
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DARWINLM: EVOLUTIONARY STRUCTURED PRUNING
OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved significant success across various
NLP tasks. However, their massive computational costs limit their widespread use,
particularly in real-time applications. Structured pruning offers an effective solution
by compressing models and directly providing end-to-end speed improvements,
regardless of the hardware environment. Meanwhile, different components of
the model exhibit varying sensitivities towards pruning, calling for non-uniform
model compression. However, a pruning method should not only identify a capable
substructure, but also account for post-compression training. To this end, we
propose DarwinLM, a method for training-aware structured pruning. DarwinLM
builds upon an evolutionary search process, generating multiple offspring models
in each generation through mutation, and selecting the fittest for survival. To
assess the effect of post-training, we incorporate a lightweight, multistep training
process within the offspring population, progressively increasing the number of
tokens and eliminating poorly performing models in each selection stage. We
validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B
and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured
pruning. For instance, DarwinLM surpasses ShearedLlama while requiring 5×
less training data during post-compression training. We also extend our method
to MoE models like Qwen3-30B-A3B. To the best of our knowledge, this is the
first work to explore non-uniform structured pruning in MoE architectures. Our
approach, DarwinLM, outperforms uniform pruning baselines and demonstrates
the effectiveness of structured sparsity even in complex expert-based models. Code
and weights are available.

1 INTRODUCTION

The high accuracy of Transformer-based models on a wide range of tasks comes with massive
computational requirements, which hinders deployability. Thus, there is a line of research focusing on
the computational efficiency of Transformer-based models, and in particular large language models
(LLMs) via methods such as quantization (Frantar et al., 2022; Dettmers et al., 2023), pruning (Xia
et al., 2024; Frantar & Alistarh, 2023) and distillation (Hsieh et al., 2023).

We explore structured pruning of LLMs (Molchanov et al., 2017), which works by removing whole
rows or columns in the weight matrix, resulting in regular but “thinner” tensors. As such, this
approach is orthogonal to “fine-grained” methods such as unstructured pruning and quantization,
which can be applied complementarily, and has the advantage that models produced by it can be run
faster on mainstream hardware without specific support for low-bit or sparse formats.

In this paper, we provide a new state-of-the-art algorithm for non-uniform structured pruning with
compression guarantees. Specifically, in non-uniform pruning, we leverage the fact that layers or
blocks can be compressed to different levels, depending on their sensitivity; in turn, this can be
leveraged for higher compression while preserving accuracy (Yin et al., 2023; Sieberling et al.,
2024). Second, our algorithm is designed to provide guarantees in terms of the speed or size of the
compressed model. While smaller-scale methods such as ZipLM (Kurtić et al., 2024) were able to
achieve this for BERT-type models, there are several challenges when extending this to LLMs: for
instance, ZipLM only considers the local layer-wise error during the search, which is not consistent
with performance on in-context learning (ICL) or downstream tasks, and does not take fine-tuning
recovery into account as a metric.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Contributions. Our algorithm, called DarwinLM, introduces a new evolutionary search approach
specifically tailored to structured pruning of LLMs. DarwinLM works in two stages: the search
stage, and the fine-tuning stage. The search starts from a “parent” model, generated by pruning the
original model using second-order information. In each search step, DarwinLM generates “offspring”
candidate models by copying the parent and “shifting” sparsity from one layer to another, by what we
call a level switch mutation. Moreover, a central innovation of our approach is that our search process
is fine-tuning aware: we use a small-scale dataset to briefly fine-tune generated offspring, and select
the best offspring after fine-tuning. Once search completes, the fine-tuning stage trains the candidate
over a small subset of e.g. 10B tokens, after which we perform the final evaluation. Both of these
stages are very efficient by design: the pruning and search complete in 8 hours on 4 consumer-grade
GPUs, while the LLM fine-tuning completes in half a day on a standard-sized cluster.

In terms of experiments, we scale our method to LLMs of up to 70B parameters (Table 11) from the
Llama (Touvron et al., 2023) and Qwen (Qwen, 2024) model families, for which we achieve state-of-
the-art performance in one-shot structured pruning by large margins, and match or outperform the
performance of comparable prior methods during fine-tuning, while using a very small training budget.
Specifically, one-shot pruning results clearly show the superiority of DarwinLM relative to prior work,
specifically ZipLM Kurtić et al. (2024), ShearedLlama Xia et al. (2024), and EvoPress Sieberling
et al. (2024), as well as the Minitron (Sreenivas et al., 2024) and Flextron concurrent work (Cai
et al., 2024): for example, when pruning Llama-3.1-8B to half its size, our approach has 5.9% higher
average zero-shot accuracy relative to the best prior method (ZipLM).

This major gain in one-shot accuracy enables us to recover good accuracy using much shorter fine-
tuning runs relative to competing methods. For instance, in our standard setting we use only 10B
tokens for fine-tuning, and are able to reach > 90% zero-shot accuracy recovery while halving the
size of Llama-2-7B. Consequently, we obtain higher accuracy than all prior methods at the same
training budget. Moreover, we are able to outperform the ShearedLlama model in terms of accuracy
at the same size, even though this model is trained on 5x more tokens (50B). Further, we also compare
our method with the line of coarser-grained structured pruning methods including ShortGPT (Men
et al., 2024), Shortened-Llama (Kim et al., 2024), and EvoPress (Sieberling et al., 2024) in a one-shot
setting, showing that DarwinLM provides better performance across compression rates.

To further showcase the flexibility and performance of DarwinLM, we demonstrate it to be directly
applicable to mixture-of-experts (MoE) models. Specifically, provide an extension of DarwinLM to
perform one-shot pruning of the recent Qwen-3 MoE with 30B total parameters, out of which 3B are
activated per token. We create a smaller accurate variant in one-shot with 20B total parameters, out of
which 2B are activated, which retains ≥ 90% of the accuracy of the base model. Moreover, with 10B
token finetuning, a compressed 16B variant can also achieve ≥ 90% of the accuracy of the original
model. As such, DarwinLM is the first structured pruning method to show good results for MoE.

2 RELATED WORK

Structured Pruning Methods. Structured pruning methods for LLMs (Ma et al., 2023; Men et al.,
2024; Kim et al., 2024) typically focus on pruning along the depth dimension or on pruning width
(such as attention heads, and MLP intermediate dimensions). Among recent advances, the state-of-the-
art is provided by ShearedLLaMA (Xia et al., 2024), which utilizes targeted structured pruning, which
reduces a larger model to a specified target shape by pruning layers, attention heads, and intermediate
or hidden dimensions in an end-to-end process that is split into regularized fine-tuning, pruning, and
further fine-tuning. In addition, it implements dynamic batching, which adjusts the composition of
sampled data in each training batch, based on varying loss proxies across evaluation domains. By
comparison with ShearedLLaMA, DarwinLM provides more accurate structured pruning, combining
evolutionary search and second-order information. Our results show that our method requires only
a fraction of the data to recover accuracy. At the same time, our approach is compatible with
their dynamic batching, and should benefit from it. For MoE models, He et al. (2024) explored
unstructured and block drop in MoE models while Li et al. (2025) prunes the experts uniformly and
applies KD to recover the performance. The recent work on Minitron (Muralidharan et al., 2024)
and Flextron (Cai et al., 2024) connected NAS with structured pruning, by establishing a set of
effective compression practices for pre-trained LLMs by integrating depth and width pruning with
knowledge distillation (KD)-based retraining. These practices are derived from an in-depth empirical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Level Database Generation

Sub-Module: MLP.17

...
0

6

Level

5

10
...

...
0%

60%

Sparsity

50%

100%
...

...

Layers

...

Sub-Module: MLP.17

Sparsity: 50%

Structured Pruning

MLP.17.Up MLP.17.Gate MLP.17.Down

...
2

4

Level

6

5
...

...
Attention.0

MLP.17

Sub-Module

Attention.17

MLP.31
...

Parent

...
2

5

Level

6

4
...

...
Attention.0

MLP.17

Sub-Module

Attention.17

MLP.31
...

Offspring 1 Offspring 2

...

Offspring 3

...

Offspring 4

...

Offspring 2

...

Offspring 3

...

Offspring 4

...

Offspring 4

...

Offspring 1

Model

Offspring 4

...

Offspring 2

Model

Offspring 4

...

Offspring 3

Model

Offspring 4

...

Offspring 4

Model

Offspring 4

...

Offspring 1

Model

Offspring 4

...

Offspring 3

Model

Offspring 4

...

Parent

Model

Retrieve Layers
+ Stitch Model

Train on 20K Tokens

Retain Two Fittest Candidates

Initialize

Uniformly

Mutation

Train on 200K Tokens

Retain Fittest Candidate

Training-Aware Multi-Step Selection

After Termination:

Train on 10B Tokens

Offspring 4

...

Final

Model

Figure 1: Visual illustration of the DarwinLM pipeline.

exploration of pruning strategies across each axis, methods for combining different axes, distillation
approaches, and pruning techniques to identify an optimal compressed model. Our contributions
are orthogonal to the training strategy proposed in Minitron and Flextron, as we mainly investigate
more accurate pruning techniques—many of their findings should also transfer to our setting, and
our pruning technique can be applied in their setting. Unfortunately, these approaches use a closed
fine-tuning dataset, which prevents us from comparing models end-to-end. In Tables 1 and 2 we
provide individual task comparisons; specifically, the latter shows that our one-shot pruning approach
is considerably better than Minitron, outperforming it by 15% accuracy on average.

Non-uniform Pruning Methods. The distribution of importance across depth, attention heads, and
width in the model varies between layers and is not uniform. Low-importance modules tend to be
concentrated in specific locations and positions within the model. In the LLM domain, Klein et al.
(2023) utilized multi-objective NAS to compress LLMs while optimizing their performance for fine-
tuning downstream tasks. SIMPLE (Tao et al., 2023) detects redundant network structures by applying
learnable masks to all compressible components, followed by sparse training. EvoPress (Sieberling
et al., 2024) performs an evolutionary optimization procedure for non-uniform unstructured pruning,
non-uniform quantization, and layer dropping, with a focus on achieving a target model size in a
one-shot setting. By contrast, DarwinLM builds upon fine-grained structured pruning (at the level
of rows/columns), optimizes compression allocation under a hardware-specific speedup constraint,
and incorporates the effect of continued training into the fitness evaluation of the evolutionary search.
The more fine-grained structured pruning we employ significantly improves performance, while
guaranteeing speedups without specific hardware support (contrary to e.g. unstructured sparsity).
Additionally, two equally performing pruned models can respond differently to continued training,
which motivates integrating a lightweight finetune into the search process.

Other Compression Methods. Several approaches have been explored in the literature to reduce
computational and memory requirements of LLMs without significantly degrading performance,
including knowledge distillation, quantization, binarization, and sparsity. In knowledge distilla-
tion (Hinton et al., 2015; Sanh, 2019; Gu et al., 2024; Liu et al., 2024; Xu et al., 2024a), a smaller,
simpler model (the “student”) is trained to replicate the behavior of a larger, more complex model
(the “teacher”). The goal is to transfer the knowledge from the teacher to the student while retaining
most of the performance benefits of the larger model. Quantization (Xiao et al., 2023; Lin et al., 2024;
Li et al., 2024b; Wang et al., 2023; Huang et al., 2024; Xu et al., 2024b; Ma et al., 2024; Tang et al.,
2024) reduces the precision of model weights and activations. While this can dramatically reduce the
model size and computation, the challenge lies in maintaining accuracy. Another related research
area is neural architecture search (NAS) Liu et al. (2021). Instead of focusing on the architecture
module search, our method searches the allocated sparsity for each layer and keeps the search efficient
without massive re-training, which is generally required by NAS.

3 METHOD

Given a compression target such as sparsity ratio or speedup, DarwinLM aims to find the model with
the best sparsity allocation adhering to this constraint. Formally, let s(·) be a function measuring the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

overall sparsity (or inference time) of a given model, and let T denote the targeted sparsity ratio (or
speedup). Then, our problem is reduced to

M̂ = argmax
M

f(M) s. t. s(M) ≤ T, (1)

where M is obtained by first structurally pruning the base model and then performing an additional
training stage, and f(·) evaluates the quality of a model. Equation (1) presents a non-differentiable
optimization problem and, as such, cannot be optimized with standard first-order methods. Instead,
we approach this problem by designing a zeroth-order optimization procedure based on evolutionary
search. However, this approach comes with fundamental efficiency challenges: evaluating a single
compression profile requires pruning the base model, retraining the pruned model to recover perfor-
mance, and then computing the quality function f(·). This process may have to be repeated several
times, depending on the convergence speed of the evolutionary search.

In the following sections, we present how each of these challenges is addressed in the DarwinLM
pipeline. Section 3.1 details our evolutionary optimization procedure, which allows efficient opti-
mization of Equation (1). For this purpose, we make use of a precomputed sparse layer database,
which is described in Section 3.2. An overview of the pipeline is provided in Figure 1.

3.1 EVOLUTIONARY SEARCH

Our approach builds upon the evolutionary search framework, which we tailor to the problem
formulation. We provide a step-by-step description below, and pseudocode in the Appendix.

Fitness Environment. Although models are typically evaluated based on their performance on
downstream tasks, this approach is impractical in our context due to the lengthy evaluation times and
the risk of overfitting. As an alternative, we adopt the Kullback-Leibler (KL) divergence between the
outputs of the dense model and sparse model on a small calibration dataset as a metric to evaluate
the fitness of a candidate. KL divergence is well-established, and has been found to be robust with
little data compared to measuring perplexity (Sieberling et al., 2024). Consequently, we rewrite our
objective function (1) as

M̂ = argmin
M

DKL(M) s. t. s(M) ≤ T. (2)

Search Space. First, we perform one-shot compression of the base model using second-order
information, as we will outline in Section 3.2. The employed method has the advantage that it
operates per subblock (meaning per MLP or attention), allowing for pre-computing a layer database,
and stitching together models with arbitrary non-uniform sparsity. To this end, we retain subblocks
with varying but identical sparsity levels to better capture the structural diversity. A more detailed
description of the pruning algorithm and database generation is presented in Section 3.2. We then
search over this database by searching over lists, where each entry describes the discretized sparsity
level of the corresponding subblock. Note that based on the different targets, increasing the sparsity
level corresponds to a fixed inference time acceleration or a fixed increase in sparsity.

Initialization. Throughout the search process, we only maintain a single model as our population.
This is based on the expectation that the fittest model so far is most likely to produce even fitter
offspring. Initially, our search algorithm starts from ‘uniform’ compression, which in the case of
a speedup objective means that each subblock has sparsity corresponding to the targeted speedup
factor. Then, we can generate offspring by slightly increasing and decreasing sparsity levels of the
parent model, as we will describe in the next paragraph. In the case of gradual pruning, we compute
the residual value between the target sparsity level in different stages and randomly add the residual
value to the results from the previous stage.

Mutation Process. In each generation, offspring are generated by first copying the parent configura-
tion, and then applying our mutation operator. First, we sample the number of mutations, which we
constrain to be very small. For every mutation, we then sample whether to mutate MLPs or attention
modules, which means the mutation only happens in the same blocks. The mutation is then performed
by randomly selecting one unit to decrease sparsity, and another to increase sparsity. Therefore, we
never swap sparsity levels between an attention and an MLP module. Since we designed the database
generation in such a way that the difference between two sparsity levels always corresponds to a fixed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.86 0.87 0.88 0.89 0.90 0.91
KL-Div After Training

0.5525
0.5550
0.5575
0.5600
0.5625
0.5650
0.5675
0.5700

Fu
ll

Tr
ai

ni
ng

 K
L-

Di
v

Step 1 KL-Div vs Full Training KL-Div
Offspring
Survivor

(a) Step-1

0.51 0.54 0.57 0.60 0.63 0.66
KL-Div After Training

0.5525
0.5550
0.5575
0.5600
0.5625
0.5650
0.5675
0.5700

Fu
ll

Tr
ai

ni
ng

 K
L-

Di
v

Step 2 KL-Div vs Full Training KL-Div
Offspring
Survivor

(b) Step-2

0.60 0.62 0.64 0.66 0.68 0.70 0.72
KL-Div After Training

0.5525
0.5550
0.5575
0.5600
0.5625
0.5650
0.5675
0.5700

Fu
ll

Tr
ai

ni
ng

 K
L-

Di
v

Step 3 KL-Div vs Full Training KL-Div
Offspring
Survivor

(c) Step-3

Figure 2: Motivation for training-aware selection. The Y-axis depicts the KL-Divergence of the
model after training on 2M tokens, while the x-axis is the KL-Divergence after training on a much
smaller dataset (10K, 50K, 200K tokens respectively).

sparsity difference, increasing the sparsity level at one subblock and decreasing the sparsity level at
another subblock maintains the targeted sparsity ratio.

Multi-step Training-aware Selection Process. Our goal is not only to find the best sparse model in a
one-shot setting, but to account for continued training. We start from the observation that training on
a small amount of data is a good predictor of larger-scale fine-tuning performance. We demonstrate
this in Figure 2, where we generate 16 offspring for Llama2-7B. We first use 2M tokens to train all
offspring as a “large-scale” full training. Ideally, we want to exclude poorly performing offspring
early in the selection process, before spending significant resources on continued training. Therefore,
we apply 3 selection steps, each with [8, 4, 1] survivors respectively. In the first step, all offspring
are trained on only 10K tokens, which is drastically increased to 50K and 200K in the second and
third selection steps. As depicted in Figure 2, the best offspring after full finetuning is successfully
identified in the selection process. This motivates our approach, which we term training-aware
offspring selection, a method that incorporates lightweight finetuning into the selection process,
applied in a multi-step manner. Specifically, the training and selection are performed iteratively over
S rounds. In each round, a progressively smaller subset of offspring is retained, while the number
of samples for training as well as fitness evaluation is increased. The final surviving candidate is
selected as the starting point for the next generation.

3.2 PRUNED LAYER DATABASE

In this section, we first discuss pruning a specific layer to a given sparsity using second-order
information. Then, we introduce how the sparsity level database is generated, which forms the basis
of the evolutionary search.

Second-Order Structured Pruning. Pruning based on second-order information was first introduced
in Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992), and has since been adapted to Large
Language Models by reducing the problem to a layerwise formulation (Kurtic et al., 2022; Frantar &
Alistarh, 2023). We adopt this formulation for layer-wise structured pruning, in line with prior work
(Kurtić et al., 2024). Specifically, for each layer, given a calibration dataset X of layer inputs and the
original layer weights W, we aim to find

argmin
Ŵ
||WX− Ŵ:,MX||2 (3)

subject to Ŵ:,M ∈ C, where M refers to a column mask and C is the compression constraint. To
ensure that the sparse weights Ŵ produce outputs similar to those of the original weights W, we
must not only identify the less significant structures for pruning, but also compute an update δ for
the remaining weights to compensate for the error introduced by pruning. For this purpose, denote
by H = XXT the Hessian matrix for the ℓ2-minimization problem in Equation 3. Define Wi,M

as the weights in row i masked by M and let (H−1)M,M be the submatrix of the inverse Hessian
corresponding to the entries under the mask M. Now, we can compute the optimal structured mask
with corresponding weight updates δ by:

argmin
M

drow∑
i=1

Wi,M · (H−1
M,M)−1 ·WT

i,M; δ = −W:,M · (H−1
M,M)−1 ·H−1

M,: (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This formulation extends the derivation of OBS to account for all rows drow. In our context, we focus
on two types of pruned structures: (1) head pruning in multi-head self-attention, and (2) pruning of
the intermediate dimension of MLP modules.

Granularity. To reduce the required memory for storing the database, we enforce the number of
pruned dimensions in the MLP modules to be a multiple of m = 32. For attention modules, we prune
on a per-head basis. For each module, we only consider identifying the pruned columns of the final
output matrix, referring to the down projection in the case of an MLP. Once the pruned structure of the
output matrix is determined, the corresponding rows are pruned in the other matrices (i.e., the K, Q,
and V matrices in the attention module, and the up and gate projections in the MLP). However, if the
model applies group-query attention (GQA) (Ainslie et al., 2023), such as in Llama-3.1 and Qwen-2.5,
we avoid pruning the K and V matrices. During the forward pass, we remove the corresponding
heads in the repeated K and V matrices to obtain computationally compatible structures and reduce
computation.

Level Database Generation. After generating the initial layer database as described above, we
process it to obtain the final sparsity level database used for the evolutionary search. This processing
step is required to ensure that all considered models in the search process adhere to the targeted
inference acceleration. This is achieved by initializing the search with a valid model and then
applying a sparsity-preserving (or speedup-preserving) mutation operator. To this end, the sparsity
level database is constructed so that the (absolute) difference in inference time between adjacent
levels is consistent across all levels and modules. Inference times are measured on a specific hardware
setup using a small calibration dataset. (In our implementation, all attention / MLPs employ the
same step size, but the step size for attention differs from that of MLPs.) Thus, we can mutate a
model while maintaining the targeted sparsity or inference acceleration by simply increasing the
same number of levels as we decrease.

3.3 EXTENSION TO MOE ARCHITECTURES

Besides dense models, we further extend DarwinLM to Mixture of Experts (MoE) models. Typically,
each layer of an MoE model includes an attention module and an MoE block, which consists of a
number of MLPs (called experts). Since MoE models are already optimized for efficient inference,
we instead focus on reducing the memory requirements by optimizing under a sparsity constraint.
In our MoE experiments we omit pruning the attention module since the majority of parameters
are located in the expert MLPs. First, each expert is pruned to various sparsity levels and stored
in the database. In the rare event that some experts are not activated by any calibration tokens, we
apply standard magnitude-based weight pruning as a fallback strategy. After that, we employ the
evolutionary search within each expert MLP, and therefore keep uniform sparsity across MoE blocks.

4 EXPERIMENTS

4.1 SETUP

Models and Datasets. Given a target sparsity level and a set of pre-trained weights, our method
searches for combinations of per-layer sparsity levels under the sparsity constraint, based on a small
generic calibration set. In our experiments, for dense models, we consider Llama-2-7B (Touvron
et al., 2023), Llama-3.1-8B (Dubey et al., 2024) and Qwen-2.5-14B-Instruct. For MoE pruning, we
apply DarwinLM on the Qwen3-30B-A3B model. We also test our method on Moonlight-16B-A3B,
which can be found in the Appendix. We utilize the open-source dataset Fineweb-Edu (Lozhkov
et al., 2024) for both calibration and post-training. The dataset is filtered according to the sample
score provided with the dataset. All samples with a lower score than 0.9 are removed from the dataset,
resulting in a dataset with 80B tokens. For the search process, we use at most 16 sequences for
calibration, making this process highly lightweight. The finetuning data for the offspring models is
also sampled from the Fineweb-Edu dataset. For Qwen3-30B-A3B model, we also use our proprietary
high-quality dataset to finetune the compressed model.

Baselines. First, we compare our non-uniform sparse model with a uniform sparse model under a
similar computational budget. Additionally, on Llama-2-7B, we conduct comparisons with ZipLM
(Kurtić et al., 2024), ShearedLlama (Xia et al., 2024) and Minitron Muralidharan et al. (2024).
Moreover, we also compare with LoRAP Li et al. (2024a), DISP-LLM Gao et al. (2024) and Flextron

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of main results for DarwinLM and baseline methods on LLaMA-2-7B. Our
method achieves the best average performance on benchmarks compared to the baseline methods.
With only 10B tokens of fine-tuning, our method beats ShearedLlama, which is fine-tuned with 50B
tokens. (†) refers to training on the same data we use.

Method (fine-tuning budget) Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 77.7 69.2

Uniform (one-shot) 3.4B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.1
LoRAP (one-shot) 2.7B 51.2 57.2 47.9 31.3 26.3 30.0 27.5 61.9 41.6
DISP-LLM (one-shot) 3.3B - 68.3 56.2 51.1 30.2 49.3 - - -
ZipLM (one-shot) 4.0B 87.4 64.4 58.3 53.2 33.6 50.1 25.5 63.6 54.5
ShearedLLaMA (one-shot) 2.7B 84.5 66.4 53.4 49.8 28.4 47.6 27.6 50.9 51.0
DarwinLM (one-shot) 2.7B 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.2
Flextron (90B) 3.4B - 74.1 62.0 66.5 - 68.5 - - -
ShearedLLaMA (50B) 2.7B 90.8 75.8 64.2 67.0 41.2 70.8 28.2 63.0 62.6
ShearedLLaMA (10B†) 2.7B 92.0 73.6 63.1 69.8 42.0 64.4 29.0 62.1 61.9
ShearedLLaMA (30B†) 2.7B 90.3 74.7 64.0 71.4 45.1 66.9 27.2 64.5 63.0
DarwinLM (10B) 2.6B 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.8

Cai et al. (2024) for reference. ZipLM employs dynamic programming to search for the sparse
model structure, while ShearedLlama learns pruning masks for Llama-2-7B’s weights and applies
large-scale fine-tuning on 50B tokens. We perform the evaluation using the publicly available weights
after pruning and fine-tuning, as provided by the respective papers. For ZipLM, we reproduce their
implementation at a larger scale, following the original paper’s methodology. We limit our comparison
with ShearedLlama to Llama-2-7B, as the original paper only reports results for this model, and
the tuning costs for adapting it to other models are substantial. We also compare DarwinLM in a
one-shot setting against other one-shot structured pruning methods, including EvoPress (Sieberling
et al., 2024), ShortGPT (Men et al., 2024), and Shortened Llama (Kim et al., 2024). For MoE models,
since our work emphasizes the pruning strategies applied to MoE models and their impact on model
structure and sparsity, rather than their full post-pruning performance, we only provide the one-shot
pruning results. All of these methods perform structured pruning on a per-module or per-layer level.
We use the official pre-trained weights released on Huggingface for evaluation.

Evaluation. We follow ShearedLlama (Xia et al., 2024) to evaluate our method on several downstream
tasks including 0-shot accuracy on ARC-easy (Clark et al., 2018), LogiQA (Liu et al., 2020), PIQA
(Bisk et al., 2020), SciQ (Welbl et al., 2017), BoolQ (Clark et al., 2019), 5-shot on MMLU (Hendrycks
et al., 2020) and WinoGrande (Sakaguchi et al., 2021), 10-shot on HellaSwag (Zellers et al., 2019)
and 25-shot on ARC Challenge (Clark et al., 2018). We utilize the lm-evaluation-harness framework
(Gao et al.) to evaluate all downstream tasks.

Implementation Details. When generating the sparsity level database, we set the minimum and
maximum levels to 0 and 10, which indicate 0% and 100% sparsity respectively. On Llama-2-7B,
we first prune the model with a target sparsity level 5 in the one-shot setting using 2048 calibration
samples and fine-tune the sparse model on 10B tokens. After that, we continue to prune the model
to target sparsity level 6 based on the fine-tuned model with 2K calibration data. We prune Llama-
3.1-8B and Qwen-2.5-14B-Instruct models with target sparsity level 5. The final pruned models
are trained on an additional 10B Fineweb tokens. For the evolutionary search, we set the number
of generations to 200. For each generation, we generate λ = 16 offspring for selection. During
selection, we apply 4-step selection with [1024, 2048, 4096, 8192] tokens for fitness computation and
[10K, 50K, 100K, 200K] tokens for offspring finetuning. The learning rate for training during the
search is 1e-5. The pruning and search process is conducted on a 10× L40 GPU workstation. Our
training code is based on the LLM-Foundry repository. Our batch size is 1,024 for Llama-2, 1152 for
Llama-3.1, and 2048 for Qwen-2.5. The base learning rate is 1e-4 with a cosine decay strategy.

4.2 MAIN RESULTS

Results on Dense Models. We prune three representative dense models including Llama-2-7B,
Llama-3.1-8B and Qwen-2.5-14B-Instruct. We prune the Llama-2-7B model down to 2.7B with a
target level 6. The main results are shown in Table 1. For the pruned models, our method achieves
the highest performance on all downstream tasks, except for WinoGrande, where the ZipLM includes
many more parameters. Our method also attains the highest average score. In contrast, the uniform
pruning method results in a significant performance drop, with an average accuracy of only 40.1,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of results for DarwinLM and baseline models on Llama-3.1-8B. With similar
speedup, our method achieves the best performance on all benchmarks compared to baseline methods.
After post-training with 10B tokens, the performance recovers from 51.6 to 63.7.

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Llama-3.1-8B

Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8

Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
ZipLM 6B 65.5 60.6 56.0 40.2 36.2 34.4 28.1 63.0 27.9 45.7

Minitron 4.4B 54.4 54.4 48.9 31.8 22.1 28.4 27.1 37.8 25.6 36.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

DarwinLM (10.0B) 4.6B 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

Qwen-2.5-14B-Instr.

Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6

Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
ZipLM 8.5B 69.0 66.4 52.8 60.1 38.3 43.3 29.6 60.2 25.0 49.4

Minitron 8.4B 88.4 59.8 51.4 45.5 23.3 33.0 32.4 67.5 36.1 48.6
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4

DarwinLM (10.0B) 8.4B 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Table 3: Comparison of results for DarwinLM and baseline models on MoE models.
Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Qwen-3-30B-A3B

Dense 30B-A3B 97.0 79.7 71.5 79.7 68.6 77.8 34.7 88.8 79.6 75.2

Uniform 20B-A2B 95.9 75.6 65.3 75.3 59.1 60.6 31.1 84.2 64.7 67.9
DarwinLM (one-shot) 19B-A2B 95.9 77.1 67.5 75.6 61.2 59.5 34.0 83.4 65.0 68.8

Uniform 16B-A2B 94.9 71.4 60.2 73.2 52.6 47.0 33.2 75.0 55.6 62.5
DarwinLM (one-shot) 16B-A2B 94.7 73.0 61.1 73.6 53.9 47.6 33.6 77.5 55.1 63.3

DarwinLM (10.0B) 16B-A2B 95.9 76.2 69.4 80.4 59.0 69.9 32.5 77.0 66.9 69.7

essentially a performance collapse compared to the dense model. Specifically, the uniformly-pruned
model generates nearly random results on benchmarks such as WG, HS, LogiQA, BoolQ, and
MMLU. By contrast, DarwinLM achieves an average score of 57.2, outperforming ZipLM (54.5 with
4.0B parameters) and ShearedLlama (51.0 with 2.7B parameters). This comparison highlights the
effectiveness of non-uniform structured pruning, particularly at high sparsity. After post-compression
training, the pruned models see a significant recovery in performance. Notably, with only 10B
tokens for training, DarwinLM reaches an average score of 62.8, surpassing the 62.6 reported by
ShearedLlama, which was trained with 50B tokens. Furthermore, when we train the pruned model
released by ShearedLlama under the same conditions and with 10B tokens, it achieves an average
score of 61.9, which is considerably lower than DarwinLM.

We also pruned the Llama-3.1 8B model to 4.6B parameters and Qwen-2.5-14B-Instruct to 8.4B with
a target sparsity level 5. The comparison results are shown in Table 2. Similar to Llama-2-7B, the
uniformly pruned Llama-3.1-8B model suffers catastrophic degradation. For example, the uniformly
pruned model achieves 26.0, 23.6, and 27.1 on ARC-E, ARC-C, and HellaSwag, respectively, close
to randomly generated results (25.0%). In contrast, DarwinLM significantly improves performance,
achieving 59.6, 34.2, and 44.6 on these datasets. Overall, DarwinLM shows the best average
performance compared to both the uniformly pruned and ZipLM models. After post-compression
fine-tuning, DarwinLM recovers performance across all benchmarks, with an average score of 63.7.
This comparison indicates that, starting from an accurate model, DarwinLM can produce competitive
models tailored to any runtime/size requirements, at very low training cost.

For Qwen-2.5-14B-Instruct, different from Llama-2-7B and Llama-3.1-8B, the uniformly pruned
model of Qwen-2.5 obtains satisfactory performance on all benchmarks with 56.9 on average,
surpassing ZipLM with similar sparsity. This indicates the failure case of ZipLM as it only optimizes
the local error of pruning. However, DarwinLM achieves better than uniform structure. Specifically,
DarwinLM obtains 59.4 on average on all benchmarks, outperforming the uniform model. After
post-compression training with 10B tokens, the performance of DarwinLM increases to 68.1.

Results on MoE Model. We further extend DarwinLM to MoE architectures. We test our method
on Qwen-3-30B-A3B model and the results are shown in Table 3. The results show that DarwinLM
consistently outperforms uniform pruning under equivalent parameter settings. For example, at
19B parameters, DarwinLM achieves a 68.8 average, outperforming uniform pruning (67.9), and
this advantage holds at 16B as well (63.3 vs. 62.5). After 10B token finetuning, the performance
recovers from 63.3 to 69.7. Despite aggressive pruning from the 30B dense model (75.2), our method
maintains strong performance, demonstrating the benefit of DarwinLM at high sparsity ratios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Speedup and memory analysis of Dar-
winLM on L40s.

Model Throughput (Tokens/s) Memory (MB)
Dense 7B 132.8 15296
DarwinLM 2.7B 262.7 (1.98× ↑) 6306 (2.43× ↓)
Dense 8B 111.7 16870
DarwinLM 4.6B 150.5 (1.35× ↑) 12405 (1.35× ↓)
Dense 14B 63.2 30297
DarwinLM 8.4B 89.1 (1.40× ↑) 21242 (1.43× ↓)

Table 5: Ablation of our proposed training-
aware offspring selection (TAS) on Llama-2-7B
with target level 5.

Model PIQA SciQ ArcE
Uniform 57.1 44.1 32.2
DarwinLM w/o TAS 68.8 88.2 63.5
DarwinLM 69.2 88.7 63.8

DarwinLM w/o TAS + 1B tokens 73.1 91.6 69.0
DarwinLM + 1B tokens 74.2 92.0 70.8

4.3 ANALYSIS

Speedup Analysis. Structured pruning can bring direct runtime speedup and memory reduction
without hardware specification. We provide the results of the throughput and memory usage of
DarwinLM and the corresponding dense model, as shown in Table 4. We evaluated DarwinLM
’s generation throughput over 20 runs on a single L40s and measured peak memory usage with
a sequence length of 4096, batch size 1. Results show that DarwinLM consistently outperforms
the dense baseline, with improvements roughly proportional to parameter reduction. For instance,
DarwinLM 2.7B uses 2.43 × less memory and achieves 1.98 × higher throughput—slightly below
the ideal due to fixed inference overheads.

Comparison with One-shot Methods under Different Sparsities. We further compare DarwinLM
with several current one-shot structured pruning (layer dropping) methods including EvoPress (Sieber-
ling et al., 2024), ShortGPT (Men et al., 2024), and Shortened Llama (Kim et al., 2024) on Llama-2-7B.

0 10 20 30 40 50
Sparsity (%)

10

20

40

80
Pe

rp
le

xi
ty

ShortGPT
Shortened Llama
EvoPress
DarwinLM

Figure 3: Comparison of DarwinLM
and other one-shot methods that remove
modules entirely. Our method consis-
tently outperforms across all sparsity lev-
els, demonstrating the effectiveness of
our finer-grained structured pruning ap-
proach. The y-axis is log-scaled.

We select 40 samples with 4096 tokens from Fineweb-Edu
as the test set and compute the perplexity of each model
under different sparsity levels. The comparison results
are shown in Figure 3. First, we can observe that even
though all pruning methods can preserve performance well
under the sparsity of 25%, DarwinLM still achieves lower
perplexity compared to other one-shot pruning methods.
Moreover, the performance of ShortGPT shows dramatic
degradation after 25% sparsity while the perplexity of
Shortened Llama and DarwinLM increases only slightly
up to 40% sparsity. However, EvoPress also degrades,
reaching a perplexity of more than 30, while DarwinLM
shows a much more minor degradation for 50% sparsity.
Generally, DarwinLM outperforms all one-shot methods
under different sparsity and maintains stable performance
as sparsity increases, demonstrating the effectiveness of
our method. This is also natural since our method benefits from higher compression granularity.

Ablation Study. Finally, we examine the impact of training-aware selection for structure searching
and post-training. The results are presented in Table 5. First of all, both models with and without
training-aware selection (TAS in the context) searched with 200 generations are better than uniform
models. Furthermore, the performance gap of DarwinLM with and without TAS is minor before
training, indicating that applying TAS generates sparse models with similar performance. However,
after 1B tokens of training for each model, the performance gap between models with and without
TAS becomes larger, demonstrating that with training-aware selection, DarwinLM is able to select a
more suitable model for post-training. Full results can be found in the Appendix Table 25.

5 CONCLUSION

We introduced a novel non-uniform, training-aware structured pruning method called DarwinLM,
which generates compressed models by evolutionary search. DarwinLM efficiently searches com-
pressed models over a layer database, and incorporates the offspring models’ aptitude for continued
pretraining into the search procedure. Experiments on Llama-2-7B, Llama-3.1-8B, Qwen-2.5-14B-
Instruct and Qwen-3-30B-A3B demonstrate that our approach achieves state-of-the-art performance.
DarwinLM is remarkably sample-efficient, as it can match or even improve upon the performance of
prior methods which required 10x more data and training computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work improves the efficiency of large language models through structured pruning. Our
experiments use only publicly available pre-trained models and open datasets (e.g., Fineweb-Edu)
without human subjects or sensitive data. While reducing computation lowers costs and environmental
impact, it may also facilitate wider use of LLMs, including potential misuse or amplification of
biases. We release our method for research purposes only and encourage responsible use, including
alignment and safety checks, before deployment.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our pruning algorithm, evolutionary search procedure, and
training setup in the main text and Appendix. All hyperparameters, datasets, and evaluation protocols
are specified (except the finetuning data for Qwen3-MoE-30A3B model), and we use widely available
pre-trained models (Llama, Qwen). Our code and pruned model weights will be released to ensure
full reproducibility of our results.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu, A Le Noac’h,
et al. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.
org/records/10256836, 7.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances in
Neural Information Processing Systems, 37:72219–72244, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Shwai He, Daize Dong, Liang Ding, and Ang Li. Towards efficient mixture of experts: A holistic
study of compression techniques. arXiv preprint arXiv:2406.02500, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and XIAOJUAN QI. Billm: Pushing the limit of post-training quantization for llms. In Forty-first
International Conference on Machine Learning, 2024.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cédric Archambeau. Structural
pruning of large language models via neural architecture search. In AutoML Conference 2023,
2023.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259, 2022.

Eldar Kurtić, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of language
models. Advances in Neural Information Processing Systems, 36, 2024.

Guangyan Li, Yongqiang Tang, and Wensheng Zhang. Lorap: Transformer sub-layers deserve
differentiated structured compression for large language models, 2024a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao
Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Forty-first
International Conference on Machine Learning, 2024b.

Zichong Li, Chen Liang, Zixuan Zhang, Ilgee Hong, Young Jin Kim, Weizhu Chen, and Tuo Zhao.
Slimmoe: Structured compression of large moe models via expert slimming and distillation. arXiv
preprint arXiv:2506.18349, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang Kang, Zhuoren Jiang, Changlong Sun, and Fei
Wu. Evolving knowledge distillation with large language models and active learning. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
(eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural networks and learning
systems, 34(2):550–570, 2021.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017. URL https://openreview.net/forum?id=SJGCiw5gl.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal
dynamic model compression via evolutionary search. arXiv preprint arXiv:2410.14649, 2024.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. Llm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Shengkun Tang, Liqun Ma, Haonan Li, Mingjie Sun, and Zhiqiang Shen. Bi-mamba: Towards
accurate 1-bit state space models. arXiv preprint arXiv:2411.11843, 2024.

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
Structured pruning for efficient generative pre-trained language models. In Findings of the
Association for Computational Linguistics: ACL 2023, pp. 10880–10895, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

12

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://openreview.net/forum?id=SJGCiw5gl
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In ICLR, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024a.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint
arXiv:2402.11295, 2024b.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

In this paper, we use an LLM to help revise and polish the writing of the paper, while all ideas and
experiments are conceived and carried out entirely by the authors.

A.2 THE SEARCH ALGORITHM

Algorithm 1 DarwinLM: Evolutionary optimization with training-aware offspring selection.
Input:
N : number of generations.
S: number of selection steps.
λ: number of offspring in each generation.
Tf : list of tokens for finetuning.
Ts: list of tokens for selection.

Initialization:
D ← databaseGen()

Sampled levels are all integers
parent← UniformLevelSample()

Optimization:
for t← 1 to N do

Elitism
candidates← [parent]

Offspring generation via mutation
for i← 1 to λ do

offspring ← LevelSwitchMutation(parent)
candidates.append(offspring)

end for
Multi-step training-aware selection
for step← 1 to S do
cand models = []
for candidate ∈ candidates do
cand model← stitch(candidate,D)
cand model← train(cand model, Tf [step])
cand models.append(cand model)

end for
candidates← selectTopKFit(cand models, Ts[step])

end for
parent← candidates[0]

end for
return parent

A.3 IMPLEMENTATION DETAILS

Details of second-order structured pruning. We utilize 2,048 sequences with 4,096 tokens from
the Fineweb-Edu dataset Lozhkov et al. (2024) as calibration data for Llama-2-7B, Llama-3.1-8B,
and Qwen-2.5-14B-Instruct. In the attention module, we prune entire attention heads, and in the MLP
module we prune entire columns of the output matrix. For Llama-2-7B, we prune the input matrix,
as well as the Q, K, and V matrices, based on the pruned output matrix in the attention module.
For Llama-3.1-8B and Qwen-2.5-14B-Instruct, which both use grouped query attention, we omit
the key and value matrices for pruning. For MoE models, we do not prune the attention module
and follow the same experimental setting as Qwen-2.5-14B-Instruct otherwise. For all models, the
input and gate matrices in the MLP module are pruned according to the output matrix. Pruning

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct requires 4× 48GB GPU memory. Most of
the second-order structured pruning experiments are conducted on a 4× NVIDIA L40S machine with
48GB GPU memory.

Details of the evolutionary search. Given a target sparsity level, the search process starts from
uniform initialization. During selection, we apply 4 steps of selection with [1024, 2048, 4096, 8192]
tokens for fitness computation and [10K, 50K, 100K, 200K] tokens for offspring finetuning. The
number of survivors is set to [8, 4, 2, 1] for each step and model. We set the learning rate for offspring
training to 1e-5. For Llama-2-7B, we apply gradual pruning with target sparsity level 5 in the first
stage. We perform the search procedure for 200 generations. After training on 10B tokens, we
search again with target sparsity level 6 (60% sparsity) for 500 generations. For Llama-3.1-8B and
Qwen-2.5-14B-Instruct, we search the sparse model with target sparsity level 5 (50% sparsity) for
200 generations. The search process for the 7/8B models can be done on a single GPU with 48GB
of memory. Qwen-2.5-14B-Instruct and Moonlight-16B-A3B models are searched with 6 × L40S
GPUs. Qwen-3-30B-A3B experiments are conducted on 6 × H100 GPUs.

Table 6: Hyperparameter details for post-training on DarwinLM-2.6B, DarwinLM-4.4B, and Dar-
winLM-8.4B.

Parameter DarwinLM-2.6B DarwinLM-4.4B DarwinLM-8.4B DarwinLM-16A2B
Learning rate 1e-4 1e-4 1e-4 2.4e-4
Global batch size 1024 1152 2048 512
Warm-up steps 50 steps 10 steps 50 steps 50 steps
LR decay scheduler Cosine Cosine Cosine Cosine
Context length 4,096 8,192 4,096 4096
Overall tokens 10B 10B 10B 10B

Details of post-training. We train the final 2.6B sparse model, pruned from Llama-2-7B, and the
4.4B model, pruned from Llama-3.1-8B, on 10B tokens each. Gradient accumulation is used to
achieve a larger global batch size. The models are trained with the Adam optimizer, using a learning
rate of 1e-4, and a cosine learning rate decay scheduler. No weight decay is applied. The training
process is conducted on a cluster of 40 H100 GPUs for 13 hours. Detailed hyperparameters for
post-training can be found in Table 6.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: The throughput and latency of DarwinLM with vLLM serving framework.

Model Throughput (Tokens/s) Latency (ms)
LLaMA-2-7B 2469.57 51.83

Shearedllama-2.7B 4482.95 28.55
DarwinLM-2.7B 5675.29 22.55

Speed of real-world deployment. We provide the inference throughput and latency on vLLM
inference framework and also add the comparison with Dense model and Shearedllama (with sequence
length of 1024, request number of 128, single L40s GPUs), as shown in Table 7. The results clearly
show that the irregular shapes do not affect latency in a negative way. Moreover, we find that
DarwinLM achieves higher throughput and lower latency compared with Shearedllama, at a similar
parameter count. The reason DarwinLM is faster is that, with our approach, some Attention / MLP
blocks are removed completely, which reduces both the computation, and the communication cost
between SRAM and HBM inside the GPU. Furthermore, we believe that such a structure will bring
extra efficiency benefits in the case of huge models, which require tensor-parallel or pipeline-parallel
for inference, since removing a whole block significantly reduces block-wise communication cost.

Comparison with random search. We provide the performance comparison with different search-
ing techniques, including ZipLM and random search, as shown in Table 8. The results show a major
accuracy advantage in favor of DarwinLM, with an improvement of almost 4% on average, across
tasks, relative to Random search, and even higher relative to ZipLM. This highlights the advantage of
our search strategy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison with ZipLM and random search.

Model Method Param. SciQ PIQA WG ARC-E ARC-C HS LogiQA BoolQ MMLU Avg
Llama-3.1-8B Random Search 4.6B 78.1 65.5 52.3 54.5 26.2 31.6 24.1 62.1 26.5 46.7

ZipLM 6B 65.5 60.6 56.0 40.2 36.2 34.4 28.1 63.0 27.9 45.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Table 9: The results of DarwinLM with 50B token training.

Methods SciQ PIQA WG ARC-E ARC-C HS LogiQA BoolQ MMLU Avg
Dense 97 79.7 71.5 79.7 68.6 77.8 34.7 88.8 79.6 75.2

DeepSeek-MoE-base 16A2B 2T token 92.9 80.5 72.7 75.9 53.2 79.9 29.1 72.9 45 66.9
DeepSeek-V2-Lite 16A2B 5.7T token 93.5 79 69.2 75.5 51.9 74.6 29.1 74.3 48.4 66.1

DarwinLM 16A2B MoE 10B token 95.9 76.2 69.4 80.4 59 69.9 32.5 77 66.9 69.7
DarwinLM 16A2B MoE 50B token 96 77.1 70.1 81.9 60.5 72.5 32.7 78 69.1 70.8

Training with more tokens. We provide the results of DarwinLM trained with 50B tokens, as
shown in Table 9. With more tokens, the performance of DarwinLM continues to improve consistently.
Moreover, DarwinLM achieves better performance than DeepSeek-MoE-base and DeepSeek-V2-Lite,
which are trained with 2T and 5.7T tokens, respectively.

Table 10: Searched sparsity distribution of DarwinLM-2.7B including the attention head number and
MLP size.

Type Value
DarwinLM Attn Head Num 25, 21, 18, 18, 14, 10, 14, 10, 18, 14, 18, 0, 0, 28, 21, 10, 18, 14, 10, 18, 10, 10, 10, 14, 0, 0, 14, 1, 4, 0, 6, 0

Shearedllama Attn Head Num 20 for all layers
DarwinLM MLP Size 3104, 8032, 6496, 4256, 5280, 5280, 4256, 3104, 5280, 4256, 1824, 0, 3104, 5280, 5280,

4256, 4256, 6496, 6496, 5280, 3104, 4256, 4256, 3104, 3104, 3104, 4256, 3104, 3104, 3104, 6496, 6496
Shearedllama MLP Size 6912 for all layers

Searched sparsity distribution. We provide the searched sparsity distribution of DarwinLM in
Table 10.

Results on large-scale models. Table 11 compares one-shot pruning methods on Llama-3.1-70B.
The full dense model (70B params) achieves the highest average score (78.8). Uniform pruning
(35B) drops to 73.9, while DarwinLM (35B) improves to 75.0, outperforming uniform pruning across
most benchmarks. DarwinLM preserves performance better, especially on ArcE, HS, and BoolQ,
suggesting the effectiveness of DarwinLM.

Results on more models. Besides scaling up the method to large models, DarwinLM is also applied
to small-scale models, such as Pythia-2.8B and Gemma2-2B, as shown in Table 12. At this scale,
without any finetuning, DarwinLM achieves downstream performance that is remarkably close to
that of the larger dense model. Table 12 presents a comparison across multiple benchmarks, where
DarwinLM, using only 1.4B parameters (half the size of the dense model), consistently outperforms
the uniform baseline and performs competitively with the dense model. Notably, DarwinLM surpasses
the dense model on tasks like BoolQ (65.0 vs. 64.5), shows near-parity on ArcE (61.2 vs. 64.4),
and delivers strong results on SciQ (82.9) and PIQA (71.3). The average performance of DarwinLM
(53.3) significantly exceeds that of the uniform baseline (47.4) and comes close to the dense model’s
55.6. We further provide the results of DarwinLM on Mistral-7B model, as shown in Table 13.

Result comparison with model trained from scratch. We provide the comparison of DarwinLM
with open-source models trained from scratch (OLMO and Baichuan2) on multiple benchmarks, as
shown in Table 14. Despite using fewer training tokens than some baselines, DarwinLM achieves
competitive or superior performance. Notably, DarwinLM 8.4B (10B tokens) outperforms both
OLOMO 7B (2T) and Baichuan2 7B (2.6T), achieving a higher average score (68.4 vs. 67.9
and 66.4). It excels particularly on ArcE (79.6) and LogiQA (33.5), indicating strong reasoning
capabilities. The 4.6B DarwinLM also matches or exceeds OLOMO 7B in most metrics despite
smaller size.

Post-training with LoRA. Besides full finetuning, our model can also be finetuned with parameter-
efficient finetuning techniques such as LoRA (Hu et al., 2022). We provide the results in Table 15.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Results on Llama-3.1-70B. We omit training and report one-shot pruning performance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg

Llama-3.1-70B
Dense 70B 96.5 82.9 85.2 87.2 69.3 87.8 37.0 85.2 78.8

Uniform 35B 95.1 80.1 81.7 80.8 59.9 78.2 33.1 82.3 73.9
DarwinLM (one-shot) 35B 95.4 81.2 83.5 82.5 60.5 80.3 33.0 84.2 75.0

Table 12: Results on Pythia-2.8B and Gemma2-2B, which include less model parameters and more
model families. Here, we omit continued training, and report the one-shot pruning performance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Pythia-2.8B
Dense 2.8B 88.3 73.8 58.6 64.4 35.8 60.1 28.5 64.5 26.7 55.6

Uniform 1.4B 75.9 59.4 59.1 39.0 29.1 50.3 25.9 62.6 26.0 47.4
DarwinLM (one-shot) 1.4B 82.9 71.3 57.3 61.2 34.7 54.5 27.9 65.0 25.1 53.3

Gemma2-2B
Dense 2.5B 94.6 76.7 65.2 74 49.2 71.5 29.8 70.0 41.2 63.5

Uniform 1.2B 78.7 58.1 50.5 41.0 21.0 26.4 25.1 52.7 25.6 42.1
DarwinLM (one-shot) 1.2B 80.0 61.3 52.1 48.5 23.2 30.5 26.4 55.5 25.3 44.7

The results show that LoRA can achieve reasonable improvement based on the pruned model while
full finetuning obtains better performance given identical tokens.

Additional results in comparison to uniform pruning. We present a full comparison of the
uniformly pruned models and the sparse models obtained via DarwinLM in Table 16. For all
three models (Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct), DarwinLM consistently
outperforms uniform pruning on evaluation tasks, with immense gains for Llama-2-7B (54.2 vs. 38.4
on average) and Llama-3.1-8B (51.6 vs. 36.1 on average).

Performance on generation tasks. We compare our method with ShearedLlama on GSM-8K, a
generation task. The results are shown in Table 17. While the overall performance is low (as expected
for small models without finetuning), DarwinLM consistently outperforms ShearedLLaMA under the
same data budget, nearly matching its 50B-tokens performance with just 10B tokens.

Results on additional MoE models. Besides the Qwen3-30B-A3B MoE model, we also apply
DarwinLM on Moonlight-16B-A3B, another mixture of experts model. The results are shown in
Table 18. Overall, DarwinLM obtains a more capable sparse model on downstream tasks compared
to uniform pruning.

Running time comparison. We compare the running time for pruning with ShearedLlama in
Table 19. ShearedLlama has higher computational cost for pruning since it requires additional
training to find the weight masks. Additionally, the hardware requirements of DarwinLM are lower
than that of ShearedLlama.

Additional results of post-training comparison with ShearedLlama. We provide the post-
training comparison of ShearedLlama across all benchmarks, with the performance trends for each
dataset available in Figure 4. Both methods prune Llama-2-7B, with DarwinLM producing a model
with 2.6B parameters and ShearedLlama producing a model with 2.7B parameters. DarwinLM
outperforms ShearedLlama on benchmark evaluations in most cases, including SciQ, PIQA, ARC-E,
ARC-C, HellaSwag, WinoGrande, LogiQA, BoolQ, and MMLU.

Table 13: Results on Mistral-7B. We omit continued training, and report one-shot pruning perfor-
mance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Mistral-7B
Dense 7B 95.9 80.8 79.4 80.5 61.3 83.3 30.2 83.3 62.5 73.0

Uniform 3.9B 57.2 66.4 50.5 62 32.7 37.5 27.6 53.7 26.0 45.9
DarwinLM (one-shot) 3.9B 84.2 65.7 54 57.8 34.1 38.9 26.8 60.5 26.5 49.8

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 14: Result comparison of DarwinLM and the open-source model trained from scratch.
Model (Training token) SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
OLMO 7B (2.5T) 92.8 79.4 70.4 73.3 44.9 77.1 27.9 72.5 28.3 62.9
DarwinLM 4.6B (10B) 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

Baichuan2 7B (2.6T) 94.8 77.1 72.2 75.0 49.5 73.0 28.7 73.9 54.0 66.4
OLMO 0424 7B (2T) 96.1 80.1 72.1 73.8 49.2 78.0 29.3 80.8 52.1 67.9
DarwinLM 8.4B (10B) 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Table 15: Comparison of different training techniques.

Model (Training Tokens) SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
DarwinLM-2.7B-Pruned 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.3

Full-Finetuning (10B) 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.7
LoRA (10B) 88.2 73.2 69.4 57.2 40.6 61.4 29.1 61.6 60.0

A.5 ABLATIONS

Ablation of the search metric. Here, we compare different fitness functions used during the
evolutionary search. As shown in Table 20, we compare using perplexity (PPL) and KL-Divergence
(KL-Div) to evaluate the fitness of candidate models. Both metrics yield similar performance on
downstream tasks, which demonstrates the robustness of DarwinLM to the objective type.

Ablation of the number of offspring. We provide an ablation study for varying the number of
offspring in Table 21. When the offspring number increases, the downstream performance also
improves with the cost of additional searching time. However, the performance seems to plateau
beyond 24 offspring per generation. Therefore, choosing a relatively small offspring number for each
generation achieves satisfactory performance with acceptable searching cost.

Ablation of the number of sparsity levels. Another hyperparameter of DarwinLM is the number
of sparsity levels in the layer database. We provide results with a higher number of sparsity levels in
Table 22. When more sparsity levels are available, DarwinLM can search more fine-grained and thus
achieve better downstream performance. This comes at the cost of having to store a larger database,
and a higher number of generations required for convergence in the search process.

Ablation of the finetuning tokens. We provide the ablation of different finetuning token choice on
Llama3.1-8B, as shown in Table 23. The average scores are nearly identical—51.6 and 51.6—across
both token configurations, with minimal variation across individual benchmarks. This demonstrates
that DarwinLM is robust to the amount of finetuning data used in the search process, maintaining
consistent performance even with significantly fewer tokens

Ablation of pruning methods DarwinLM can build upon all pruning techniques. To show the
effectiveness of DarwinLM, we provide the results of model pruned by the simplest pruning method,
namely magnitude-based pruning on Llama-3.1-8B. The results are shown in Table 24. We can
observe that even with the simplest pruning method, DarwinLM can bring benefits to the final results.

The full results of Table 5. We further provide the full results of Table 5, as shwon in Table 25.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 16: Full comparison of DarwinLM with uniform pruning on Llama-2-7B, Llama-3.1-8B and
Qwen-2.5-14B-Instruct.

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Llama-2-7B
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 82.1 46.6 67.6

Uniform 3.3B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 23.7 38.4
DarwinLM 3.3B 89.1 70.0 59.4 63.7 36.2 53.5 25.9 65.3 24.8 54.2

Llama-3.1-8B
Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8

Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
DarwinLM 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Qwen-2.5-14B-Ins.
Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6

Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4

Table 17: Comparison of DarwinLM and ShearedLlama on GSM-8K evaluation set on Llama-2-7B.

Method GSM-8K
Dense 15.6
ShearedLLaMA-pruned 1.1
DarwinLM-pruned 1.9

ShearedLLaMA 50B 3.7
ShearedLLaMA 10B 2.0
DarwinLM 10B 3.4

Table 18: Comparison of DarwinLM and uniform pruning on Moonlight-16B-A3B, a mixture of
experts model. Here, we do not perform continued training.

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Dense 16B-A3B 96.0 79.1 75.5 84.6 62.7 81.6 37.1 80.1 70.1 74.1

Uniform 8.7B-A2B 94.0 71 61.9 76.3 44.2 52.9 30.5 65.5 51.3 60.8
DarwinLM (one-shot) 8.7B-A2B 95.4 71.7 61.5 76.0 45.0 50.4 30.5 70.3 51.8 61.4

Table 19: Running time comparison with ShearedLlama and DarwinLM. DarwinLM has lower
computational cost compared to ShearedLlama.

Model Hardware Requirement Running Time
ShearedLlama 8× A100-80G 7.4h
DarwinLM 4× L40S-48G 6.9h

Table 20: Comparison of DarwinLM with different metrics during search on Llama-3.1-8B.

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
PPL 4.6B 84.7 69.4 58.4 61.2 32.5 43.8 25.6 62.4 27.8 51.7
KL-Div 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Table 21: Comparison of DarwinLM with different number of offspring during search on Llama-3.1-
8B.

Number of Offspring SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
8 84.4 69.0 56.9 58.6 33.2 43.3 24.1 62.2 28.3 51.1
16 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
24 84.9 69.5 58.8 61.4 30.9 47.7 26.8 62.5 27.1 52.1
32 86.7 69.9 58.8 61.7 31.2 45.3 24.8 62.2 28.5 52.1

Table 22: Comparison of DarwinLM with different number of sparsity levels produced during
database generation.

Sparsity Level SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
10 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
16 87.3 70.1 58.2 60.2 32.7 46.8 25.8 62.1 32.1 52.7

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 23: Comparison of DarwinLM with different finetuning tokens during search on Llama-3.1-8B.

Finetuning Tokens SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
[10K, 50K, 100K] 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 51.6
[5K, 10K, 20K] 85.8 69.8 56.1 60.9 33.6 43.8 25.3 61.1 51.6

Table 24: Ablation of pruning methods on Llama-3.1-8B.

Method SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Uniform 19.2 53.2 49.7 24.9 26.1 26.0 25.6 40.0 33.0

DarwinLM 22.1 53.6 50.6 25.6 26.6 26.2 25.7 38.8 33.7

Table 25: Full results of Table 5.

Method SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Uniform 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.2

DarwinLM w/o TAS 88.2 69.1 58.6 63.5 31.7 41.4 20.1 63.0 54.5
DarwinLM 88.7 69.2 59.9 63.8 32.5 40.1 22.2 65.1 55.1

DarwinLM w/o TAS + 1B 91.6 73.1 59.9 69.0 34.1 47.2 22.1 68.2 58.1
DarwinLM +1B 92.0 74.2 60.0 70.8 36.1 48.1 22.8 66.0 58.8

0 2 4 6 8 10
Token (B)

50

60

70

Sc
or

e

ShearedLlama
DarwinLM

(a) ARC-E

0 2 4 6 8 10
Token (B)

25

30

35

40

45

50

Sc
or

e

ShearedLlama
DarwinLM

(b) ARC-C

0 2 4 6 8 10
Token (B)

45

50

55

60

65

70

Sc
or

e

ShearedLlama
DarwinLM

(c) HellaSwag

0 2 4 6 8 10
Token (B)

80

85

90

95

Sc
or

e

ShearedLlama
DarwinLM

(d) SciQ

0 2 4 6 8 10
Token (B)

60

65

70

75

80

Sc
or

e

ShearedLlama
DarwinLM

(e) PIQA

0 2 4 6 8 10
Token (B)

50

55

60

65

70

Sc
or

e

ShearedLlama
DarwinLM

(f) Wino

0 2 4 6 8 10
Token (B)

25

30

35

Sc
or

e

ShearedLlama
DarwinLM

(g) LogiQA

0 2 4 6 8 10
Token (B)

45

50

55

60

65

70

Sc
or

e

ShearedLlama
DarwinLM

(h) BoolQ

0 2 4 6 8 10
Token (B)

20

22

24

26

28

30

Sc
or

e

ShearedLlama
DarwinLM

(i) MMLU

Figure 4: Post-training comparison of ShearedLlama and DarwinLM on each benchmark. Here,
Llama-2-7B is pruned to 2.6B parameters via DarwinLM, and to 2.7B parameters with ShearedLlama.
Both methods perform continued training on 10B tokens.

20

	Introduction
	Related Work
	Method
	Evolutionary Search
	Pruned Layer Database
	Extension to MoE Architectures

	Experiments
	Setup
	Main Results
	Analysis

	Conclusion
	Appendix
	Use of LLMs
	The Search Algorithm
	Implementation Details
	Additional Experimental Results
	Ablations

