal approximation misrepresent the underlying multimodal structure. They assign spuriously
high densities to the inter-modal region, distorting the OOD-ness estimates, eventually degrading
the regularisation’s effectiveness.

To address these limitations, we propose a novel value-regularisation algorithm that explicitly iden-
tifies the OOD region and penalises the critic’s estimates within those regions using a newly derived
lower bound that is tighter than those employed in previous work. Empirical evaluations on the
D4RL benchmark (Fu et al., 2020) demonstrate that our approach yields high-performing policies
across a wide range of offline RL datasets.

Our main contributions are:

• Likelihood-based OOD detection.
We introduce a principled likelihood-based criterion for identifying the OOD region.
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• Behaviour policy modelling via trajectory clustering.
By linking trajectory clustering in offline RL to task identification in meta RL, we propose
an algorithm that learns a Gaussian mixture model of the dataset, enabling accurate density
estimation in multimodal datasets.

• A tight lower-bound-based value regulariser.
We theoretically derive a tight lower bound on the optimal action-value function and incor-
porate it into a value regulariser.

2 BACKGROUND

Notation For the list of notations used in this paper and their meanings, refer to Appendix Sec. A.

Markov Decision Process An RL problem is formulated as a Markov Decision Process (MDP),
which is defined as a 6-tuple M = ⟨S,A, P,R, γ, ρ0⟩, where S ⊆ Rds is the state space, A ⊆ Rda
is the action space, P : S × A → P(S) is the transition dynamics, R : S × A × S → P(R) is the
reward function, γ ∈ [0, 1] is the discount factor, and ρ0 ∈ P(S) is the initial state distribution. We
will assume that the support of R(s, a, s′) is bounded above by rmax and bounded below by rmin

for all s, s′ ∈ S and a ∈ A.

Value Functions Given a policy π, the Bellman operator T π on L∞(S × A) is defined by the
following equation:

(T πQ)(s, a) = Es′∼P (s,a)

[
Er∼R(s,a,s′)[r]

]
+ Es′∼P (s,a)

[
Ea′∼π(s′) [Q(s′, a′)]

]
.

Then, the action-value function (or Q-function) Qπ : S × A → R is defined as the unique fixed
point of T π , and the state-value function V π : S → R is given by V π(s) = Ea∼π(s) [Qπ(s, a)]. The
objective of RL is to find an optimal policy π∗ such that V π

∗ ⪰ V π for any policy π.

Offline Reinforcement Learning For offline RL, interactions with the environment is prohibited,
and the agent has to learn a policy from a given dataset D of trajectories. Throughout this paper,
we will assume that each trajectory τ ∈ D is sampled with a uni-modal behaviour policy β ∈
{β0, β1, β2, . . . , βK−1}, where the candidate set B = {β0, β1, β2, . . . , βK−1} is fixed but unknown
to the agent.

3 MOTIVATION

Critic penalization or value regularisation penalises the Q-values for OOD actions, while minimizing
the temporal difference error for in-distribution (ID) actions. We may formulate it with the following
equation

min
Q

E(s,a)∼D

[
(Q(s, a)− T πQ(s, a))

2
]
+R,

where R is a regularizer. A crucial requirement of the regularizer is that it should be able to discrim-
inate between ID and OOD actions since we only want to penalise the values of OOD actions. One
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Figure 1: The Q-values on the plane spanned by e1 and e2 estimated by each method, i.e., Q(xe1 +
ye2). Due to the high variance of importance sampling ratios, the importance sampling method fails
to approximate the optimal Q-function accurately.
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of the first approaches was to set the regulariser as (Kumar et al., 2020)

R = Es∼D,a∼µ[Q(s, a)]− Es∼D,a∼β [Q(s, a)],

where β is the behaviour policy and µ is some distribution that satisfies the condition suppµ ⊆
suppβ (Kumar et al., 2020). While minimising the Q values for OOD actions sampled by µ, they
simultaneously maximised the Q values for ID actions sampled from β to compensate for over-
penalisation. However, as Mao et al. (2023) points out, this approach has two shortcomings: (i)
the requirement suppµ ⊆ suppβ may not hold in general; and (ii) if the dataset contains a large
portion of suboptimal actions, their Q values would be overestimated. To address these issues, they
proposed an importance sampling (IS)-based method that utilises the following regulariser:

RIS = Es∼D,a∼µ[(Q(s, a)−Qtarg(s, a))
2]− Es∼D,a∼β

[
µ(a | s)
β(a | s) (Q(s, a)−Qtarg(s, a))

2

]
,

where µ is a probability distribution supported on the entire action space and Qtarg is a regulariser
target, which they set to rmin/(1 − γ) for all s ∈ S, a ∈ A. Since the two terms cancel each other
on suppβ, RIS is equivalent to Es∼D,a∼µ

[
1A\supp β(Q(s, a)−Qtarg(s, a))

2
]
, which corresponds

to the goal of penalising the Q values of OOD actions.

Table 1: The discounted return of the
policies learned with each method. IS
stands for importance sampling and HT
stands for hard thresholding.

Optimal IS HT

10 2.44± 0.83 9.72± 0.14

A significant drawback of RIS is that IS ratios are
known to have high variance, especially for high-
dimensional spaces. Consider a simple single-state
infinite-horizon MDP with a six-dimensional action
space, and an offline RL dataset of size 1 000 000 sam-
pled from a behaviour policy N (0, I6). Suppose the
optimal action is a∗ = e1. Then the IS ratio between
µ = N (a∗, 0.04I6) and β of the samples in the dataset
ranges from 1.88 × 10−225 to 1.93 × 104. As demon-
strated in Figure 1b and Table 1, the IS method yields an
inaccurate Q value estimation and a suboptimal policy
due to this severe fluctuation of IS ratios.

To overcome these limitations of the previous value regularization methods, we here propose to
explicitly identify the set of OOD actions OOD(s) for each state s ∈ S, and set the regulariser to
zero for ID actions. Such hard thresholding (HT) allows a more stable training process, resulting in
a more accurate Q value estimations and better-performing policies, as seen in Fig. 1c and Table 1.

4 PROPOSED METHOD

This section is structured as follows. In Section 4.1, we first discuss how we can compute the set
OOD(s). We then propose a new lower bound of Qπ

∗
and show its effectiveness as a penalisation

target in Section 4.2. Finally, we provide a practical offline RL algorithm in Section 4.3.

4.1 IDENTIFYING THE OUT-OF-DISTRIBUTION ACTION SET

Likelihood is the most natural way to measure how OOD a particular sample is. However, choosing
the threshold value is not trivial. For blunt distributions, we should use a lower threshold value,
whereas for sharp distributions, we can choose a higher value. We propose a systematic method
of setting the threshold value by adopting the concept of highest density region (HDR; Hyndman
1996), which is basically a generalisation of a confidence interval to multivariate random variables.1

Definition 1 (Hyndman 1996). Let f(X) be the pdf of a random variableX . Then, the 100(1−α)%
highest density region (HDR) is the subset R(fα) of the sample space of X such that R(fα) = {x :
f(x) ≥ fα }, where fα = sup{ y : P(X ∈ R(y)) ≥ 1− α }.

In the following subsections, we discuss how to compute the HDR under different assumptions.

1We provide a diagram (Figure 10) showing the 100(1− α)% HDR of a normal distribution on page 28 to
aid the understanding of the concept of a HDR.
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4.1.1 HOMOGENEOUS DATASETS

We first discuss the case when the offline dataset D is homogeneous, that is, it was generated from a
single uni-modal behaviour policy β. Then, we may obtain a fairly accurate Gaussian approximation
β̂ of β through behaviour cloning. Let µ : S → Rda and Σ : S → Rda×da be the mean and
covariance matrix functions of β̂, respectively. Assuming Σ(s) is positive definite for all s ∈ S, the
100(1− α)% HDR has the following closed-form representation (Proposition 4 in Appendix):

Rβ̂(fα; s) =
{
x ∈ Rda : Aβ̂(x; s) ≤ F−1

χ2
da

(1− α)
}
,

where F−1
χ2
da

is the inverse cumulative distribution function of a chi-squared random variable with da
degrees of freedom and

Aβ̂(x; s) = (x− µ(s))⊤Σ(s)−1(x− µ(s)).

Choosing an appropriate value of 0 < α < 1, we can define OOD(s) as

OOD(s) = A \Rβ̂(fα; s). (1)

4.1.2 HETEROGENEOUS DATASETS

The definition of OOD(s) for a homogeneous dataset given in (1) can be generalised to the hetero-
geneous case as

OOD(s) = A \

⋃
β∈B

Rβ(fα; s)


for B, where B is the behaviour policy candidate set. If we could identify and isolate all of the
trajectories in the dataset sampled from a particular behaviour policy β ∈ B, then obtaining an
estimation β̂ of β is straightforward by applying a behaviour cloning algorithm on those isolated
trajectories. Then, with the estimated B̂ = {β̂0, β̂1, . . . , β̂K−1}, we could compute OOD(s) for
each state s as above. Therefore, in the rest of this section, we will propose how to cluster the
trajectories. Note that the proposed clustering algorithm is useful not only for value regularization
here but also for other offline real-world data analysis.

Our key idea is that the trajectory clustering problem closely resembles the task inference problem
in meta RL. For each policy π, there is a corresponding Markov reward process (MRP) Mπ =
⟨S, Pπ, Rπ, γ⟩, where for all s, s′ ∈ S and r ∈ R, the transition probability function Pπ : S →
P(S) and the reward probability function Rπ : S × S → P(R) are defined by the equations

Pπ(s′ | s) = Ea∼π(·|s) [P (s′ | s, a)] , (2)

Rπ(r | s, s′) = Ea∼π(·|s) [R(r | s, a, s′)] , (3)

respectively. Since the dataset D can then be viewed as a collection of trajectories, where each
trajectory is sampled from one of the MRPs Mβ0 , Mβ1 , Mβ2 , . . . , MβK−1 , trajectory clustering
task can be viewed as an MRP inference problem. As this formulation is almost equivalent to the
MDP inference problem setting in meta RL, we infer the MRP instead of the MDP and apply a
technique similar to variational Bayes-adaptive deep RL (variBAD; Zintgraf et al. 2021).

Our goal is to infer the behaviour policy index given a trajectory. To achieve this objective, we
represent the index as a discrete latent variable m supported on [K] = {0, 1, · · · ,K − 1} and write

P βm(s) ≈ P (s ;m), Rβm(s, s′) ≈ R(s, s′ ;m), βm(s) ≈ β(s ;m),

for all s, s′ ∈ S, sharing P , R, and β across trajectories. The marginal pdf of a trajectory τ:T =
(s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sT−1, aT−1, rT−1, sT ) is

p(τ:T ) = ρ0(s0)

K−1∑
m=0

p(m)

T−1∏
t=0

P (st+1 | st;m)β(at | st;m)R(rt | st, st+1;m), (4)

where p(m) is the prior distribution on m. Modelling P , R, and β with neural networks
parametrised by θ results in a loss that depends on θ. However, the multi-modality of (4) causes

4
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Encoder Decoder

i = 0, 1, 2, . . . , T − 1

st

rt
qϕ

ht−1

bt = qϕ(· | τ̃:t) ∼ m

si+1

si

si

Rθ ri+1

Pθ si+1
si

βθ ai

Figure 2: Overview of our architecture. We also provided a diagram of the variBAD architecture in
Figure 11 for comparison.

gradient-based optimisation algorithms to produce sub-optimal solutions. We circumvent this is-
sue by introducing amortised inference network qϕ that takes a variable-length action-less trajectory
τ̃:t = (s0, r0, s1, r1, s2, r2, . . . , st−1, rt−1, st) as an input and outputs a distribution in Pd([K]).
Instead of maximising (4), we maximise the evidence lower bound (ELBO), which can be written
by the following equation (Proposition 5):

ELBOθ,ϕ(τ ; t) =

−DKL(qϕ(τ̃:t) ∥ p) +
T−1∑
i=0

Em∼qϕ(τ̃:t) [logRθ(ri | si, si+1 ;m)] (5)

+

T−1∑
i=0

Em∼qϕ(τ̃:t) [log βθ(ai | si ;m)] +

T−1∑
i=0

Em∼qϕ(τ̃:t) [logPθ(si+1 | si ;m)] .

The first term log ρ0(s0) in (9) can be omitted because it is constant with respect to θ and ϕ. The
final objective for trajectory clustering is to maximise

Eτ∼D

[
1

Tτ

Tτ−1∑
t=0

ELBOθ,ϕ(τ ; t)

]
, (6)

where Tτ is the length of the trajectory τ sampled from the dataset. An overview of our clustering
algorithm is given in Figure 2.

After we finish training, we compute the behaviour policy estimations and cluster assignments ac-
cording to the equations β̂i = βθ(· ; i) and A(s) = argmaxm qϕ(m | τ̃(s)), respectively, for each
i ∈ [K] and s ∈ D, where τ̃(s) is the action-less trajectory containing the state s.

4.2 LOWER BOUND PENALISATION

In this section, we derive a new lower bound on the value function. As we did in the previous section,
we start with the case where the offline dataset D is generated from a single behaviour policy β. The
ideal penalisation method would be to use Qπ

∗
(s, a) as a target, where π∗ is the optimal policy, but

the value of Qπ
∗

is inaccessible. So we aim to use a lower bound instead. In order to compute a
lower bound, we first need to make some assumptions on the regularity of P and V β .
Assumption 1. There is KP > 0 such that for all s ∈ S and a, a′ ∈ A, W1(P (s, a), P (s, a

′)) <
KP ∥a− a′∥, where W1(P,Q) is the Wasserstein distance of order 1 between two probability distri-
butions P,Q ∈ P(S).
Assumption 2. The value function of the behaviour policy β is KV -Lipschitz, that is, for all s, s′ ∈
S,
∣∣V β(s)− V β(s′)

∣∣ < KV ∥s− s′∥.

Then, we can obtain a lower bound of Qπ
∗

with these assumptions.
Proposition 1. Define QLB

β : S ×A → R by the equation

QLB
β (s, a) = max

{
V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] , rmin

1− γ

}
. (7)

5
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For any policy π : S → P(A) such that V π ⪰ V β , Qπ ⪰ QLB
β .

Proof. See page 15.

Note that this lower bound is tighter than the previous bound rmin/(1− γ). The lower bound allows
us to define the penalised Bellman optimality operator T π

β for policy π by the equation

(T ∗
β Q)(s, a) =

{
QLB
β (s, a) if a ∈ OOD(s),

(T ∗Q)(s, a) otherwise,

where T ∗ is the Bellman optimality operator defined as

(T ∗Q)(s, a) = Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ sup

a′∈A
Q(s′, a′)

]
.

We can show that through repeated application of T ∗
β , it is possible to obtain a deterministic policy

π∗
β : S → A that is optimal among the policies whose action for each state s ∈ S does not lie in

OOD(s).
Theorem 2. Any initial bounded real-valued function on S×A can converge to a unique fixed point
Q∗
β by repeatedly applying T ∗

β . Suppose for each s ∈ S,

Qβ(s, as) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some as ∈ A \OOD(s). If there exists a deterministic policy π∗

β : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

β(s) = argmaxa∈AQ
∗
β(s, a) for all s ∈ S.

Proof. See page 20.

Now, the penalised Bellman optimality operator can easily be generalised to the heterogeneous
dataset case with the set B of behaviour policy candidates and the set V(s) of valid behaviour policies
given a state s ∈ S.

(T ∗
BQ)(s, a) =

{
QLB

B (s, a) if a ∈ OOD(s),

(T ∗Q)(s, a) otherwise,

where QLB
B : S × A → R is defined as QLB

B (s, a) = maxβ∈V(s)Q
LB
β (s, a) for each s ∈ S and

a ∈ A. We can prove a similar performance guarantee for the policy obtained by repeatedly applying
T ∗
B .

Theorem 3. Any initial bounded real-valued function on S×A can converge to a unique fixed point
Q∗

B by repeatedly applying T ∗
B . Suppose for each β ∈ B and s ∈ S,

Qβ(s, aβs ) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some aβs ∈ A \OOD(s). If there exists a deterministic policy π∗

B : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

B(s) = argmaxa∈AQ
∗
B(s, a) for all s ∈ S.

Proof. See page 21.

4.3 PRACTICAL ALGORITHM

The overall flow of our algorithm is as follows:

I. Behaviour policy learning. Run the trajectory clustering algorithm to obtain B̂ and V̂(s). Or if
it is known a priori that the dataset is homogeneous, then run a behaviour cloning algorithm to
obtain β̂.

II. Behaviour value learning. Learn a value function V̂ β̂ for each β̂ ∈ B̂ through temporal differ-
ence learning.

III. Policy learning. Obtain and apply T ∗
B repeatedly on a randomly initialised Q-function until

convergence. Find a policy that maximises the learned Q-function.

6
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This section mainly focuses on the trajectory clustering algorithm of Stage I. Additional details of
our algorithm can be found in Section C of Appendix.

The network architecture used for trajectory clustering consists of three parts: the encoder, the latent
sampler, and the decoder. The architecture is generally similar to that of variBAD except for a few
adaptations. In this section, we will first go over how and why we modified each part. Then, we will
propose a simple technique to adaptively set the number of clusters.

The encoder needs to take an action-less trajectory τ̃ as an input and output the amortised poste-
rior. Since the length of the trajectory may vary from one to another, the network should be capable
of taking variable-length sequence as its input. For that purpose, variBAD utilises gated recurrent
units (GRU; Cho et al. 2014). GRUs and other recurrent neural network variants suffer from the van-
ishing gradient problem (Bengio et al., 1994), which hampers their ability to process long sequences.
Truncated backpropagation through time (Williams & Peng, 1990) can mitigate the phenomena to
a certain extent, but we instead adopt the state space model architecture that is recently gaining in-
terest in the area of sequence modelling (Gu et al., 2020; 2021; 2022; Gu & Dao, 2023; Dao & Gu,
2024). In particular, we use the S5 layer (Smith et al., 2023), which is simple and computationally
efficient.

The second modification was made on the way latents are sampled and ELBOs are computed. As
the latent variable in the variBAD architecture is continuous, it is impossible to analytically compute
the expectation, and hence, the reparametrisation trick (Kingma & Welling, 2014) must be used.
Although the latent variable is discrete in our case, exact computation is still inefficient because it
requires multiple forward and backward passes through the decoder. We instead utilise the vector
quantised-variational autoencoder (VQ-VAE; van den Oord et al. 2017) to approximate the ELBO.
Under the VQ-VAE formulation, the amortised posterior qϕ is modelled as

qϕ(m = k | τ̃:t) =
{
1 if k = kϕ(τ̃:t)

0 otherwise,

where e0, e1, . . . , eK−1 are latent embedding vectors and

kϕ(τ̃:t) = argmin
j∈[K]

∥qϕ(τ̃:t)− ek∥2.

Note that for simplicity, we have abused the notation qϕ to denote both the posterior and the encoder.
The gradient flows into the encoder qϕ via the loss function

ℓVQ(ϕ ; τ̃:t) =
∥∥qϕ(τ̃:t)− ekϕ(τ̃:t)

∥∥2
2

and the latent embedding vectors are updated with exponential moving averages (EMA).

For the decoder, we use Gaussian distributions with diagonal covariance matrix to represent Pθ,
βθ, and Rθ. Most RL environments have a bounded action space, whereas a Gaussian distribution
has unbounded support. To estimate the behaviour policy more accurately, we first normalize the
actions between −1 and 1 and apply the inverse hyperbolic tangent function on each dimension of
the actions to map them onto Rda . Note that we use the mapped actions when learning the critic, that
is, the critic function takes tanh−1(a) instead of a as input. Finally, instead of taking the summation
over the entire trajectory in (5) and (6), we adopt the implementation trick of variBAD and randomly
subsample Nd transition steps in (5) and Ne ELBO terms in (6). To conclude, the loss function for
the trajectory clustering algorithm is

ℓTC(θ, ϕ ; τ) =
1

NeNd

∑
t∈Ie

∑
i∈Id

Aθ(si, ai, ri, si+1 ; ekϕ(τ̃:t)) + λVQℓVQ(ϕ ; τ̃:t),

where

Aθ(s, a, r, s
′ ;m) = log βθ(a | s ;m) + λT logPθ(s

′ | s ;m) + λR logRθ(r | s, s′ ;m), (8)

Ie and Id are sets of indices sampled uniformly at random with replacement from [Tτ ] with sizes
Ne and Nd, respectively, and λVQ, λT , λR are tunable hyperparameters.

Choosing the right number of clusters is crucial for high performance in most clustering algorithms.
To alleviate the burden of hyperparameter tuning, we adopt a two-phase training paradigm. During
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Table 2: Average normalised scores on the D4RL benchmark. Note that “ha” means halfcheetah,
“ho” means hopper, “wa” means walker2d, “m” means medium, “r” means replay, “ra” means
random, and “e” means expert.

Dataset BC TD3BC BCQ BEAR CQL IQL MCQ SVR Ours

ha-ra 2.6 11.0 2.2 2.3 17.5 13.1 28.5 27.2 27.0± 1.1

ho-ra 4.1 8.5 7.8 3.9 7.9 7.9 31.8 31.0 31.5± 0.2

wa-ra 1.2 1.6 4.9 12.8 5.1 5.4 17.0 2.2 16.6± 7.9

ha-m 42.0 48.3 46.6 43.0 47.0 47.4 64.3 60.5 63.5± 1.2

ho-m 56.2 59.3 59.4 51.8 53.0 66.2 78.4 103.5 103.4± 0.9

wa-m 71.0 83.7 71.8 −0.2 73.3 78.3 91.0 92.4 96.5± 13.9

ha-m-r 36.4 44.6 42.2 36.3 45.5 44.2 56.8 52.5 52.2± 0.8

ho-m-r 21.8 60.9 60.9 52.2 88.7 94.7 101.6 103.7 102.2± 1.1

wa-m-r 24.9 81.8 57.0 7.0 81.8 73.8 91.3 95.6 95.4± 19.2

ha-m-e 59.6 90.7 95.4 46.0 75.6 86.7 87.5 94.2 90.9± 4.2

ho-m-e 51.7 98.0 106.9 50.6 105.6 91.5 111.2 111.2 112.4± 1.1

wa-m-e 101.2 110.1 107.7 22.1 107.9 109.6 114.2 109.3 108.3± 0.7

ha-e 88.2 81.7 92.7 92.9 96.3 95.0 96.2 96.1 96.6± 0.9

ho-e 110.9 107.8 109.0 54.6 96.5 109.4 111.4 111.1 112.7± 0.9

wa-e 107.7 110.2 106.3 106.6 108.5 109.9 107.2 110.0 113.4± 0.5

Average 52.3 67.5 64.5 38.8 67.3 68.9 79.2 80.0 81.5

the first phase of the paradigm, we set the codebook size to be sufficiently large. After completing the
first phase, we compute the cluster assignments for each state in the dataset. If the number of states
assigned to a particular cluster does not exceed a certain threshold, we remove the corresponding
code from the VQ-VAE codebook. The training is resumed with the remaining codebook. This way,
we could adaptively determine the number of clusters without needing to perform an exhaustive
hyperparameter search.

5 EXPERIMENTS

5.1 RESULTS ON THE D4RL BENCHMARK

In order to evaluate how well our algorithm perform on various offline RL tasks, we tested our
method on the D4RL (Fu et al., 2020) benchmark. We compared it with existing offline RL methods
such as BC (Pomerleau, 1988), TD3+BC (Fujimoto & Gu, 2021), BCQ (Fujimoto et al., 2019),
CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019), IQL (Kostrikov et al., 2022), MCQ (Lyu
et al., 2022), and SVR (Mao et al., 2023). We trained our method with five different seeds to obtain
five different policies and sampled ten trajectories with each of them. We report the average and
standard deviation of the fifty normalized scores in Table 2. The results show that our algorithm
can successfully learn high-performing policies from most datasets, while attaining state-of-the-art
scores on some of them.

5.2 EXPERIMENTS ON A HETEROGENEOUS DATASET

Although D4RL datasets such as “hopper-medium-expert-v2” were sampled with more than one
behaviour policies, the action distributions are actually unimodal on most states due to the state dis-
tribution being so different between the trajectories of the two behaviour policies. Figure 3 presents
a visualisation of the entire and initial state distributions of the “hopper-medium-expert-v2” dataset
where we have used the uniform manifold approximation and projection (UMAP; McInnes & Healy
2018) technique for dimension reduction. We can see that expert and medium states are clearly
separated, except for the initial states.
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(a) Entire state distribution
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Figure 3: The UMAP of the states in the “hopper-medium-expert-v2” dataset.

Table 3: The performance of SVR and our
method on the custom heterogeneous dataset.

Algorithm Length Return

SVR 8.00± 0.00 4.05± 0.01

Ours 436.3 ± 32.1 4062.0 ± 24.5

To demonstrate the effectiveness of our trajec-
tory clustering algorithm, we created a custom
dataset with drastically different initial state be-
haviours using the “Hopper-v5” environment
provided by the Gymnasium library (Towers
et al., 2024). Half of the samples in the dataset
were sampled from an expert policy, and the
other half was sampled from a policy that
tripped over within eight timesteps. Table 3
demonstrates that our method can effectively classify the two datasets and learn an optimal pol-
icy from a truly heterogeneous dataset.

5.3 ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

Table 4: The impact of hyperparameters λT and
λR on the average performance of our trajec-
tory clustering algorithm evaluated on six custom
D4RL datasets. The performance is measured in
terms of adjusted rand index (ARI) and normal-
ized mutual information score (NMI).

λR λT ARI NMI

0 0 0.98± 0.07 0.98± 0.06

0 1 0.91± 0.21 0.92± 0.17

1 0 0.99± 0.02 0.98± 0.02

1 1 0.86± 0.27 0.87± 0.24

In meta reinforcement learning settings, each
MDP has independent transition and reward dy-
namics, so they must be modelled in order to
infer the MDP from trajectories. Under our
formulation, on the other hand, transition and
reward dynamics of each MRP are correlated
with each other through the policy as we can
see from (2) and (3). Although this implies that
we may identify the MRP solely through mod-
elling the behaviour policy, we hypothesized
that modelling transition and reward dynam-
ics can provide meaningful auxiliary informa-
tion leading to better clustering performance.
Therefore, we compared the performance of
our algorithm under four different configura-
tions (λT , λR) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)},
where λT and λR are the weights for transition
and reward models defined in (8). To evaluate the accuracy of our trajectory clustering algorithm, we
created custom D4RL datasets by concatenating random, medium, and expert datasets. The mean
and standard deviation of adjusted rand indices (ARI; Hubert & Arabie 1985) and normalised mu-
tual information scores (NMI) for each configuration over 5 different seeds are reported in Table 4.
We can see that the configuration (λT , λR) = (1, 0) performs the best on average. Unlike si+1,
which is in the vicinity of si regardless of the ai, ri can vary drastically between policies, making
it difficult to model rewards from different policies with a single neural network. We speculate this
to be the reason why training a reward model negatively affects the performance of our trajectory
clustering algorithm. For experiments on other datasets, refer to Section D.2.
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Table 5: The impact of the hyperparamter α on the average normalised score on three different
datasets in the D4RL benchmark. Note that “ha” means halfcheetah, “ho” means hopper, “wa”
means walker2d, and “m” means medium.

Dataset α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

ha-m 63.2± 1.1 62.4± 1.4 63.5± 1.2 63.3± 1.0 62.5± 1.2

ho-m 102.2± 0.5 103.3± 0.9 103.4± 0.9 102.4± 0.7 103.1± 0.5

wa-m 93.0± 22.9 91.3± 22.4 96.1± 13.9 94.2± 20.4 97.0± 15.2

Table 6: The impact of the hyperparamter K on the average normalised score on three different
datasets in the D4RL benchmark. Note that “ha” means halfcheetah, “ho” means hopper, “wa”
means walker2d, and “m” means medium.

Dataset K = 0.1 K = 0.2 K = 0.5 K = 1.0 K = 2.0

ha-m 62.5± 0.7 63.1± 1.4 63.5± 1.2 63.4± 0.9 63.1± 1.1

ho-m 102.1± 2.8 102.6± 0.7 102.2± 0.8 102.0± 5.7 103.4± 0.9

wa-m 86.9± 27.6 90.6± 25.0 93.1± 26.7 96.1± 13.9 93.9± 15.6

Dataset K = 5.0 K = 10.0 K = 20.0 K = 50.0 K = 100.0

ha-m 63.3± 1.3 62.8± 0.8 63.2± 1.2 62.6± 1.0 62.1± 1.2

ho-m 102.3± 3.9 102.5± 1.5 100.0± 6.8 84.1± 20.7 92.5± 21.1

wa-m 92.3± 1.6 89.5± 1.5 88.0± 1.6 81.7± 9.1 78.4± 13.7

5.4 ABLATION STUDY

We investigate the impact of the choice of hyperparameters α and K = KVKP on the perfor-
mance of our method on three different datasets: halfcheetah-medium-v2, hopper-medium-v2, and
walker2d-medium-v2. As shown in Table 5, the performance is robust to a wide range of α values.
Similarly, we can see from Table 6 that the performance remains stable for moderate choices of
K, While large values (K ≥ 50) lead to degradation, particularly for hopper-medium-v2. Overall,
the result indicate that our method does not require precise tuning on α and K to achieve strong
performance.

6 CONCLUSION

In this paper, we propose a new value regularisation algorithm for offline RL penalizing their critic
values, based on the OOD action set that we were able to explicitly identify. We determine how OOD
an action is based on its likelihood, where the threshold is set adaptively according to the shape of
the behaviour policy. To enable likelihood analysis for heterogeneous datasets where simple be-
haviour cloning fails, we introduce a novel trajectory clustering technique based on a meta-learning
formulation of the clustering problem. Our method of penalising the critic values for OOD actions
by regressing them towards a lower bound of the optimal Q-value function is proven to be effective
both theoretically and empirically.
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A NOTATIONS

• 0: a zero vector with dimensionality implied by context

• DKL(P1 ∥ P2): the Kullback–Leibler (KL) divergence from a probability distribution P1

to another probability distribution P2

• ei: the i-th standard basis of a Euclidean space

• f(y | x): the value of the pdf (or pmf) of the distribution f(x) at y, where Y is a set and
f : X → P(Y )

• f ⪰ g: f(x) ≥ g(x) for all x ∈ X , where f and g are real-valued functions defined on a
set X

• f ≡ g: f(x) = g(x) for all x ∈ X , where f and g are real-valued functions defined on a
set X

• Id: an identity matrix with d rows and d columns

• L∞(X): the space of bounded real value functions on a setX endowed with the supremum
norm

• [N ]: the set {0, 1, . . . , N − 1}, where N is an integer

• N (µ,Σ): a multi-variate Gaussian distribution with mean vector µ and covariance matrix
Σ

• P(E): probability of an event E

• P(X): family of absolutely continuous probability distributions with finite first moments
supported on a subset of X , where X ⊆ Rd

• Pd(X): the family of discrete distributions supported on a subset of X , where X ⊆ Rd
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• suppµ: the support of a probability distribution µ
• W1(P1, P2): the Wasserstein distance of order 1 between two probability distributions
P1, P2 ∈ P(X)

B PROOFS

Proposition 4. Let X be a multivariate Gaussian random variable with mean vector µ ∈ Rd and
positive definite covariance matrix Σ ∈ Rd×d. The 100(1− α)% HDR is

R(fα) =
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ F−1

χ2
d
(1− α)

}
,

where Fχ2
d

is the cumulative distribution function of a chi-squared random variable with d degrees
of freedom.

Proof. Let Z = (Z1, Z2, . . . , Zd) =
√
Σ−1(X− µ). By the change of variables formula,

pZ(z) =
∣∣∣det(√Σ)

∣∣∣ pX (µ+
√
Σz
)

= det(Σ)1/2(2π)−d/2 det(Σ)−1/2 exp

(
−1

2
z⊤z

)
= (2π)−d/2 exp

(
−1

2
z⊤z

)
,

where pX and pZ are the pdfs of random vectors X and Z, respectively. We can see that Z is a
standard normal random vector. Since

R(y) =

{
x ∈ Rd : (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
≥ y

}
=
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ −2 log y + d log(2π) + log det(Σ)

}
,

we have

P(X ∈ R(y)) = P
(
Z⊤Z ≤ −2 log y + d log(2π) + log det(Σ)

)
= P

(
d∑
i=1

Z2
i ≤ −2 log y + d log(2π) + log det(Σ)

)
.

Z1, Z2, . . . , Zd are independent, so
∑d
i=1 Z

2
i is a chi-squared random variable. This implies

P(X ∈ R(y)) = Fχ2
d
(−2 log y + d log(2π) + log det(Σ)).

P(X ∈ R(y)) ≥ 1− α if and only if

−2 log y + d log(2π) + log det(Σ) ≥ F−1
χ2
d
(1− α).

Therefore,

fα = (2π)d/2 det(Σ)1/2 exp

(
−1

2
Fχ2

d
(1− α)

)
,

which means

R(fα) =
{
x ∈ Rd : (x− µ)⊤Σ−1(x− µ) ≤ F−1

χ2
d
(1− α)

}
.

Proposition 5. Let m be a discrete latent variable supported on [K] and

τ:T = (s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , sT−1, aT−1, rT−1, sT )

be a trajectory rolled-out according to the following sampling process: s0 ∼ ρ0, m ∼ p, and for
each t ∈ [T ], st+1 ∼ P (st ;m), at ∼ β(st ;m), and rt ∼ R(st, st+1 ;m). The marginal pdf can be
written as

p(τ:T ) = ρ0(s0)

K−1∑
m=0

p(m)

T−1∏
t=0

P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)

14
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and for any distribution q on [K],

log p(τ:T ) ≥ log ρ0(s0)−DKL(q ∥ p) (9)

+

T−1∑
t=0

Em∼q [logP (st+1 | st ;m) + log β(at | st ;m) + logR(rt | st, st+1 ;m)] .

Proof. Let us denote the action-less trajectory by τ̃:T , that is,

τ̃:T = (s0, r0, s1, r1, s2, r2, . . . , sT−1, rT−1, sT ).

By Jensen’s inequality,

log p(τ:T )

= log ρ0(s0) + log

K−1∑
m=0

p(m)

T−1∏
t=0

[P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)]

= log ρ0(s0) + log

K−1∑
m=0

q(m) · p(m)

q(m)

T−1∏
t=0

[P (st+1 | st ;m)β(at | st ;m)R(rt | st, st+1 ;m)]

≥ log ρ0(s0) + Em∼q

[
log

p(m)

q(m)
+

T−1∑
t=0

A(st, at, rt, st+1 ;m)

]

= log ρ0(s0)−DKL(q ∥ p) +
T−1∑
t=0

Em∼q [A(st, at, rt, st+1 ;m)] ,

where

A(st, at, rt, st+1 ;m) = logP (st+1 | st ;m) + log β(at | st ;m) + logR(rt | st, st+1 ;m).

We restate the two assumptions we made in Section 4.2 for the reader’s convenience.

Assumption 3. There is KP > 0 such that for all s ∈ S and a1, a2 ∈ A, W1(P (s, a1), P (s, a2)) <
KP ∥a1 − a2∥.

Assumption 4. The value function of the behaviour policy β is KV -Lipschitz.

Lemma 6. For any policy π and s ∈ S,
rmin

1− γ
≤ V β(s) ≤ rmax

1− γ
.

Proof. By the definition of V π , for all s ∈ S,

V π(s) = Eτ∼π|s

[ ∞∑
t=0

γtrt

]
≥ Eτ∼π|s

[ ∞∑
t=0

γtrmin

]
=

rmin

1− γ
,

and

V π(s) = Eτ∼π|s

[ ∞∑
t=0

γtrt

]
≤ Eτ∼π|s

[ ∞∑
t=0

γtrmax

]
=

rmax

1− γ
.

Proposition 7. Define QLB
β : S ×A → R by the equation

QLB
β (s, a) = max

{
V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] , rmin

1− γ

}
.

For any policy π : S → P(A) such that V π ⪰ V β , Qπ ⪰ QLB
β .
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Proof. By Lemma 6 and the definition of Qπ , for all s ∈ S and a ∈ A,

Qπ(s, a) = Es′∼P (s,a,s′),r∼R(s,a,s′) [r + γV π(s′)]

≥ Es′∼P (s,a,s′),r∼R(s,a,s′)

[
rmin + γ

rmin

1− γ

]
=

rmin

1− γ
.

So we only need to show that for all s ∈ S and a ∈ A,

Qπ(s, a) ≥ V β(s)− rmax + rmin − γKVKP Ea′∼β(s) [∥a− a′∥] .

Let a1, a2 ∈ A. By the Kantorovich–Rubinstein formula (Villani, 2009),∣∣Es′∼P (·|s,a1)[V
β(s′)]− Es′∼P (·|s,a2)[V

β(s′)]
∣∣ ≤ KVW1(P (· | s, a1), P (· | s, a2))
≤ KVKP ∥a1 − a2∥.

Therefore,

Qπ(s, a) = Es′∼P (s,a),r∼R(s,a,s′) [r + γV π(s′)]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γV β(s′)

]
= V β(s)− Ea′∼β(·|s)

[
Es′∼P (s,a′),r∼R(s,a′,s′)

[
r + γV β(s′)

]]
+ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γV β(s′)

]
≥ V β(s)− rmax + rmin + γ Ea′∼β(s)

[
Es′∼P (s,a)

[
V β(s′)

]
− Es′∼P (s,a′)

[
V β(s′)

]]
≥ V β(s)− rmax + rmin − γKVKP Ea′∼β(·|s) [∥a− a′∥] .

Note that we have used the fact that

V β(s) = Ea′∼β(s),s′∼P (s,a′),r∼R(s,a′,s′)

[
r + γV β(s′)

]
.

Theorem 8. Let {As}s∈S be a family of subsets of A, Q̃ ∈ L∞(S ×A), and TA be an operator on
the space of real-valued functions on S ×A defined by the equation

(TAQ)(s, a) =

{
(T ∗Q)(s, a) if a ∈ As,

Q̃(s, a) otherwise,

for each Q ∈ L∞(S ×A). Then any bounded real-valued function on S ×A converges to a unique
fixed point QA by repeatedly applying TA.

Proof. Fix s ∈ S, a ∈ A, and Q ∈ L∞(S ×A). If a ∈ As,

|(TAQ)(s, a)| = |(T ∗Q)(s, a)|

=

∣∣∣∣Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ sup

a′∈A
Q(s′, a′)

]∣∣∣∣
≤ Es′∼P (s,a),r∼R(s,a,s′)

[∣∣∣∣r + γ sup
a′∈A

Q(s′, a′)

∣∣∣∣]
≤ Es′∼P (s,a),r∼R(s,a,s′)

[
|r|+ γ

∣∣∣∣ sup
a′∈A

Q(s′, a′)

∣∣∣∣]
≤ Es′∼P (s,a),r∼R(s,a,s′) [max {|rmax| , |rmin|}+ γ∥Q∥∞] ,

= max {|rmax| , |rmin|}+ γ∥Q∥∞.
Otherwise,

|(TAQ)(s, a)| =
∣∣∣Q̃(s, a)

∣∣∣ ≤ ∥Q̃∥∞.
So

∥TAQ∥∞ ≤ max
{
∥Q̃∥∞,max {|rmax| , |rmin|}+ γ∥Q∥∞

}
<∞,
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that is, TAQ ∈ L∞(S×A). So the restriction of TA onto L∞(S×A) is an operator on L∞(S×A).
With a slight abuse of notation, we will just denote the restriction by TA from now on.

Now we go on and prove that TA is a contraction operator. Fix s ∈ S, a ∈ A and Q1, Q2 ∈
L∞(S ×A). If a ∈ As,

|(TAQ1)(s, a)− (TAQ2)(s, a)| = |(T ∗Q1)(s, a)− (T ∗Q2)(s, a)|

= γ

∣∣∣∣Es′∼P (s,a)

[
sup
a′∈A

Q1(s
′, a′)− sup

a′′∈A
Q2(s

′, a′′)

]∣∣∣∣
≤ γ Es′∼P (s,a)

[∣∣∣∣ sup
a′∈A

Q1(s
′, a′)− sup

a′′∈A
Q2(s

′, a′′)

∣∣∣∣]
≤ γ Es′∼P (s,a)

[
sup
a′∈A

|Q1(s
′, a′)−Q2(s

′, a′)|
]

≤ γ∥Q1 −Q2∥∞.
Otherwise,

|(TAQ1)(s, a)− (TAQ2)(s, a)| =
∣∣∣Q̃(s, a)− Q̃(s, a)

∣∣∣ = 0 ≤ γ∥Q1 −Q2∥∞.

Therefore, and TA is a contraction mapping on L∞(S × A). By the contraction mapping theorem,
any initial-bounded Q-function would converge to a unique fixed point QA.

Lemma 9. Let π1 and π2 be two policies. If Ea∼π1(s)[Q
π2(s, a)] ≥ V π2(s) for all s ∈ S, then

V π1 ⪰ V π2 .

Proof. We define a sequence (Qn) of bounded real-valued functions on S × A by the recurrence
relation

Qn =

{
Qπ2 if n = 0,

T π1Qn−1 otherwise.

We first show that Qn ⪰ Qπ2 by mathematical induction. The base case is trivial because Q0 ≡
Qπ2 . Suppose Qn−1 ⪰ Qπ2 . Then for each s ∈ S and a ∈ A,

Qn(s, a) = (T π1Qn−1)(s, a)

= Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π1(s′) [Qn−1(s

′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π1(s′) [Q

π2(s′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π2(s′) [Q

π2(s′, a′)]
]

= (T π2Qπ2)(s, a)

= Qπ2(s, a).

So Qn ⪰ Qπ2 . By mathematical induction, Qn ⪰ Qπ2 for all n. For all s ∈ S and a ∈ A,

Qπ1(s, a) = lim
n→∞

Qn(s, a) ≥ Qπ2(s, a).

Therefore, for all s ∈ S,

V π1(s) = Ea∼π1(s) [Q
π1(s, a)] ≥ Ea∼π1(s) [Q

π2(s, a)] ≥ V π2(s),

that is, V π1 ⪰ V π2 .

Theorem 10. Let {As}s∈S be a family of subsets of A, Q̃ ∈ L∞(S × A), and QA be a bounded
real-valued function that satisfies the relation

QA(s, a) =

{
(T ∗QA)(s, a) if a ∈ As,

Q̃(s, a) otherwise,
(10)

for all s ∈ S and a ∈ A. Suppose there is a policy π such that for all s ∈ S,

V π(s) ≥ sup
a∈A

Q̃(s, a)
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and
Qπ(s, as) ≥ V π(s)

for some as ∈ As. If there exists a deterministic policy π∗
A : S → A that is optimal under the

constraint πA(s) ∈ As for all s ∈ S, then

π∗
A(s) = argmax

a∈A
QA(s, a).

Proof. Define TA as in Theorem 8. We can see that there is a unique bounded real-valued function
QA that satisfies (10), because by Theorem 8, TA has unique fixed point QA.

We proceed to prove that for each s ∈ S, QA(s, π∗
A(s)) ≥ V π

∗
A(s). Define a sequence (Qn) of

bounded real-valued functions on S ×A by the recurrence relation

Qn =

{
Q0 if n = 0,

TAQn−1 otherwise,
(11)

where Q0 : S ×A → R is defined as

Q0(s, a) =

{
Qπ

∗
A(s, a) if a ∈ As,

Q̃(s, a) otherwise.

When n = 0, for all s ∈ S
Q0(s, π

∗
A(s)) = Qπ

∗
A(s, π∗

A(s)) = V π
∗
A(s),

because π∗
A(s) ∈ As. Assume Qn−1(s, π

∗
A(s)) ≥ V π

∗
A(s) for all s ∈ S. Then for all s ∈ S,

Qn(s, π
∗
A(s)) = Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′)

[
r + γ sup

a′∈A
Qn−1(s

′, a′)

]
≥ Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′) [r + γQn−1(s

′, π∗
A(s

′))]

≥ Es′∼P (s,π∗
A(s)),r∼R(s,π∗

A(s),s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s,π∗

A(s)),r∼R(s,π∗
A(s),s′)

[
r + γ Ea′∼π∗

A(s′)

[
Qπ

∗
A(s′, a′)

]]
= (T π∗

AQπ
∗
A)(s, π∗

A(s))

= Qπ
∗
A(s, π∗

A(s))

= V π
∗
A(s).

So by mathematical induction, Qn(s, π∗
A(s)) ≥ V π

∗
A(s) for all s ∈ S and n ≥ 0. Therefore,

QA(s, π
∗
A(s)) = lim

n→∞
Qn(s, π

∗
A(s)) ≥ V π

∗
A(s).

Since for all s ∈ S and a ∈ As,

QA(s, a) = (TAQA)(s, a) = Q̃(s, a) ≤ V π(s).

We can define a deterministic policy πA : S → A that maps s ∈ S to as. Since πA(s) = as ∈ As
for all s ∈ S and π∗

A is the optimal policy among the policies that satisfy this constraint, we have
V π

∗
A ⪰ V πA . So we may conclude that for all s ∈ S,

sup
a∈A\As

QA(s, a) ≤ V π(s) ≤ V πA(s) ≤ V π
∗
A(s) = QA(s, π

∗
A(s)). (12)

We finish the proof by showing that for all s ∈ S,

QA(s, π
∗
A(s)) = max

a∈A
QA(s, a).

Recall the sequence (Qn) we previously defined by the recurrence relation (11). We will prove that
for every n, s ∈ S, and a ∈ A,

Qn(s, a) ≤ V π
∗
A(s) = Qn(s, π

∗
A(s)).
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Assume n = 0. Fix s† ∈ S and a† ∈ A. If a† ̸∈ As† , then by the observation we made in (12),

Q0(s
†, a†) = Q̃(s†, a†) ≤ V π

∗
A(s†).

If a† ∈ As† , consider a policy π† : S → A defined as

π†(s) =

{
a† if s = s†,

π∗
A(s) otherwise.

For all s ∈ S, π†(s) ∈ As, so V π
∗
A ⪰ V π

†
. If Q0(s

†, a†) < V π
∗
A(s†), it satisfies our hypothesis.

Otherwise,
Qπ

∗
A(s†, π†(s†)) = Q0(s

†, a†) ≥ V π
∗
A(s†) = Qπ

∗
A(s†, π∗

A(s
†))

and for s ̸= s†,
Qπ

∗
A(s, π†(s)) = Qπ

∗
A(s, π∗

A(s)),

so by Lemma 9, V π
† ⪰ V π

∗
A , which means V π

† ≡ V π
∗
A . Then

Qπ
∗
A(s†, a†) = (T π∗

AQπ
∗
β )(s†, a†)

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γQπ

∗
A(s′, π∗

A(s
′))
]

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γV π

†
(s′)
]

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γQπ

†
(s′, π†(s′))

]
= (T π†

Qπ
†
)(s†, a†)

= Qπ
†
(s†, π†(s†))

= V π
†
(s†)

= V π
∗
A(s†).

So Q0(s
†, a†) ≤ V π

∗
A(s†) in both cases. Since it is obvious that

Q0(s
†, π∗

A(s
†)) = Qπ

∗
A(s†, π∗

A(s
†)) = V π

∗
A(s†),

our hypothesis holds for n = 0.

Assume the hypothesis holds for n− 1. Fix s† ∈ S and a† ∈ A. If a† ̸∈ As† ,

Qn(s
†, a†) = (T ∗

β Qn−1)(s
†, a†) = QLB

β (s†, a†) ≤ V π
∗
β (s†)

by (12). Otherwise,

Qn(s
†, a†) = (TAQn−1)(s

†, a†)

= (T ∗Qn−1)(s
†, a†)

= Es′∼P (s†,a†),r∼R(s†,a†,s′)

[
r + γ sup

a′∈A
Qn−1(s

′, a′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γmax

a′∈A
Qn−1(s

′, a′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γV π

∗
A(s′)

]
= Es′∼P (s†,a†),r∼R(s†,s†,s′)

[
r + γ Ea′∼π∗

A(s′)

[
Qπ

∗
A(s′, a′)

]]
= (T π∗

AQπ
∗
A)(s†, a†)

= Qπ
∗
A(s†, a†)

= Q0(s
†, a†)

≤ V π
∗
A(s†).
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When a† = π∗
A(s

†), the inequality becomes equality. So by mathematical induction, for every n,
s ∈ S, and a ∈ A,

Qn(s, a) ≤ V π
∗
A(s) = Qn(s, π

∗
A(s)).

Sending n to infinity, we can see that for all s ∈ S and a ∈ A,

QA(s, a) = lim
n→∞

Qn(s, a) ≤ V π
∗
A(s) = lim

n→∞
Qn(s, π

∗
A(s)) = QA(s, π

∗
A(s)).

Therefore,
QA(s, π

∗
A(s)) = max

a∈A
QA(s, a).

Theorem 11. Any initial bounded real-valued function on S × A can converge to a unique fixed
point Q∗

β by repeatedly applying T ∗
β . Suppose for each s ∈ S,

Qβ(s, as) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some as ∈ A \OOD(s). If there exists a deterministic policy π∗

β : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

β(s) = argmaxa∈AQ
∗
β(s, a) for all s ∈ S.

Proof. First observe that for all s ∈ S and a ∈ A,

QLB
β (s, a) ≥ rmin

1− γ
,

and
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ rmax

1− γ
− rmax + rmin,

by Lemma 6. This impliesQLB
β ∈ L∞(S×A). Since Q̃ = QLB

β andAs = A\OOD(s) satisfies the
conditions of Lemma 8, any initially bounded real-valued function on S ×A converges to a unique
fixed point, which we denote by Q∗

β , through repeated application of TA, which is in fact, T ∗
β .

For all s ∈ S,
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ V β(s),

which means

sup
a∈A

QLB
β (s, a). ≤ V β(s) = Ea∼β(s)

[
Qβ(s, a)

]
< sup
a∈A\OOD(s)

Qβ(s, a).

Now we can see that the second part of the theorem is a special case of Theorem 10, where As =
A \OOD(s), Q̃ = QLB

β , QA = Q∗
β , π = β, and π∗

A = π∗
β .

Lemma 12. Let Π = {π0, π1, π2, . . . , πN−1} be a finite set of policies. If π∗ is a policy such that
for each s ∈ S, there is i ∈ [N ] such that π∗(s) = πi(s) and V πi(s) = maxπ∈Π V

π(s), then
V π

∗ ⪰ V π for every π ∈ Π.

Proof. Define a sequence (Qn) of bounded real-valued functions by the recurrence relation

Qn =

{
maxπ∈ΠQ

π if n = 0,

T π∗
Qn−1, otherwise.

We want to show that Qn ⪰ maxπ∈ΠQ
π for all n ≥ 0. The base case is trivial. Assume

Qn−1 ⪰ maxπ∈ΠQ
π . For each s ∈ S, there is i ∈ [N ] such that π∗(s) = πi(s) and

V πi(s) = maxπ∈Π V
π(s), which implies

Ea∼π∗(s) [Qn−1(s, a)] ≥ Ea∼πi(s) [Q
πi(s)] = V πi(s) = max

π∈Π
V π(s).
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Now for all s ∈ S and a ∈ A,

Qn(s, a) = (T π∗
Qn−1)(s, a)

= Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π∗(s′) [Qn−1(s

′, a′)]
]

≥ Es′∼P (s,a),r∼R(s,a,s′)

[
r + γmax

π∈Π
V π(s′)

]
= max

π∈Π
Es′∼P (s,a),r∼R(s,a,s′)

[
r + γ Ea′∼π(s′) [Qπ(s′, a′)]

]
= max

π∈Π
(T πQπ)(s, a)

= max
π∈Π

Qπ(s, a).

By mathematical induction, Qn ⪰ maxπ∈ΠQ
π for all n ≥ 0. Therefore,

Qπ
∗
(s, a) = lim

n→∞
Qn(s, a) ≥ max

π∈Π
Qπ(s, a)

for all s ∈ S and a ∈ A.

Fix s ∈ S. There is i ∈ [N ] such that π∗(s) = πi(s) and V πi(s) = maxπ∈Π V
π(s). Then

V π
∗
(s) = Ea∼π∗(s)

[
Qπ

∗
(s, a)

]
≥ Ea∼πi(s) [Q

πi(s, a)] = V πi(s) = max
π∈Π

V π(s).

Our choice of s was arbitrary, so V π
∗ ⪰ maxπ∈Π V

π .

Theorem 13. Any initial bounded real-valued function on S × A can converge to a unique fixed
point Q∗

B by repeatedly applying T ∗
B . Suppose for each β ∈ B and s ∈ S,

Qβ(s, aβs ) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for some aβs ∈ A \OOD(s). If there exists a deterministic policy π∗

B : S → A that is optimal under
the constraint π(s) ̸∈ OOD(s) for all s ∈ S, then π∗

B(s) = argmaxa∈AQ
∗
B(s, a) for all s ∈ S.

Proof. First observe that for all s ∈ S, a ∈ A, and β ∈ B,

QLB
β (s, a) ≥ rmin

1− γ
,

and
QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ rmax

1− γ
− rmax + rmin,

by Lemma 6. So obviously,

QLB
B (s, a) = max

β∈B
QLB
β (s, a) ≥ rmin

1− γ
,

and
QLB

B (s, a) = max
β∈B

QLB
β (s, a) ≤ rmax

1− γ
− rmax + rmin,

for all s ∈ S and A. This implies QLB
B ∈ L∞(S × A). Since Q̃ = QLB

B and As = A \ OOD(s)
satisfies the conditions of Lemma 8, any initially bounded real-valued function on S ×A converges
to a unique fixed point, which we denote by Q∗

B, through repeated application of TA, which is in
fact, T ∗

B .

For each β ∈ B define a deterministic policy β′ : S → A so that β′(s) = aβs for each s ∈ S. Then

Qβ(s, β′(s)) = Qβ(s, aβs ) ≥ Ea∼β(s)
[
Qβ(s, a)

]
for all s ∈ S, so V β

′ ⪰ V β by Lemma 9. We will denote the set {β′ : β ∈ B } by B′. Consider a
policy β∗ : S → A defined as

β∗(s) =

(
argmax
β′∈B′

V β
′
(s)

)
(s),
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that is, for each state, we follow the β′ with the highest value. Obviously, β∗(s) ∈ A \OOD(s) for
all s ∈ S, and by Lemma 12, for all s ∈ S, a ∈ A, and β ∈ B,

QLB
β (s, a) ≤ V β(s)− rmax + rmin ≤ V β(s) ≤ V β

′
(s) ≤ V β

∗
(s),

which means
V β

∗
(s) ≥ sup

a∈A
max
β∈B

QLB
β (s, a) = sup

a∈A
QLB

B (s, a).

Now we can see that the second part of the theorem is a special case of Theorem 10, where As =
A \OOD(s), Q̃ = QLB

B , QA = Q∗
B, π = β∗, and π∗

A = π∗
β .

Proposition 14. Let X be a non-degenerate multivariate Gaussian random vector with mean µ ∈
Rd and a diagonal covariance matrix diag(σ)2 ∈ Rd×d. For y ∈ Rd,

E [∥X− y∥1] =
d∑
i=1

[
(yi − µi) erf

(
yi − µi

σi
√
2

)
+

√
2

π
σi exp

(
− (yi − µi)

2

2σ2
i

)
.

]

Proof. Let X = (X1, X2, . . . , Xd), y = (y1, y2, . . . , yd), µ = (µ1, µ2, . . . , µd), and σ =
(σ1, σ2, . . . , σd). We may assume that σ1, σ2, . . . , σd > 0. Then

E [∥X− y∥1] = E

[
d∑
i=1

|Xi − yi|
]
=

d∑
i=1

E [|Xi − yi|] .

Define gi(y) = E [|Xi − y|].

g′i(y) = E
[
d

dy
|Xi − y|

]
= E[1Xi<y − 1Xi>y] = FXi(y)− (1− FXi(y)) = 2FXi(y)− 1,

where FXi
is the cumulative distribution function of Xi. So

g′i(y) = erf

(
y − µi

σi
√
2

)
.

Observe that

gi(µi) = E [|Xi − µi|]

=
1√
2πσi

∫ ∞

µi

(xi − µi) exp

(
− (xi − µi)

2

2σ2
i

)
dxi

− 1√
2πσi

∫ µi

−∞
(xi − µi) exp

(
− (xi − µi)

2

2σ2
i

)
dxi.

Substituting ui = (xi − µi)/σi,

gi(µi) =
1√
2πσi

[∫ ∞

0

σiuie
− 1

2u
2
i σi dui −

∫ 0

−∞
σiuie

− 1
2u

2
i σi dui

]
=

σi√
2π

[∫ ∞

0

uie
− 1

2u
2
i dui −

∫ 0

−∞
uie

− 1
2u

2
i dui

]
=

√
2

π
σi.

By the fundamental theorem of calculus,

gi(y) = gi(µi) +

∫ y

µi

g′i(v) dv =

√
2

π
σi +

∫ y

µi

erf

(
v − µi

σi
√
2

)
dv.

Substituting z = (v − µi)/(σi
√
2),∫ y

µi

erf

(
v − µi

σi
√
2

)
dv =

∫ (y−µi)/(σi

√
2)

0

erf(z)σi
√
2 dz

=
√
2σi

[(
y − µi

σi
√
2

)
erf

(
y − µi

σi
√
2

)
+

1√
π
exp

(
− (y − µi)

2

2σ2
i

)
− 1√

π

]
.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Therefore,

gi(y) = (y − µi) erf

(
y − µi

σi
√
2

)
+

√
2

π
σi exp

(
− (y − µi)

2

2σ2
i

)
,

which implies

E [∥X− y∥1] =
d∑
i=1

gi(yi) =

d∑
i=1

[
(yi − µi) erf

(
yi − µi

σi
√
2

)
+

√
2

π
σi exp

(
− (yi − µi)

2

2σ2
i

)
.

]

C PRACTICAL ALGORITHM

C.1 STAGE I: BEHAVIOUR POLICY LEARNING

In theory, each behaviour policy is well-defined on every state s ∈ S. However, in practice, we can
trust our estimations only in the vicinity of the states they were trained on. The problem is, we train
each β̂ only on the states they are assigned to. Therefore, we need a mechanism to determine which
behaviour policy estimates we can trust given a state s ∈ S. For this purpose, we additionally train a
classifier fψ : S → Pd([K]) using the computed assignments and determine the credible set by the
equation

V̂(s) =
{
β̂i ∈ B̂ : fψ(i | s) ≥

1

b
max
j∈[K]

fψ(j | s)
}
,

where b > 0 is a hyperparameter. We accordingly modify the definition of QLB
B̂ to

QLB
B̂ (s, a) = max

β̂∈V̂(s)
QLB
β̂

(s, a),

for all s ∈ S and a ∈ A.

C.2 STAGE II: BEHAVIOUR VALUE LEARNING

To learn the value functions of all K behaviour policies in parallel, we leverage a network Vζ : S →
RK with K outputs. The per sample temporal difference (TD) loss function can be written by the
equation

ℓV (ζ ; s, r, s
′) = (Vζ(s)[A(s)]− r − γVζ′(s

′)[A(s′)])2 ,
where s, r, and s′ are the state, reward, and next state sampled from the dataset, respectively, ζ ′ is
the target network parameter that is updated by polyak averaging as in Lillicrap et al. (2016), and
Vζ(s)[i] is the i-th coordinate of Vζ(s). Note that A(s), the cluster assignment of s, is equal to A(s′),
because we assign each trajectory to the same cluster.

C.3 STAGE III: POLICY LEARNING

In practice, it is infeasible to compute the supremum term in the penalised Bellman operator T ∗
B . We

instead adopt the actor-critic formulation that alternates between the policy improvement step and
the critic learning step. The goal of the policy improvement step is to find an action that maximises
the critic for each state. The challenge is that the critic is highly non-convex due to the penalisation
of critic values for actions between the means of the behaviour policies, causing gradient methods to
yield suboptimal solutions. Hence, we search for the optimal action in the vicinity of each behaviour
policy’s mean simultaneously. This is done by training a network to output not the optimal action
itself but the difference between the optimal action and one of the behaviour policy means. Utilis-
ing an ensemble of K neural networks gψ0

π
, gψ1

π
, . . . , gψK−1

π
, we can compute K action candidates

a0, a1, . . . , aK−1, where
ai = µβ̂i

(s) + gψi
π
(s),

and µβ̂ is the mean vector of the behaviour policy estimate β̂. Then we choose the best action ai∗s
with respect to the current critic function QψQ

, that is,

i∗s = argmax
i∈Î(s)

QψQ
(s, ai),
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where
Î(s) =

{
i ∈ [K] : β̂i ∈ V̂(s)

}
.

The loss function for the policy improvement step can be written by the following equation:

ℓπ(ψπ ; s) = −max
i∈Î∗

QψQ

(
s,µβ̂i

(s) + gψi
π
(s)
)
.

The critic learning step has two objectives: minimising the TD error and penalising the OOD actions.
For the first objective, we adopt the conventional TD loss adapted to match the way we defined our
policy, which is represented by the equation

ℓTD
Q (ψQ ; s, a, r, s′) =

(
QψQ

(s, a)− T (r, s′)
)2
,

where s, a, r, and s′ are the state, action, reward, and next state sampled from the dataset, respec-
tively, and the TD target T (r, s′) is defined as

T (r, s′) = r + γ max
β̂∈V̂(s)

Qψ′
Q

(
s′,µβ̂(s

′) + gψ′
π
(s′)
)
.

ψ′
Q and ψ′

π in the preceding equation are the target critic network parameters and target actor net-
work parameters, respectively, which are updated by polyak averaging to gradually follow ψQ and
ψπ .

The second objective of the critic learning step is to penalise the critic values of OOD actions to-
wards QLB

B̂ (s, a). In order to compute QLB
B̂ , we need to compute QLB

β̂
for each β̂ ∈ B̂. However,

computing QLB
β̂

is not straightforward, due to the term Ea′∼β̂(s)[∥a − a′∥] in (7). We discovered

that if we use a 1-norm and assume that β̂ has a diagonal covariance matrix, the expectation has the
following closed-form expression (Proposition 14):

Ea′∼β̂(s) [∥a− a′∥1] =
da∑
i=1

(yi − µi(s)) erf

(
ai − µi(s)

σi(s)
√
2

)
+

√
2

π

da∑
i=1

σi exp

(
− (ai − µi(s))

2

2σ2
i (s)

)
,

where a = (a1, a2, . . . , ada) and β̂(s) is a Gaussian distribution with a state-dependent mean vector
µ(s) = (µ1(s), µ2(s), . . . , µda(s)) and a state-dependent covariance matrix whose main diagonal
is σ(s) = (σ1(s), σ2(s), . . . , σda(s)). For rmin and rmax, following Mao et al. (2023), we estimate
them by the minimum and maximum rewards in all of the datasets of a given task, that is, for example
rmin and rmax for a hopper-v2 dataset is computed by the minimum and maximum of the rewards
in hopper-expert-v2, hopper-medium-v2, and hopper-random-v2. To sum up, the loss function for
regularisation is

ℓregQ (ψQ ; s̃, ã) = 1ã∈OOD(s̃)

(
QψQ

(s̃, ã)−QLB
B̂ (s̃, ã)

)2
,

where s̃ is a state sampled from the dataset and ã is an action sampled from πalg. The resulting total
loss can be written by the following equation

ℓQ(ψQ) = E(s,a,r,s′)∼D
[
ℓTD
Q (ψQ ; s, a, r, s′)

]
+ wQ Es̃∼D,ã∼πalg(·|s̃)

[
ℓregQ (ψQ ; s̃, ã)

]
, (13)

where wQ is a tunable hyperparameter. For πalg we adopted

πalg(a | s) = 1

2
β̃(a | s) + 1

2
π(a | s),

where π is the current policy and β̃ is defined as

β̃(· | s) = N (µβ̂∗(s), κ
2Σβ̂∗(s)).

Here, µβ̂∗(s) and Σβ̂∗(s) are the mean vector and covariance matrix of the selected behaviour policy

β̂∗ and κ is a tunable hyperparameter, which we set to 2 in most of our experiments. The first term
regularises the critic values over a broad range of actions to guide a randomly initialised network
gψπ

towards producing near-zero values. The second term regularises the critic values in the vicinity
of the current policy allowing delicate control near the boundary of OOD(s).
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C.4 IMPLEMENTATION DETAILS

We standardised the observations following Fujimoto & Gu (2021) and normalised the rewards
so that the average empirical discounted return becomes V̂ , which we set to 100 for most of our
experiments. The algorithm was implemented upon the JAX (Bradbury et al., 2018) framework
using the Flax (Heek et al., 2024) library. The scikit-learn (Pedregosa et al., 2011) library was used
to compute ARIs and NMIs for Sections 5.3 and D.2.

D EXPERIMENT DETAILS

D.1 MOTIVATION EXPERIMENT

For the experiment in Section 3, we created a single-state infinite-horizon MDP with γ = 0.9 and a
deterministic reward function

R(a) =
1

2
exp

(
∥a− a∗∥22

)
.

The optimal action is obviously a∗ and the optimal discounted return is 1/(1 − γ) = 10. Since it
is a single-state MDP, we adopted a trainable six-dimensional vector instead of a policy network.
Similarly, the critic network Qψ : A → R only takes the action as its input. The loss function
functions for the two algorithms are

ℓIS(ψ) = E(r,a)∼D

[(
Qψ(a)− r − γQψ̄(aϕ)

)2
+ ρϕ(a)Qψ(a)

2 + αEa′∼N (a,σ2I6)

[
Qψ(a

′)2
]]

ℓHT(ψ) = E(r,a)∼D

[(
Qψ(a)− r − γQψ̄(aϕ)

)2
+ αEa′∼πalg

[
1a′∈OODQψ(a

′)2
]]
,

where aϕ is the current policy, ψ̄ is the target critic parameter updated in an EMA fashion, ρϕ(a) is
the importance sampling ratio defined as

ρϕ(a) =
µϕ(a)

β(a)
=

1

σ6
exp

(
1

2
∥a∥2 − 1

2σ2
∥a− aϕ∥2

)
,

πalg is the sampling policy defined as

πalg =
1

2
N (0, I6) +

1

2
N (aϕ, σ

2I6),

and
OOD =

{
a ∈ R6 : ∥a∥22 ≤ F−1

χ2
6
(0.5)

}
.

For the actor loss, we used
ℓπ(ϕ) = −Qψ(aϕ)

in both cases.

D.2 ADDITIONAL ANALYSIS ON THE TRAJECTORY CLUSTERING ALGORITHM

Aside from the three random-medium-expert datasets mentioned in Section 5.3, we also created
custom D4RL datasets by concatenating medium and expert datasets of halfcheetah, hopper, and
walker2d tasks. The mean and standard deviation of ARIs and NMIs for each configuration over 5
different seeds are reported in Table 7. The configuration (λT , λR) = (1, 0) performs the best on
average even after we include the three medium-expert datasets.

We also provide visualisations of our clustering results on different datasets of the D4RL benchmark
(Figures 4–9). Each row represents a different trajectory in the dataset.
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Table 7: The impact of hyperparameters λT and λR on the performance of our trajectory clustering
algorithm evaluated on custom D4RL datasets. The performance is measured in terms of adjusted
rand index (ARI) and normalised mutual information score (NMI).

λT = 1 λT = 0

λR = 1 λR = 0 λR = 1 λR = 0

halfcheetah-medium-expert
ARI 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

NMI 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

halfcheetah-random-medium-expert
ARI 0.97± 0.04 0.99± 0.00 0.91± 0.19 0.91± 0.17

NMI 0.97± 0.03 0.97± 0.01 0.93± 0.12 0.92± 0.12

hopper-medium-expert
ARI 0.80± 0.44 1.00± 0.00 0.99± 0.01 1.00± 0.00

NMI 0.80± 0.42 1.00± 0.00 0.97± 0.03 1.00± 0.00

hopper-random-medium-expert
ARI 0.49± 0.29 0.98± 0.02 0.59± 0.33 0.97± 0.06

NMI 0.57± 0.26 0.97± 0.02 0.66± 0.29 0.98± 0.04

walker2d-medium-expert
ARI 0.99± 0.01 1.00± 0.00 0.99± 0.02 1.00± 0.00

NMI 0.99± 0.02 1.00± 0.01 0.98± 0.04 1.00± 0.00

walker2d-random-medium-expert
ARI 0.88± 0.16 0.98± 0.05 0.98± 0.03 1.00± 0.00

NMI 0.90± 0.11 0.98± 0.03 0.97± 0.04 1.00± 0.00

Average ARI 0.86± 0.27 0.99± 0.02 0.91± 0.21 0.98± 0.07

NMI 0.87± 0.24 0.98± 0.02 0.92± 0.17 0.98± 0.06

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 4: Clustering visualisations for halfcheetah-medium-expert-v2

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 5: Clustering visualisations for halfcheetah-random-medium-expert-v2
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(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 6: Clustering visualisations for hopper-medium-expert-v2

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 7: Clustering visualisations for hopper-random-medium-expert-v2

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 8: Clustering visualisations for walker2d-medium-expert-v2

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 9: Clustering visualisations for walker2d-random-medium-expert-v2
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E ADDITIONAL FIGURES

fα

R(fα)

Figure 10: A diagram showing the probability density function and the 100(1−α)% highest density
region of a normal distribution. The probability of the corresponding normal random variable to lie
inside R(fα), which corresponds to the area of the coloured region, is 1− α.

i = 0, 1, 2, . . . , T − 1

Encoder Decoder

st
at−1

rt

qϕ

ht−1

bt = qϕ(· | τ:t) ∼ m

si+1

ai
si

si
ai

Rθ ri+1

Pθ si+1

Policy

πψ
st

at

Figure 11: VariBAD architecture. This figure is a redrawn version of Figure 2 in Zintgraf et al.
(2021).

F RELATED WORK

Value regularisation Value regularisation aims to discourage the actor from choosing OOD ac-
tions by penalising their critic values. Conservative Q learning (CQL; Kumar et al. 2020) was one
of the first works in this line of research, where they minimise the standard TD error together with
the Q-values of OOD actions. Lyu et al. (2022) pointed out that the CQL excessively regularsies the
OOD Q-values to the extent that hampers the learning process. They suggested a milder regularisa-
tion term based on the critic values of ID actions. Supported value regularisation (SVR; Mao et al.
2023) proposed a penalisation scheme that maintains standard Bellman updates for ID actions while
selectively penalising OOD actions’ critic values. Most existing value regularisation algorithm, in-
cluding the three works introduced in this section, sample the OOD actions from the current policy.
However, as training progresses, the current policy will start to produce ID samples, so it is crucial to
prevent unnecessary penalisation for those actions. CQL circumvents this issue through maximising
the critic values for actions in the dataset. SVR does it by soft thresholding the regulariser based on
the importance sampling ratio. In contrary, our method adopts a hard thresholding mechanism where
ID actions are not penalised at all. This is possible due to our capability of explicitly identifying the
OOD action set.
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Heterogeneous datasets There are multiple prior work concerned with offline RL datasets with
heterogeneous behaviours. Wang et al. (2023) utilises a diffusion model (Sohl-Dickstein et al., 2015;
Ho et al., 2020) to capture the multi-modality of the true behaviour policy. Li et al. (2023) trains
a mixture of Gaussian policy on the dataset via likelihood maximisation and then obtains a closed-
form estimate of the best possible action near the behaviour policy. These two works ignores the
trajectory information and handles each transition individually. Mao et al. (2024) incorporates an
expectation–maximisation algorithm to learn diverse policies from a given offline RL dataset. Wang
et al. (2024) proposes a learning-based trajectory clustering algorithm that can also automatically
determine the cluster size. Although these two works leverage the trajectory information, they obtain
the trajectory representation by simply averaging the samples, causing a substantial loss of informa-
tion. We incorporate a sequence modelling technique instead to learn an effective representation of
each trajectory.

VQ-VAE State-conditioned action quantisation (SAQ; Luo et al. 2023) is closely related to our
work in the sense that they also leverage a VQ-VAE in the offline RL setting. However, their main
focus is to discretise the actions because most of the challenges in offline RL originates from the
ambiguity of continuous distributions. On the other hand, our algorithm uses VQ-VAE to cluster
the trajectories and recover the behaviour policies. Also, SAQ discretises the actions individually,
ignoring the trajectory information.

G LIMITATIONS

Our work is built upon the assumption that each trajectory in the dataset was sampled from a single
behaviour policy. Although this assumption does not hold in general, as the behaviour policy may
change mid-trajectory, the change is subtle enough for our algorithm to perform reasonably well.
However, this might not be the case for real world scenarios. Future work could explore mechanisms
to detect behaviour policy change and split the trajectory at those transition points.
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