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ABSTRACT

Large Language Models (LLMs) have achieved significant success across various
NLP tasks. However, their massive computational costs limit their widespread use,
particularly in real-time applications. Structured pruning offers an effective solution
by compressing models and directly providing end-to-end speed improvements,
regardless of the hardware environment. Meanwhile, different components of
the model exhibit varying sensitivities towards pruning, calling for non-uniform
model compression. However, a pruning method should not only identify a capable
substructure, but also account for post-compression training. To this end, we
propose DarwinLM, a method for training-aware structured pruning. DarwinLM
builds upon an evolutionary search process, generating multiple offspring models
in each generation through mutation, and selecting the fittest for survival. To
assess the effect of post-training, we incorporate a lightweight, multistep training
process within the offspring population, progressively increasing the number of
tokens and eliminating poorly performing models in each selection stage. We
validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B
and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured
pruning. For instance, DarwinLM surpasses ShearedLlama while requiring 5×
less training data during post-compression training. We also extend our method
to MoE models like Qwen3-30B-A3B. To the best of our knowledge, this is the
first work to explore non-uniform structured pruning in MoE architectures. Our
approach, DarwinLM, outperforms uniform pruning baselines and demonstrates
the effectiveness of structured sparsity even in complex expert-based models. Code
and weights are available.

1 INTRODUCTION

The high accuracy of Transformer-based models on a wide range of tasks comes with massive
computational requirements, which hinders deployability. Thus, there is a line of research focusing on
the computational efficiency of Transformer-based models, and in particular large language models
(LLMs) via methods such as quantization (Frantar et al., 2022; Dettmers et al., 2023), pruning (Xia
et al., 2024; Frantar & Alistarh, 2023) and distillation (Hsieh et al., 2023).

We explore structured pruning of LLMs (Molchanov et al., 2017), which works by removing whole
rows or columns in the weight matrix, resulting in regular but “thinner” tensors. As such, this
approach is orthogonal to “fine-grained” methods such as unstructured pruning and quantization,
which can be applied complementarily, and has the advantage that models produced by it can be run
faster on mainstream hardware without specific support for low-bit or sparse formats.

In this paper, we provide a new state-of-the-art algorithm for non-uniform structured pruning with
compression guarantees. Specifically, in non-uniform pruning, we leverage the fact that layers or
blocks can be compressed to different levels, depending on their sensitivity; in turn, this can be
leveraged for higher compression while preserving accuracy (Yin et al., 2023; Sieberling et al.,
2024). Second, our algorithm is designed to provide guarantees in terms of the speed or size of the
compressed model. While smaller-scale methods such as ZipLM (Kurtić et al., 2024) were able to
achieve this for BERT-type models, there are several challenges when extending this to LLMs: for
instance, ZipLM only considers the local layer-wise error during the search, which is not consistent
with performance on in-context learning (ICL) or downstream tasks, and does not take fine-tuning
recovery into account as a metric.
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Contributions. Our algorithm, called DarwinLM, introduces a new evolutionary search approach
specifically tailored to structured pruning of LLMs. DarwinLM works in two stages: the search
stage, and the fine-tuning stage. The search starts from a “parent” model, generated by pruning the
original model using second-order information. In each search step, DarwinLM generates “offspring”
candidate models by copying the parent and “shifting” sparsity from one layer to another, by what we
call a level switch mutation. Moreover, a central innovation of our approach is that our search process
is fine-tuning aware: we use a small-scale dataset to briefly fine-tune generated offspring, and select
the best offspring after fine-tuning. Once search completes, the fine-tuning stage trains the candidate
over a small subset of e.g. 10B tokens, after which we perform the final evaluation. Both of these
stages are very efficient by design: the pruning and search complete in 8 hours on 4 consumer-grade
GPUs, while the LLM fine-tuning completes in half a day on a standard-sized cluster.

In terms of experiments, we scale our method to LLMs of up to 70B parameters (Table 11) from the
Llama (Touvron et al., 2023) and Qwen (Qwen, 2024) model families, for which we achieve state-of-
the-art performance in one-shot structured pruning by large margins, and match or outperform the
performance of comparable prior methods during fine-tuning, while using a very small training budget.
Specifically, one-shot pruning results clearly show the superiority of DarwinLM relative to prior work,
specifically ZipLM Kurtić et al. (2024), ShearedLlama Xia et al. (2024), and EvoPress Sieberling
et al. (2024), as well as the Minitron (Sreenivas et al., 2024) and Flextron concurrent work (Cai
et al., 2024): for example, when pruning Llama-3.1-8B to half its size, our approach has 5.9% higher
average zero-shot accuracy relative to the best prior method (ZipLM).

This major gain in one-shot accuracy enables us to recover good accuracy using much shorter fine-
tuning runs relative to competing methods. For instance, in our standard setting we use only 10B
tokens for fine-tuning, and are able to reach > 90% zero-shot accuracy recovery while halving the
size of Llama-2-7B. Consequently, we obtain higher accuracy than all prior methods at the same
training budget. Moreover, we are able to outperform the ShearedLlama model in terms of accuracy
at the same size, even though this model is trained on 5x more tokens (50B). Further, we also compare
our method with the line of coarser-grained structured pruning methods including ShortGPT (Men
et al., 2024), Shortened-Llama (Kim et al., 2024), and EvoPress (Sieberling et al., 2024) in a one-shot
setting, showing that DarwinLM provides better performance across compression rates.

To further showcase the flexibility and performance of DarwinLM, we demonstrate it to be directly
applicable to mixture-of-experts (MoE) models. Specifically, provide an extension of DarwinLM to
perform one-shot pruning of the recent Qwen-3 MoE with 30B total parameters, out of which 3B are
activated per token. We create a smaller accurate variant in one-shot with 20B total parameters, out of
which 2B are activated, which retains ≥ 90% of the accuracy of the base model. Moreover, with 10B
token finetuning, a compressed 16B variant can also achieve ≥ 90% of the accuracy of the original
model. As such, DarwinLM is the first structured pruning method to show good results for MoE.

2 RELATED WORK

Structured Pruning Methods. Structured pruning methods for LLMs (Ma et al., 2023; Men et al.,
2024; Kim et al., 2024) typically focus on pruning along the depth dimension or on pruning width
(such as attention heads, and MLP intermediate dimensions). Among recent advances, the state-of-the-
art is provided by ShearedLLaMA (Xia et al., 2024), which utilizes targeted structured pruning, which
reduces a larger model to a specified target shape by pruning layers, attention heads, and intermediate
or hidden dimensions in an end-to-end process that is split into regularized fine-tuning, pruning, and
further fine-tuning. In addition, it implements dynamic batching, which adjusts the composition of
sampled data in each training batch, based on varying loss proxies across evaluation domains. By
comparison with ShearedLLaMA, DarwinLM provides more accurate structured pruning, combining
evolutionary search and second-order information. Our results show that our method requires only
a fraction of the data to recover accuracy. At the same time, our approach is compatible with
their dynamic batching, and should benefit from it. For MoE models, He et al. (2024) explored
unstructured and block drop in MoE models while Li et al. (2025) prunes the experts uniformly and
applies KD to recover the performance. The recent work on Minitron (Muralidharan et al., 2024)
and Flextron (Cai et al., 2024) connected NAS with structured pruning, by establishing a set of
effective compression practices for pre-trained LLMs by integrating depth and width pruning with
knowledge distillation (KD)-based retraining. These practices are derived from an in-depth empirical
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Figure 1: Visual illustration of the DarwinLM pipeline.

exploration of pruning strategies across each axis, methods for combining different axes, distillation
approaches, and pruning techniques to identify an optimal compressed model. Our contributions
are orthogonal to the training strategy proposed in Minitron and Flextron, as we mainly investigate
more accurate pruning techniques—many of their findings should also transfer to our setting, and
our pruning technique can be applied in their setting. Unfortunately, these approaches use a closed
fine-tuning dataset, which prevents us from comparing models end-to-end. In Tables 1 and 2 we
provide individual task comparisons; specifically, the latter shows that our one-shot pruning approach
is considerably better than Minitron, outperforming it by 15% accuracy on average.

Non-uniform Pruning Methods. The distribution of importance across depth, attention heads, and
width in the model varies between layers and is not uniform. Low-importance modules tend to be
concentrated in specific locations and positions within the model. In the LLM domain, Klein et al.
(2023) utilized multi-objective NAS to compress LLMs while optimizing their performance for fine-
tuning downstream tasks. SIMPLE (Tao et al., 2023) detects redundant network structures by applying
learnable masks to all compressible components, followed by sparse training. EvoPress (Sieberling
et al., 2024) performs an evolutionary optimization procedure for non-uniform unstructured pruning,
non-uniform quantization, and layer dropping, with a focus on achieving a target model size in a
one-shot setting. By contrast, DarwinLM builds upon fine-grained structured pruning (at the level
of rows/columns), optimizes compression allocation under a hardware-specific speedup constraint,
and incorporates the effect of continued training into the fitness evaluation of the evolutionary search.
The more fine-grained structured pruning we employ significantly improves performance, while
guaranteeing speedups without specific hardware support (contrary to e.g. unstructured sparsity).
Additionally, two equally performing pruned models can respond differently to continued training,
which motivates integrating a lightweight finetune into the search process.

Other Compression Methods. Several approaches have been explored in the literature to reduce
computational and memory requirements of LLMs without significantly degrading performance,
including knowledge distillation, quantization, binarization, and sparsity. In knowledge distilla-
tion (Hinton et al., 2015; Sanh, 2019; Gu et al., 2024; Liu et al., 2024; Xu et al., 2024a), a smaller,
simpler model (the “student”) is trained to replicate the behavior of a larger, more complex model
(the “teacher”). The goal is to transfer the knowledge from the teacher to the student while retaining
most of the performance benefits of the larger model. Quantization (Xiao et al., 2023; Lin et al., 2024;
Li et al., 2024b; Wang et al., 2023; Huang et al., 2024; Xu et al., 2024b; Ma et al., 2024; Tang et al.,
2024) reduces the precision of model weights and activations. While this can dramatically reduce the
model size and computation, the challenge lies in maintaining accuracy. Another related research
area is neural architecture search (NAS) Liu et al. (2021). Instead of focusing on the architecture
module search, our method searches the allocated sparsity for each layer and keeps the search efficient
without massive re-training, which is generally required by NAS.

3 METHOD

Given a compression target such as sparsity ratio or speedup, DarwinLM aims to find the model with
the best sparsity allocation adhering to this constraint. Formally, let s(·) be a function measuring the
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overall sparsity (or inference time) of a given model, and let T denote the targeted sparsity ratio (or
speedup). Then, our problem is reduced to

M̂ = argmax
M

f(M) s. t. s(M) ≤ T, (1)

where M is obtained by first structurally pruning the base model and then performing an additional
training stage, and f(·) evaluates the quality of a model. Equation (1) presents a non-differentiable
optimization problem and, as such, cannot be optimized with standard first-order methods. Instead,
we approach this problem by designing a zeroth-order optimization procedure based on evolutionary
search. However, this approach comes with fundamental efficiency challenges: evaluating a single
compression profile requires pruning the base model, retraining the pruned model to recover perfor-
mance, and then computing the quality function f(·). This process may have to be repeated several
times, depending on the convergence speed of the evolutionary search.

In the following sections, we present how each of these challenges is addressed in the DarwinLM
pipeline. Section 3.1 details our evolutionary optimization procedure, which allows efficient opti-
mization of Equation (1). For this purpose, we make use of a precomputed sparse layer database,
which is described in Section 3.2. An overview of the pipeline is provided in Figure 1.

3.1 EVOLUTIONARY SEARCH

Our approach builds upon the evolutionary search framework, which we tailor to the problem
formulation. We provide a step-by-step description below, and pseudocode in the Appendix.

Fitness Environment. Although models are typically evaluated based on their performance on
downstream tasks, this approach is impractical in our context due to the lengthy evaluation times and
the risk of overfitting. As an alternative, we adopt the Kullback-Leibler (KL) divergence between the
outputs of the dense model and sparse model on a small calibration dataset as a metric to evaluate
the fitness of a candidate. KL divergence is well-established, and has been found to be robust with
little data compared to measuring perplexity (Sieberling et al., 2024). Consequently, we rewrite our
objective function (1) as

M̂ = argmin
M

DKL(M) s. t. s(M) ≤ T. (2)

Search Space. First, we perform one-shot compression of the base model using second-order
information, as we will outline in Section 3.2. The employed method has the advantage that it
operates per subblock (meaning per MLP or attention), allowing for pre-computing a layer database,
and stitching together models with arbitrary non-uniform sparsity. To this end, we retain subblocks
with varying but identical sparsity levels to better capture the structural diversity. A more detailed
description of the pruning algorithm and database generation is presented in Section 3.2. We then
search over this database by searching over lists, where each entry describes the discretized sparsity
level of the corresponding subblock. Note that based on the different targets, increasing the sparsity
level corresponds to a fixed inference time acceleration or a fixed increase in sparsity.

Initialization. Throughout the search process, we only maintain a single model as our population.
This is based on the expectation that the fittest model so far is most likely to produce even fitter
offspring. Initially, our search algorithm starts from ‘uniform’ compression, which in the case of
a speedup objective means that each subblock has sparsity corresponding to the targeted speedup
factor. Then, we can generate offspring by slightly increasing and decreasing sparsity levels of the
parent model, as we will describe in the next paragraph. In the case of gradual pruning, we compute
the residual value between the target sparsity level in different stages and randomly add the residual
value to the results from the previous stage.

Mutation Process. In each generation, offspring are generated by first copying the parent configura-
tion, and then applying our mutation operator. First, we sample the number of mutations, which we
constrain to be very small. For every mutation, we then sample whether to mutate MLPs or attention
modules, which means the mutation only happens in the same blocks. The mutation is then performed
by randomly selecting one unit to decrease sparsity, and another to increase sparsity. Therefore, we
never swap sparsity levels between an attention and an MLP module. Since we designed the database
generation in such a way that the difference between two sparsity levels always corresponds to a fixed
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Figure 2: Motivation for training-aware selection. The Y-axis depicts the KL-Divergence of the
model after training on 2M tokens, while the x-axis is the KL-Divergence after training on a much
smaller dataset (10K, 50K, 200K tokens respectively).

sparsity difference, increasing the sparsity level at one subblock and decreasing the sparsity level at
another subblock maintains the targeted sparsity ratio.

Multi-step Training-aware Selection Process. Our goal is not only to find the best sparse model in a
one-shot setting, but to account for continued training. We start from the observation that training on
a small amount of data is a good predictor of larger-scale fine-tuning performance. We demonstrate
this in Figure 2, where we generate 16 offspring for Llama2-7B. We first use 2M tokens to train all
offspring as a “large-scale” full training. Ideally, we want to exclude poorly performing offspring
early in the selection process, before spending significant resources on continued training. Therefore,
we apply 3 selection steps, each with [8, 4, 1] survivors respectively. In the first step, all offspring
are trained on only 10K tokens, which is drastically increased to 50K and 200K in the second and
third selection steps. As depicted in Figure 2, the best offspring after full finetuning is successfully
identified in the selection process. This motivates our approach, which we term training-aware
offspring selection, a method that incorporates lightweight finetuning into the selection process,
applied in a multi-step manner. Specifically, the training and selection are performed iteratively over
S rounds. In each round, a progressively smaller subset of offspring is retained, while the number
of samples for training as well as fitness evaluation is increased. The final surviving candidate is
selected as the starting point for the next generation.

3.2 PRUNED LAYER DATABASE

In this section, we first discuss pruning a specific layer to a given sparsity using second-order
information. Then, we introduce how the sparsity level database is generated, which forms the basis
of the evolutionary search.

Second-Order Structured Pruning. Pruning based on second-order information was first introduced
in Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992), and has since been adapted to Large
Language Models by reducing the problem to a layerwise formulation (Kurtic et al., 2022; Frantar &
Alistarh, 2023). We adopt this formulation for layer-wise structured pruning, in line with prior work
(Kurtić et al., 2024). Specifically, for each layer, given a calibration dataset X of layer inputs and the
original layer weights W, we aim to find

argmin
Ŵ
||WX− Ŵ:,MX||2 (3)

subject to Ŵ:,M ∈ C, where M refers to a column mask and C is the compression constraint. To
ensure that the sparse weights Ŵ produce outputs similar to those of the original weights W, we
must not only identify the less significant structures for pruning, but also compute an update δ for
the remaining weights to compensate for the error introduced by pruning. For this purpose, denote
by H = XXT the Hessian matrix for the ℓ2-minimization problem in Equation 3. Define Wi,M

as the weights in row i masked by M and let (H−1)M,M be the submatrix of the inverse Hessian
corresponding to the entries under the mask M. Now, we can compute the optimal structured mask
with corresponding weight updates δ by:

argmin
M

drow∑
i=1

Wi,M · (H−1
M,M)−1 ·WT

i,M; δ = −W:,M · (H−1
M,M)−1 ·H−1

M,: (4)
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This formulation extends the derivation of OBS to account for all rows drow. In our context, we focus
on two types of pruned structures: (1) head pruning in multi-head self-attention, and (2) pruning of
the intermediate dimension of MLP modules.

Granularity. To reduce the required memory for storing the database, we enforce the number of
pruned dimensions in the MLP modules to be a multiple of m = 32. For attention modules, we prune
on a per-head basis. For each module, we only consider identifying the pruned columns of the final
output matrix, referring to the down projection in the case of an MLP. Once the pruned structure of the
output matrix is determined, the corresponding rows are pruned in the other matrices (i.e., the K, Q,
and V matrices in the attention module, and the up and gate projections in the MLP). However, if the
model applies group-query attention (GQA) (Ainslie et al., 2023), such as in Llama-3.1 and Qwen-2.5,
we avoid pruning the K and V matrices. During the forward pass, we remove the corresponding
heads in the repeated K and V matrices to obtain computationally compatible structures and reduce
computation.

Level Database Generation. After generating the initial layer database as described above, we
process it to obtain the final sparsity level database used for the evolutionary search. This processing
step is required to ensure that all considered models in the search process adhere to the targeted
inference acceleration. This is achieved by initializing the search with a valid model and then
applying a sparsity-preserving (or speedup-preserving) mutation operator. To this end, the sparsity
level database is constructed so that the (absolute) difference in inference time between adjacent
levels is consistent across all levels and modules. Inference times are measured on a specific hardware
setup using a small calibration dataset. (In our implementation, all attention / MLPs employ the
same step size, but the step size for attention differs from that of MLPs.) Thus, we can mutate a
model while maintaining the targeted sparsity or inference acceleration by simply increasing the
same number of levels as we decrease.

3.3 EXTENSION TO MOE ARCHITECTURES

Besides dense models, we further extend DarwinLM to Mixture of Experts (MoE) models. Typically,
each layer of an MoE model includes an attention module and an MoE block, which consists of a
number of MLPs (called experts). Since MoE models are already optimized for efficient inference,
we instead focus on reducing the memory requirements by optimizing under a sparsity constraint.
In our MoE experiments we omit pruning the attention module since the majority of parameters
are located in the expert MLPs. First, each expert is pruned to various sparsity levels and stored
in the database. In the rare event that some experts are not activated by any calibration tokens, we
apply standard magnitude-based weight pruning as a fallback strategy. After that, we employ the
evolutionary search within each expert MLP, and therefore keep uniform sparsity across MoE blocks.

4 EXPERIMENTS

4.1 SETUP

Models and Datasets. Given a target sparsity level and a set of pre-trained weights, our method
searches for combinations of per-layer sparsity levels under the sparsity constraint, based on a small
generic calibration set. In our experiments, for dense models, we consider Llama-2-7B (Touvron
et al., 2023), Llama-3.1-8B (Dubey et al., 2024) and Qwen-2.5-14B-Instruct. For MoE pruning, we
apply DarwinLM on the Qwen3-30B-A3B model. We also test our method on Moonlight-16B-A3B,
which can be found in the Appendix. We utilize the open-source dataset Fineweb-Edu (Lozhkov
et al., 2024) for both calibration and post-training. The dataset is filtered according to the sample
score provided with the dataset. All samples with a lower score than 0.9 are removed from the dataset,
resulting in a dataset with 80B tokens. For the search process, we use at most 16 sequences for
calibration, making this process highly lightweight. The finetuning data for the offspring models is
also sampled from the Fineweb-Edu dataset. For Qwen3-30B-A3B model, we also use our proprietary
high-quality dataset to finetune the compressed model.

Baselines. First, we compare our non-uniform sparse model with a uniform sparse model under a
similar computational budget. Additionally, on Llama-2-7B, we conduct comparisons with ZipLM
(Kurtić et al., 2024), ShearedLlama (Xia et al., 2024) and Minitron Muralidharan et al. (2024).
Moreover, we also compare with LoRAP Li et al. (2024a), DISP-LLM Gao et al. (2024) and Flextron
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Table 1: Comparison of main results for DarwinLM and baseline methods on LLaMA-2-7B. Our
method achieves the best average performance on benchmarks compared to the baseline methods.
With only 10B tokens of fine-tuning, our method beats ShearedLlama, which is fine-tuned with 50B
tokens. (†) refers to training on the same data we use.

Method (fine-tuning budget) Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 77.7 69.2

Uniform (one-shot) 3.4B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.1
LoRAP (one-shot) 2.7B 51.2 57.2 47.9 31.3 26.3 30.0 27.5 61.9 41.6
DISP-LLM (one-shot) 3.3B - 68.3 56.2 51.1 30.2 49.3 - - -
ZipLM (one-shot) 4.0B 87.4 64.4 58.3 53.2 33.6 50.1 25.5 63.6 54.5
ShearedLLaMA (one-shot) 2.7B 84.5 66.4 53.4 49.8 28.4 47.6 27.6 50.9 51.0
DarwinLM (one-shot) 2.7B 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.2
Flextron (90B) 3.4B - 74.1 62.0 66.5 - 68.5 - - -
ShearedLLaMA (50B) 2.7B 90.8 75.8 64.2 67.0 41.2 70.8 28.2 63.0 62.6
ShearedLLaMA (10B†) 2.7B 92.0 73.6 63.1 69.8 42.0 64.4 29.0 62.1 61.9
ShearedLLaMA (30B†) 2.7B 90.3 74.7 64.0 71.4 45.1 66.9 27.2 64.5 63.0
DarwinLM (10B) 2.6B 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.8

Cai et al. (2024) for reference. ZipLM employs dynamic programming to search for the sparse
model structure, while ShearedLlama learns pruning masks for Llama-2-7B’s weights and applies
large-scale fine-tuning on 50B tokens. We perform the evaluation using the publicly available weights
after pruning and fine-tuning, as provided by the respective papers. For ZipLM, we reproduce their
implementation at a larger scale, following the original paper’s methodology. We limit our comparison
with ShearedLlama to Llama-2-7B, as the original paper only reports results for this model, and
the tuning costs for adapting it to other models are substantial. We also compare DarwinLM in a
one-shot setting against other one-shot structured pruning methods, including EvoPress (Sieberling
et al., 2024), ShortGPT (Men et al., 2024), and Shortened Llama (Kim et al., 2024). For MoE models,
since our work emphasizes the pruning strategies applied to MoE models and their impact on model
structure and sparsity, rather than their full post-pruning performance, we only provide the one-shot
pruning results. All of these methods perform structured pruning on a per-module or per-layer level.
We use the official pre-trained weights released on Huggingface for evaluation.

Evaluation. We follow ShearedLlama (Xia et al., 2024) to evaluate our method on several downstream
tasks including 0-shot accuracy on ARC-easy (Clark et al., 2018), LogiQA (Liu et al., 2020), PIQA
(Bisk et al., 2020), SciQ (Welbl et al., 2017), BoolQ (Clark et al., 2019), 5-shot on MMLU (Hendrycks
et al., 2020) and WinoGrande (Sakaguchi et al., 2021), 10-shot on HellaSwag (Zellers et al., 2019)
and 25-shot on ARC Challenge (Clark et al., 2018). We utilize the lm-evaluation-harness framework
(Gao et al.) to evaluate all downstream tasks.

Implementation Details. When generating the sparsity level database, we set the minimum and
maximum levels to 0 and 10, which indicate 0% and 100% sparsity respectively. On Llama-2-7B,
we first prune the model with a target sparsity level 5 in the one-shot setting using 2048 calibration
samples and fine-tune the sparse model on 10B tokens. After that, we continue to prune the model
to target sparsity level 6 based on the fine-tuned model with 2K calibration data. We prune Llama-
3.1-8B and Qwen-2.5-14B-Instruct models with target sparsity level 5. The final pruned models
are trained on an additional 10B Fineweb tokens. For the evolutionary search, we set the number
of generations to 200. For each generation, we generate λ = 16 offspring for selection. During
selection, we apply 4-step selection with [1024, 2048, 4096, 8192] tokens for fitness computation and
[10K, 50K, 100K, 200K] tokens for offspring finetuning. The learning rate for training during the
search is 1e-5. The pruning and search process is conducted on a 10× L40 GPU workstation. Our
training code is based on the LLM-Foundry repository. Our batch size is 1,024 for Llama-2, 1152 for
Llama-3.1, and 2048 for Qwen-2.5. The base learning rate is 1e-4 with a cosine decay strategy.

4.2 MAIN RESULTS

Results on Dense Models. We prune three representative dense models including Llama-2-7B,
Llama-3.1-8B and Qwen-2.5-14B-Instruct. We prune the Llama-2-7B model down to 2.7B with a
target level 6. The main results are shown in Table 1. For the pruned models, our method achieves
the highest performance on all downstream tasks, except for WinoGrande, where the ZipLM includes
many more parameters. Our method also attains the highest average score. In contrast, the uniform
pruning method results in a significant performance drop, with an average accuracy of only 40.1,
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Table 2: Comparison of results for DarwinLM and baseline models on Llama-3.1-8B. With similar
speedup, our method achieves the best performance on all benchmarks compared to baseline methods.
After post-training with 10B tokens, the performance recovers from 51.6 to 63.7.

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Llama-3.1-8B

Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8

Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
ZipLM 6B 65.5 60.6 56.0 40.2 36.2 34.4 28.1 63.0 27.9 45.7

Minitron 4.4B 54.4 54.4 48.9 31.8 22.1 28.4 27.1 37.8 25.6 36.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

DarwinLM (10.0B) 4.6B 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

Qwen-2.5-14B-Instr.

Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6

Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
ZipLM 8.5B 69.0 66.4 52.8 60.1 38.3 43.3 29.6 60.2 25.0 49.4

Minitron 8.4B 88.4 59.8 51.4 45.5 23.3 33.0 32.4 67.5 36.1 48.6
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4

DarwinLM (10.0B) 8.4B 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Table 3: Comparison of results for DarwinLM and baseline models on MoE models.
Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Qwen-3-30B-A3B

Dense 30B-A3B 97.0 79.7 71.5 79.7 68.6 77.8 34.7 88.8 79.6 75.2

Uniform 20B-A2B 95.9 75.6 65.3 75.3 59.1 60.6 31.1 84.2 64.7 67.9
DarwinLM (one-shot) 19B-A2B 95.9 77.1 67.5 75.6 61.2 59.5 34.0 83.4 65.0 68.8

Uniform 16B-A2B 94.9 71.4 60.2 73.2 52.6 47.0 33.2 75.0 55.6 62.5
DarwinLM (one-shot) 16B-A2B 94.7 73.0 61.1 73.6 53.9 47.6 33.6 77.5 55.1 63.3

DarwinLM (10.0B) 16B-A2B 95.9 76.2 69.4 80.4 59.0 69.9 32.5 77.0 66.9 69.7

essentially a performance collapse compared to the dense model. Specifically, the uniformly-pruned
model generates nearly random results on benchmarks such as WG, HS, LogiQA, BoolQ, and
MMLU. By contrast, DarwinLM achieves an average score of 57.2, outperforming ZipLM (54.5 with
4.0B parameters) and ShearedLlama (51.0 with 2.7B parameters). This comparison highlights the
effectiveness of non-uniform structured pruning, particularly at high sparsity. After post-compression
training, the pruned models see a significant recovery in performance. Notably, with only 10B
tokens for training, DarwinLM reaches an average score of 62.8, surpassing the 62.6 reported by
ShearedLlama, which was trained with 50B tokens. Furthermore, when we train the pruned model
released by ShearedLlama under the same conditions and with 10B tokens, it achieves an average
score of 61.9, which is considerably lower than DarwinLM.

We also pruned the Llama-3.1 8B model to 4.6B parameters and Qwen-2.5-14B-Instruct to 8.4B with
a target sparsity level 5. The comparison results are shown in Table 2. Similar to Llama-2-7B, the
uniformly pruned Llama-3.1-8B model suffers catastrophic degradation. For example, the uniformly
pruned model achieves 26.0, 23.6, and 27.1 on ARC-E, ARC-C, and HellaSwag, respectively, close
to randomly generated results (25.0%). In contrast, DarwinLM significantly improves performance,
achieving 59.6, 34.2, and 44.6 on these datasets. Overall, DarwinLM shows the best average
performance compared to both the uniformly pruned and ZipLM models. After post-compression
fine-tuning, DarwinLM recovers performance across all benchmarks, with an average score of 63.7.
This comparison indicates that, starting from an accurate model, DarwinLM can produce competitive
models tailored to any runtime/size requirements, at very low training cost.

For Qwen-2.5-14B-Instruct, different from Llama-2-7B and Llama-3.1-8B, the uniformly pruned
model of Qwen-2.5 obtains satisfactory performance on all benchmarks with 56.9 on average,
surpassing ZipLM with similar sparsity. This indicates the failure case of ZipLM as it only optimizes
the local error of pruning. However, DarwinLM achieves better than uniform structure. Specifically,
DarwinLM obtains 59.4 on average on all benchmarks, outperforming the uniform model. After
post-compression training with 10B tokens, the performance of DarwinLM increases to 68.1.

Results on MoE Model. We further extend DarwinLM to MoE architectures. We test our method
on Qwen-3-30B-A3B model and the results are shown in Table 3. The results show that DarwinLM
consistently outperforms uniform pruning under equivalent parameter settings. For example, at
19B parameters, DarwinLM achieves a 68.8 average, outperforming uniform pruning (67.9), and
this advantage holds at 16B as well (63.3 vs. 62.5). After 10B token finetuning, the performance
recovers from 63.3 to 69.7. Despite aggressive pruning from the 30B dense model (75.2), our method
maintains strong performance, demonstrating the benefit of DarwinLM at high sparsity ratios.
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Table 4: Speedup and memory analysis of Dar-
winLM on L40s.

Model Throughput (Tokens/s) Memory (MB)
Dense 7B 132.8 15296
DarwinLM 2.7B 262.7 (1.98× ↑) 6306 (2.43× ↓)
Dense 8B 111.7 16870
DarwinLM 4.6B 150.5 (1.35× ↑) 12405 (1.35× ↓)
Dense 14B 63.2 30297
DarwinLM 8.4B 89.1 (1.40× ↑) 21242 (1.43× ↓)

Table 5: Ablation of our proposed training-
aware offspring selection (TAS) on Llama-2-7B
with target level 5.

Model PIQA SciQ ArcE
Uniform 57.1 44.1 32.2
DarwinLM w/o TAS 68.8 88.2 63.5
DarwinLM 69.2 88.7 63.8

DarwinLM w/o TAS + 1B tokens 73.1 91.6 69.0
DarwinLM + 1B tokens 74.2 92.0 70.8

4.3 ANALYSIS

Speedup Analysis. Structured pruning can bring direct runtime speedup and memory reduction
without hardware specification. We provide the results of the throughput and memory usage of
DarwinLM and the corresponding dense model, as shown in Table 4. We evaluated DarwinLM
’s generation throughput over 20 runs on a single L40s and measured peak memory usage with
a sequence length of 4096, batch size 1. Results show that DarwinLM consistently outperforms
the dense baseline, with improvements roughly proportional to parameter reduction. For instance,
DarwinLM 2.7B uses 2.43 × less memory and achieves 1.98 × higher throughput—slightly below
the ideal due to fixed inference overheads.

Comparison with One-shot Methods under Different Sparsities. We further compare DarwinLM
with several current one-shot structured pruning (layer dropping) methods including EvoPress (Sieber-
ling et al., 2024), ShortGPT (Men et al., 2024), and Shortened Llama (Kim et al., 2024) on Llama-2-7B.
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Shortened Llama
EvoPress
DarwinLM

Figure 3: Comparison of DarwinLM
and other one-shot methods that remove
modules entirely. Our method consis-
tently outperforms across all sparsity lev-
els, demonstrating the effectiveness of
our finer-grained structured pruning ap-
proach. The y-axis is log-scaled.

We select 40 samples with 4096 tokens from Fineweb-Edu
as the test set and compute the perplexity of each model
under different sparsity levels. The comparison results
are shown in Figure 3. First, we can observe that even
though all pruning methods can preserve performance well
under the sparsity of 25%, DarwinLM still achieves lower
perplexity compared to other one-shot pruning methods.
Moreover, the performance of ShortGPT shows dramatic
degradation after 25% sparsity while the perplexity of
Shortened Llama and DarwinLM increases only slightly
up to 40% sparsity. However, EvoPress also degrades,
reaching a perplexity of more than 30, while DarwinLM
shows a much more minor degradation for 50% sparsity.
Generally, DarwinLM outperforms all one-shot methods
under different sparsity and maintains stable performance
as sparsity increases, demonstrating the effectiveness of
our method. This is also natural since our method benefits from higher compression granularity.

Ablation Study. Finally, we examine the impact of training-aware selection for structure searching
and post-training. The results are presented in Table 5. First of all, both models with and without
training-aware selection (TAS in the context) searched with 200 generations are better than uniform
models. Furthermore, the performance gap of DarwinLM with and without TAS is minor before
training, indicating that applying TAS generates sparse models with similar performance. However,
after 1B tokens of training for each model, the performance gap between models with and without
TAS becomes larger, demonstrating that with training-aware selection, DarwinLM is able to select a
more suitable model for post-training. Full results can be found in the Appendix Table 25.

5 CONCLUSION

We introduced a novel non-uniform, training-aware structured pruning method called DarwinLM,
which generates compressed models by evolutionary search. DarwinLM efficiently searches com-
pressed models over a layer database, and incorporates the offspring models’ aptitude for continued
pretraining into the search procedure. Experiments on Llama-2-7B, Llama-3.1-8B, Qwen-2.5-14B-
Instruct and Qwen-3-30B-A3B demonstrate that our approach achieves state-of-the-art performance.
DarwinLM is remarkably sample-efficient, as it can match or even improve upon the performance of
prior methods which required 10x more data and training computation.
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ETHICS STATEMENT

This work improves the efficiency of large language models through structured pruning. Our
experiments use only publicly available pre-trained models and open datasets (e.g., Fineweb-Edu)
without human subjects or sensitive data. While reducing computation lowers costs and environmental
impact, it may also facilitate wider use of LLMs, including potential misuse or amplification of
biases. We release our method for research purposes only and encourage responsible use, including
alignment and safety checks, before deployment.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our pruning algorithm, evolutionary search procedure, and
training setup in the main text and Appendix. All hyperparameters, datasets, and evaluation protocols
are specified (except the finetuning data for Qwen3-MoE-30A3B model), and we use widely available
pre-trained models (Llama, Qwen). Our code and pruned model weights will be released to ensure
full reproducibility of our results.
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A APPENDIX

A.1 USE OF LLMS

In this paper, we use an LLM to help revise and polish the writing of the paper, while all ideas and
experiments are conceived and carried out entirely by the authors.

A.2 THE SEARCH ALGORITHM

Algorithm 1 DarwinLM: Evolutionary optimization with training-aware offspring selection.
Input:
N : number of generations.
S: number of selection steps.
λ: number of offspring in each generation.
Tf : list of tokens for finetuning.
Ts: list of tokens for selection.

Initialization:
D ← databaseGen()

## Sampled levels are all integers
parent← UniformLevelSample()

Optimization:
for t← 1 to N do

## Elitism
candidates← [parent]

## Offspring generation via mutation
for i← 1 to λ do

offspring ← LevelSwitchMutation(parent)
candidates.append(offspring)

end for
## Multi-step training-aware selection
for step← 1 to S do
cand models = []
for candidate ∈ candidates do
cand model← stitch(candidate,D)
cand model← train(cand model, Tf [step])
cand models.append(cand model)

end for
candidates← selectTopKFit(cand models, Ts[step])

end for
parent← candidates[0]

end for
return parent

A.3 IMPLEMENTATION DETAILS

Details of second-order structured pruning. We utilize 2,048 sequences with 4,096 tokens from
the Fineweb-Edu dataset Lozhkov et al. (2024) as calibration data for Llama-2-7B, Llama-3.1-8B,
and Qwen-2.5-14B-Instruct. In the attention module, we prune entire attention heads, and in the MLP
module we prune entire columns of the output matrix. For Llama-2-7B, we prune the input matrix,
as well as the Q, K, and V matrices, based on the pruned output matrix in the attention module.
For Llama-3.1-8B and Qwen-2.5-14B-Instruct, which both use grouped query attention, we omit
the key and value matrices for pruning. For MoE models, we do not prune the attention module
and follow the same experimental setting as Qwen-2.5-14B-Instruct otherwise. For all models, the
input and gate matrices in the MLP module are pruned according to the output matrix. Pruning
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Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct requires 4× 48GB GPU memory. Most of
the second-order structured pruning experiments are conducted on a 4× NVIDIA L40S machine with
48GB GPU memory.

Details of the evolutionary search. Given a target sparsity level, the search process starts from
uniform initialization. During selection, we apply 4 steps of selection with [1024, 2048, 4096, 8192]
tokens for fitness computation and [10K, 50K, 100K, 200K] tokens for offspring finetuning. The
number of survivors is set to [8, 4, 2, 1] for each step and model. We set the learning rate for offspring
training to 1e-5. For Llama-2-7B, we apply gradual pruning with target sparsity level 5 in the first
stage. We perform the search procedure for 200 generations. After training on 10B tokens, we
search again with target sparsity level 6 (60% sparsity) for 500 generations. For Llama-3.1-8B and
Qwen-2.5-14B-Instruct, we search the sparse model with target sparsity level 5 (50% sparsity) for
200 generations. The search process for the 7/8B models can be done on a single GPU with 48GB
of memory. Qwen-2.5-14B-Instruct and Moonlight-16B-A3B models are searched with 6 × L40S
GPUs. Qwen-3-30B-A3B experiments are conducted on 6 × H100 GPUs.

Table 6: Hyperparameter details for post-training on DarwinLM-2.6B, DarwinLM-4.4B, and Dar-
winLM-8.4B.

Parameter DarwinLM-2.6B DarwinLM-4.4B DarwinLM-8.4B DarwinLM-16A2B
Learning rate 1e-4 1e-4 1e-4 2.4e-4
Global batch size 1024 1152 2048 512
Warm-up steps 50 steps 10 steps 50 steps 50 steps
LR decay scheduler Cosine Cosine Cosine Cosine
Context length 4,096 8,192 4,096 4096
Overall tokens 10B 10B 10B 10B

Details of post-training. We train the final 2.6B sparse model, pruned from Llama-2-7B, and the
4.4B model, pruned from Llama-3.1-8B, on 10B tokens each. Gradient accumulation is used to
achieve a larger global batch size. The models are trained with the Adam optimizer, using a learning
rate of 1e-4, and a cosine learning rate decay scheduler. No weight decay is applied. The training
process is conducted on a cluster of 40 H100 GPUs for 13 hours. Detailed hyperparameters for
post-training can be found in Table 6.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: The throughput and latency of DarwinLM with vLLM serving framework.

Model Throughput (Tokens/s) Latency (ms)
LLaMA-2-7B 2469.57 51.83

Shearedllama-2.7B 4482.95 28.55
DarwinLM-2.7B 5675.29 22.55

Speed of real-world deployment. We provide the inference throughput and latency on vLLM
inference framework and also add the comparison with Dense model and Shearedllama (with sequence
length of 1024, request number of 128, single L40s GPUs), as shown in Table 7. The results clearly
show that the irregular shapes do not affect latency in a negative way. Moreover, we find that
DarwinLM achieves higher throughput and lower latency compared with Shearedllama, at a similar
parameter count. The reason DarwinLM is faster is that, with our approach, some Attention / MLP
blocks are removed completely, which reduces both the computation, and the communication cost
between SRAM and HBM inside the GPU. Furthermore, we believe that such a structure will bring
extra efficiency benefits in the case of huge models, which require tensor-parallel or pipeline-parallel
for inference, since removing a whole block significantly reduces block-wise communication cost.

Comparison with random search. We provide the performance comparison with different search-
ing techniques, including ZipLM and random search, as shown in Table 8. The results show a major
accuracy advantage in favor of DarwinLM, with an improvement of almost 4% on average, across
tasks, relative to Random search, and even higher relative to ZipLM. This highlights the advantage of
our search strategy.
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Table 8: Performance comparison with ZipLM and random search.

Model Method Param. SciQ PIQA WG ARC-E ARC-C HS LogiQA BoolQ MMLU Avg
Llama-3.1-8B Random Search 4.6B 78.1 65.5 52.3 54.5 26.2 31.6 24.1 62.1 26.5 46.7

ZipLM 6B 65.5 60.6 56.0 40.2 36.2 34.4 28.1 63.0 27.9 45.7
DarwinLM (one-shot) 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Table 9: The results of DarwinLM with 50B token training.

Methods SciQ PIQA WG ARC-E ARC-C HS LogiQA BoolQ MMLU Avg
Dense 97 79.7 71.5 79.7 68.6 77.8 34.7 88.8 79.6 75.2

DeepSeek-MoE-base 16A2B 2T token 92.9 80.5 72.7 75.9 53.2 79.9 29.1 72.9 45 66.9
DeepSeek-V2-Lite 16A2B 5.7T token 93.5 79 69.2 75.5 51.9 74.6 29.1 74.3 48.4 66.1

DarwinLM 16A2B MoE 10B token 95.9 76.2 69.4 80.4 59 69.9 32.5 77 66.9 69.7
DarwinLM 16A2B MoE 50B token 96 77.1 70.1 81.9 60.5 72.5 32.7 78 69.1 70.8

Training with more tokens. We provide the results of DarwinLM trained with 50B tokens, as
shown in Table 9. With more tokens, the performance of DarwinLM continues to improve consistently.
Moreover, DarwinLM achieves better performance than DeepSeek-MoE-base and DeepSeek-V2-Lite,
which are trained with 2T and 5.7T tokens, respectively.

Table 10: Searched sparsity distribution of DarwinLM-2.7B including the attention head number and
MLP size.

Type Value
DarwinLM Attn Head Num 25, 21, 18, 18, 14, 10, 14, 10, 18, 14, 18, 0, 0, 28, 21, 10, 18, 14, 10, 18, 10, 10, 10, 14, 0, 0, 14, 1, 4, 0, 6, 0

Shearedllama Attn Head Num 20 for all layers
DarwinLM MLP Size 3104, 8032, 6496, 4256, 5280, 5280, 4256, 3104, 5280, 4256, 1824, 0, 3104, 5280, 5280,

4256, 4256, 6496, 6496, 5280, 3104, 4256, 4256, 3104, 3104, 3104, 4256, 3104, 3104, 3104, 6496, 6496
Shearedllama MLP Size 6912 for all layers

Searched sparsity distribution. We provide the searched sparsity distribution of DarwinLM in
Table 10.

Results on large-scale models. Table 11 compares one-shot pruning methods on Llama-3.1-70B.
The full dense model (70B params) achieves the highest average score (78.8). Uniform pruning
(35B) drops to 73.9, while DarwinLM (35B) improves to 75.0, outperforming uniform pruning across
most benchmarks. DarwinLM preserves performance better, especially on ArcE, HS, and BoolQ,
suggesting the effectiveness of DarwinLM.

Results on more models. Besides scaling up the method to large models, DarwinLM is also applied
to small-scale models, such as Pythia-2.8B and Gemma2-2B, as shown in Table 12. At this scale,
without any finetuning, DarwinLM achieves downstream performance that is remarkably close to
that of the larger dense model. Table 12 presents a comparison across multiple benchmarks, where
DarwinLM, using only 1.4B parameters (half the size of the dense model), consistently outperforms
the uniform baseline and performs competitively with the dense model. Notably, DarwinLM surpasses
the dense model on tasks like BoolQ (65.0 vs. 64.5), shows near-parity on ArcE (61.2 vs. 64.4),
and delivers strong results on SciQ (82.9) and PIQA (71.3). The average performance of DarwinLM
(53.3) significantly exceeds that of the uniform baseline (47.4) and comes close to the dense model’s
55.6. We further provide the results of DarwinLM on Mistral-7B model, as shown in Table 13.

Result comparison with model trained from scratch. We provide the comparison of DarwinLM
with open-source models trained from scratch (OLMO and Baichuan2) on multiple benchmarks, as
shown in Table 14. Despite using fewer training tokens than some baselines, DarwinLM achieves
competitive or superior performance. Notably, DarwinLM 8.4B (10B tokens) outperforms both
OLOMO 7B (2T) and Baichuan2 7B (2.6T), achieving a higher average score (68.4 vs. 67.9
and 66.4). It excels particularly on ArcE (79.6) and LogiQA (33.5), indicating strong reasoning
capabilities. The 4.6B DarwinLM also matches or exceeds OLOMO 7B in most metrics despite
smaller size.

Post-training with LoRA. Besides full finetuning, our model can also be finetuned with parameter-
efficient finetuning techniques such as LoRA (Hu et al., 2022). We provide the results in Table 15.
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Table 11: Results on Llama-3.1-70B. We omit training and report one-shot pruning performance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg

Llama-3.1-70B
Dense 70B 96.5 82.9 85.2 87.2 69.3 87.8 37.0 85.2 78.8

Uniform 35B 95.1 80.1 81.7 80.8 59.9 78.2 33.1 82.3 73.9
DarwinLM (one-shot) 35B 95.4 81.2 83.5 82.5 60.5 80.3 33.0 84.2 75.0

Table 12: Results on Pythia-2.8B and Gemma2-2B, which include less model parameters and more
model families. Here, we omit continued training, and report the one-shot pruning performance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Pythia-2.8B
Dense 2.8B 88.3 73.8 58.6 64.4 35.8 60.1 28.5 64.5 26.7 55.6

Uniform 1.4B 75.9 59.4 59.1 39.0 29.1 50.3 25.9 62.6 26.0 47.4
DarwinLM (one-shot) 1.4B 82.9 71.3 57.3 61.2 34.7 54.5 27.9 65.0 25.1 53.3

Gemma2-2B
Dense 2.5B 94.6 76.7 65.2 74 49.2 71.5 29.8 70.0 41.2 63.5

Uniform 1.2B 78.7 58.1 50.5 41.0 21.0 26.4 25.1 52.7 25.6 42.1
DarwinLM (one-shot) 1.2B 80.0 61.3 52.1 48.5 23.2 30.5 26.4 55.5 25.3 44.7

The results show that LoRA can achieve reasonable improvement based on the pruned model while
full finetuning obtains better performance given identical tokens.

Additional results in comparison to uniform pruning. We present a full comparison of the
uniformly pruned models and the sparse models obtained via DarwinLM in Table 16. For all
three models (Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct), DarwinLM consistently
outperforms uniform pruning on evaluation tasks, with immense gains for Llama-2-7B (54.2 vs. 38.4
on average) and Llama-3.1-8B (51.6 vs. 36.1 on average).

Performance on generation tasks. We compare our method with ShearedLlama on GSM-8K, a
generation task. The results are shown in Table 17. While the overall performance is low (as expected
for small models without finetuning), DarwinLM consistently outperforms ShearedLLaMA under the
same data budget, nearly matching its 50B-tokens performance with just 10B tokens.

Results on additional MoE models. Besides the Qwen3-30B-A3B MoE model, we also apply
DarwinLM on Moonlight-16B-A3B, another mixture of experts model. The results are shown in
Table 18. Overall, DarwinLM obtains a more capable sparse model on downstream tasks compared
to uniform pruning.

Running time comparison. We compare the running time for pruning with ShearedLlama in
Table 19. ShearedLlama has higher computational cost for pruning since it requires additional
training to find the weight masks. Additionally, the hardware requirements of DarwinLM are lower
than that of ShearedLlama.

Additional results of post-training comparison with ShearedLlama. We provide the post-
training comparison of ShearedLlama across all benchmarks, with the performance trends for each
dataset available in Figure 4. Both methods prune Llama-2-7B, with DarwinLM producing a model
with 2.6B parameters and ShearedLlama producing a model with 2.7B parameters. DarwinLM
outperforms ShearedLlama on benchmark evaluations in most cases, including SciQ, PIQA, ARC-E,
ARC-C, HellaSwag, WinoGrande, LogiQA, BoolQ, and MMLU.

Table 13: Results on Mistral-7B. We omit continued training, and report one-shot pruning perfor-
mance.

Model Methods Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Mistral-7B
Dense 7B 95.9 80.8 79.4 80.5 61.3 83.3 30.2 83.3 62.5 73.0

Uniform 3.9B 57.2 66.4 50.5 62 32.7 37.5 27.6 53.7 26.0 45.9
DarwinLM (one-shot) 3.9B 84.2 65.7 54 57.8 34.1 38.9 26.8 60.5 26.5 49.8
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Table 14: Result comparison of DarwinLM and the open-source model trained from scratch.
Model (Training token) SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
OLMO 7B (2.5T) 92.8 79.4 70.4 73.3 44.9 77.1 27.9 72.5 28.3 62.9
DarwinLM 4.6B (10B) 93.2 74.8 67.4 73.2 51.6 71.3 30.7 71.1 40.6 63.7

Baichuan2 7B (2.6T) 94.8 77.1 72.2 75.0 49.5 73.0 28.7 73.9 54.0 66.4
OLMO 0424 7B (2T) 96.1 80.1 72.1 73.8 49.2 78.0 29.3 80.8 52.1 67.9
DarwinLM 8.4B (10B) 89.5 78.1 70.7 79.6 57.6 74.9 33.5 73.9 57.9 68.4

Table 15: Comparison of different training techniques.

Model (Training Tokens) SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
DarwinLM-2.7B-Pruned 85.6 70.8 55.8 63.3 38.1 53.2 28.5 62.7 57.3

Full-Finetuning (10B) 90.8 72.2 65.1 68.5 45.0 67.2 28.5 64.6 62.7
LoRA (10B) 88.2 73.2 69.4 57.2 40.6 61.4 29.1 61.6 60.0

A.5 ABLATIONS

Ablation of the search metric. Here, we compare different fitness functions used during the
evolutionary search. As shown in Table 20, we compare using perplexity (PPL) and KL-Divergence
(KL-Div) to evaluate the fitness of candidate models. Both metrics yield similar performance on
downstream tasks, which demonstrates the robustness of DarwinLM to the objective type.

Ablation of the number of offspring. We provide an ablation study for varying the number of
offspring in Table 21. When the offspring number increases, the downstream performance also
improves with the cost of additional searching time. However, the performance seems to plateau
beyond 24 offspring per generation. Therefore, choosing a relatively small offspring number for each
generation achieves satisfactory performance with acceptable searching cost.

Ablation of the number of sparsity levels. Another hyperparameter of DarwinLM is the number
of sparsity levels in the layer database. We provide results with a higher number of sparsity levels in
Table 22. When more sparsity levels are available, DarwinLM can search more fine-grained and thus
achieve better downstream performance. This comes at the cost of having to store a larger database,
and a higher number of generations required for convergence in the search process.

Ablation of the finetuning tokens. We provide the ablation of different finetuning token choice on
Llama3.1-8B, as shown in Table 23. The average scores are nearly identical—51.6 and 51.6—across
both token configurations, with minimal variation across individual benchmarks. This demonstrates
that DarwinLM is robust to the amount of finetuning data used in the search process, maintaining
consistent performance even with significantly fewer tokens

Ablation of pruning methods DarwinLM can build upon all pruning techniques. To show the
effectiveness of DarwinLM, we provide the results of model pruned by the simplest pruning method,
namely magnitude-based pruning on Llama-3.1-8B. The results are shown in Table 24. We can
observe that even with the simplest pruning method, DarwinLM can bring benefits to the final results.

The full results of Table 5. We further provide the full results of Table 5, as shwon in Table 25.
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Table 16: Full comparison of DarwinLM with uniform pruning on Llama-2-7B, Llama-3.1-8B and
Qwen-2.5-14B-Instruct.

Model Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg

Llama-2-7B
Dense 6.7B 93.7 78.1 69.3 76.4 53.0 78.6 30.7 82.1 46.6 67.6

Uniform 3.3B 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 23.7 38.4
DarwinLM 3.3B 89.1 70.0 59.4 63.7 36.2 53.5 25.9 65.3 24.8 54.2

Llama-3.1-8B
Dense 8B 96.3 81.2 74.3 81.4 58.2 81.7 31.1 84.0 65.2 72.8

Uniform 4.5B 29.1 53.6 51.7 26.0 23.6 27.1 25.5 62.1 25.7 36.1
DarwinLM 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Qwen-2.5-14B-Ins.
Dense 14B 96.8 81.9 79.1 85.7 72.8 85.1 38.5 87.9 80.0 78.6

Uniform 8.6B 78.2 72.7 57.6 76.1 45.6 47.0 28.1 61.6 45.5 56.9
DarwinLM (one-shot) 8.4B 84.3 73.9 60.5 75.7 48.0 53.3 29.3 66.9 43.1 59.4

Table 17: Comparison of DarwinLM and ShearedLlama on GSM-8K evaluation set on Llama-2-7B.

Method GSM-8K
Dense 15.6
ShearedLLaMA-pruned 1.1
DarwinLM-pruned 1.9

ShearedLLaMA 50B 3.7
ShearedLLaMA 10B 2.0
DarwinLM 10B 3.4

Table 18: Comparison of DarwinLM and uniform pruning on Moonlight-16B-A3B, a mixture of
experts model. Here, we do not perform continued training.

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
Dense 16B-A3B 96.0 79.1 75.5 84.6 62.7 81.6 37.1 80.1 70.1 74.1

Uniform 8.7B-A2B 94.0 71 61.9 76.3 44.2 52.9 30.5 65.5 51.3 60.8
DarwinLM (one-shot) 8.7B-A2B 95.4 71.7 61.5 76.0 45.0 50.4 30.5 70.3 51.8 61.4

Table 19: Running time comparison with ShearedLlama and DarwinLM. DarwinLM has lower
computational cost compared to ShearedLlama.

Model Hardware Requirement Running Time
ShearedLlama 8× A100-80G 7.4h
DarwinLM 4× L40S-48G 6.9h

Table 20: Comparison of DarwinLM with different metrics during search on Llama-3.1-8B.

Method Param. SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
PPL 4.6B 84.7 69.4 58.4 61.2 32.5 43.8 25.6 62.4 27.8 51.7
KL-Div 4.6B 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Table 21: Comparison of DarwinLM with different number of offspring during search on Llama-3.1-
8B.

Number of Offspring SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
8 84.4 69.0 56.9 58.6 33.2 43.3 24.1 62.2 28.3 51.1
16 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
24 84.9 69.5 58.8 61.4 30.9 47.7 26.8 62.5 27.1 52.1
32 86.7 69.9 58.8 61.7 31.2 45.3 24.8 62.2 28.5 52.1

Table 22: Comparison of DarwinLM with different number of sparsity levels produced during
database generation.

Sparsity Level SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU Avg
10 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 28.5 51.6
16 87.3 70.1 58.2 60.2 32.7 46.8 25.8 62.1 32.1 52.7
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Table 23: Comparison of DarwinLM with different finetuning tokens during search on Llama-3.1-8B.

Finetuning Tokens SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
[10K, 50K, 100K] 84.9 69.4 57.3 59.6 34.2 44.6 24.1 62.2 51.6
[5K, 10K, 20K] 85.8 69.8 56.1 60.9 33.6 43.8 25.3 61.1 51.6

Table 24: Ablation of pruning methods on Llama-3.1-8B.

Method SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Uniform 19.2 53.2 49.7 24.9 26.1 26.0 25.6 40.0 33.0

DarwinLM 22.1 53.6 50.6 25.6 26.6 26.2 25.7 38.8 33.7

Table 25: Full results of Table 5.

Method SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ Avg
Uniform 44.1 57.1 53.3 33.5 32.2 27.3 25.0 49.0 40.2

DarwinLM w/o TAS 88.2 69.1 58.6 63.5 31.7 41.4 20.1 63.0 54.5
DarwinLM 88.7 69.2 59.9 63.8 32.5 40.1 22.2 65.1 55.1

DarwinLM w/o TAS + 1B 91.6 73.1 59.9 69.0 34.1 47.2 22.1 68.2 58.1
DarwinLM +1B 92.0 74.2 60.0 70.8 36.1 48.1 22.8 66.0 58.8
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Figure 4: Post-training comparison of ShearedLlama and DarwinLM on each benchmark. Here,
Llama-2-7B is pruned to 2.6B parameters via DarwinLM, and to 2.7B parameters with ShearedLlama.
Both methods perform continued training on 10B tokens.
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