
Published as a conference paper at COLM 2024

CTIKG: LLM-Powered Knowledge Graph Construction from
Cyber Threat Intelligence

Liangyi Huang, Xusheng Xiao
School of Computing and Augmented Intelligence
Arizona State University, Tempe, AZ, USA
{lhuan139, xusheng.xiao}@asu.edu

Abstract

To gain visibility into evolving threat landscape, knowledge of cyber threats
has been aggressively collected across organizations and is often shared
through Cyber Threat Intelligence (CTI). While knowledge of CTI can be
shared via structured format such as Indicators of Compromise (IOC), ar-
ticles in technical blogs and posts in forums (referred to as CTI articles)
provide more comprehensive descriptions of the observed real-world at-
tacks. However, existing works can only analyze standard texts from
mainstream cyber threat knowledge bases such as CVE and NVD, and lack
of the capability to link multiple CTI articles to uncover the relationships
among security-related entities such as vulnerabilities. In this paper, we
propose a novel approach, CTIKG, that utilizes prompt engineering to effi-
ciently build a security-oriented knowledge graph from CTI articles based
on LLMs. To mitigate the challenges of LLMs in randomness, hallucinations
and tokens limitation, CTIKG divides an article into segments and employs
multiple LLM agents with dual memory design to (1) process each text
segment separately and (2) summarize the results of the text segments to
generate more accurate results. We evaluate CTIKG on three representative
benchmarks built from 500+ real world CTI articles, and the results show
that CTIKG achieves 86.88% precision in building security-oriented knowl-
edge graphs, achieving at least 30% improvements over the state-of-the-art
techniques. We also demonstrate that the retry mechanism makes open
source language models outperform GPT4 for building knowledge graphs.

1 Introduction

In recent years, advanced cyber attacks often exploits multiple vulnerabilities and progres-
sively penetrates the enterprise network to compromise security and confidentiality, such as
the I2CE3 ransomware attack chain (Keshavarzi & Ghaffary, 2020). To effectively counter
these attacks, knowledge of cyber threats has been aggressively collected across organi-
zations and is often shared through Cyber Threat Intelligence (CTI), which models cyber
threats including their actors, tactics and techniques McMillan (2013); Wagner et al. (2019).
CTI has been primarily collected in the form of Indicators of Compromise (IOCs) Obrst
et al. (2012); Liao et al. (2016), which are forensic artifacts of an intrusion such as malicious
file/process names and IPs/domains of botnets. For example, a variety of security websites
have published their own IOC reports of the Log4J vulnerability (Kim, 2022; ElastZris,
2022; Azure, 2023). Automated security detection solutions can also benefit from IOCs. For
instance, the Microsoft Malicious Software Removal Tool (MSERT) employed relevant IOCs
following the cyber attack on the Chilean bank regulator (Onyegbula, 2023). Additionally,
CrowdStrike Falcon, Microsoft Sentinel and Microsoft Defender XDR integrate IOC as a
component of their detection systems (CrowdStrike, 2023; Microsoft, 2023).

Besides structured formats like IOCs, recent studies Liao et al. (2016); Dong et al. (2019) show
that the information of cyber threat delivered by traditional blacklists Group; MX is rather
thin, which covers only a limited set of IOC classes (URL, domain, IP and MD5) and cannot
reveal the relations between IOCs. Instead, descriptions of cyber threats, such as articles

1

Published as a conference paper at COLM 2024

in technical blogs and posts in forums, referred to as CTI articles, are more favorable for
security practitioners since they provide more comprehensive descriptions of the observed
real-world attacks. For example, Figure 1 shows three CTI articles that describe the malware
Bedep. Based on these articles, Bedep has relationship with Angler and Magnitude, and
performs click-fraud, which can not be found in professional databases. Thus, existing
techniques Obrst et al. (2012); Liao et al. (2016); Catakoglu et al. (2016); Dong et al. (2019) that
focus on extracting IoCs is insufficient to represent the cyber threat knowledge in CTI since
they overlook the IOCs’ behaviors and their relationships. To enhance the representation of
the knowledge accumulated in CTI, a specialized knowledge graph that depicts domain-
specific knowledge through entity-entity relationships, which has been widely used among
large enterprises for data management (Yan et al., 2018) and Natural Language Processing
(NLP) tasks (Liu et al., 2021), can be employed.

Figure 1: Correlated CTI articles for Bedep

Constructing a knowledge
graph out of CTI articles
entails automatic techniques
for extracting triples from
the sentences within these
articles, and linking these
triples to form a graph. Al-
though existing works based
on pre-trained language mod-
els show promising results in
extracting triples from gen-
eral purpose texts, they show
limited capabilities in dealing
with the complex domain-specific sentence in these CTI articles (Satvat et al., 2021; Rossiello
et al., 2023). Fortunately, large language models (LLM) have recently been shown to per-
form much better in NLP tasks such as text comprehension, triple extraction, coreference
resolution, and context reading (OpenAI, 2023a; Brown et al., 2020; 01.AI, 2023; 01-ai, 2023;
Achiam et al., 2023), and thus becomes a potential solution to analyze the complex entities
and relationships from CTI articles.

Goal. Recognizing the importance of CTI and potential of LLMs, we aim to build a novel
LLM approach, CTIKG, that effectively analyzes descriptions of security-related entities in CTI
articles to build a knowledge graph and reveals relationships and behaviors among security-related
entities across CTI articles. In particular, the nodes in the knowledge graph represent security-
related entities and the edges in the graph represent the relationships among these security-
related entities across different CTI articles.

Challenges. We encounter several key challenges due to the limitation, hallucinations and
inaccurate comprehension of LLMs:

• Token Limitation: Since some CTI articles have long contexts, and LLM prompts need to
include chain of thoughts with examples, LLMs cannot process an entire CTI article at
once due to the token limitation, and may miss important CTI information.

• Incorrect Triple Format: Even explicitly specified in the prompts, LLMs may not follow the
required formats, and will produce extracted information as tuples containing more than
two elements.

• Incorrect Output: LLMs may extract inaccurate information from the given text, such as
the information from the given example but not the given text or wrong triple information
due to misunderstanding the text.

• Misunderstood Task: LLMs may misunderstand the task as the task for generating subse-
quent text of the input CTI article and do not produce triples.

Contributions. To address these challenges, CTIKG performs text segmentation on CTI arti-
cles and employs multiple LLM agents with dual memory design to process text segments
separately (results stored in short-term memory) and summarize results to produce final
results (results refined in the long-term memory). In this way, CTIKG can effectively address
the token limitation and use long chain of thoughts to guide the LLM agents to extract triples
from CTI articles in every text segment. Moreover, CTIKG employs multiple LLM agents to

2

Published as a conference paper at COLM 2024

Figure 2: Architecture of CTIKG

perform triple extraction with different temperature settings and then integrates the results
using another LLM agent, mitigating the hallucinations and randomness of LLMs. More
importantly, CTIKG employs a checker LLM agent that instructs other LLM agents to redo
their tasks if the results are incorrect, greatly improving the robustness of the constructed
knowledge graph.

Evaluations. We evaluate CTIKG on three benchmarks constructed from 500+ real world
CTI articles. For triple extraction from 255 sentence cross 13 cyber attack tactics defined by
ATT&CK knowledge base (Corporation, 2022), CTIKG achieves 91.89% precision and 89.39%
recall, which is better than Extractor (Satvat et al., 2021), REBEL (Cabot & Navigli, 2021) and
KnowGL (Rossiello et al., 2023) by more than 10%. For knowledge graph construction from
30 CTI articles, CTIKG achieves 86.88% precision and 70.86% recall, which is at least 30%
better than these three approaches in both precision and recall. We also evaluate CTIKG on
478 correlated CTI articles that describe 15 CVE entities, and show that CTIKG can averagely
find 39.2 entity behaviors for each CVE entity by connecting a CTI article to 14.6 correlated
CTI articles, compared to 8.6 entity behaviors that can be found by analyzing a single
CTI article. We also demonstrate that local LLM models (01-ai, 2023) deployed on single
GPU can outperform GPT-4 through prompt engineering, LLM agents cooperation, and
chain of thoughts. Our implementation of CTIKG and the evaluation datasets are available
at our project website (CTIKG, 2024). We also provide fine-tuned models at our project
website (Research, 2024a). The latest model is currently based on Qwen1.5-70B (Research,
2024b).

2 Overview

Figure 2 shows the architecture of CTIKG, consisting of three phases:

• Short-term Memory Construction. CTIKG deploys multiple LLM agents to extract the
knowledge within a CTI article segment in the form of triples. This phase employs
four types of LLM agents: worker, integrator, refiner, and checker. The worker agents
extract the knowledge from the natural language text to form the triples. The integrator
agent combines the multiple results on the same text from multiple workers. The refiner
agent achieves the normalization and resolution tasks on the combined triples. The
checker agent inspects the triples and instructs the other agents to re-work when it detects
common errors of the LLMs.

• Long-term Memory Construction. As CTIKG uses segment processing to overcome LLMs’
token limitation, the merger agent is responsible for assembling the triples from different
article segments into one long-term memory.

3

Published as a conference paper at COLM 2024

• Knowledge Graph Construction. CTIKG builds a knowledge graph using multiple articles.
To ensure consistency across different articles for the same entity (e.g., a specific malware),
CTIKG employs another merger agent to achieve a unified entity description.

3 Approach

3.1 Design of Triple Extraction

CTIKG extracts knowledge from article as triples in the form of (subject, relation, object),
where subject and object are entities and relation is their relation (e.g., (Linux, is, Operating
System)).

Short-Term Memory and Long-Term Memory. Inspired by existing LLM studies (Park
et al., 2023), CTIKG divides the article into segments and extracts the triples from each
segment as the short-term memory. Meanwhile, CTIKG maintains a list of all extracted
triples from different segments as the long-term memory. Figure 3 shows the algorithm for
building a knowledge graph with these two memories.

Text Segmentation. To segment a CTI article, CTIKG first divides it into paragraphs at
line breaks and merges these paragraphs into segments. For paragraphs exceeding 600
characters, CTIKG uses NLTK (Loper & Bird, 2002) to further split the paragraphs into
sentences and reassemble the sentences to form segments. The rationale behind such text
segmentation is shown in the Appendix A.

Entity Types and Relationships. Unlike the ontology-based knowledge graph, which can
only extract predefined relationships and entity types, CTIKG is designed to dynamically
capture all types of relationships related to any cyber threat in CTI articles. As shown in the
Appendix G.3, the similarity between CVE-2012-0158 and CVE-2017-1188 was discovered
based on the entity relationship “for” and “memory corruption vulnerability”. Our further
investigation revealed that Magniber and Cerber have a “mutual ransomware payload”
relationship, and Emotet and Trickbot have a “switch to” relationship. These entity relation-
ships are determined by the author’s writing style and cannot be anticipated in advance
and defined in the ontology.

3.2 Construction of Short-Term Memory

To construct the short-term memory of a text segment, CTIKG leverages four types of LLM
agents: worker, integrator, refiner, and checker. The prompts for these agents can be found
at Appendix B.

Worker Agent. Worker agents, told as experts in information extraction and computing, are
tasked with extracting security-related data from texts (Lines 4-7). In particular, to instruct
LLMs to focus on security-related data, we specify “Only extract triples that are related to
cyber attacks. If a sentence does not contain any triple about cyber attacks, skip the sentence
and do not include it in your output” and “Focus on malware, Trojan horses, CVEs, or
hacking organizations as the subjects of the triples” in the prompts of worker agents, and
provide multiple security-related examples. CTIKG deploys three worker agents with the
same prompt and different temperature settings (1, 0.5, and 0.2). If at least two worker
agents identify no cyber security-related triples in a segment, CTIKG skips the other agents
and returns an empty result for that segment directly (Line 11). Specifically, the prompt for
the worker agents contain the following parts:

• Background: An introduction that defines the task of triple extraction with examples.
• Rules: An instruction that asks the worker agent to extract only entity relations relevant

to cyber attacks, and provides output format requirements.
• Few-shots: Three complete chat conversations, showing example inputs and responses.
• Input: An instruction that asks the worker agent to perform triple extraction on a given

text.

Integrator Agent. The integrator agent extracts a final triple from the worker agents’ results
(Line 8). Due to the randomness of LLM (Lee et al., 2022), multiple workers may use

4

Published as a conference paper at COLM 2024

Figure 3: Algorithm for single-article knowledge graph construction

different triples to express the same entity relation in the text. The integrator is informed
to summarize the valid triples with identical meanings and output a representative triple.
Specifically, the prompt for the integrator agent contains the following parts:

• Background: An introduction that defines the task and provides examples to illustrate
which triples are assumed to have the identical meanings.

• Rules: An instruction that asks the integrator agent to integrate the triples with identical
meanings, and provides expected input and output format.

• Few-shots: A description that consists of three complete chat conversations, showing how
an integrator successfully does its job with the right outputs.

• Input: An instruction that provides the outputs from the three worker agents as the input
for the integrator agent to process.

Refiner Agent. The refiner performs the normalization and resolution tasks (Line 9) (Satvat
et al., 2021), and leverages chain of thoughts (Wei et al., 2022) for complex task. The refiner
agent takes the triples produced by the integrator agent, and performs the following tasks:

• Simplification: Some triple’s subject and object parts have modifiers or unnecessary pre-
fixes.

• Splitting Complex Triples: Some parts of the triples may contain conjunctions.
• IOC Conversion: Some phases may contain IOCs and should be highlighted in the triple.
• Coreference Resolution: The refiner agent will replace the implicit references in a triple with

the actual name according to the context.
• Normalization: The refiner agent will standardize the relation in triples.

Checker Agent. Although prompts emphasize requirement several times, LLMs may still
output the incorrect results. Through empirical observations of the incorrect outputs, we
summarize some common patterns. The checker agent of CTIKG checks whether the
outputs from other agents based on the given rules and determines whether the output is
correct based on the summarized patterns of incorrect outputs (Line 12). If the output of an
LLM agent is incorrect, CTIKG then instructs the LLM agent to re-perform the task. Due to
resource constraints, we limit such retry to be up to three times.

5

Published as a conference paper at COLM 2024

3.3 Construction of Long-Term Memory

Figure 4: Algorithm for multiple CTI articles

CTIKG uses the merger agent to
further refine short-term memory
triples to fit the long-term memory
(Line 16). After refinement and
check, CTIKG directly adds the
triples into the long-term memory
(Line 18). The merger agent deter-
mines whether the triples’ subjects
or objects in short-term and long-
term memory refer to the same en-
tities. It then modifies the corre-
sponding subject or object in the
short-term memory triple to unify
representations of identical enti-
ties. Since these tasks require com-
plex reasoning, the merger also
leverages chain of thoughts to im-
prove effectiveness (Wei et al., 2022). Specifically, the merger agent performs the following
tasks:

• Unifying Terms: Subjects and objects that contain partially identical terms and refer to the
same entities are unified by removing prefixes, suffixes, or modifiers.

• Modifier Removal: Specific names, such as those of malware or hacker organizations,
should have all unnecessary modifiers removed.

• Hallucination Restriction: The creation of triples through LLM’s imagination is strictly
prohibited.

3.4 Building Knowledge Graph

Based on the long-term memory of each CTI article, CTIKG builds a knowledge graph
using the subjects and the objects as nodes and the relations as edges. Figure 4 shows the
algorithm for knowledge graph construction. Specifically, CTIKG use triples from first
article to build the a basic graph, then gradually incorporates triples from other CTI articles.
To maintain consistency of entity names across articles, CTIKG leverages another merger
agent. CTIKG first uses the RoBERTa model function (Liu et al., 2019) to achieving the text
embedding of subject and object (Line 5). For each triple to be added, CTIKG searches five
most similar nodes in the knowledge graph based on the embedding vector similarity (Line
6). These five node names are used by the merger agent to refine the triple (Line 7). Finally,
CTIKG connects the refined triple to the knowledge graph (Line 8).

4 Evaluation

In the evaluations, we aim to answer the following research questions:

• RQ1: How effectively can CTIKG extract triples from CTI articles?
• RQ2: How effectively can CTIKG generate knowledge graphs for CTI articles?
• RQ3: How effectively can CTIKG reveal relationships of security-related entities from

correlated CTI articles?

4.1 Evaluation Setup

Implementation. We implement CTIKG (20K characters prompts) on a Ubuntu 20.04.6
server with AMD 5955WX CPU, RTX 6000 GPU and 128GB memory upon VLLM, OpenAI,
Networkx, Stanford NLP tool suite, and NLTK (Kwon et al., 2023; OpenAI, 2023b; develop-
ers, 2023; Lab, 2003; Loper & Bird, 2002). We choose Yi-34B-4bits model as the core LLM
model. We provide more details on LLM selection in Appendix D

6

Published as a conference paper at COLM 2024

Evaluation Subject. We curate a large dataset with 72, 538 CTI articles from security-related
websites and cyber threat knowledge base, and construct three benchmarks:

• RQ1 Sentence Benchmark: For each enterprise tactic defined by the Mitre ATT&CK (Cor-
poration, 2022), we select over 20 representative sentences from the CTI articles, resulting
in 255 CTI sentences with 699 manually extracted triples.

• RQ2 CTI Article Benchmark: We category CTI articles into three types: standalone (high-
lighting a single cyber threat), chain (introducing multiple interlinked cyber threats), and
overview (introducing multiple cyber threats that are not directly related) categories. Ten
articles were selected from each category for manual analysis, resulting in 30 knowledge
graphs with a total of 315 edges.

• RQ3 Correlated CTI Article Benchmark: Using the Stanford NLP tool (Lab, 2003), we perform
entity name extraction on the all CTI articles, identify 15 most common CVE entities,
and construct a knowledge graph based on the 478 articles containing these entities. The
average length of an article is 5, 200 characters. The graph has 27,070 unique nodes, 26, 475
edges and 7, 623 unique edges. In total, 39.45% of the nodes are related to computer
science topics, and 51.94% of the edges are related to computer science topics.

We provide more details of the dataset in Appendix E.

4.2 RQ1: Effectiveness of Triple Extraction

To evaluate CTIKG’s triple extraction, we compare CTIKG with three baseline approaches
and two variants of CTIKG powered by GPT-4 (Achiam et al., 2023) and GPT-3.5 (OpenAI,
2023a). The evaluation is conducted on the triple extraction benchmark constructed from
the CTI article dataset.

Baseline Approaches. We compare CTIKG with two state-of-the-art entity relation extrac-
tion approaches: REBEL (Cabot & Navigli, 2021) and KnowGL (Rossiello et al., 2023), both
of which are transformer-based seq2seq models for generic text. We also compare CTIKG
with a secure text-oriented approach, Extractor (Satvat et al., 2021), which are based on
BERT (Devlin et al., 2018) and BiLSTM (Hameed & Garcia-Zapirain, 2020). We also use
two variants of CTIKG (CTIKG based on GPT-4 and GPT-3.5) to evaluate the impact of the
underlying LLM models. These two variants of CTIKG use the same prompts, except for the
checker agent and the corresponding retry mechanism. This is due to the fact that OpenAI
only provides the paid API, and applying the retry mechanism will result in significant
expenses.

Effectiveness Comparison. Table 1 shows the precision and the recall of CTIKG and the
baseline approaches. Overall, CTIKG with the YI model achieves the best performance
with 91.89% precision and 89.39% recall, and CTIKG with GPT-4 achieves the second
best performance: 84.26% precision and 83.66% recall. The precision and the recall of
CTIKG with GPT-3.5 are only about 77.88%. Meanwhile, two approaches for general texts,
REBEL and KnowGL, completely fail the task of triple extraction on the security-related
sentences, achieving both precision and recall below 21%. Extractor achieves a slightly
worse performance with 82.56% precision and 79.35% recall. For specific cyber attack tactics,
CTIKG achieves the best performance (> 94%) for the tactics of Persistence, Discovery,
and Lateral Movement, and worst for the tactics of Impact (about 84%). The second best
approach, CTIKG with GPT-4, has a larger variant for different tactics, achieving only 71.59%
for the tactics of Initial Access.

While GPT-4 is a better-trained model with top MMLU scores, thus CTIKG with GPT-4
suffers from the randomness and hallucination due to lacking of checker agent and retry
mechanism. CTIKG with GPT-3.5 has the lowest MMLU score model, and lacking the
checker agent and retry mechanism, achieves the worst results among these three versions
of CTIKG. While Extractor is competitive with CTIKG with GPT-4 in terms of accuracy due
to its well-designed internal components and multi-step pipeline, its text comprehension
capability is less powerful than that of LLMs. When processing sentences like “The first
thread is responsible for finding the CHD in the process, writing the results to a file, and preparing
the files for exfiltration”, Extractor cannot find the relationship between the first thread and the
file. This makes its recall lower than CTIKG with YI and GPT-4.

7

Published as a conference paper at COLM 2024

Table 1: Comparison of CTIKG and baseline approaches in triple extraction
Tactics

CTIKG CTIKG with GPT-4 CTIKG with GPT-3.5 Extractor REBEL KnowGL Triple Source
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall # of Sentence

Initial Access 91.89% 85.61% 71.59% 69.84% 81.77% 82.20% 73.65% 75.00% 17.86% 17.46% 4.55% 1.52% 22
Execution 88.27% 82.16% 82.23% 82.01% 65.35% 67.61% 84.98% 83.75% 17.44% 17.25% 13.26% 5.87% 47
Persistence 95.37% 98.15% 74.25% 70.99% 77.47% 76.54% 83.68% 80.67% 33.33% 30.86% 24.07% 12.35% 29
Privilege Escalation 95.03% 85.83% 72.51% 71.18% 71.02% 67.36% 91.52% 87.39% 21.53% 10.56% 18.06% 5.56% 26
Defense Evasion 87.39% 85.61% 93.56% 88.06% 78.17% 80.00% 79.85% 82.64% 16.67% 9.72% 16.11% 6.90% 32
Credential Access 92.01% 88.10% 77.99% 77.62% 74.60% 76.90% 82.99% 76.96% 22.98% 16.95% 15.69% 10.19% 37
Discovery 95.91% 94.22% 88.33% 87.50% 76.89% 83.75% 79.26% 75.97% 10.00% 9.95% 8.33% 10.22% 34
Lateral Movement 94.62% 95.26% 89.81% 88.89% 79.80% 80.21% 88.04% 80.07% 31.25% 17.36% 26.39% 14.93% 29
Collection 94.76% 92.94% 85.50% 87.90% 82.83% 84.92% 85.30% 76.22% 28.33% 17.40% 17.89% 11.11% 43
Command and Control 89.08% 90.04% 95.05% 96.17% 70.23% 76.35% 79.00% 76.71% 23.10% 14.31% 15.74% 6.20% 39
Exfiltration 93.84% 90.62% 88.01% 86.63% 82.37% 87.71% 89.12% 84.57% 16.07% 10.20% 6.59% 6.82% 47
Impact 84.49% 84.10% 92.27% 97.10% 71.92% 71.01% 73.36% 72.27% 23.41% 18.62% 17.39% 10.94% 27
Average 91.89% 89.39% 84.26% 83.66% 76.04% 77.88% 82.56% 79.35% 21.83% 15.89% 15.34% 8.55% 34.44

Error Analysis. Since LLMs are essentially text generation models, the next word generated
is dominated by probability (OpenAI, 2023a). We summarize some LLM-specific errors in
triple extraction as follows:

• Hallucination: Hallucination is the most common problem. For example, for sentence
“Both apps upload users phone book to remote server and use it for SMS spam”, GPT-4 generates
new non-existent sentence and incorrect triple ⟨ AdwareY, is linked to, GhostNet⟩.

• Misunderstood Task: Another common error is misunderstood task. For example, for
the sentence “This image file exists on the third page of the document, so the user would have
to scroll down in the document to this third page to get the SWF file to run”, CTIKG with
GPT-4 may outputs the incorrect triple ⟨ Formbook, is, malware⟩ based on the few-shot
example. 13.42% and 6.95% of the outputs of CTIKG with GPT-3.5 and GPT-4, respectively,
incorrectly use few-shot sample text due to lack of checker agent.

• Text Comprehension Ability: The level of text comprehension ability has a great impact on
the outputs. CTIKG with GPT-3.5 often misunderstands the content, while CTIKG with
the YI model and GPT-4 are much less likely to do so. For the sentence “Octopus uses
wmic for local discovery information.”, only CTIKG with GPT-3.5 produced the incorrect
result ⟨ Octopus, uses, information⟩.

Recent studies show that evaluations using LLMs can match or surpass the accuracy of
manual inspection (McAleese et al., 2024; Zheng et al., 2024; Kenton et al., 2024). In addition
to manual inspection, we use an automatic evaluator based on GPT-4, which has an accuracy
rate of 93%, to evaluate the correctness of triples and categorize their error types using a
few-shot learning and debating mechanism. The results demonstrate that CTIKG, when
utilizing the YI model and checker agent, extracts fewer hallucinated triples compared to
CTIKG based on GPT-4 and GPT-3.5. This finding demonstrates that the checker agent
effectively filters out hallucinated triples. Additionally, the number of triples with incorrect
relationships is lower than that produced by CTIKG using the other two LLM models. Hal-
lucinations often cause other triples within the same sentence to be incorrect. Consequently,
the checker, despite not being specifically designed to address such errors, can reduce the
number of incorrect triples by filtering out hallucinated triples. The detailed figure is shown
in Appendix F.2.

Impacts of Sentence Complexity. We measure the complexity of a sentence using the
number of ground truth triples and word count. As shown in Figure 6, with the complexity
increases, the precision of CTIKG with the YI model improves while its recall decreases, and
thus the overall effectiveness does not change much. It is mainly due to the check agent that
leverages retry to minimize errors. CTIKG with GPT-4 achieves similar performance with
the complexity increases but has a larger variance due to the randomness of GPT-4. Both
Extractor and CTIKG with GPT-3.5 achieve worse results when the complexity increases.
Although the syntax of these sentences is relatively simple, it requires Extractor to be able to
detect a relationship between two entities far apart. For example, Extractor fails to extract
triples from the sentence “The overall purpose of Cannon is to use several email accounts to
send system data (system information and screenshot) to the threat actors and to ultimately
obtain a payload from an email from the actors”. CTIKG with the YI model and CTIKG with
GPT-4 have better context reading capabilities, which allows them to find these relationships
correctly. Figure 7 shows a similar trend for Extractor: with the increase of the words in a
sentence, Extractor performs worse. Overall, CTIKG with the YI model and CTIKG with
GPT-4 achieve the most robust results for sentences of different complexity. We notice that
the performance of CTIKG with GPT-4 does not degrade as the number of triples or the

8

Published as a conference paper at COLM 2024

Table 2: Comparison of CTIKG and baseline approaches in knowledge graph construction

Type
CTIKG Extractor REBEL KnowGL

Precision Recall Precision Recall Precision Recall Precision Recall
Standalone 90.21% 79.63% 50.83% 34.03% 31.67% 6.11% 39.58% 9.81%
Chain 82.38% 62.89% 66.00% 38.67% 46.67% 16.67% 0.00% 0.00%
Overview 88.04% 70.08% 50.97% 50.13% 15.64% 5.05% 5.28% 2.27%
Average 86.88% 70.86% 55.93% 40.94% 31.32% 9.28% 14.95% 4.03%

number of words within a sentence increases. This is mainly due to GPT-4’s larger token
limit, which is 131, 072 tokens, larger than GPT-3.5 and the YI model’s default 4, 096 tokens.

Entity Types and Relationships. We have manually 699 cyber security-related triples of the
RQ1 sentence benchmark, and fount out that 51.96% of nodes cannot be categorized into
common entity types such as malware names, and 54.93% of edges cannot be categorized
into computer science-related relationship types. These results show that most of the entities
and their relationships cannot be easily anticipated in advance and defined in the ontology.

4.3 RQ2: Knowledge Graph Construction

To evaluate CTIKG’s knowledge graph construction, we compare CTIKG with the three base-
lines: Extractor (Satvat et al., 2021), REBEL (Cabot & Navigli, 2021), and KnowGL (Rossiello
et al., 2023) on the knowledge graph benchmark. Since we demonstrated that CTIKG
performs better than CTIKG with GPT-4 and GPT-3, we no longer include them in RQ2.

Effectiveness Comparison. As shown in Table 2, CTIKG achieves the best precision (86.88%)
and recall (70.86%), which is at least 73% better than the second best approach, Extractor,
in both precision and recall. Extractor achieves a precision of 55.93% and a worse recall of
31.32%. Both REBEL and KnowGL perform poorly on these security-related CTI articles,
with precision and recall below 35%. This is consistent with their triple extraction effective-
ness since inaccurate triple extraction will cause the built knowledge graph to be even more
inaccurate.

Across article types, CTIKG performs best with standalone articles and least effectively
with chain articles. This variance is due to the complexity of chain articles, which detail
multiple interrelated threat entities, making them more difficult to analyze than standalone
articles, which focus on a single cyber threat and maintain cohesion on a topic. Despite
these challenges, CTIKG’s precision and recall significantly outperform baseline methods,
with improvements of at least 24.8%. We provide more details on the impacts of article type
in Appendix C.

Error Analysis. By inspecting the final results of CTIKG, and the intermediate results of the
short-term memories and the long-term memories, we found that besides those common
errors observed in triple extraction, CTIKG also suffered from the following problems:

• Length limit: Although the LLM context length limit is extended to 16, 384 tokens, CTIKG
may still need more space during the chain of thoughts process (Wei et al., 2022). If
there are too many triples in the short-term memory, the merger agent will reach the
length limit when performing the chain of thoughts and output unfinished results. This
limitation cannot be easily addressed by performing retry.

• Incorrect Coreference Resolution: If an article segment uses a demonstrative pronoun instead
of a specific name throughout the text, the merge agent may incorrectly replace those
pronouns with another specific name from the long-term memory. This error can be
mitigated by recording the original sentence for each triple, but this method will make
the problem of length limit worse.

4.4 RQ3: Revealing Entity Relationships Across Correlated CTI Articles

In this RQ, we compare the knowledge graph constructed from correlated CTI articles with
the knowledge graph constructed from a single CTI article, and use the number of edges
connected to a specific node in the knowledge graph as a metric to represent the number of
that entity’s behaviors described within the graph.

9

Published as a conference paper at COLM 2024

Effectiveness Comparison. For the 15 CVE entities in our RQ3 benchmark, the knowledge
graph based on a single article has an average of only 8.6 edges per CVE entity, representing
8.6 entity behaviors extracted from the article. The multi-article knowledge graph has
averagely 39.2 entity behaviors per CVE entity. It indicates that by integrating the knowledge
from correlated CTI articles, each CVE entity gains an additional 30.6 entity behavior
descriptions, which is a 428.76% improvement. On average, each CVE is connected to 14.6
other articles, with 2.1 additional entity behaviors found by connecting to a correlated article.
Appendix G shows the detailed effectiveness data for each CVE, and a corresponding case
study.

5 Discussion

Retrieval Augmented Generation. We used Retrieval Augmented Generation (RAG) (Jeong,
2023) to dynamically generate examples for each prompt. However, since LLM sometimes
uses these examples as part of the input, we cannot predict the wrong output that may occur
when hallucinations occur when using RAG. Currently, we use fixed examples to eliminate
the hallucination phenomenon.

Performance and Transferability The current CTIKG based on YI-32B processes an article
in 5 minutes on dual RTX A6000. The newly released model, LLaMA3-8B, has shown
better performance with a smaller model size according to LMSYS Chatbot Arena Leader-
board (Chiang et al., 2024). Since CTIKG can seamlessly switch to any LLM model as the
backend, tool with LLaMA3-8B takes only 50 seconds to process an article. In the long
run, the CTIKG with improved LLMs will achieve better performance with more advanced
GPUs.

Other Domains While it is not within our current focused scope, in future work, we plan
to verify the effectiveness of CTIKG with adaptation to other domain knowledge in other
domains like SciERC (Luan et al., 2018).

6 Related Work

Knowledge Graph Construction. Nidhi et al. Rastogi et al. (2020) propose an ontology to
generate knowledge graphs for malwares. Aritran et al. Piplai et al. (2020) executes malware
and record the behavior in a knowledge graph and merge with knowledge extracted from
CTI blogs. Shenqi et al. Qin & Chow (2019) and Anders et al. Høst et al. (2023) build CVE-
related knowledge graphs based on the NVD database’s context. Rossiell et al.Rossiello
et al. (2023) introduce a End-to-End knowledge graph construction approach for general
text. Some recent research Hu et al. (2024); Yao et al. (2023) also use LLM knowledge graph
construction. CodeKGC Bi et al. (2024), a knowledge graph construction approach based on
LLMs, can extract only pre-defined entity relationships and handle each sentence without
considering the context of other sentences in the article, while CTIKG can automatically
uncover different types of security-oriented entity relationships and process the whole
article with the help of the dual memory design.

7 Conclusion

We have proposed CTIKG, which employs multiple LLM agents and dual memory design
to build a knowledge graph from CTI articles with high effectiveness. CTIKG divides a long
CTI article into text segments and processes each text segment separately using multiple
LLM aganets with different temperature settings for mitigating the randomness of LLMs.
CTIKG then summarize the results of the text segments to generate more accurate results.
Our evaluations on two representative benchmarks derived from real world CTI articles
demonstrate the superiority of CTIKG over the state-of-the-art approaches.

10

Published as a conference paper at COLM 2024

References

01-ai. 01-ai/yi-34b-chat-4bits, 2023. URL https://huggingface.co/01-ai/

Yi-34B-Chat-4bits.

01.AI. Yi-34b-chat-4bits, 2023. URL https://huggingface.co/01-ai/Yi-34B-Chat-4bitsl.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Azure. Log4j vulnerability exploit aka log4shell ip ioc, 2023. URL https:

//github.com/Azure/Azure-Sentinel/blob/master/Solutions/Apache%20Log4j%

20Vulnerability%20Detection/Analytic%20Rules/Log4J IPIOC Dec112021.yaml.

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, Huajun Chen, and Ningyu Zhang.
Codekgc: Code language model for generative knowledge graph construction. In Pro-
ceedings of the ACM Transactions on Asian and Low-Resource Language Information Processing
(TALLIP), volume 23, pp. 1–16. ACM, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In Proceedings of the Advances in Neural Information
Processing Systems (NIPS), volume 33, pp. 1877–1901, 2020.

Pere-Lluı́s Huguet Cabot and Roberto Navigli. Rebel: Relation extraction by end-to-end
language generation. In Proceedings of the Findings of the Association for Computational
Linguistics (EMNLP), pp. 2370–2381, 2021.

Onur Catakoglu, Marco Balduzzi, and Davide Balzarotti. Automatic extraction of indicators
of compromise for web applications. In Proceedings of the International Conference on World
Wide Web (WWW), pp. 333–343, 2016.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle
Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion
Stoica. Chatbot arena: An open platform for evaluating llms by human preference, 2024.

The MITRE Corporation. Mitre att&ck, 2022. https://attack.mitre.org/.

Kim Crawley. A brief history of malware: Part three (1993–1999), 2016. URL https://medium.

com/@kim crawley/a-history-of-malware-part-three-1993-1999-1f8d4543e22f.

CrowdStrike. How to ingest iocs and integrate with siem solutions, 2023. URL https:

//tinyurl.com/5nbs93kr. Accessed: 2024-08-07.

CTIKG. Ctikg reseach, 2024. https://github.com/ctikgresearch/GTIKGResearch.

Darknet. unix-privesc-check unix/linux user privilege escala-
tion scanner, 2015. URL https://www.darknet.org.uk/2015/06/

unix-privesc-check-unixlinux-user-privilege-escalation-scanner/.

NetworkX developers. Networkx, 2023. URL https://networkx.org/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang. Towards
the detection of inconsistencies in public security vulnerability reports. In Proceedings of
the USENIX Security Symposium (USENIX Security), pp. 869–885, 2019.

ElastZris. The complete list of log4j indicators of compromise (ioc) to date, 2022. URL
https://otx.alienvault.com/pulse/61d9c048f39636979b6f9a79.

11

https://huggingface.co/01-ai/Yi-34B-Chat-4bits
https://huggingface.co/01-ai/Yi-34B-Chat-4bits
https://huggingface.co/01-ai/Yi-34B-Chat-4bitsl
https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Apache%20Log4j%20Vulnerability%20Detection/Analytic%20Rules/Log4J_IPIOC_Dec112021.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Apache%20Log4j%20Vulnerability%20Detection/Analytic%20Rules/Log4J_IPIOC_Dec112021.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Apache%20Log4j%20Vulnerability%20Detection/Analytic%20Rules/Log4J_IPIOC_Dec112021.yaml
https://medium.com/@kim_crawley/a-history-of-malware-part-three-1993-1999-1f8d4543e22f
https://medium.com/@kim_crawley/a-history-of-malware-part-three-1993-1999-1f8d4543e22f
https://tinyurl.com/5nbs93kr
https://tinyurl.com/5nbs93kr
https://www.darknet.org.uk/2015/06/unix-privesc-check-unixlinux-user-privilege-escalation-scanner/
https://www.darknet.org.uk/2015/06/unix-privesc-check-unixlinux-user-privilege-escalation-scanner/
https://networkx.org/
https://otx.alienvault.com/pulse/61d9c048f39636979b6f9a79

Published as a conference paper at COLM 2024

Thomas Etheridge. Ir team investigations uncover ecrime use of nation-
state attack methods, 2018. URL https://www.crowdstrike.com/blog/

ir-team-investigations-uncover-ecrime-use-of-nation-state-attack-methods/.

Cisco Talos Intelligence Group. Phishtank. https://www.phishtank.com/.

Zabit Hameed and Begonya Garcia-Zapirain. Sentiment classification using a single-layered
bilstm model. IEEE Access, 8:73992–74001, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Anders Mølmen Høst, Pierre Lison, and Leon Moonen. Constructing a knowledge graph
from textual descriptions of software vulnerabilities in the national vulnerability database.
arXiv preprint arXiv:2305.00382, 2023.

Yuelin Hu, Futai Zou, Jiajia Han, Xin Sun, and Yilei Wang. Llm-tikg: Threat intelligence
knowledge graph construction utilizing large language model. Computers & Security, pp.
103999, 2024.

Cheonsu Jeong. Generative ai service implementation using llm application architecture:
based on rag model and langchain framework. Journal of Intelligence and Information
Systems, 29(4):129–164, 2023.

Zachary Kenton, Noah Y Siegel, János Kramár, Jonah Brown-Cohen, Samuel Albanie, Jannis
Bulian, Rishabh Agarwal, David Lindner, Yunhao Tang, Noah D Goodman, et al. On
scalable oversight with weak llms judging strong llms. arXiv preprint arXiv:2407.04622,
2024.

Masoudeh Keshavarzi and Hamid Reza Ghaffary. I2ce3: A dedicated and separated attack
chain for ransomware offenses as the most infamous cyber extortion. Computer Science
Review, 36:100233, 2020.

Christopher Kim. Log4j indicators of compromise to date, 2022. URL
https://blogs.infoblox.com/threat-intelligence/cyber-campaign-briefs/

log4j-indicators-of-compromise-to-date/.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), pp. 611–626, 2023.

Stanford NLP Lab. The Stanford Parser: A statistical parser, 2003. URL http://http:

//nlp.stanford.edu/software/lex-parser.shtml.

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative
writing dataset for exploring language model capabilities. In Proceedings of theACM
Conference on Human Factors in Computing Systems (CHI), pp. 1–19, 2022.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of
instruction-following models. https://github.com/tatsu-lab/alpaca eval.

Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and Raheem Beyah. Acing
the ioc game: Toward automatic discovery and analysis of open-source cyber threat
intelligence. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), pp. 755–766, 2016.

Xiaochen Liu, Yang Su, and Bingjie Xu. The application of graph neural network in natural
language processing and computer vision. In Proceedings of the International Conference on
Machine Learning, Big Data and Business Intelligence (MLBDBI), pp. 708–714. IEEE, 2021.

12

https://www.crowdstrike.com/blog/ir-team-investigations-uncover-ecrime-use-of-nation-state-attack-methods/
https://www.crowdstrike.com/blog/ir-team-investigations-uncover-ecrime-use-of-nation-state-attack-methods/
https://blogs.infoblox.com/threat-intelligence/cyber-campaign-briefs/log4j-indicators-of-compromise-to-date/
https://blogs.infoblox.com/threat-intelligence/cyber-campaign-briefs/log4j-indicators-of-compromise-to-date/
http://http://nlp.stanford.edu/software/lex-parser.shtml
http://http://nlp.stanford.edu/software/lex-parser.shtml
https://github.com/tatsu-lab/alpaca_eval

Published as a conference paper at COLM 2024

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint cs/0205028,
2002.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identification
of entities, relations, and coreference for scientific knowledge graph construction. arXiv
preprint arXiv:1808.09602, 2018.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja
Trebacz, and Jan Leike. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215,
2024.

Rob McMillan. Open threat intelligence, 2013. URL https://www.gartner.com/doc/

2487216/\definition-threat-intelligence.

Microsoft. What are indicators of compromise (iocs)?, 2023. URL
https://www.microsoft.com/en-us/security/business/security-101/

what-are-indicators-of-compromise-ioc.

Clean MX. Clean mx viruswatch mailing list. URL http://lists.clean-mx.com/cgi-bin/

mailman/listinfo/viruswatch/.

Leo Obrst, Penny Chase, and Richard Markeloff. Developing an ontology of the cyber
security domain. In Proceedings of the International Conference on Semantic Technology for
Intelligence, Defense, and Security (STIDS), pp. 49–56, 2012.

Blessing Onyegbula. Iocs: Indicators of compromise explained, 2023. URL https://www.

splunk.com/en us/blog/learn/ioc-indicators-of-compromise.html.

OpenAI. Chatgpt: Applications, opportunities, and threats. arXiv preprint arXiv:2304.09103,
2023a.

OpenAI. The official python library for the openai api, 2023b. URL https://github.com/

openai/openai-python.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In
Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST),
pp. 1–22, 2023.

Aritran Piplai, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta, Anupam Joshi, and Tim
Finin. Knowledge enrichment by fusing representations for malware threat intelligence
and behavior. In Proceedings of the IEEE International Conference on Intelligence and Security
Informatics (ISI), pp. 1–6, 2020.

Shengzhi Qin and K. P. Chow. Automatic analysis and reasoning based on vulnerability
knowledge graph. In Proceedings of the Cyberspace Data and Intelligence, and Cyber-Living,
Syndrome, and Health (CyberDI), pp. 3–19. Springer Singapore, 2019.

Nidhi Rastogi, Sharmishtha Dutta, Mohammed J. Zaki, Alex Gittens, and Charu Aggarwal.
Malont: An ontology for malware threat intelligence. In Gang Wang, Arridhana Ciptadi,
and Ali Ahmadzadeh (eds.), Deployable Machine Learning for Security Defense, pp. 28–44,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-59621-7.

CTIKG Research. Ctikg models, 2024a. https://huggingface.co/revealcti.

CTIKG Research. Ctikg model based on qwen1.5-70b, 2024b.
https://huggingface.co/revealcti/cti-qwen1.5-70b-awq.

13

https://www.gartner.com/doc/2487216/\definition-threat-intelligence
https://www.gartner.com/doc/2487216/\definition-threat-intelligence
https://www.microsoft.com/en-us/security/business/security-101/what-are-indicators-of-compromise-ioc
https://www.microsoft.com/en-us/security/business/security-101/what-are-indicators-of-compromise-ioc
http://lists.clean-mx.com/cgi-bin/mailman/listinfo/viruswatch/
http://lists.clean-mx.com/cgi-bin/mailman/listinfo/viruswatch/
https://www.splunk.com/en_us/blog/learn/ioc-indicators-of-compromise.html
https://www.splunk.com/en_us/blog/learn/ioc-indicators-of-compromise.html
https://github.com/openai/openai-python
https://github.com/openai/openai-python

Published as a conference paper at COLM 2024

Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Nandana Mihindukulasooriya, Owen
Cornec, and Alfio Massimiliano Gliozzo. Knowgl: Knowledge generation and linking
from text. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 37,
pp. 16476–16478, 2023.

Kiavash Satvat, Rigel Gjomemo, and VN Venkatakrishnan. Extractor: Extracting attack
behavior from threat reports. In Proceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 598–615. IEEE, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Thomas D Wagner, Khaled Mahbub, Esther Palomar, and Ali E Abdallah. Cyber threat
intelligence sharing: Survey and research directions. Computers & Security, 87:101589,
2019.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the Advances in Neural Information Processing Systems (NIPS),
volume 35, pp. 24824–24837, 2022.

Jihong Yan, Chengyu Wang, Wenliang Cheng, Ming Gao, and Aoying Zhou. A retrospective
of knowledge graphs. Frontiers of Computer Science, 12:55–74, 2018.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models
for knowledge graph completion. arXiv preprint arXiv:2308.13916, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. In Proceedings of the Advances in Neural Information Processing
Systems (NIPS), volume 36, 2024.

A Research on Text Segmentation Parameter

We used a data-driven method to set the text segment size, analyzing 13, 385 CTI-related
sentences with an average length of 141 characters. Open source LLMs, such as the YI
model (01-ai, 2023), accurately handle up to 600 characters or about 4 sentences. Hence, we
limit segments to 600 characters.

B Prompts for LLM Agents

B.1 Prompt for Worker Agent

.

User: “As an AI trained in entity extraction and relationship extraction. You’re an
advanced AI expert, so even if I give you a complex sentence, you’ll still be able to
perform the relationship extraction task. A triple is a basic data structure used to
represent knowledge graphs, which are structured semantic knowledge bases that
describe concepts and their relationships in the physical world. A triple must has three
elements: [Subject, Relation, Object]. In entity extraction, you follow those rules:”

Rule 1: “Only extract triples that are related to cyber attacks. If a sentence does not have
any triple about cyber attacks, skip the sentence and do not print it in your output.”

Rule 2: “Make sure your results is a python dictionary format. One example is [subject1,
relation1, object1].”

14

Published as a conference paper at COLM 2024

Preset assistant responses: “I got it.”

User: “Here is one sentence from example article:attempts to infiltrate target networks
through various means of intrusion: watering hole websites, vulnerability scans of
network services on the internet, and brute-force/dictionary login attempts.”

Preset assistant responses: “[Leafminer, attempts to infiltrate, target networks], [Leafminer,
use, watering hole websites], [Leafminer, use, vulnerability scans of network services on the
internet],[Leafminer, use, brute-force], [Leafminer, use, dictionary login attempts].”

User: “Here is another sentence from example article: Kismet is also a powerful tool
for penetration testers that need to better understand their target and perform wireless
LAN discovery.”

Preset assistant responses: “[Kismet,is a powerful tool for, penetration testers], [testers,
understand, their target], [testers, perform, wireless LAN discovery].”

User: “Here are my new sentence, extract all possible entity triples from it. Now, I start
to give you sentence. [Input Text] .Now, my input text are over. You MUST follow the
rules I told you before.”

B.2 Prompt for Integrator Agent

User: “You are responsible for combining the three different entity extraction results
from three different assistants extracting from the same sentence into one. The final
results is a python list format. When you encounter multiple triples with the same
meaning but slightly different words, choose the one that expresses it most succinctly
and do not add the others to your final result. Just answer me the final python dictionary
with triple format without any other words.”

B.3 Prompt for Refiner Agent

User: “You play the role of an entity extraction expert and modify/simplify/split the
text (extracted multiple triples) in the entity extraction result I gave you. according
to the following rules. A triple is a basic data structure used to represent knowledge
graphs, which are structured semantic knowledge bases that describe concepts and
their relationships in the physical world. Here are all rules you must follow.”

Rule 1: “If the subject or object in a triple contains pronouns such as it, they, malware,
trojan, attacker, ransomware, or group, replace them with a specific name as much as
possible according to the context.”

Rule 2: “Focus on malware, Trojan, CVE, or hacking organization or as the subject of
the triples, if a subject with malware or Trojan or CVE or hacking organization is found
and has additional suffixes, remove the suffixes.”

Rule 3: “Split a complex triple into multiple simpler forms. For example, [Formbook and
XLoader, are, malware] should be split into [Formbook, is, malware] and [XLoader,is, malware].”

Rule 4: “If the [subject, relation] in a triple can be formed into a new [subject, relation,
object] triple, create a new triple while keeping the original one.”

Rule 5: “If the object can be simplified to a more concise, generic expression, create
a new triple while keeping the original one. For example, [Formbook, save, XLoader in
desktop] must has a new triple [Formbook, save, XLoader] due to the object XLoader in
desktop can be simplified to XLoader.”

Rule 6: “Simplify the subject, object, and relation into a more concise, generic expres-
sion.”

15

Published as a conference paper at COLM 2024

Rule 7: “When you encounter a plural or past tense form, convert it to singular or
present tense. For example, [Windows users] should be converted to [Windows user].”

Rule 8: “When you encounter an MD5, registry, path, or other identifier that contains
prefixes, remove them. For example, [md5 5a23c3cb225ad54175e810bc653f59dd] should
be simplified to [5a23c3cb225ad54175e810bc653f59dd].”

User: “Here is my entity extraction result: [input text]. Now, you apply the rules I told
you before. First write down your though, think it step by step. In the end, you musttell
me the final new entity extraction result.”

B.4 Prompt for Refiner Agent

User: “You play the role of an entity extraction expert and modify/simplify/split the
text (extracted multiple triples) in the entity extraction result I gave you. according
to the following rules. A triple is a basic data structure used to represent knowledge
graphs, which are structured semantic knowledge bases that describe concepts and
their relationships in the physical world. Here are all rules you must follow.”

Rule 1: “If the subject or object in a triple contains pronouns such as it, they, malware,
trojan, attacker, ransomware, or group, replace them with a specific name as much as
possible according to the context.”

Rule 2: “Focus on malware, Trojan, CVE, or hacking organization or as the subject of
the triples, if a subject with malware or Trojan or CVE or hacking organization is found
and has additional suffixes, remove the suffixes.”

Rule 3: “Split a complex triple into multiple simpler forms. For example, [Formbook and
XLoader, are, malware] should be split into [Formbook, is, malware] and [XLoader,is, malware].”

Rule 4: “If the [subject, relation] in a triple can be formed into a new [subject, relation,
object] triple, create a new triple while keeping the original one.”

Rule 5: “If the object can be simplified to a more concise, generic expression, create
a new triple while keeping the original one. For example, [Formbook, save, XLoader in
desktop] must has a new triple [Formbook, save, XLoader] due to the object XLoader in
desktop can be simplified to XLoader.”

Rule 6: “Simplify the subject, object, and relation into a more concise, generic expres-
sion.”

Rule 7: “When you encounter a plural or past tense form, convert it to singular or
present tense. For example, [Windows users] should be converted to [Windows user].”

Rule 8: “When you encounter an MD5, registry, path, or other identifier that contains
prefixes, remove them. For example, [md5 5a23c3cb225ad54175e810bc653f59dd] should
be simplified to [5a23c3cb225ad54175e810bc653f59dd].”

User: “Here is my entity extraction result: [input text]. Now, you apply the rules I told
you before. First write down your though, think it step by step. In the end, you musttell
me the final new entity extraction result.”

B.5 Prompt for Merger Agent

User: “You are a triples integration assistant. Triple is a basic data structure, which
describes concepts and their relationships. But you can only see part of the article at a
time. In order to record all the triples from a article, you have the following long-term
memory area to record the triples from the entire article. long-term memory stores
information on the article parts you have already read.

-The start of the long-term memory area-

16

Published as a conference paper at COLM 2024

-Triples will be added here-

-The end of the short-term memory area-

Second, you now see a part of this article. Based on this part, you already extract such
triples and place them in your short-term memory:

-The start of the short-term memory area-

-Triples will be added here-

-The end of the short-term memory area-

Third, now review your long-term memory and short-term memory. Modify the short-
term memory into a new short-term memory. You should follow following rules to
modify triples in short-term memory to make them consistent with triples in long-
term memory. You should write down how you use the rule to modify the triples in
short-term memory. In additional, if you find any triples in long-term memory also
need to modify based on the rule, you should also write down how you use the rule to
modify the triple in long-term memory, and then add new modified triples in short-term
memory as a new triple.

Rule 1: “You notice that in these triples, some triples have subjects and objects that
contain partially identical terms and refer to the same specific nouns, but these specific
nouns have prefixes/suffixes/modifiers that make them not identical. You should
delete the prefixes/suffixes/modifiers and unify them into the same specific nouns.”

Before rule: [the Formbook, is designed to run as, a deleter] [Formbook sample, is designed to
run as, one-time encryptor]

After rule: [Formbook, is designed to run as, a deleter] [Formbook, is designed to run as,
one-time encryptor]

Explanation: The words the Formbook and Formbook sample refer to the same entity,
so they are unified to use the exact same subject Formbook for consistency.

Rule 2: “Be especially careful that when you meet specific names of malware,CVE,
Trojans, hacker organizations, etc., always use their specific names and remove the
prefixes/suffixes/modifiers.”

Before rule: [Malware Formbook, is, malware]

After rule: [Formbook, is, malware]

Explanation: The word Formbook is a specific name of malware, so it should be used as
the subject of the triple and the prefix Malware should be removed.

Rule 3: “Don’t add non existing triples to your new short-term memory.”

Suppose you find in long-term memory: [the malware, download, Leafminer] and in short-
term memory: [Formbook, is, malware]. You cannot add a new triple in new short term
memory: [Formbook, download, Leafminer]. Because you don’t have evidence that the
malware in the long-term memory specifically refers to Formbook.

Rule 4: “Don’t add non existing triples that don’t exist in long-term memory or short-
term memory to your new short-term memory. You should add triples from long-
term memory or short-term memory to your new short-term memory, not from your
imagination and self creation”

Rule 5: “Don’t add any example word like Formbook, XLoader, Leafminer, FinSpy,
Kismet in your new short-term memory area, they are just example words not the real
triples in the long term memory area or short term memory area.”

Rule 6: “new short-term memory area must be started with The start of the new
short-term memory area and ended with The end of the new short-term memory area.”

17

Published as a conference paper at COLM 2024

Preset assistant responses: “Yes, I understand and totally follow the rules.”

User: “-The start of the long-term memory area-

[HackerAAA, disrupts, network operations], [HackGroup CCC, targets, financial in-
stitutions], [Malware BBB, steals, personal data], [CyberAttack 2042, compromised,
database systems], [A sample of BBB, save, a payload]

-The end of the long-term memory area-

-The start of the short-term memory area-

[The HackerAAA Trojan, created by, a sophisticated hacker group], [CCC hackers,
launched, series of phishing campaigns], [BBB malware program, encrypts, files for
ransom], [Attack in 2042, led to, sensitive leaks],[BBB, run, payload]

-The end of the short-term memory area-”

Preset assistant responses: “Modifications required based on the rules: Apply Rule 1
and Rule 2: Unify subjects and objects with partially identical terms and remove any
prefixes/suffixes/modifiers, particularly for specific names like malware and hacker
groups. Modified short-term memory:

[The HackerAAA Trojan, created by, a sophisticated hacker group] → [HackerAAA, created
by, sophisticated hacker group] [CCC hackers, launched, series of phishing campaigns] →

[HackGroup CCC, launched, phishing campaigns] [BBB malware program, encrypts, files for
ransom] → [Malware BBB, encrypts, files for ransom] [Attack in 2042, led to, sensitive leaks]
→ [CyberAttack 2042, led to, sensitive data leaks]

I also find a triple in long-term memory that needs to be modified based on Rule 1 and
Rule 2:

[A sample of BBB, save, a payload] → [BBB, save, payload]

Apply Rule 3 and 4 and 5: We must ensure we do not create non-existing triples
when merging the memories. After applying the modifications, we now create a new
short-term memory area:

-The start of the new short-term memory area-

[HackerAAA, created by, sophisticated hacker group], [HackGroup CCC, launched, phishing
campaigns], [BBB, encrypts, files for ransom], [CyberAttack 2042, led to, sensitive data leaks],
[BBB, run, payload], [BBB, save, payload]

-The end of the new short-term memory area-”

User: “Good. Now, lets switch to another article.

-The start of the long-term memory area-

[Input Text]

-The end of the long-term memory area-

-The start of the short-term memory area-

[Input Text]

-The end of the short-term memory area-

Now, follow the rules. Write down how you use the rule to modify the triples in
short-term memory. Then, write down new short-term memory which must be started
with -The start of the new short-term memory area- and ended with -The end of the
new short-term memory area-”

18

Published as a conference paper at COLM 2024

B.6 Prompt for Checker Agent

User: “You are responsible for check the result from another AI agent. You job is to
check whether the result contains following words.[Input Text]. The text may in different
order or different form or obfuscated. Now,here is that result [Input Text]. You answer
should just be ‘No error’ or ‘I found error”

C Impacts of Article Type on Knowledge Graph Construction

We evaluate the performance of CTIKG on different article types. In general, the standalone
type is the simplest, where the author describes only one security threat, such as a malware
or a CVE, in an article. As a result CTIKG maintains a high recall. The reason for the
lower recall is that some authors tend to mention the specific name of the threat only at the
beginning of the article, and use the indicative pronouns to refer to it in all other parts of
the article. For example, the article “Unix-privesc-check - Unix/Linux User Privilege Escalation
Scanner” Darknet (2015) mentions the name Unix-privesc-check only twice in the entire
article. For CTIKG, even if the specific name of it is not in the short-term memory, it still
obtains its name and completes the knowledge graph by retrieving the name from the
long-term memory. As for Extractor, even though it also performs coreference resolution,
quite a number of edges in the knowledge graph still link to “it” node.

The overview article tends to describe different cyber threats in different parts. For example,
the article “A Brief History of Malware: Part Three (1993-1999)” Crawley (2016) describes
different malware in different paragraphs. For this type of article, CTIKG completes the
construction of the whole article’s knowledge graph through the direct stacking of the
short-term memories from article segments.

For both CTIKG and Extractor, the chain type is definitely the most challenging to pro-
cess. This type of articles often describe how a malicious actor or team utilizes multiple
tools to reach an intrusion and complete the final task, often stealing data or ransomware.
For example, the article “IR Team Investigations Uncover eCrime Use of Nation-State Attack
Methods” Etheridge (2018) describes how an attacker can start an intrusion at the beginning
and maintain the persistence mechanism to eventually install ransomware on the target
computer by using multiple attack methods. For each attack method, the article provides
some information that can be extracted as triples. When the long-term memory contains a
large number of information about different cyber threats, the merger agent of CTIKG is
more likely to produce inaccurate results, making the final result inferior to the result of the
other two types.

D LLM Selection

We prefer open source LLMs that can be deployed on our own server. We finally chose
the YI 34B model (01-ai, 2023) that achieved top scores on the Alpaca Eval Leaderboard (Li
et al.) and the MMLU benchmark (Hendrycks et al., 2020). We also attempted to use LLaMa
2 (Touvron et al., 2023). However, in early experiments, even the largest LLaMa 2 70B model
cannot strictly follow CTIKG’s prompt instructions, and result in an accuracy of merely
30%. This phenomenon is consistent with its lower score on the MMLU benchmark, and
thus CTIKG uses only the YI 34B model for CTIKG.

E Setup of Evaluation Dataset

We collect 88, 131 CTI articles from 67 websites and 672 articles from the ATT&CK knowledge
base (Corporation, 2022). Since some articles contain very short descriptions, such as just
listing URLs or file addresses, we further apply NLP tools to filter out them and obtain
72, 538 meaningful articles. These articles have average 52 sentences, where each sentence
has an average of 15 words or 100 characters (Figure 5). With CTIKG capacity to process 4
sentences at a time, most articles require processing in 10 segments.

19

Published as a conference paper at COLM 2024

Figure 5: Distribution of articles by sentence length

F Statistics of RQ1 Effectiveness Comparison

F.1 The Impact of Text Complexities

Figure 6 and Figure 7 show the accuracy of models at different text complexities.

Figure 6: Evaluation based on varying sizes of triples in one sentence

Figure 7: Evaluation based on varying number of words in one sentence

20

Published as a conference paper at COLM 2024

F.2 Analysis of Error Triples

Figure 8: Distribution of Error Triples

G Statistics of RQ3 Effectiveness and Case Study

G.1 Characteristics of Knowledge Graph

Figure 9 and Figure 10 show the accuracy of the models for different text complexity. In the
graph, there are 6301 nodes related to cyber security topics, categorized under “Attack Vector
And Techniques”, “Malware Name” and “CVE”. Additionally, there are 4361 nodes related
to other computer science topics, which include “Software/Tools”, “File Type”, “Domain
Names”, “Hashes”, “IP Addresses” and “Email Addresses”. The remaining 16365 nodes are
classified under “Other”, “Organization Name” and “Geographic Region”. Overall, 39.45%
of the nodes are related to computer science topics.. As for the edges, the graph includes 562
edges related to cyber security topics, 1355 edges related to other computer science topics,
and a total of 1774 general edges. Overall, 51.94% of the edges pertain to computer science
topics.

21

Published as a conference paper at COLM 2024

Figure 9: Distribution of Nodes Categories

22

Published as a conference paper at COLM 2024

Figure 10: Distribution of Edges Categories

G.2 Comparison of Knowledge Graph Effectiveness

Table 3 shows the effectiveness of cyber threat revelation specifically for each CVE.

Table 3: Effectiveness of CTIKG
Name # of Behaviors Max # of Behaviors per Article Added Behaviors # of Articles Avg Added Behaviors per Article
CVE-2021-44228 67 11 56 24 2.43
CVE-2018-8174 67 9 58 21 2.9
CVE-2012-0158 65 6 59 29 2.11
CVE-2019-19781 60 9 51 18 3
CVE-2017-11882 47 12 35 22 1.67
CVE-2017-0199 45 10 35 15 2.5
CVE-2010-1885 41 16 25 15 1.79
CVE-2012-0507 33 5 28 14 2.15
CVE-2021-34527 30 7 23 11 2.3
CVE-2021-26855 29 11 18 11 1.8
CVE-2010-2568 25 9 16 8 2.29
CVE-2010-0188 24 2 22 21 1.1
CVE-2021-26858 19 12 7 6 1.4
CVE-2016-0189 19 6 13 11 1.3
CVE-2018-4878 17 4 13 8 1.86

Column “# of Behaviors” shows the total number of behaviors of with a specific CVE, as
identified from multiple articles. Column “Max # of Behaviors per Article” shows the
highest number of behaviors identified in a single article. Column “Added Behaviors”
shows the number of additional behaviors identified from other articles. Column “# of

23

Published as a conference paper at COLM 2024

Articles” shows the total number of articles that describe the behaviors of the specific
CVE. Column “Avg Added Behaviors per Article” shows the average number of additional
behaviors contributed by each article.

G.3 Case Study

We identified two cases that illustrate how the knowledge graph reveals cyber threat
intelligence. Figure 11 and Figure 12 show the correlations between the original article text
and the corresponding knowledge graphs.

• Reveal Hidden Information From Complex Text: CTIKG can reveal information that does
not exist in the NVD database by analyzing the CTI article. For example, the knowledge
graph shows that CVE-2021-27065 is similar to CVE-2021-26858, and can overwrite any
system file that isn’t listed in NVD or other database.

Figure 11: Cyber threat intelligence of CVE-2021-27065

• Reveal Hidden Information From Multiple Articles: CTIKG can reveal the path from one
entity to another entity based on different articles. For example, the graph shows that
both CVE-2012-0158 and CVE-2017-11882 are related to Microsoft Office, which informs
the researcher who encounters the CVE-2017-11882 to check if the system is infected by
CVE-2012-0158, since they both utilize Office.

Figure 12: Cyber threat intelligence of CVE-2012-0158 and CVE-2017-11882

24

	Introduction
	Overview
	Approach
	Design of Triple Extraction
	Construction of Short-Term Memory
	Construction of Long-Term Memory
	Building Knowledge Graph

	Evaluation
	Evaluation Setup
	RQ1: Effectiveness of Triple Extraction
	RQ2: Knowledge Graph Construction
	RQ3: Revealing Entity Relationships Across Correlated CTI Articles

	Discussion
	Related Work
	Conclusion
	Research on Text Segmentation Parameter
	Prompts for LLM Agents
	Prompt for Worker Agent
	Prompt for Integrator Agent
	Prompt for Refiner Agent
	Prompt for Refiner Agent
	Prompt for Merger Agent
	Prompt for Checker Agent

	Impacts of Article Type on Knowledge Graph Construction
	LLM Selection
	Setup of Evaluation Dataset
	Statistics of RQ1 Effectiveness Comparison
	The Impact of Text Complexities
	Analysis of Error Triples

	Statistics of RQ3 Effectiveness and Case Study
	Characteristics of Knowledge Graph
	Comparison of Knowledge Graph Effectiveness
	Case Study

