Under review as a conference paper at ICLR 2026

DARWINLM: EVOLUTIONARY STRUCTURED PRUNING
OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved significant success across various
NLP tasks. However, their massive computational costs limit their widespread use,
particularly in real-time applications. Structured pruning offers an effective solution
by compressing models and directly providing end-to-end speed improvements,
regardless of the hardware environment. Meanwhile, different components of
the model exhibit varying sensitivities towards pruning, calling for non-uniform
model compression. However, a pruning method should not only identify a capable
substructure, but also account for post-compression training. To this end, we
propose DarwinLM, a method for training-aware structured pruning. DarwinlL.M
builds upon an evolutionary search process, generating multiple offspring models
in each generation through mutation, and selecting the fittest for survival. To
assess the effect of post-training, we incorporate a lightweight, multistep training
process within the offspring population, progressively increasing the number of
tokens and eliminating poorly performing models in each selection stage. We
validate our method through extensive experiments on Llama-2-7B, Llama-3.1-8B
and Qwen-2.5-14B-Instruct, achieving state-of-the-art performance for structured
pruning. For instance, DarwinLM surpasses ShearedLLlama while requiring 5x
less training data during post-compression training. We also extend our method
to MoE models like Qwen3-30B-A3B. To the best of our knowledge, this is the
first work to explore non-uniform structured pruning in MoE architectures. Our
approach, DarwinLM, outperforms uniform pruning baselines and demonstrates
the effectiveness of structured sparsity even in complex expert-based models. Code
and weights are available.

1 INTRODUCTION

The high accuracy of Transformer-based models on a wide range of tasks comes with massive
computational requirements, which hinders deployability. Thus, there is a line of research focusing on
the computational efficiency of Transformer-based models, and in particular large language models
(LLMs) via methods such as quantization (Frantar et al.|[2022; Dettmers et al., [2023)), pruning (Xia
et al.l [2024; |[Frantar & Alistarh, [2023)) and distillation (Hsieh et al., [2023)).

We explore structured pruning of LLMs (Molchanov et al., 2017)), which works by removing whole
rows or columns in the weight matrix, resulting in regular but “thinner” tensors. As such, this
approach is orthogonal to “fine-grained” methods such as unstructured pruning and quantization,
which can be applied complementarily, and has the advantage that models produced by it can be run
faster on mainstream hardware without specific support for low-bit or sparse formats.

In this paper, we provide a new state-of-the-art algorithm for non-uniform structured pruning with
compression guarantees. Specifically, in non-uniform pruning, we leverage the fact that layers or
blocks can be compressed to different levels, depending on their sensitivity; in turn, this can be
leveraged for higher compression while preserving accuracy (Yin et al.l 2023} [Sieberling et al.,
2024). Second, our algorithm is designed to provide guarantees in terms of the speed or size of the
compressed model. While smaller-scale methods such as ZipLM (Kurti¢ et al.,|2024) were able to
achieve this for BERT-type models, there are several challenges when extending this to LLMs: for
instance, ZipLM only considers the local layer-wise error during the search, which is not consistent
with performance on in-context learning (ICL) or downstream tasks, and does not take fine-tuning
recovery into account as a metric.

Under review as a conference paper at ICLR 2026

Contributions. Our algorithm, called DarwinLM, introduces a new evolutionary search approach
specifically tailored to structured pruning of LLMs. DarwinlL.M works in two stages: the search
stage, and the fine-tuning stage. The search starts from a “parent” model, generated by pruning the
original model using second-order information. In each search step, DarwinLM generates “offspring”
candidate models by copying the parent and “shifting” sparsity from one layer to another, by what we
call a level switch mutation. Moreover, a central innovation of our approach is that our search process
is fine-tuning aware: we use a small-scale dataset to briefly fine-tune generated offspring, and select
the best offspring after fine-tuning. Once search completes, the fine-tuning stage trains the candidate
over a small subset of e.g. 10B tokens, after which we perform the final evaluation. Both of these
stages are very efficient by design: the pruning and search complete in 8 hours on 4 consumer-grade
GPUs, while the LLM fine-tuning completes in half a day on a standard-sized cluster.

In terms of experiments, we scale our method to LLMs of up to 70B parameters (Table [IT]) from the
Llama (Touvron et al.} 2023) and Qwen (Qwenl 2024) model families, for which we achieve state-of-
the-art performance in one-shot structured pruning by large margins, and match or outperform the
performance of comparable prior methods during fine-tuning, while using a very small training budget.
Specifically, one-shot pruning results clearly show the superiority of DarwinLM relative to prior work,
specifically ZipLM |[Kurti€ et al.| (2024])), ShearedLlama Xia et al.| (2024)), and EvoPress |Sieberling
et al.| (2024), as well as the Minitron (Sreenivas et al., |2024) and Flextron concurrent work (Cai
et al.,[2024)): for example, when pruning Llama-3.1-8B to half its size, our approach has 5.9% higher
average zero-shot accuracy relative to the best prior method (ZipLM).

This major gain in one-shot accuracy enables us to recover good accuracy using much shorter fine-
tuning runs relative to competing methods. For instance, in our standard setting we use only 10B
tokens for fine-tuning, and are able to reach > 90% zero-shot accuracy recovery while halving the
size of Llama-2-7B. Consequently, we obtain higher accuracy than all prior methods at the same
training budget. Moreover, we are able to outperform the ShearedL.lama model in terms of accuracy
at the same size, even though this model is trained on 5x more tokens (50B). Further, we also compare
our method with the line of coarser-grained structured pruning methods including ShortGPT (Men
et al.,|2024)), Shortened-Llama (Kim et al.,[2024), and EvoPress (Sieberling et al.,|2024) in a one-shot
setting, showing that DarwinLM provides better performance across compression rates.

To further showcase the flexibility and performance of DarwinLM, we demonstrate it to be directly
applicable to mixture-of-experts (MoE) models. Specifically, provide an extension of DarwinLM to
perform one-shot pruning of the recent Qwen-3 MoE with 30B total parameters, out of which 3B are
activated per token. We create a smaller accurate variant in one-shot with 20B total parameters, out of
which 2B are activated, which retains > 90% of the accuracy of the base model. Moreover, with 10B
token finetuning, a compressed 16B variant can also achieve > 90% of the accuracy of the original
model. As such, DarwinLM is the first structured pruning method to show good results for MoE.

2 RELATED WORK

Structured Pruning Methods. Structured pruning methods for LLMs (Ma et al., 2023 Men et al.,
2024; Kim et al.}2024) typically focus on pruning along the depth dimension or on pruning width
(such as attention heads, and MLP intermediate dimensions). Among recent advances, the state-of-the-
art is provided by ShearedLLaMA (Xia et al.| | 2024)), which utilizes targeted structured pruning, which
reduces a larger model to a specified target shape by pruning layers, attention heads, and intermediate
or hidden dimensions in an end-to-end process that is split into regularized fine-tuning, pruning, and
further fine-tuning. In addition, it implements dynamic batching, which adjusts the composition of
sampled data in each training batch, based on varying loss proxies across evaluation domains. By
comparison with ShearedLLaMA, DarwinLM provides more accurate structured pruning, combining
evolutionary search and second-order information. Our results show that our method requires only
a fraction of the data to recover accuracy. At the same time, our approach is compatible with
their dynamic batching, and should benefit from it. For MoE models, |[He et al.| (2024) explored
unstructured and block drop in MoE models while |Li et al.| (2025) prunes the experts uniformly and
applies KD to recover the performance. The recent work on Minitron (Muralidharan et al., [2024))
and Flextron (Cai et al.| [2024)) connected NAS with structured pruning, by establishing a set of
effective compression practices for pre-trained LLMs by integrating depth and width pruning with
knowledge distillation (KD)-based retraining. These practices are derived from an in-depth empirical

Under review as a conference paper at ICLR 2026

MLP.31 5

"alspring 3\ (Offspring A\“
} Train on 200K Tokens \Model Model / | Sub-Module: MLP:17

Retain Fittest Candidate Sparsity: 50%

After Termination: \
Train on 108 Tokens (ortpina) /
~ |
(\ Model
Geens _j MLPA7.Up MLP.7.Gate MLP.17.Down

/ Offspring 1 Offspring z“ —_—
Sub-Module | Level) Sub-Module: MLP17
Attention.0 2 -
Z ~ Level | Sparsity| Layers
Mutati Attention17 | 6 Offspring 3) "o 0% fil|
utation MLPA7 5 - - -
N 5 50% o
MLP.31 4 Offspring 4 . 6 60% | mummE
\ . | Retrieve Layers | — |
+ Stitch Model %
PR 10 | 100% | mmeml
Initialize Sub-Module | Level ‘ -
Uniformly Attention.0 2 . Level Database Generation
N =
Attention17 | 6 Offspring 1 (Offspring 2
7 MLP17 4 Model / _ Model / T

Final

/ Model /
{ —— [offspring 3 Train on 20K Tokens .
\ Mode! _ Model /‘ Retain Two Fittest Candidates \ Structured Pruning

Training-Aware Multi-Step Selection

Figure 1: Visual illustration of the DarwinLM pipeline.

exploration of pruning strategies across each axis, methods for combining different axes, distillation
approaches, and pruning techniques to identify an optimal compressed model. Our contributions
are orthogonal to the training strategy proposed in Minitron and Flextron, as we mainly investigate
more accurate pruning techniques—many of their findings should also transfer to our setting, and
our pruning technique can be applied in their setting. Unfortunately, these approaches use a closed
fine-tuning dataset, which prevents us from comparing models end-to-end. In Tables[I] and 2] we
provide individual task comparisons; specifically, the latter shows that our one-shot pruning approach
is considerably better than Minitron, outperforming it by 15% accuracy on average.

Non-uniform Pruning Methods. The distribution of importance across depth, attention heads, and
width in the model varies between layers and is not uniform. Low-importance modules tend to be
concentrated in specific locations and positions within the model. In the LLM domain, |Klein et al.
(2023)) utilized multi-objective NAS to compress LLMs while optimizing their performance for fine-
tuning downstream tasks. SIMPLE (Tao et al.|[2023) detects redundant network structures by applying
learnable masks to all compressible components, followed by sparse training. EvoPress (Sieberling
et al., [2024) performs an evolutionary optimization procedure for non-uniform unstructured pruning,
non-uniform quantization, and layer dropping, with a focus on achieving a target model size in a
one-shot setting. By contrast, DarwinLM builds upon fine-grained structured pruning (at the level
of rows/columns), optimizes compression allocation under a hardware-specific speedup constraint,
and incorporates the effect of continued training into the fitness evaluation of the evolutionary search.
The more fine-grained structured pruning we employ significantly improves performance, while
guaranteeing speedups without specific hardware support (contrary to e.g. unstructured sparsity).
Additionally, two equally performing pruned models can respond differently to continued training,
which motivates integrating a lightweight finetune into the search process.

Other Compression Methods. Several approaches have been explored in the literature to reduce
computational and memory requirements of LLMs without significantly degrading performance,
including knowledge distillation, quantization, binarization, and sparsity. In knowledge distilla-
tion (Hinton et al., [2015;|Sanhl 2019; |Gu et al., 2024; [Liu et al., [2024; | Xu et al., [20244a)), a smaller,
simpler model (the “student”) is trained to replicate the behavior of a larger, more complex model
(the “teacher”). The goal is to transfer the knowledge from the teacher to the student while retaining
most of the performance benefits of the larger model. Quantization (Xiao et al.,[2023; [Lin et al.| [2024;
Li et al.| 2024bj [Wang et al., 2023 [Huang et al., |2024; |Xu et al., 2024bj; [Ma et al.| 2024; Tang et al.,
2024])) reduces the precision of model weights and activations. While this can dramatically reduce the
model size and computation, the challenge lies in maintaining accuracy. Another related research
area is neural architecture search (NAS) |Liu et al.[(2021). Instead of focusing on the architecture
module search, our method searches the allocated sparsity for each layer and keeps the search efficient
without massive re-training, which is generally required by NAS.

3 METHOD

Given a compression target such as sparsity ratio or speedup, DarwinLM aims to find the model with
the best sparsity allocation adhering to this constraint. Formally, let s(-) be a function measuring the

Under review as a conference paper at ICLR 2026

overall sparsity (or inference time) of a given model, and let 7" denote the targeted sparsity ratio (or
speedup). Then, our problem is reduced to

M:argm}\%xf(M) s.t. s(M)<T, @)
where M is obtained by first structurally pruning the base model and then performing an additional
training stage, and f(-) evaluates the quality of a model. Equation (1)) presents a non-differentiable
optimization problem and, as such, cannot be optimized with standard first-order methods. Instead,
we approach this problem by designing a zeroth-order optimization procedure based on evolutionary
search. However, this approach comes with fundamental efficiency challenges: evaluating a single
compression profile requires pruning the base model, retraining the pruned model to recover perfor-
mance, and then computing the quality function f(-). This process may have to be repeated several
times, depending on the convergence speed of the evolutionary search.

In the following sections, we present how each of these challenges is addressed in the DarwinLM
pipeline. Section [3.1]details our evolutionary optimization procedure, which allows efficient opti-
mization of Equation (I). For this purpose, we make use of a precomputed sparse layer database,
which is described in Section[3.2] An overview of the pipeline is provided in Figure|T]

3.1 EVOLUTIONARY SEARCH

Our approach builds upon the evolutionary search framework, which we tailor to the problem
formulation. We provide a step-by-step description below, and pseudocode in the Appendix.

Fitness Environment. Although models are typically evaluated based on their performance on
downstream tasks, this approach is impractical in our context due to the lengthy evaluation times and
the risk of overfitting. As an alternative, we adopt the Kullback-Leibler (KL) divergence between the
outputs of the dense model and sparse model on a small calibration dataset as a metric to evaluate
the fitness of a candidate. KL divergence is well-established, and has been found to be robust with
little data compared to measuring perplexity (Sieberling et al., |2024). Consequently, we rewrite our
objective function (1] as

M = argnll\;[nDKL(M) s.t. s(M)<T. 2)

Search Space. First, we perform one-shot compression of the base model using second-order
information, as we will outline in Section [3.2] The employed method has the advantage that it
operates per subblock (meaning per MLP or attention), allowing for pre-computing a layer database,
and stitching together models with arbitrary non-uniform sparsity. To this end, we retain subblocks
with varying but identical sparsity levels to better capture the structural diversity. A more detailed
description of the pruning algorithm and database generation is presented in Section We then
search over this database by searching over lists, where each entry describes the discretized sparsity
level of the corresponding subblock. Note that based on the different targets, increasing the sparsity
level corresponds to a fixed inference time acceleration or a fixed increase in sparsity.

Initialization. Throughout the search process, we only maintain a single model as our population.
This is based on the expectation that the fittest model so far is most likely to produce even fitter
offspring. Initially, our search algorithm starts from ‘uniform’ compression, which in the case of
a speedup objective means that each subblock has sparsity corresponding to the targeted speedup
factor. Then, we can generate offspring by slightly increasing and decreasing sparsity levels of the
parent model, as we will describe in the next paragraph. In the case of gradual pruning, we compute
the residual value between the target sparsity level in different stages and randomly add the residual
value to the results from the previous stage.

Mutation Process. In each generation, offspring are generated by first copying the parent configura-
tion, and then applying our mutation operator. First, we sample the number of mutations, which we
constrain to be very small. For every mutation, we then sample whether to mutate MLPs or attention
modules, which means the mutation only happens in the same blocks. The mutation is then performed
by randomly selecting one unit to decrease sparsity, and another to increase sparsity. Therefore, we
never swap sparsity levels between an attention and an MLP module. Since we designed the database
generation in such a way that the difference between two sparsity levels always corresponds to a fixed

Under review as a conference paper at ICLR 2026

Step 1 KL-Div vs Full Training KL-Div

Step 2 KL-Div vs Full Training KL-Div

Step 3 KL-Div vs Full Training KL-Div

(N) N

0.5700 e ® Offspring 0.5700 ® Offspring 0.5700 b ® Offspring
Survivor Survivor Survivor

> 0.5675 e > 0.5675 ® > 0.5675 e

a ° =} a

= 0.5650 < 0.5650 = 0.5650

< Y 4 A

205625 @ o 20.5625 e | 2os625

£) £ [] £

5 0.5600 e ® Ak 0.5600 e 5 0.5600

= = =

505575 505575 505575 =

= 05550 @ L] o | T ossso] @0 T — L]
055251 @ 0.5525{@ 0.5525{@

0.86 0.87 0.88 0.89 0.90 0.91
KL-Div After Training

(a) Step-1

0.51 0.54 0.57 0.60 0.63 0.66
KL-Div After Training

(b) Step-2

0.60 0.62 0.64 0.66 0.68 0.70 0.72
KL-Div After Training

(c) Step-3

Figure 2: Motivation for training-aware selection. The Y-axis depicts the KL-Divergence of the
model after training on 2M tokens, while the x-axis is the KL-Divergence after training on a much
smaller dataset (10K, 50K, 200K tokens respectively).

sparsity difference, increasing the sparsity level at one subblock and decreasing the sparsity level at
another subblock maintains the targeted sparsity ratio.

Multi-step Training-aware Selection Process. Our goal is not only to find the best sparse model in a
one-shot setting, but to account for continued training. We start from the observation that training on
a small amount of data is a good predictor of larger-scale fine-tuning performance. We demonstrate
this in Figure 2} where we generate 16 offspring for Llama2-7B. We first use 2M tokens to train all
offspring as a “large-scale” full training. Ideally, we want to exclude poorly performing offspring
early in the selection process, before spending significant resources on continued training. Therefore,
we apply 3 selection steps, each with [8, 4, 1] survivors respectively. In the first step, all offspring
are trained on only 10K tokens, which is drastically increased to 50K and 200K in the second and
third selection steps. As depicted in Figure 2] the best offspring after full finetuning is successfully
identified in the selection process. This motivates our approach, which we term training-aware
offspring selection, a method that incorporates lightweight finetuning into the selection process,
applied in a multi-step manner. Specifically, the training and selection are performed iteratively over
S rounds. In each round, a progressively smaller subset of offspring is retained, while the number
of samples for training as well as fitness evaluation is increased. The final surviving candidate is
selected as the starting point for the next generation.

3.2 PRUNED LAYER DATABASE

In this section, we first discuss pruning a specific layer to a given sparsity using second-order
information. Then, we introduce how the sparsity level database is generated, which forms the basis
of the evolutionary search.

Second-Order Structured Pruning. Pruning based on second-order information was first introduced
in Optimal Brain Surgeon (OBS) (Hassibi & Storkl [1992), and has since been adapted to Large
Language Models by reducing the problem to a layerwise formulation (Kurtic et al., [2022; Frantar &
Alistarh, |2023)). We adopt this formulation for layer-wise structured pruning, in line with prior work
(Kurtic et al.| [2024). Specifically, for each layer, given a calibration dataset X of layer inputs and the
original layer weights W, we aim to find

arg min||WX — W. v X| o 3)
W

subject to VAV:,M € C, where M refers to a column mask and C is the compression constraint. To
ensure that the sparse weights W produce outputs similar to those of the original weights W, we
must not only identify the less significant structures for pruning, but also compute an update ¢ for
the remaining weights to compensate for the error introduced by pruning. For this purpose, denote
by H = XX the Hessian matrix for the ¢-minimization problem in Equation [3| Define Wiwm
as the weights in row i masked by M and let (H™!)p v be the submatrix of the inverse Hessian
corresponding to the entries under the mask M. Now, we can compute the optimal structured mask
with corresponding weight updates § by:

drow

arg min Z Win - (Hyin) ™ Wi

i=1

§=-W.m- (Hy) " H 'y, “

Under review as a conference paper at ICLR 2026

This formulation extends the derivation of OBS to account for all rows d,..,,. In our context, we focus
on two types of pruned structures: (1) head pruning in multi-head self-attention, and (2) pruning of
the intermediate dimension of MLP modules.

Granularity. To reduce the required memory for storing the database, we enforce the number of
pruned dimensions in the MLP modules to be a multiple of m = 32. For attention modules, we prune
on a per-head basis. For each module, we only consider identifying the pruned columns of the final
output matrix, referring to the down projection in the case of an MLP. Once the pruned structure of the
output matrix is determined, the corresponding rows are pruned in the other matrices (i.e., the K, Q,
and V matrices in the attention module, and the up and gate projections in the MLP). However, if the
model applies group-query attention (GQA) (Ainslie et al.,[2023), such as in Llama-3.1 and Qwen-2.5,
we avoid pruning the K and V matrices. During the forward pass, we remove the corresponding
heads in the repeated K and V matrices to obtain computationally compatible structures and reduce
computation.

Level Database Generation. After generating the initial layer database as described above, we
process it to obtain the final sparsity level database used for the evolutionary search. This processing
step is required to ensure that all considered models in the search process adhere to the targeted
inference acceleration. This is achieved by initializing the search with a valid model and then
applying a sparsity-preserving (or speedup-preserving) mutation operator. To this end, the sparsity
level database is constructed so that the (absolute) difference in inference time between adjacent
levels is consistent across all levels and modules. Inference times are measured on a specific hardware
setup using a small calibration dataset. (In our implementation, all attention / MLPs employ the
same step size, but the step size for attention differs from that of MLPs.) Thus, we can mutate a
model while maintaining the targeted sparsity or inference acceleration by simply increasing the
same number of levels as we decrease.

3.3 EXTENSION TO MOE ARCHITECTURES

Besides dense models, we further extend DarwinLM to Mixture of Experts (MoE) models. Typically,
each layer of an MoE model includes an attention module and an MoE block, which consists of a
number of MLPs (called experts). Since MoE models are already optimized for efficient inference,
we instead focus on reducing the memory requirements by optimizing under a sparsity constraint.
In our MoE experiments we omit pruning the attention module since the majority of parameters
are located in the expert MLPs. First, each expert is pruned to various sparsity levels and stored
in the database. In the rare event that some experts are not activated by any calibration tokens, we
apply standard magnitude-based weight pruning as a fallback strategy. After that, we employ the
evolutionary search within each expert MLP, and therefore keep uniform sparsity across MoE blocks.

4 EXPERIMENTS

4.1 SETUP

Models and Datasets. Given a target sparsity level and a set of pre-trained weights, our method
searches for combinations of per-layer sparsity levels under the sparsity constraint, based on a small
generic calibration set. In our experiments, for dense models, we consider Llama-2-7B (Touvron
et al.,[2023)), Llama-3.1-8B (Dubey et al., 2024) and Qwen-2.5-14B-Instruct. For MoE pruning, we
apply DarwinLM on the Qwen3-30B-A3B model. We also test our method on Moonlight-16B-A3B,
which can be found in the Appendix. We utilize the open-source dataset Fineweb-Edu (Lozhkov
et al.,[2024) for both calibration and post-training. The dataset is filtered according to the sample
score provided with the dataset. All samples with a lower score than 0.9 are removed from the dataset,
resulting in a dataset with 80B tokens. For the search process, we use at most 16 sequences for
calibration, making this process highly lightweight. The finetuning data for the offspring models is
also sampled from the Fineweb-Edu dataset. For Qwen3-30B-A3B model, we also use our proprietary
high-quality dataset to finetune the compressed model.

Baselines. First, we compare our non-uniform sparse model with a uniform sparse model under a
similar computational budget. Additionally, on Llama-2-7B, we conduct comparisons with ZipLM
(Kurti¢ et al., [2024), ShearedLlama (Xia et al., 2024)) and Minitron Muralidharan et al.| (2024).
Moreover, we also compare with LoORAP |Li et al.[(2024a)), DISP-LLM |Gao et al.|(2024) and Flextron

Under review as a conference paper at ICLR 2026

Table 1: Comparison of main results for DarwinLM and baseline methods on LLaMA-2-7B. Our
method achieves the best average performance on benchmarks compared to the baseline methods.
With only 10B tokens of fine-tuning, our method beats ShearedLlama, which is fine-tuned with 50B
tokens. (t) refers to training on the same data we use.

Method (fine-tuning budget) | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ | Avg

Dense | 67B | 937 781 693 764 530 786 30.7 717 | 69.2
Uniform (one-shot) 3.4B 44.1 57.1 533 335 322 273 25.0 49.0 | 40.1
LoRAP (one-shot) 2.7B 512 572 479 313 26.3 30.0 27.5 619 | 41.6
DISP-LLM (one-shot) 3.3B - 68.3 562 51.1 302 493 - - -

ZipLM (one-shot) 4.0B 874 644 583 532 336 50.1 25.5 63.6 | 545
ShearedLLaMA (one-shot) 2.7B 845 664 534 498 284 476 27.6 50.9 | 51.0
DarwinLM (one-shot) 2.7B 856 708 558 633 381 532 28.5 62.7 | 57.2
Flextron (90B) 3.4B - 74.1 62.0 66.5 - 68.5 - - -

ShearedLLaMA (50B) 2.7B 90.8 758 642 670 412 7038 28.2 63.0 | 62.6
ShearedLLaMA (10BT) 2.7B 920 736 63.1 698 420 644 29.0 62.1 | 619
ShearedLLaMA (30B") 2.7B 903 747 640 714 451 669 27.2 64.5 | 63.0
DarwinLM (10B) 2.6B 90.8 722 651 685 450 672 28.5 64.6 | 62.8

Cai et al.|(2024) for reference. ZipLM employs dynamic programming to search for the sparse
model structure, while ShearedLlama learns pruning masks for Llama-2-7B’s weights and applies
large-scale fine-tuning on 50B tokens. We perform the evaluation using the publicly available weights
after pruning and fine-tuning, as provided by the respective papers. For ZipLM, we reproduce their
implementation at a larger scale, following the original paper’s methodology. We limit our comparison
with ShearedLlama to Llama-2-7B, as the original paper only reports results for this model, and
the tuning costs for adapting it to other models are substantial. We also compare DarwinlM in a
one-shot setting against other one-shot structured pruning methods, including EvoPress (Sieberling
et al.,[2024), ShortGPT (Men et al.,[2024), and Shortened Llama (Kim et al.,|2024). For MoE models,
since our work emphasizes the pruning strategies applied to MoE models and their impact on model
structure and sparsity, rather than their full post-pruning performance, we only provide the one-shot
pruning results. All of these methods perform structured pruning on a per-module or per-layer level.
We use the official pre-trained weights released on Huggingface for evaluation.

Evaluation. We follow ShearedLlama (Xia et al.,[2024)) to evaluate our method on several downstream
tasks including O-shot accuracy on ARC-easy (Clark et al.| 2018)), LogiQA (Liu et al., 2020), PIQA
(Bisk et al.,[2020), SciQ (Welbl et al.} 2017), BoolQ (Clark et al.,2019), 5-shot on MMLU (Hendrycks
et al.,|2020) and WinoGrande (Sakaguchi et al., 2021)), 10-shot on HellaSwag (Zellers et al.,|2019)
and 25-shot on ARC Challenge (Clark et al.,|2018)). We utilize the Im-evaluation-harness framework
(Gao et al.) to evaluate all downstream tasks.

Implementation Details. When generating the sparsity level database, we set the minimum and
maximum levels to 0 and 10, which indicate 0% and 100% sparsity respectively. On Llama-2-7B,
we first prune the model with a target sparsity level 5 in the one-shot setting using 2048 calibration
samples and fine-tune the sparse model on 10B tokens. After that, we continue to prune the model
to target sparsity level 6 based on the fine-tuned model with 2K calibration data. We prune Llama-
3.1-8B and Qwen-2.5-14B-Instruct models with target sparsity level 5. The final pruned models
are trained on an additional 10B Fineweb tokens. For the evolutionary search, we set the number
of generations to 200. For each generation, we generate A = 16 offspring for selection. During
selection, we apply 4-step selection with [1024, 2048, 4096, 8192] tokens for fitness computation and
[10K, 50K, 100K, 200K tokens for offspring finetuning. The learning rate for training during the
search is le-5. The pruning and search process is conducted on a 10x L40 GPU workstation. Our
training code is based on the LLM-Foundry repository. Our batch size is 1,024 for Llama-2, 1152 for
Llama-3.1, and 2048 for Qwen-2.5. The base learning rate is le-4 with a cosine decay strategy.

4.2 MAIN RESULTS

Results on Dense Models. We prune three representative dense models including Llama-2-7B,
Llama-3.1-8B and Qwen-2.5-14B-Instruct. We prune the Llama-2-7B model down to 2.7B with a
target level 6. The main results are shown in Table|l| For the pruned models, our method achieves
the highest performance on all downstream tasks, except for WinoGrande, where the ZipLM includes
many more parameters. Our method also attains the highest average score. In contrast, the uniform
pruning method results in a significant performance drop, with an average accuracy of only 40.1,

Under review as a conference paper at ICLR 2026

Table 2: Comparison of results for DarwinLM and baseline models on Llama-3.1-8B. With similar
speedup, our method achieves the best performance on all benchmarks compared to baseline methods.
After post-training with 10B tokens, the performance recovers from 51.6 to 63.7.

Model | Method | Param. | SciQ PIQA’ WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
| Dense | 8B |93 812 743 814 582 817 311 840 652 | 728

Uniform 4.5B 29.1 53.6 51.7 26.0 236 27.1 25.5 62.1 25.7 36.1

ZipLM 6B 65.5 60.6 56.0 40.2 36.2 344 28.1 63.0 27.9 45.7

Llama-3.1-8B Minitron 4.4B 54.4 544 489 318 22.1 284 27.1 37.8 25.6 36.7

DarwinLM (one-shot) | 4.6B 849 694 573 59.6 342 446 24.1 62.2 28.5 51.6
| DarwinLM (10.0B) | 4.6B 932 748 674 732 516 713 30.7 71.1 406 | 63.7

| Dense | 14B | 968 819 79.1 857 728 85.1 38.5 87.9 80.0 | 786

Uniform 8.6B 782 727 576 761 456 47.0 28.1 61.6 45.5 56.9

ZipLM 8.5B 69.0 664 528 60.1 383 433 29.6 60.2 25.0 494

Qwen-2.5-14B-Instr. Minitron 8.4B 884 598 514 455 233 330 324 67.5 36.1 48.6

DarwinLM (one-shot) 8.4B 843 739 605 757 48.0 533 29.3 66.9 43.1 59.4
| DarwinLM (10.0B) | 84B | 895 781 707 79.6 576 749 335 73.9 579 | 684

Table 3: Comparison of results for DarwinLM and baseline models on MoE models.

Model | Method | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
\ Dense | 30B-A3B | 970 797 715 797 686 718 347 888 796 | 752
Uniform 20B-A2B | 95.9 75.6 653 753 59.1 60.6 31.1 84.2 64.7 67.9
Qwen-3-30B-A3B | DarwinLM (one-shot) | 19B-A2B | 95.9 771 675 75.6 61.2 595 34.0 834 65.0 68.8
Uniform 16B-A2B | 94.9 714 602 732 52.6 47.0 332 75.0 55.6 62.5
DarwinLM (one-shot) | 16B-A2B | 94.7 73.0 61.1 73.6 539 47.6 33.6 71.5 55.1 63.3

\

DarwinLM (10.0B) | 16B-A2B | 959 762 694 804 59.0 69.9 325 77.0 669 | 69.7

essentially a performance collapse compared to the dense model. Specifically, the uniformly-pruned
model generates nearly random results on benchmarks such as WG, HS, LogiQA, BoolQ, and
MMLU. By contrast, DarwinLM achieves an average score of 57.2, outperforming ZipLM (54.5 with
4.0B parameters) and ShearedLlama (51.0 with 2.7B parameters). This comparison highlights the
effectiveness of non-uniform structured pruning, particularly at high sparsity. After post-compression
training, the pruned models see a significant recovery in performance. Notably, with only 10B
tokens for training, DarwinLM reaches an average score of 62.8, surpassing the 62.6 reported by
ShearedLlama, which was trained with 50B tokens. Furthermore, when we train the pruned model
released by ShearedLlama under the same conditions and with 10B tokens, it achieves an average
score of 61.9, which is considerably lower than DarwinLM.

We also pruned the Llama-3.1 8B model to 4.6B parameters and Qwen-2.5-14B-Instruct to 8.4B with
a target sparsity level 5. The comparison results are shown in Table[2| Similar to Llama-2-7B, the
uniformly pruned Llama-3.1-8B model suffers catastrophic degradation. For example, the uniformly
pruned model achieves 26.0, 23.6, and 27.1 on ARC-E, ARC-C, and HellaSwag, respectively, close
to randomly generated results (25.0%). In contrast, DarwinLM significantly improves performance,
achieving 59.6, 34.2, and 44.6 on these datasets. Overall, DarwinLM shows the best average
performance compared to both the uniformly pruned and ZipLM models. After post-compression
fine-tuning, DarwinLM recovers performance across all benchmarks, with an average score of 63.7.
This comparison indicates that, starting from an accurate model, DarwinLM can produce competitive
models tailored to any runtime/size requirements, at very low training cost.

For Qwen-2.5-14B-Instruct, different from Llama-2-7B and Llama-3.1-8B, the uniformly pruned
model of Qwen-2.5 obtains satisfactory performance on all benchmarks with 56.9 on average,
surpassing ZipLM with similar sparsity. This indicates the failure case of ZipLM as it only optimizes
the local error of pruning. However, DarwinLM achieves better than uniform structure. Specifically,
DarwinLM obtains 59.4 on average on all benchmarks, outperforming the uniform model. After
post-compression training with 10B tokens, the performance of DarwinLM increases to 68.1.

Results on MoE Model. We further extend DarwinLM to MoE architectures. We test our method
on Qwen-3-30B-A3B model and the results are shown in Table 3] The results show that DarwinLM
consistently outperforms uniform pruning under equivalent parameter settings. For example, at
19B parameters, DarwinLM achieves a 68.8 average, outperforming uniform pruning (67.9), and
this advantage holds at 16B as well (63.3 vs. 62.5). After 10B token finetuning, the performance
recovers from 63.3 to 69.7. Despite aggressive pruning from the 30B dense model (75.2), our method
maintains strong performance, demonstrating the benefit of DarwinLM at high sparsity ratios.

Under review as a conference paper at ICLR 2026

Table 4: Speedup and memory analysis of Dar- Table 5: Ablation of our proposed training-

winL.M on L40s. aware offspring selection (TAS) on Llama-2-7B
Model | Throughput (Tokens/s) | Memory (MB) with target level 5.
Dense 7B ‘ 132.8 ‘ 15296 Model | PIQA SciQ ArcE
DarwinLM 2.7B 262.7 (1.98x 1) 6306 (2.43x) Uniform 571 441 322
Dense 8B 111.7 16870 DarwinLM wlo TAS 68.8 88.2 635
DarwinLM 4.6B 150.5 (1.35x 1) 12405 (1.35x) DarwinLM 692 887 638
Dense 14B ‘ 632 ‘ 30297 DarwinLM wlo TAS + 1B tokens | 73.1 91.6 69.0
DarwinLM 8.4B 89.1 (1.40x 1) 21242 (143x) DarwinLM + 1B tokens 742 920 708

4.3 ANALYSIS

Speedup Analysis. Structured pruning can bring direct runtime speedup and memory reduction
without hardware specification. We provide the results of the throughput and memory usage of
DarwinLM and the corresponding dense model, as shown in Table] We evaluated DarwinLM
’s generation throughput over 20 runs on a single L40s and measured peak memory usage with
a sequence length of 4096, batch size 1. Results show that DarwinLM consistently outperforms
the dense baseline, with improvements roughly proportional to parameter reduction. For instance,
DarwinLM 2.7B uses 2.43 x less memory and achieves 1.98 x higher throughput—slightly below
the ideal due to fixed inference overheads.

Comparison with One-shot Methods under Different Sparsities. We further compare DarwinLM
with several current one-shot structured pruning (layer dropping) methods including EvoPress (Sieber+
ling et al.,[2024), ShortGPT (Men et al.|[2024), and Shortened Llama (Kim et al.,[2024) on Llama-2-7B.
We select 40 samples with 4096 tokens from Fineweb-Edu
as the test set and compute the perplexity of each model O Lema
under different sparsity levels. The comparison results 40 | —— EvoPress

are shown in Figure [3] First, we can observe that even —@= DarwintM
though all pruning methods can preserve performance well

under the sparsity of 25%, DarwinLM still achieves lower 10
perplexity compared to other one-shot pruning methods.
Moreover, the performance of ShortGPT shows dramatic
degradation after 25% sparsity while the perplexity of))
Shortened Llama and DarwinLM increases only slightly Figure 3: Comparison of DarwinlM
up to 40% sparsity. However, EvoPress also degrades, 2nd other one-shot methods that remove
reaching a perplexity of more than 30, while DarwinLM ™Modules entirely. Our method consis-
shows a much more minor degradation for 50% sparsity. tently outperforms across all sparsity lev-
Generally, DarwinLM outperforms all one-shot methods €18, demonstrating the effectiveness of
under different sparsity and maintains stable performance ~OUr finer-grained structured pruning ap-
as sparsity increases, demonstrating the effectiveness of ~Proach. The y-axis is log-scaled.

our method. This is also natural since our method benefits from higher compression granularity.

Perplexity
N
o

0 10 20 30 40 50
Sparsity (%)

Ablation Study. Finally, we examine the impact of training-aware selection for structure searching
and post-training. The results are presented in Table[5] First of all, both models with and without
training-aware selection (TAS in the context) searched with 200 generations are better than uniform
models. Furthermore, the performance gap of DarwinLM with and without TAS is minor before
training, indicating that applying TAS generates sparse models with similar performance. However,
after 1B tokens of training for each model, the performance gap between models with and without
TAS becomes larger, demonstrating that with training-aware selection, DarwinLM is able to select a
more suitable model for post-training. Full results can be found in the Appendix Table

5 CONCLUSION

We introduced a novel non-uniform, training-aware structured pruning method called DarwinLM,
which generates compressed models by evolutionary search. DarwinLM efficiently searches com-
pressed models over a layer database, and incorporates the offspring models’ aptitude for continued
pretraining into the search procedure. Experiments on Llama-2-7B, Llama-3.1-8B, Qwen-2.5-14B-
Instruct and Qwen-3-30B-A3B demonstrate that our approach achieves state-of-the-art performance.
DarwinLM is remarkably sample-efficient, as it can match or even improve upon the performance of
prior methods which required 10x more data and training computation.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work improves the efficiency of large language models through structured pruning. Our
experiments use only publicly available pre-trained models and open datasets (e.g., Fineweb-Edu)
without human subjects or sensitive data. While reducing computation lowers costs and environmental
impact, it may also facilitate wider use of LLMs, including potential misuse or amplification of
biases. We release our method for research purposes only and encourage responsible use, including
alignment and safety checks, before deployment.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our pruning algorithm, evolutionary search procedure, and
training setup in the main text and Appendix. All hyperparameters, datasets, and evaluation protocols
are specified (except the finetuning data for Qwen3-MoE-30A3B model), and we use widely available
pre-trained models (Llama, Qwen). Our code and pruned model weights will be released to ensure
full reproducibility of our results.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu, A Le Noac’h,
et al. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.
org/records/10256836, 7.

Shangqgian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang

Hsu. Disp-1lm: Dimension-independent structural pruning for large language models. Advances in
Neural Information Processing Systems, 37:72219-72244, 2024.

10

Under review as a conference paper at ICLR 2026

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, S, 1992.

Shwai He, Daize Dong, Liang Ding, and Ang Li. Towards efficient mixture of experts: A holistic
study of compression techniques. arXiv preprint arXiv:2406.02500, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and XTAOJUAN QI. Billm: Pushing the limit of post-training quantization for llms. In Forty-first
International Conference on Machine Learning, 2024.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cédric Archambeau. Structural
pruning of large language models via neural architecture search. In AutoML Conference 2023,
2023.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259, 2022.

Eldar Kurti¢, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of language
models. Advances in Neural Information Processing Systems, 36, 2024.

Guangyan Li, Yongqgiang Tang, and Wensheng Zhang. Lorap: Transformer sub-layers deserve
differentiated structured compression for large language models, 2024a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao
Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Forty-first
International Conference on Machine Learning, 2024b.

Zichong Li, Chen Liang, Zixuan Zhang, Ilgee Hong, Young Jin Kim, Weizhu Chen, and Tuo Zhao.
Slimmoe: Structured compression of large moe models via expert slimming and distillation. arXiv
preprint arXiv:2506.18349, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang Kang, Zhuoren Jiang, Changlong Sun, and Fei
Wu. Evolving knowledge distillation with large language models and active learning. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
(eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), 2024.

11

Under review as a conference paper at ICLR 2026

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEFE transactions on neural networks and learning
systems, 34(2):550-570, 2021.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URLhttps://huggingface.co/datasets/HuggingFaceFW/fineweb—edu.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017. URL https://openreview.net/forum?id=SJGCiw5gl.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm,
github.io/blog/gwen2.5/.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106,
2021.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal
dynamic model compression via evolutionary search. arXiv preprint arXiv:2410.14649, 2024.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. LIm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Shengkun Tang, Liqun Ma, Haonan Li, Mingjie Sun, and Zhigiang Shen. Bi-mamba: Towards
accurate 1-bit state space models. arXiv preprint arXiv:2411.11843, 2024.

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
Structured pruning for efficient generative pre-trained language models. In Findings of the
Association for Computational Linguistics: ACL 2023, pp. 10880-10895, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,

Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

12

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://openreview.net/forum?id=SJGCiw5gl
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2026

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In /CLR, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024a.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and

Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint
arXiv:2402.11295, 2024b.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE oF LLMs

In this paper, we use an LLM to help revise and polish the writing of the paper, while all ideas and
experiments are conceived and carried out entirely by the authors.

A.2 THE SEARCH ALGORITHM

Algorithm 1 DarwinL.M: Evolutionary optimization with training-aware offspring selection.
Input:

N': number of generations.

S': number of selection steps.

A: number of offspring in each generation.

T list of tokens for finetuning.

Ts: list of tokens for selection.

Initialization:
D « databaseGen()

Sampled levels are all integers
parent + UniformLevelSample()

Optimization:

fort < 1to N do
##Elitism
candidates < [parent]

Offspring generation via mutation
fori < 1to Ado
offspring < LevelSwitchMutation(parent)
candidates.append(offspring)
end for

Multi-step training-aware selection
for step < 1to S do
cand_-models = |]
for candidate € candidates do
cand_model + stitch(candidate, D)
cand_model < train(cand_-model, Ty [step])
cand_models.append(cand_model)
end for
candidates < select TopKFit(cand_models, Ts[step])
end for
parent < candidates[0]
end for
return parent

A.3 IMPLEMENTATION DETAILS

Details of second-order structured pruning. We utilize 2,048 sequences with 4,096 tokens from
the Fineweb-Edu dataset|Lozhkov et al.| (2024])) as calibration data for Llama-2-7B, Llama-3.1-8B,
and Qwen-2.5-14B-Instruct. In the attention module, we prune entire attention heads, and in the MLP
module we prune entire columns of the output matrix. For Llama-2-7B, we prune the input matrix,
as well as the Q, K, and V matrices, based on the pruned output matrix in the attention module.
For Llama-3.1-8B and Qwen-2.5-14B-Instruct, which both use grouped query attention, we omit
the key and value matrices for pruning. For MoE models, we do not prune the attention module
and follow the same experimental setting as Qwen-2.5-14B-Instruct otherwise. For all models, the
input and gate matrices in the MLP module are pruned according to the output matrix. Pruning

14

Under review as a conference paper at ICLR 2026

Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct requires 4 x 48GB GPU memory. Most of
the second-order structured pruning experiments are conducted on a 4 x NVIDIA L40S machine with
48GB GPU memory.

Details of the evolutionary search. Given a target sparsity level, the search process starts from
uniform initialization. During selection, we apply 4 steps of selection with [1024, 2048, 4096, 8192]
tokens for fitness computation and [10K, 50K, 100K, 200K tokens for offspring finetuning. The
number of survivors is set to [8, 4, 2, 1] for each step and model. We set the learning rate for offspring
training to le-5. For Llama-2-7B, we apply gradual pruning with target sparsity level 5 in the first
stage. We perform the search procedure for 200 generations. After training on 10B tokens, we
search again with target sparsity level 6 (60% sparsity) for 500 generations. For Llama-3.1-8B and
Qwen-2.5-14B-Instruct, we search the sparse model with target sparsity level 5 (50% sparsity) for
200 generations. The search process for the 7/8B models can be done on a single GPU with 48GB
of memory. Qwen-2.5-14B-Instruct and Moonlight-16B-A3B models are searched with 6 x L40S
GPUs. Qwen-3-30B-A3B experiments are conducted on 6 x H100 GPUs.

Table 6: Hyperparameter details for post-training on DarwinLM-2.6B, DarwinLM-4.4B, and Dar-
winLM-8.4B.

Parameter | DarwinLM-2.6B | DarwinLM-4.4B | DarwinLM-8.4B | DarwinLM-16A2B
Learning rate le-4 le-4 le-4 2.4e-4
Global batch size 1024 1152 2048 512
Warm-up steps 50 steps 10 steps 50 steps 50 steps

LR decay scheduler Cosine Cosine Cosine Cosine
Context length 4,096 8,192 4,096 4096
Opverall tokens 10B 10B 10B 10B

Details of post-training. We train the final 2.6B sparse model, pruned from Llama-2-7B, and the
4.4B model, pruned from Llama-3.1-8B, on 10B tokens each. Gradient accumulation is used to
achieve a larger global batch size. The models are trained with the Adam optimizer, using a learning
rate of le-4, and a cosine learning rate decay scheduler. No weight decay is applied. The training
process is conducted on a cluster of 40 H100 GPUs for 13 hours. Detailed hyperparameters for
post-training can be found in Table[§]

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: The throughput and latency of DarwinLM with vLLM serving framework.

Model Throughput (Tokens/s) | Latency (ms)
LLaMA-2-7B 2469.57 51.83
Shearedllama-2.7B 4482.95 28.55
DarwinLM-2.7B 5675.29 22.55

Speed of real-world deployment. We provide the inference throughput and latency on vLLM
inference framework and also add the comparison with Dense model and Shearedllama (with sequence
length of 1024, request number of 128, single L40s GPUs), as shown in Table [7} The results clearly
show that the irregular shapes do not affect latency in a negative way. Moreover, we find that
DarwinLM achieves higher throughput and lower latency compared with Shearedllama, at a similar
parameter count. The reason DarwinlLM is faster is that, with our approach, some Attention / MLP
blocks are removed completely, which reduces both the computation, and the communication cost
between SRAM and HBM inside the GPU. Furthermore, we believe that such a structure will bring
extra efficiency benefits in the case of huge models, which require tensor-parallel or pipeline-parallel
for inference, since removing a whole block significantly reduces block-wise communication cost.

Comparison with random search. We provide the performance comparison with different search-
ing techniques, including ZipLM and random search, as shown in Table [8] The results show a major
accuracy advantage in favor of DarwinLM, with an improvement of almost 4% on average, across
tasks, relative to Random search, and even higher relative to ZipLM. This highlights the advantage of
our search strategy.

15

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison with ZipLM and random search.

Model Method Param. | SciQ | PIQA | WG | ARC-E | ARC-C | HS | LogiQA | BoolQ | MMLU | Avg
Llama-3.1-8B | Random Search 4.6B 78.1 65.5 | 52.3 54.5 26.2 31.6 24.1 62.1 26.5 46.7
ZipLM 6B 65.5 | 60.6 | 56.0 40.2 36.2 34.4 28.1 63.0 279 45.7
DarwinLM (one-shot) 4.6B 849 | 694 | 573 59.6 34.2 44.6 24.1 62.2 28.5 51.6

Table 9: The results of DarwinLM with 50B token training.

Methods SciQ | PIQA | WG | ARC-E | ARC-C | HS | LogiQA | BoolQ | MMLU | Avg

Dense 97 79.7 | 715 79.7 68.6 71.8 34.7 88.8 79.6 75.2
DeepSeck-MoE-base 16A2B 2T token | 92.9 80.5 | 72.7 75.9 532 79.9 29.1 72.9 45 66.9
DeepSeek-V2-Lite 16A2B 5.7T token | 93.5 79 69.2 75.5 51.9 74.6 29.1 74.3 48.4 66.1
DarwinLM 16A2B MoE 10B token 959 | 762 | 694 80.4 59 69.9 32.5 77 66.9 69.7
DarwinLM 16A2B MoE 50B token 96 77.1 | 70.1 81.9 60.5 72.5 32.7 78 69.1 70.8

Training with more tokens. We provide the results of DarwinLM trained with 50B tokens, as
shown in Table [0 With more tokens, the performance of DarwinLM continues to improve consistently.
Moreover, DarwinlLM achieves better performance than DeepSeek-MoE-base and DeepSeek-V2-Lite,
which are trained with 2T and 5.7T tokens, respectively.

Table 10: Searched sparsity distribution of DarwinLM-2.7B including the attention head number and
MLP size.

Type Value
DarwinLM Attn Head Num | 25, 21, 18, 18, 14, 10, 14, 10, 18, 14, 18, 0, 0, 28, 21, 10, 18, 14, 10, 18, 10, 10, 10, 14,0, 0, 14,1, 4,0, 6,0
Shearedllama Attn Head Num 20 for all layers
DarwinLM MLP Size 3104, 8032, 6496, 4256, 5280, 5280, 4256, 3104, 5280, 4256, 1824, 0, 3104, 5280, 5280,
4256, 4256, 6496, 6496, 5280, 3104, 4256, 4256, 3104, 3104, 3104, 4256, 3104, 3104, 3104, 6496, 6496
Shearedllama MLP Size 6912 for all layers

Searched sparsity distribution. We provide the searched sparsity distribution of DarwinLM in
Table

Results on large-scale models. Table[IT|compares one-shot pruning methods on Llama-3.1-70B.
The full dense model (70B params) achieves the highest average score (78.8). Uniform pruning
(35B) drops to 73.9, while DarwinLM (35B) improves to 75.0, outperforming uniform pruning across
most benchmarks. DarwinLM preserves performance better, especially on ArcE, HS, and BoolQ,
suggesting the effectiveness of DarwinLM.

Results on more models. Besides scaling up the method to large models, DarwinLM is also applied
to small-scale models, such as Pythia-2.8B and Gemma2-2B, as shown in Table @ At this scale,
without any finetuning, DarwinLM achieves downstream performance that is remarkably close to
that of the larger dense model. Table[I2] presents a comparison across multiple benchmarks, where
DarwinLM, using only 1.4B parameters (half the size of the dense model), consistently outperforms
the uniform baseline and performs competitively with the dense model. Notably, DarwinLM surpasses
the dense model on tasks like BoolQ (65.0 vs. 64.5), shows near-parity on ArcE (61.2 vs. 64.4),
and delivers strong results on SciQ (82.9) and PIQA (71.3). The average performance of DarwinLM
(53.3) significantly exceeds that of the uniform baseline (47.4) and comes close to the dense model’s
55.6. We further provide the results of DarwinLM on Mistral-7B model, as shown in Table [13]

Result comparison with model trained from scratch. We provide the comparison of DarwinLM
with open-source models trained from scratch (OLMO and Baichuan2) on multiple benchmarks, as
shown in Table [T4] Despite using fewer training tokens than some baselines, DarwinLM achieves
competitive or superior performance. Notably, DarwinLM 8.4B (10B tokens) outperforms both
OLOMO 7B (2T) and Baichuan2 7B (2.6T), achieving a higher average score (68.4 vs. 67.9
and 66.4). It excels particularly on ArcE (79.6) and LogiQA (33.5), indicating strong reasoning
capabilities. The 4.6B DarwinLM also matches or exceeds OLOMO 7B in most metrics despite
smaller size.

Post-training with LoRA. Besides full finetuning, our model can also be finetuned with parameter-
efficient finetuning techniques such as LoRA (Hu et al.||2022). We provide the results in Table @

16

Under review as a conference paper at ICLR 2026

Table 11: Results on Llama-3.1-70B. We omit training and report one-shot pruning performance.

Model | Methods | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ | Avg
Dense ‘ 70B ‘96.5 829 852 872 693 878 37.0 85.2 ‘78.8

Llama-3.1-70B Uniform 35B | 95.1 80.1 817 80.8 599 782 33.1 823 | 739
DarwinLM (one-shot) | 35B | 954 812 835 825 605 803 330 842 | 750

Table 12: Results on Pythia-2.8B and Gemma?2-2B, which include less model parameters and more
model families. Here, we omit continued training, and report the one-shot pruning performance.

Model \ Methods | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
Dense | 288 | 883 738 586 644 358 601 285 645 267 | 556

Pythia-2.8B Uniform 14B | 759 594 591 390 29.1 503 259 626 260 |474
DarwinLM (one-shot) | 14B | 829 713 573 612 347 545 279 650 251 | 533

\ Dense | 25B | 946 767 652 74 492 715 298 700 412 | 635
Gemma2-2B Uniform 12B | 787 581 505 410 210 264 251 527 256 | 421
DarwinLM (one-shot) | 12B | 80.0 613 521 485 232 305 264 555 253 | 447

The results show that LoRA can achieve reasonable improvement based on the pruned model while
full finetuning obtains better performance given identical tokens.

Additional results in comparison to uniform pruning. We present a full comparison of the
uniformly pruned models and the sparse models obtained via DarwinLM in Table For all
three models (Llama-2-7B, Llama-3.1-8B, and Qwen-2.5-14B-Instruct), DarwinLM consistently
outperforms uniform pruning on evaluation tasks, with immense gains for Llama-2-7B (54.2 vs. 38.4
on average) and Llama-3.1-8B (51.6 vs. 36.1 on average).

Performance on generation tasks. We compare our method with ShearedLlama on GSM-8K, a
generation task. The results are shown in Table[I7} While the overall performance is low (as expected
for small models without finetuning), DarwinLM consistently outperforms ShearedLLaMA under the
same data budget, nearly matching its 50B-tokens performance with just 10B tokens.

Results on additional MoE models. Besides the Qwen3-30B-A3B MoE model, we also apply
DarwinLM on Moonlight-16B-A3B, another mixture of experts model. The results are shown in
Table[T8] Overall, DarwinLM obtains a more capable sparse model on downstream tasks compared
to uniform pruning.

Running time comparison. We compare the running time for pruning with ShearedLlama in
Table ShearedLlama has higher computational cost for pruning since it requires additional
training to find the weight masks. Additionally, the hardware requirements of DarwinLM are lower
than that of ShearedLlama.

Additional results of post-training comparison with ShearedLLlama. We provide the post-
training comparison of ShearedLlama across all benchmarks, with the performance trends for each
dataset available in Figure 4| Both methods prune Llama-2-7B, with DarwinLM producing a model
with 2.6B parameters and ShearedLlama producing a model with 2.7B parameters. DarwinLM
outperforms ShearedLlama on benchmark evaluations in most cases, including SciQ, PIQA, ARC-E,
ARC-C, HellaSwag, WinoGrande, LogiQA, BoolQ, and MMLU.

Table 13: Results on Mistral-7B. We omit continued training, and report one-shot pruning perfor-
mance.

Model | Methods | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
‘ Dense ‘ 7B ‘ 95.9 80.8 794 80.5 613 833 30.2 83.3 62.5 ‘ 73.0
Mistral-7B

Uniform 3.9B 572 664 505 62 327 375 27.6 53.7 26.0 459
DarwinLM (one-shot) 3.9B 842 657 54 57.8 341 389 26.8 60.5 26.5 49.8

17

Under review as a conference paper at ICLR 2026

Table 14: Result comparison of DarwinLM and the open-source model trained from scratch.
Model (Training token) \ SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU \ Avg
OLMO 7B (2.5T) ‘ 928 794 704 733 449 771 27.9 72.5 28.3 ‘ 62.9

DarwinLM 4.6B (10B) 932 748 674 732 516 713 30.7 71.1 40.6 63.7
Baichuan2 7B (2.6T) 948 771 722 750 495 73.0 28.7 73.9 54.0 66.4
OLMO 0424 7B (2T) 96.1 80.1 721 738 492 78.0 29.3 80.8 52.1 67.9
DarwinLM 8.4B (10B) 895 781 707 79.6 576 749 335 73.9 57.9 68.4

Table 15: Comparison of different training techniques.

Model (Training Tokens) \ SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ \ Avg

DarwinLM-2.7B-Pruned | 85.6 70.8 558 633 381 532 28.5 627 | 57.3
Full-Finetuning (10B) 90.8 722 65.1 685 450 672 28.5 64.6 | 62.7
LoRA (10B) 882 732 694 572 406 614 29.1 61.6 | 60.0

A.5 ABLATIONS

Ablation of the search metric. Here, we compare different fitness functions used during the
evolutionary search. As shown in Table 20} we compare using perplexity (PPL) and KL-Divergence
(KL-Div) to evaluate the fitness of candidate models. Both metrics yield similar performance on
downstream tasks, which demonstrates the robustness of DarwinLM to the objective type.

Ablation of the number of offspring. We provide an ablation study for varying the number of
offspring in Table [2I] When the offspring number increases, the downstream performance also
improves with the cost of additional searching time. However, the performance seems to plateau
beyond 24 offspring per generation. Therefore, choosing a relatively small offspring number for each
generation achieves satisfactory performance with acceptable searching cost.

Ablation of the number of sparsity levels. Another hyperparameter of DarwinLM is the number
of sparsity levels in the layer database. We provide results with a higher number of sparsity levels in
Table[22] When more sparsity levels are available, DarwinLM can search more fine-grained and thus
achieve better downstream performance. This comes at the cost of having to store a larger database,
and a higher number of generations required for convergence in the search process.

Ablation of the finetuning tokens. We provide the ablation of different finetuning token choice on
Llama3.1-8B, as shown in Table The average scores are nearly identical—51.6 and 51.6—across
both token configurations, with minimal variation across individual benchmarks. This demonstrates
that DarwinLM is robust to the amount of finetuning data used in the search process, maintaining
consistent performance even with significantly fewer tokens

Ablation of pruning methods DarwinlLM can build upon all pruning techniques. To show the
effectiveness of DarwinLM, we provide the results of model pruned by the simplest pruning method,
namely magnitude-based pruning on Llama-3.1-8B. The results are shown in Table We can
observe that even with the simplest pruning method, DarwinLM can bring benefits to the final results.

The full results of Table 5. We further provide the full results of Table 5, as shwon in Table

18

Under review as a conference paper at ICLR 2026

Table 16: Full comparison of DarwinLM with uniform pruning on Llama-2-7B, Llama-3.1-8B and
Qwen-2.5-14B-Instruct.

59.4

Model | Method | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
| Dense | 67B | 937 781 9.3 764 530 786 307 821 466 | 676
Llama-2-78 ‘ Uniform ‘ 33B | 441 571 533 335 322 273 250 490 237 | 384
DarwinLM 33B | 891 700 594 637 362 535 259 653 248 | 542
\ Dense | 8B | 963 812 743 8l4 582 817 3L1 840 652 |728
Llama-3.1-8B ‘ Uniform ‘ 45B ‘ 291 536 517 260 236 271 255 621 257 ‘ 36.1
DarwinLM 46B | 849 694 573 596 342 446 241 622 285 |516
| Dense | 14B | 968 819 791 857 728 851 385 879 80.0 | 786

Qwen-2.5-14B-Ins. Uniform ‘ $.6B

782 727 576 761 456 470 28.1 61.6 45.5 ‘569

DarwinLM (one-shot) 8.4B ‘84.3 739 605 757 48.0 533 29.3 66.9 43.1

Table 17: Comparison of DarwinLM and ShearedLlama on GSM-8K evaluation set on Llama-2-7B.

Method | GSM-8K
Dense 15.6
ShearedLLaMA-pruned 1.1
DarwinLM-pruned 1.9

ShearedLLaMA 10B 2.0

ShearedLLaMA 50B 3.7
DarwinLM 10B 34

Table 18: Comparison of DarwinLM and uniform pruning on Moonlight-16B-A3B, a mixture of
experts model. Here, we do not perform continued training.

Method | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg
Dense ‘ 16B-A3B ‘ 96.0 79.1 755 846 62.7 81.6 37.1 80.1 70.1 ‘ 74.1

Uniform 8.7B-A2B | 94.0 71 619 763 442 529 30.5 65.5 51.3 60.8
DarwinLM (one-shot) | 8.7B-A2B | 954 71.7 615 760 450 504 30.5 70.3 51.8 61.4

Table 19: Running time comparison with ShearedLlama and DarwinLM. DarwinLM has lower
computational cost compared to ShearedLlama.

Model | Hardware Requirement | Running Time
ShearedLlama 8 x A100-80G 7.4h
DarwinLM 4 x L40S-48G 6.9h

Table 20: Comparison of DarwinLM with different metrics during search on Llama-3.1-8B.

Method | Param. | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg

PPL 4.6B 847 694 584 612 325 438 25.6 62.4 27.8 51.7
KL-Div 4.6B 849 694 573 596 342 446 24.1 62.2 28.5 51.6

Table 21: Comparison of DarwinLM with different number of offspring during search on Llama-3.1-
8B.

Number of Offspring | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU | Avg

8 844 690 569 586 332 433 24.1 62.2 28.3 51.1
16 849 694 573 59.6 342 446 24.1 62.2 28.5 51.6
24 849 695 588 614 309 477 26.8 62.5 27.1 52.1
32 86.7 699 588 61.7 312 453 24.8 62.2 28.5 52.1

Table 22: Comparison of DarwinLM with different number of sparsity levels produced during
database generation.

Sparsity Level \ SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ MMLU \ Avg

10 849 694 573 596 342 446 24.1 62.2 28.5 51.6
16 873 70.1 582 602 327 4638 25.8 62.1 32.1 52.7

19

Under review as a conference paper at ICLR 2026

Table 23: Comparison of DarwinLM with different finetuning tokens during search on Llama-3.1-8B.

Finetuning Tokens | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ | Avg

[10K,50K,100K] | 849 694 573 59.6 342 446 24.1 622 | 51.6
[bK,10K,20K] 858 698 56.1 609 33.6 438 25.3 61.1 | 51.6

Table 24: Ablation of pruning methods on Llama-3.1-8B.

Method | SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ | Avg
Uniform 192 532 497 249 261 260 25.6 40.0 ‘33.0

DarwinLM | 22.1 53.6 506 256 26.6 262 25.7 38.8 33.7
Table 25: Full results of Table 5.

Method \ SciQ PIQA WG ArcE ArcC HS LogiQA BoolQ \ Avg

Uniform 44.1 57.1 533 335 322 273 25.0 49.0 40.2

DarwinlLM w/o TAS 88.2 69.1 58.6 63.5 31.7 414 20.1 63.0 54.5

DarwinlL.M 88.7 69.2 599 638 32,5 40.1 22.2 65.1 55.1

DarwinLM wio TAS+1B | 91.6 731 599 69.0 341 472 22.1 68.2 | 58.1
DarwinLM +1B 920 742 60.0 70.8 36.1 48.1 22.8 66.0 | 58.8

70

704
65

© 60
o

[v)
v 55 A

=% ShearedLlama =%= ShearedLlama

=== ShearedLlama

501 —e— DarwinLM 301 —e— DarwinLM 501 =—e— DarwinLM
T T T T T T 25 T T T T T 45 - T T T T T
] 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Token (B) Token (B) Token (B)
(a) ARC-E (b) ARC-C (c) HellaSwag
95 80 70
754 65 1
0 %] o @
851 === ShearedLlama 65 | === ShearedlLlama 554 === ShearedLlama
=e— DarwinLM =e— DarwinLM == DarwinLM
80 1 T 60 1 T . . ; ; 50 4 r " . . :
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Token (B) Token (B) Token (B)
(d) SciQ (e) PIQA (f) Wino

35 70 30
=% ShearedLlama 65 \ 28 4

== DarwinLM —
301 o 601 L 261
= 1 S S
S
& 55 4 0 244
=% ShearedLlama =%= ShearedLlama
25 A 22

501 =—o— DarwinLM =—e— DarwinLM

Score
3

T T T T T T 45 1= T T T T T 20 T T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Token (B) Token (B) Token (B)
(g) LogiQA (h) BoolQ (i) MMLU

Figure 4: Post-training comparison of ShearedLLlama and DarwinLM on each benchmark. Here,
Llama-2-7B is pruned to 2.6B parameters via DarwinLM, and to 2.7B parameters with ShearedLlama.
Both methods perform continued training on 10B tokens.

20

	Introduction
	Related Work
	Method
	Evolutionary Search
	Pruned Layer Database
	Extension to MoE Architectures

	Experiments
	Setup
	Main Results
	Analysis

	Conclusion
	Appendix
	Use of LLMs
	The Search Algorithm
	Implementation Details
	Additional Experimental Results
	Ablations

