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Abstract

Risk measures such as Value at Risk (VaR) and Conditional Value at Risk (CVaR) are critical
to evaluating performance in high-risk scenarios such as high-frequency trading, healthcare,
risk-sensitive control and insurance. VaR quantifies the maximum potential return over a
specified time horizon at a given confidence level, while CVaR extends this by estimating
the expected return exceeding the VaR threshold. Estimating the extreme version of these
risk measures is inherently sensitive and volatile due to the limited data available at the
tail end of the return distribution. This paper introduces an incremental, single-pass, and
adaptive variance reduction technique to estimate extreme VaR and CVaR for cases where
the underlying distribution is either known or unknown. Additionally, we present a multi-
time scale method to optimize CVaR within a parameterized distribution space in an online
fashion. We provide both theoretical and empirical analyses to demonstrate the effectiveness
and competitiveness of our proposed approaches.

1 Introduction

Quantiles (Bahadur, 1966; Jorion, 2007), also known as Value at Risk (VaR), form a class of downside/upside
probabilistic measures that provide instrumental statistical information on the risk of a system for effective
risk-sensitive decision-making with significant applications in engineering, management, economics and fi-
nance. Given a continuously-valued random vector X P Rd defined over a measurable space pS,Fq, where
S and F is a σ-field on S. Let Px be the probability measure of X. Also, consider a bounded, continuous
return function ϕ : Rd Ñ R with ϕpxq P rϕl, ϕus and ´8 ă ϕl, ϕu ă 8. Given a degree of certainty ρ P r0, 1s,
we define the upside ρ-quantile of ϕpXq w.r.t. Px (denoted as VaRρpPxq) as follows:

VaRρpPxq “ sup
γPrϕl,ϕus

tPx
`

ϕ
`

Xq ě γ
˘

ě ρu, (1)

The closed, analytic form of the performance function ϕ may be unknown, however, for each input x, the
uncorrupted performance value ϕpxq is available.

Thus, the quantity VaRρpPxq can be construed as the threshold in the range of the performance values of the
performance function ϕ beyond which the probability measure with respect to Px is at least ρ. Quantiles
are more generalized quantities than the median (Hodges & Lehmann, 1983), a more popular performance
measure that is simply the 0.5-quantile. The quantiles can also be interpreted as synonymous with statistical
ordering of the performance values of ϕ with respect to the probability measure Px, since for each ρ, the
quantile provides a bifurcation of the entire range of performance values into two regions (not necessarily
disjoint) of probability mass (w.r.t. Px) of at least ρ and at most 1 ´ ρ, respectively. It is easy to verify that
in the considered setting (both ϕ and Px are continuous), we have VaRρpPxq “ F´1

ϕ p1 ´ ρq, where Fϕ is the
cumulative distribution function (CDF) of ϕpXq, i.e., Fϕpγq “ PxpϕpXq ď γq, γ P rϕl, ϕus. For lucidity, the
range of F´1

ϕ is restricted to the closed interval rϕl, ϕus. However, in most cases, a closed analytic form for
F´1
ϕ is not available. Therefore, it may not always be possible to develop a tractable deterministic procedure

to calculate VaRρpPxq and one has to resort to efficient estimation approaches. VaRs are often of interest in
the analysis of data for outlier detection, extreme value theory, control risk (Bienstock et al., 2014) and are
often adopted by banking regulators for risk management.
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Figure 1: Illustration of VaR and CVaR over a return distribution.

Another structurally appealing risk measure is the Conditional Value at Risk (CVaR) (Rockafellar & Uryasev,
2002; Norton et al., 2021) also called the superquantile or expected shortfall or average VaR , is the conditional
expectation of returns beyond VaR, which is defined as follows:

CVaRρpPxq “ E
“

ϕ
`

Xq|ϕ
`

Xq ě VaRρpPxq
‰

(2)

“

ş8

VaRρpPxq
ϕpXqdPx

Pxpϕ
`

Xq ě VaRρpPxqq
(3)

Similar to VaR, the superquantile CVaR can be used to assess the tail of the distribution. Putting emphasis
on the tail of the distribution where extreme losses occur, CVaR addresses the risk of severe but rare adverse
events. This is crucial to understand the impact of worst-case scenarios, which might not be fully captured
by VaR alone. VaR only indicates the worst loss at a certain confidence level but does not account for
the magnitude of losses beyond this level. CVaR provides a more comprehensive measure of risk than VaR
by considering the severity of losses beyond the VaR level, which is illustrated in Figure(1). Therefore, in
situations where a distribution may have a heavy tail, the superquantile accounts for magnitudes of low-
probability large-loss tail events, while the quantile does not account for this information. The superquantile
is also more tractable in optimization contexts due to its desirable properties such as coherency (Artzner
et al., 1999) with respect to the return distribution, convexity, continuity, positively homogeneous and
monotonic w.r.t. stochastic dominance of order 1 (Rockafellar et al., 2000). VaR loses coherence with
non-Gaussian return distributions, while CVaR’s effectiveness becomes more apparent with respect to these
non-Gaussian copulas. Ultimately, the choice between VaR and CVaR depends on their effectiveness and the
relative strengths and weaknesses they exhibit in specific scenarios.

In this paper, we consider the estimation and optimization of extreme risk measures (Glynn, 1996) which
are nothing more than VaRρ and CVaRρ with ρ being extremely small, say less than 10´6. The utility value of
the extreme risk measures is significant (Pickands III, 1975) as they assess and manage risks associated with
very rare but highly impactful events. For example, consider high-frequency trading (Philippe, 2001), which
is an algorithmic trading method in which large volumes of financial commodities are transacted at very high
speeds, where fortunes and tail risks, which are rare events, can be characterized as extreme risk measures.
Similarly, in government policy making (Wolters, 2012), extreme quantiles can be an effective tool, since the
p1 ´ ρq quantile can be interpreted as the threshold below which the probability is p1 ´ ρq and which thus
provides a statistical upper bound (confidence interval) for the health of society and economy in terms of
poverty, spending power, labour, prices and so on. Another relevant example is the insurance sector (Dowd
& Blake, 2006), where extreme risk measures can provide statistical information about the probable or mean
fraction of the customers claiming reimbursement. Other applications include supply chain management,
real estate, portfolio management, healthcare sector, and many more.

Although crude Monte Carlo methods can theoretically converge to the true quantile @ρ P r0, 1s, the conver-
gence is only realized after considering an infinite number of samples (Pfanzagl, 1976; Ghosh, 1971; Thomas
& Learned-Miller, 2019). For extreme quantiles, the performance of these algorithms over a finite time
interval is considerably poor due to huge variance, as the probability of the event tϕpXq ě VaRρpPxqu is at

2



Under review as submission to TMLR

most ρ, an extremely small quantity. Thus, the extreme tail of the distribution is underrepresented, and
extreme events are rarely observed in finite samples, leading to high variance in the estimates. Hence, the
estimation of the extreme risk measures incurs precision issues especially in the case of CVaR which requires
integration over the tail. This could have significant consequences for risk management, particularly in
finance and insurance, where precise estimation of extreme risk measures is crucial for understanding and
preparing for rare but severe risks. If risk is underestimated, it can harm the firm’s profits and stability,
while overestimating risk can lead to holding excess capital.

1.1 Related Work

The estimation of extreme risk measures has gained significant attention due to its crucial role in the
evaluation of rare but highly impactful events (Glynn, 1996; Pickands III, 1975). These measures have
applications in various domains including high-frequency trading, government policy making, insurance,
supply chain management (Xie et al., 2016), risk sensitive sequential decision making (Le Tallec, 2007),
and healthcare care (Philippe, 2001; Wolters, 2012; Dowd & Blake, 2006). Variance reduction techniques,
particularly importance sampling (IS), have been utilized to manage the large variance in extreme risk
estimation. (Glynn, 1996) applied large deviation theory and tail approximation to approximate sampling
ratios and identify distributions where extreme events are less rare. (Morio, 2012) proposed a non-parametric
approach using Gaussian kernel density, while (Egloff & Leippold, 2010) developed a consistent quantile
estimator using stochastic approximation (SA) for importance sampling parameter updates. (Pan et al.,
2020) established consistency and showed a reduction in variance for adaptive IS in a two-layer model.
(Wächter et al., 2017) demonstrated the convergence of the sample average approximation (SAA) for non-
IID samples with adaptive IS. (Bardou et al., 2009) presented a method to estimate VaR and CVaR via
incremental, adaptive unconstrained IS, achieving the smallest asymptotic variance among the chosen IS
class under the Gaussian and inverse Gaussian settings. Building on this, recent research has generalized
and extended adaptive IS techniques to handle more complex parametrizations, solve general stochastic
root-finding problems, and embed adaptive IS in both SA and SAA frameworks.

Other variance reduction techniques in quantile estimation include controlled stratification (Cannamela
et al., 2008), bootstrap quantile estimation through importance sampling (Hu & Su, 2008), and efficient
simulation of large deviation events (Botev & Lloyd, 2015). The field of rare-event simulation has significantly
contributed to extreme quantile estimation. Approaches include IS schemes for deterministic oracles based
on the theory of large deviations (Budhiraja & Dupuis, 2019), the dominating point method (Sadowsky
& Bucklew, 1990; Dieker & Mandjes, 2005; Owen & Zhou, 2019; Bai et al., 2022), subsolution approaches
(Dupuis & Wang, 2009), twisting of the risk rate (Juneja & Shahabuddin, 2002), and mixture-based schemes
(Blanchet & Glynn, 2008). These techniques have been applied to various domains including queueing
(Kroese & Nicola, 1999; Blanchet & Lam, 2009), communication networks (Kesidis & Walrand, 1993), finance
(Glasserman & Li, 2005), insurance (Asmussen, 1985), reliability (Nicola et al., 1993; Heidelberger, 1995;
Rubino & Tuffin, 2009), biological processes (Grassberger, 2002; Sandmann, 2009), and dynamic systems
(Dupuis et al., 2012; Vanden-Eijnden & Weare, 2012).

The cross-entropy method (Rubinstein & Kroese, 2004; 2016; De Boer et al., 2005) offers another approach
for designing IS estimator. While similar to adaptive IS in using sequential updates and SAA, it differs in
its formulation and the guarantees it provides. Other relevant algorithms include the Monte-Carlo method
(Cannamela et al., 2008), stochastic approximation method (Joseph & Bhatnagar, 2015), quantile regression
method (Koenker, 2005; Chakraborty, 2003; Takeuchi et al., 2006), adaptable buffer algorithm (Arandjelović
et al., 2015), P 2 algorithm (Jain & Chlamtac, 1985), single-pass low-storage algorithm (Liechty et al., 2003),
and the quadratic approximation procedure for computing VaR (Glasserman et al., 2000).

(He et al., 2023) addresses circular problem which is inherent in solutions based on importance sampling,
where an effective importance sampler requires knowing the solution. To address this, adaptive importance
sampling is being introduced, which sequentially updates the sampler to simultaneously find the optimal
sampler and solution. Despite these advancements, the challenge of efficiently estimating extreme quantiles
with high precision remains an active area of research, particularly for applications in finance and insurance
where accurate risk assessment is crucial.
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1.2 Our contribution

Our work extends the estimation of risk measures (quantile and superquantile) to extreme scenarios by
introducing a single-pass, incremental, adaptive, stable algorithm that could efficiently process large datasets
in the order of quadratic complexity per iteration with respect to the dimension of the input space. Our
algorithm ensures an almost sure convergence to the risk measures with minimal assumptions, offering
robustness against extreme values of ρ without incurring heavy computational cost. We also extend our
approach to superquantile optimization using a zero order multi-timescale approach. These contributions
address critical challenges underlying extreme risk measures such as large variance and latent probability
distribution, providing a more efficient and robust solution for applications in finance, insurance, risk-sensitive
sequential decision making and other domains that require accurate estimation of extreme events.

1.3 Paper Outline

In Section 2, we introduce the theoretical foundation of quantiles and reformulate them as an optimization
problem, setting up our stochastic approximation approach. Section 3 presents our core algorithm, using
importance sampling with a truncated normal surrogate to address high variance associated with extreme
quantiles. We derive the optimal surrogate, discuss its approximation via the Natural Exponential Fam-
ily (NEF), and analyze the approximation error, providing a concrete Gaussian surrogate implementation
along with convergence analysis for VaR and CVaR. Section 4 extends this to optimize CVaR using a multi-
timescale stochastic approximation and randomized finite-difference gradients. In Section 5, we tackle cases
where the true return distribution is unknown, using moment projection for distribution approximation.
Finally, Section 6 empirically validates our algorithms in risk-adjusted portfolio optimization, risk-sensitive
reinforcement learning for robotic control, and glycemic control.

1.4 Summary of Notation

It¨u is the indicator function, i.e., for an arbitrary set A, we have IApxq “ 1, if x P A and 0 otherwise. Let Idˆd

represent the identity matrix of order d. Also, EP r¨s and VP r¨s are the expectation and the variance w.r.t.
the probability measure P respectively. Let Sd`` represent the space of real-valued, symmetric, positive-
definite matrices of order d. And Bernoulli(ta, bu, λ) represents the Bernoulli distribution with Ppaq “ λ
and Ppbq “ 1 ´ λ. We let ν to denote the Lebesgue measure. The KL-divergence between two probability
measures P and Q is defined as follows: KLpP,Qq :“

ş

log dP
dQdP , where dP {dQ is the Radon-Nikodym

derivative of P w.r.t. Q. Note that dP {dQ is defined only if P is absolutely continuous w.r.t. Q denoted as
P ! Q, i.e., QpAq “ 0 ñ P pAq “ 0, for every Borel set A.

We define, for x, y P R, Ipx, yq` “

#

1 if x ě y

0 otherwise
and Ipx, yq´ “

#

1 if x ă y

0 otherwise
(4)

We quantify the same quantity by I`p¨, ¨q and Ip¨, ¨q` interchangeably using abuse of notation. Similarly,
I´p¨, ¨q and Ip¨, ¨q´. We define CONVpAq as the convex hull of the set A, which is the intersection of all convex
sets that contain A. Formally, CONVpAq “ t

řn
i“1 λixi : xi P A, λi ě 0,

řn
i“1 λi “ 1u, where A Ď C and C

is a vector space. We denote the closure of the convex hull of A as CONVpAq. As shorthand, we write the
region tx P Rd : ϕpxq ě γu as tϕpxq ě γu and similarly use tϕpxq ď γu to denote tx P Rd : ϕpxq ď γu. For
a random vector X P Rd, the event tϕpXq ě γu represents the set tX P Rd : ϕpXq ě γu and similarly, the
event, tϕpX ďqγu represents tX P Rd : ϕpXq ď γu.

2 Background

The quantile problem is reformulated as an optimization problem in Lemma 1 of (Homem-de Mello, 2007).
The lemma provides a characterization of the p1 ´ ρq-quantile of a function with real value ϕ w.r.t. in a
given probability measure Px. This reformulation improves the ability to compute and analyze quantiles in
practical applications. For better comprehension, we restate the lemma here:
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Lemma 1. (Lemma 1 of (Homem-de Mello, 2007)) The upside ρ-quantile of a bounded, real-valued function
ϕ
`

with ϕpxq P rϕl, ϕus,@x
˘

w.r.t. the probability measure Px is reformulated as the optimization problem

VaRρpPxq “ arg min
γPrϕl,ϕus

ż

ψpϕpXq, γqdPx (5)

where the residual function ψpϕpxq, γq :“ p1 ´ ρqpϕpxq ´ γqIpϕpxq, γq` ` ρpγ ´ ϕpxqqIpϕpxq, γq´.

The above characterization can be interpreted as the solution to the weighted mean of linear residues in two
disjoint regions tϕpxq ě γu and tϕpxq ď γu with each region weighted asymmetrically, i.e., p1 ´ ρq for the
region tϕpxq ě γu and ρ for the region tϕpxq ď γu. This is synonymous to the fact that the mean can be
interpreted as the solution to the mean quadratic residues. Note that the asymmetry of the residues deepens
as ρ approaches 0 or 1. In a naive manner, one can verify the above lemma by assigning the subdifferential of
EPx

rψpHpXq, γqs to 0. For now, assume that the sub-differential operator can be taken inside the expectation
(nuanced details provided in Eq. (7)). Then, we have

Bγ

ż

ψpϕpXq, γqdPx “

ż

BγψpϕpXq, γqdPx “

ż

´p1 ´ ρqIpϕpXq, γq` ` ρIpϕpXq, γq´dPx

“ ´p1 ´ ρqPx pϕpXq ě γq ` ρPx pϕpXq ď γq

“ ρpPx pϕpXq ě γq ` Px pϕpXq ď γqq ´ Px pϕpXq ě γq

“ ρ´ 1 ` Fϕpγq,

where Fϕ is the cumulative distribution function (CDF) of ϕpXq, i.e., Fϕpγq “ Px pϕpXq ď γq.
Now equating the sub-differential to 0, we obtain

Bγ

ż

ψpϕpXq, γqdPx “ 0 ñ ρ´ 1 ` Fϕpγq “ 0 ñ Fϕpγq “ 1 ´ ρ.

A pertinent observation about the objective function in Lemma 1 is the following:
Proposition 1. The function EPx

rψpϕpXq, γqs is convex in γ.

Proof. For λ P r0, 1s and γ1, γ2 P rϕl, ϕus with γ1 ă γ2, we have
ż

␣

ψpϕpXq, λγ1 ` p1 ´ λqγ2q
(

dPx “

ż

␣

p1 ´ ρq
`

ϕpXq ´ λγ1 ´ p1 ´ λqγ2
˘

IpϕpXq, λγ1 ` p1 ´ λqγ2q``

ρ
`

λγ1 ` p1 ´ λqγ2 ´ ϕpXq
˘

IpϕpXq, λγ1 ` p1 ´ λqγ2q´
(

dPx

“

ż

λp1 ´ ρqpϕpXq ´ γ1qIpϕpXq, γ1q` ´ λp1 ´ ρqpϕpXq ´ γ1qIpϕpXq, γ1q`IpϕpXq, λγ1 ` p1 ´ λqγ2q´`

λρpγ1 ´ ϕpXqqIpϕpXq, γ1q´ ` λρpγ1 ´ ϕpXqqIpϕpXq, γ1q`IpϕpXq, λγ1 ` p1 ´ λqγ2q´`

p1 ´ λqp1 ´ ρqpϕpXq ´ γ2qIpϕpXq, γ2q` ` p1 ´ λqp1 ´ ρqpϕpXq ´ γ2qIpϕpXq, λγ1 ` p1 ´ λqγ2q`IpϕpXq, γ2q´

` p1 ´ λqρpγ2 ´ ϕpXqqIpϕpXq, γ2q´ ´ p1 ´ λqρpγ2 ´ ϕpXqqIpϕpXq, λγ1 ` p1 ´ λqγ2q`IpϕpXq, γ2q´dPx

“ λ

ż

p1 ´ ρqpϕpXq ´ γ1qIpϕpXq, γ1q` ` ρpγ1 ´ ϕpXqqIpϕpXq, γ1q´dPx`

p1 ´ λq

ż

p1 ´ ρqpϕpXq ´ γ2qIpϕpXq, γ2q` ` ρpγ2 ´ ϕpXqqIpϕpXq, γ2q´dPx´

ż

λpϕpXq ´ γ1qIpϕpXq, γ1q`IpϕpXq, λγ1 ` p1 ´ λqγ2 q´dPx`

ż

p1 ´ λqpϕpXq ´ γ2qIpϕpXq, λγ1 ` p1 ´ λqγ2q`IpϕpXq, γ2q´dPx
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“ λ

ż

ψpϕpXq, γ1qdPx ` p1 ´ λq

ż

ψpϕpXq, γ2qdPx ´

ż

λpϕpXq ´ γ1qIpϕpXq, γ1q`IpϕpXq, λγ1 ` p1 ´ λqγ2q``

p1 ´ λqpγ2 ´ ϕpXqqIpϕpXq, λγ1 ` p1 ´ λqγ2q`IpϕpXq, γ2q´dPx

ď λ

ż

ψpϕpXq, γ1qdPx ` p1 ´ λq

ż

ψpϕpXq, γ2qdPx.

This completes the proof of Proposition 1.

To comprehend our algorithm, it is imperative to explore a few more structural properties of the objective
function

ş

ψpϕpXq, γqdPx. For a given performance function ϕ, it is easy to verify that ψpϕpxq, γq is continuous
for a fixed γ P R. This follows directly from the definition of ψ. Also, for a fixed γ P R, one can easily
verify that ψpϕpxq, γq is differentiable at all points except in the set tϕpxq “ γu . However, at all the points
belonging to the set tϕpxq “ γu sub-differential exists (follows from the convexity). By simple analysis, we
obtain the following closed form expression for the sub-differential of ψ:

Bγψpϕpxq, γq “

#

t´p1 ´ ρqIpϕpxq, γq` ` ρIpϕpxq, γq´, for γ ‰ ϕpxq,

r´p1 ´ ρq, ρs , for γ “ ϕpxq.
(6)

Additionally, note that Bγψpϕp¨q, ¨q is bounded. Hence, by appealing to the Dominated Convergence Theorem
(Rubinstein & Shapiro, 1993), one can indeed interchange the operators Bγ and EPx

r¨s in the expression of
BγEPx

rψpϕpXq, γqs, i.e.,
ż

BγψpϕpXq, γqdPx “ Bγ

ż

ψpϕpXq, γqdPx. (7)

This above reformulation provides a more tractable method for finding quantiles by leveraging optimization
techniques. One can solve the quantile estimation problem, by finding the solution to the optimization
problem (5) using stochastic approximation techniques (Robbins & Monro, 1951; Ljung, 1978; Kushner &
Clark, 2012) as follows:

γt`1 “ γt ´ αt`1∆γ
t pXt`1q, where Xt`1 „ Px, (8)

with the decrement term ∆γ
t given by

∆γ
t pxq :“ ´p1 ´ ρqIpϕpxq, γtq

` ` ρIpϕpxq, γtq
´. (9)

The algorithm is specifically a stochastic subgradient descent, where a time-indexed random variable γt is
maintained to track the true quantile, where at each time instant t, the random variable γt is calibrated
in the direction antipodal to the sub-gradient of the residual function ψ in congruence with the perceived
randomness characterized by the probability measure Px. The decrement term in the stochastic recursion is
the sub-gradient contained in the sub-differential Bγψ.

3 Quantile and Superquantile Estimation Algorithm

One can indeed show that the stochastic recursion (8) asymptotically tracks the true quantile i.e., γt Ñ

VaRρpPxq as t Ñ 8 almost surely. However, this is a theoretical convergence result that is only realized
in the limiting sense, i.e., as the number of samples tends to infinity. Practically, stochastic recursion (8)
alone does not produce quality estimates of the true quantile in finite time, specifically for situations where
the quantile parameter ρ is extremely small. We elaborate on this situation more vividly here. Consider
the visual setting provided in Figure 2. There, the red canvas represents a graphic representation of the
distribution of the probability measure Px over ϕpXq (with darker red shades representing higher probability
compared to lighter ones), while the dotted horizontal line is the real line along which the iterates tγtu
generated by recursion (8) drift. At the initial stage of the recursion, say at t “ 1, since the probability
measure is strongly concentrated beyond γ1, the performance value of the sample X2 is more likely to lie
beyond γ1 and hence the drift of γ1 is more likely towards the true quantile. However, after the initial
transient stage, say at t “ 100, note that the iterate γ100 has leaped beyond the heavy probability region,
and in this case, the performance value of the sample X101 is more likely to lie behind γ100, and hence the
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subsequent iterate drifts away from the true quantile (the magnitude of the drift is small since it is weighted
by ρ, however, it prevents the positive drift towards the true quantile). This results in huge variance resulting
in poor precision while estimating extreme quantiles.

Drift

Performance axis

Drift

Tr
ue
 

qu
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ti
le

Drift

Tr
ue
 

qu
an
ti
le

At t = 100At t = 1

Figure 2: We illustrate the drift of γt generated by the stochastic recursion (8) at two points: t “ 1 and
t “ 100. At t “ 1, γt drifts toward the true quantile with high probability due to the sampling distribution’s
strong presence near and beyond the target region. However, by t “ 100, as γt approaches the true quantile,
the drift direction flips. This occurs because the sampling distribution has lower likelihood beyond γ100 and
higher probability behind it, causing a reverse drift. This reversal increases the variance of the estimates, as
they are more likely to deviate from the neighborhood of the true quantile.

To address these issues, we use the importance sampling technique (Geweke, 1989; Glynn, 1996; Asmussen
& Glynn, 2007). In our approach, at each iteration t, the sample Xt`1 is chosen using a surrogate measure
Qt`1 which is possibly different from the given measure Px. The discrepancy in the sampling distribution is
then corrected by re-weighting the samples using the Radon–Nikodym derivative of the original measure with
respect to the surrogate measure. However, the choice of the surrogate measure Qt`1 cannot be arbitrary, but
possesses the conforming characteristic that the event tϕpXq ě γtu is more likely with respect to Qt`1 than
with respect to Px. This introduces a level of adaptability to the sampling process, potentially enhancing the
precision of estimates, particularly in scenarios involving a small quantile parameter. To find such a suitable
surrogate measure, it is sufficient to seek within the subspace of measures that are absolutely continuous
with respect to the original measure Px truncated to the region tϕpXq ě γtu, i.e., for every Borel set inside
the region tϕpXq ě γtu which have a zero measure w.r.t. Px must have a zero measure w.r.t. Qt`1 as well.
Formally, this requirement can be stated as follows:

PxptϕpXq ě γtu XBq “ 0 ñ Qt`1ptϕpXq ě γtu XBq “ 0,@B : Borel set. (10)

This implies that
dPx
dν

pxq “ 0 ñ
dQt`1

dν
pxq “ 0,@x P tϕpxq ě γtu almost everywhere

ñ

"

dP
dν

pxqIpϕpxq, γtq
` ‰ 0

*

Ď

"

Qt`1

dν
pxq ‰ 0

*

almost everywhere. (11)

This means that the support of the Radon-Nikodym derivative dQt`1{dν contains the support of dPx{dν
almost everywhere in the region tϕpxq ě γtu.

Now, by sampling Xt`1 using the surrogate PDF Qt`1, we rewrite the stochastic recursion (8) as follows:

γt`1 :“ γt ´ αt
dPx
dQt

pXt`1q∆γ
t pXt`1q, with Xt`1 „ Qt

“ γt ´ αt
dPx
dQt

pXt`1q

´

´ p1 ´ ρqI`pϕpXt`1q, γtq ` ρI´pϕpXt`1q, γtq
¯

, (12)
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where dPx

dQt
is the Radon-Nikodym derivative of Px w.r.t. the surrogate distribution Qt. Let ζt`1pxq :“ dPx

dQt
pxq.

As mentioned earlier, our goal is to find the surrogate measure Qt such that the event tϕpXt`1q ě γtu is
more likely. Hence, we seek the optimum surrogate measure that minimizes the variance of the random
variable ζtpXt`1qI`pϕpXt`1q, γtq, i.e.,

Find the probability measure sequence tQtu, where Qt satisfies VQt

“

ζtpXqI`pϕpXq, γtq
‰

“ 0 (13)

For brevity, let

ℓt`1 :“
ż

IpϕpXq, γtq
`dPx and pℓt`1 :“ ζtpXqIpϕpXq, γtq

`, where X „ Qt. (14)

Note that assuming Eq. (10), we see that pℓt`1 is an unbiased estimate of ℓt`1. Indeed, for G :“ tx P Rd :
dQt

dν pxq ‰ 0u, we have

EQt

”

pℓt`1

ı

“

ż

G

ζtpXqIpϕpXq, γtq
`dQt `

ż

Gc

ζtpXqI`pϕpXq, γtqdQt

“

ż

G

dPx
dQt

I`pϕpXq, γtqdQt “

ż

G

I`pϕpXq, γtqdPx

“

ż

I`pϕpXq, γtqdPx “ ℓt`1 (15)

We dropped the integral over Gc from the first equality since QtpGcq “ 0. Additionally, we have the following
result on the variance of pℓt`1:
Proposition 2. Let the surrogate probability measure Qt satisfy Eq. (10). Then

VQt

”

pℓt`1

ı

“

ż

ppdPx{dνqI`pϕpXq, γtq ´ ℓt`1pdQt{dνqq
2

pdQt{dνq
dν.

Proof. From the definition of variance, we have,

VQt

”

pℓt`1

ı

“

ż

pℓ2
t`1dQt ´

ˆ
ż

pℓt`1dQt

˙2

Let G :“ tx P Rd : dQt

dν pxq ‰ 0u. Now, from Eq. (15), we get

VQt

”

pℓt`1

ı

“

ż

pdP{dνq2

pdQt{dνq2 I
`pϕpXq, γtq

dQt
dν

dν ´ ℓ2
t`1

“

ż

G

pdP{dνq2

pdQt{dνq2 I
`pϕpXq, γtq

dQt
dν

dν `

ż

Gc

pdP{dνq2

pdQt{dνq2 I
`pϕpXq, γtqdQt

loooooooooooooooooooomoooooooooooooooooooon

= 0 since QtpGc
q “ 0

´ℓ2
t`1

“

ż

G

pdP{dνq2

dQt{dν
I`pϕpXq, γtqdν `

ż

G

ℓ2
t`1pdQt{dνq2

pdQt{dνq
dν ´ 2

ż

G

pdP{dνqpdQt{dνqℓt`1

pdQt{dνq
I`pϕpXq, γtqdν

(16)

The last equality follows since
ż

G

pdP{dνqpdQt{dνqℓt`1

dQt{dν
I`pϕpXq, γtqdν “ ℓ2

t`1 and

ż

G

ℓ2
t`1pdQt{dνq2

pdQt{dνq
dν “

ż

G

ℓ2
t`1

dQt
dν

dν “ ℓ2
t`1.

8
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Therefore, from Eq. (16), we get

VQt

”

pℓt`1

ı

“

ż

G

ppdPx{dνqI`pϕpXq, γtq ´ ℓt`1pdQt{dνqq
2

pdQt{dνq
dν

“

ż

ppdPx{dνqI`pϕpXq, γtq ´ ℓt`1pdQt{dνqq
2

pdQt{dνq
dν (Follows as integral is zero in Gc)

Now, the optimal surrogate probability measure is the one that achieves zero variance. Therefore, the Radon-
Nikodym derivative of the optimal surrogate measure Qt with respect to the product Lebesque measure is
obtained as follows:

VQt

”

pℓt`1

ı

“ 0 ô

ż

ppdPx{dνqI`pϕpXq, γtq ´ ℓt`1pdQt{dνqq
2

pdQt{dνq
dν “ 0

ô
dQt
dν

pxq “
pdPx{dνqpxqI`pϕpxq, γtq

ℓt`1
“

pdPx{dνqpxqI`pϕpxq, γtq
ş

I`pϕpXq, γtqdPx
. (17)

Note that the Radon-Nikodym derivative dQt

dν of the surrogate measure Qt w.r.t. Lebegue measure ν is indeed
a valid probability density function (since dQt

dν pxq ě 0 and
ş

dQt

dν dν “ 1) and has its entire support in the
region tϕpxq ě γtu. Also, it satisfies Eq. (10) as required. However, computing the values of dQt{dνpxq for
different values of x is intractable since its expression contains ℓt`1 which is hard to compute. This makes
sampling using the optimal surrogate probability measure infeasible. To overcome this, one must resort to
approximation techniques, where we attempt to find a tractable, albeit close approximation to the surrogate
measure Qt. We approximate the optimal surrogate measure Qt by projecting it onto a parametrized family
of probability measures that is rich enough (over Rd) QΘ :“ tQθ|θ P Θ Ď Rmu (the specifics regarding the
choice of Q are detailed later) with respect to the Kullback-Leibler (KL) divergence (Kullback, 1959) (moment
projection). This is illustrated in Figure (3). In other words, Qt is approximated by the probability measure
Qθt

P FΘ, where

θt`1 :“ arg min
θPΘ

KLpQt, Qθq. (18)

Figure 3: The optimal surrogate PDF which is obtained is the one which minimizes the KL distance.

9
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For brevity, we denote EθrXs “
ş

XdQθ and QθpAq “
ş

A
dQθ. Now note that

arg min
θPΘ

KLpQt, Qθq “ arg min
θPΘ

ż

dQt log
ˆ

dQt
dQθ

˙

“ arg min
θPΘ

ż

pdQt{dνq log pdQt{dνqdν
loooooooooooooooomoooooooooooooooon

Does not contain θ. So we drop it.

´

ż

pdQt{dνq log pdQθ{dνqdν

“ arg min
θPΘ

´

ż

pdQt{dνq log pdQθ{dνqdν

“ arg max
θPΘ

ż

pdQt{dνq log pdQθ{dνqdν

“ arg max
θPΘ

ş

pdPx{dνqIpϕpXq, γtq
` log pdQθ{dνqdν

ş

IpϕpXq, γtq`dPx

“ arg max
θPΘ

ż

pdPx{dνq

pdQθt
{dνq

pdQθt {dνqIpϕpXq, γtq
` log pdQθ{dνqdν.

Therefore,

θt`1 “ arg max
θPΘ

ż

pdPx{dνq

pdQθt
{dνq

IpϕpXq, γtq
` log pdQθ{dνqdQθt

“ arg max
θPΘ

ż

ζtpXqIpϕpXq, γtq
` log pdQθ{dνqdQθt

, where ζtpxq “
pdPx{dνq

pdQθt
{dνq

pxq. (19)

The natural exponential family (NEF) is a class of parametrized probability measures QΘ “ tQθ|θ P Θ Ď

Rmu which satisfies the following form:
pdQθ{dνqpxq “ hpxq exp

`

θJΓpxq ´Kpθq
˘

, (20)
where θ is the parameter of the measure, Γpxq is the sufficient statistic, that captures all necessary information
for inference about θ from data, Kpθq “ ln

ş

exp pθJΓpxqqdx is the cumulant function, which ensures that
the distribution is normalized and hpxq is a base measure that depends only on the data and not on the
parameter θ. Here Θ “ tθ P Rm| |Kpθq| ă 8u. Let mpθq “

ş

ΓpXqdQθ.

In the case of NEF as the choice of the distribution space, by the first-order optimization conditions, the
solution θt`1 to the optimization problem (19) satisfies the following:

∇θ

ż

ζtpXqIpϕpXq, γtq
` log pdQθ{dνqdQθt

“ 0

ñ ∇θ

ż

ζtpXqIpϕpXq, γtq
`
`

log hpXq ` θJΓpXq ´Kpθq
˘

dQθt
“ 0

ñ

ż

ζtpXqIpϕpXq, γtq
` pΓpXq ´ ∇θKpθqq dQθt

“ 0 (21)

ñ

ż

ζtpXqIpϕpXq, γtq
`ΓpXqdQθt

“

ż

ζtpXqIpϕpXq, γtq
`∇θKpθqdQθt

ñ mpθq

ż

ζtpXqIpϕpXq, γtq
`dQθt

“

ż

ζtpXqIpϕpXq, γtq
`ΓpXqdQθt

ñ mpθt`1q “

ş

ζtpXqIpϕpXq, γtq
`ΓpXqdQθt

ş

ζtpXqIpϕpXq, γtq`dQθt

ñ θt`1 “ m´1
ˆ

ş

ζtpXqIpϕpXq, γtq
`ΓpXqdQθt

ş

ζtpXqIpϕpXq, γtq`dQθt

˙

(22)

The function Kpθq is strictly convex in Θo (interior of Θ) with ∇Kpθq “
ş

ΓpXqdQθ “ mpθq and ∇2Kpθq “

Eθ
”

pΓpXq ´ Eθ rΓpXqsq
2
ı

(Morris, 1982). Therefore, the Jacobian of mpθq is positive definite. From the
inverse function theorem, it follows that m is also invertible (Spivak, 2018).

10
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Thus, the recursive VaRρpPxq estimate in eq. (12) can be adapted by using samples drawn from the approxiate
surrogate measure Qθt . Specifically, the recursion formula for VaRρpPxq can be modified to incorporate these
surrogate samples, which will help in refining the VaR estimate as follows:

γt`1 “ γt ´ αt
dPx
dQθt

pXt`1q

´

´ p1 ´ ρqIpϕpXt`1q, γtq
` ` ρIpϕpXt`1q, γtq

¯´

, with Xt`1 „ Qθt (23)

where dPx

dQθt
is the Radon-Nikodym derivative of Px w.r.t. the surrogate distribution Qt.

3.1 Approximation Error Bounds

The crucial question to address is whether the application of the aforementioned update rule (22) will produce
a new surrogate measure Qθt`1 that demonstrates a higher probability for the event tϕpXq ě γtu compared
to the original measure Px. In other words, we need to determine if the updated parameters θt`1 derived
from the update rule, will lead to an improvement in the likelihood of observing the event tϕpXq ě γtu
relative to the likelihood provided by Px. In this section, we attempt to quantify the likelihood of the event
tϕpXq ě γtu with respect to the surrogate measure Qθt

. To achieve this, observe that

0 ď KLpQt`1, Qθt q ´ KLpQt`1, Qθt`1 q

ď KLpQt`1, Qθt
q ´ KLpQt`1, Qθt`1 q ` KLpQt`1, sQθt`1 q, where

d sQθt`1

dν
pxq :“

I`pϕpxq, γtqpdQθt`1 {dνqpxq
ş

IpϕpXq, γtq`dQθt`1

“

ż

log
ˆ

dQθt`1

dQθt

˙

dQt`1 `

ż

log
ˆ

dPx
dQθt`1

˙

dQt`1 ` log
ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx

“

ż

log
ˆ

dPx
dQθt

˙

dQt`1 ` log
ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx

ď log
ż

dPx
dQθt

dQt`1 ` log
ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx
(Jensen’s inequality)

“ log
ż

ζtpXq

PxpϕpXq ě γtq
dQt`1 ` log

ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx
.

The first inequality above follows since θt`1 is the solution to the optimization problem (18). The second
inequality follows since KLp¨, ¨q ě 0.

If log
ş ζtpXq

PxpϕpXqěγtq
dQt`1 ď 0, then,

log
ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx
ě 0 ñ

ş

IpϕpXq, γtq
`dQθt`1

ş

IpϕpXq, γtq`dPx
ě 1

ñ

ż

IpϕpXq, γtq
`dQθt`1 ě

ż

IpϕpXq, γtq
`dPx

ñ Qθt`1 pϕpXq ě γtq ě Px pϕpXq ě γtq . (24)

The above inequality implies that the update rule (19) will monotonically improve the concentration of the
probability measure of the surrogate measure on the event tϕpXq ě γtu. This result is quite promising,
since our primary goal is to find a surrogate measure that has a more likely presence in the extreme region
relative to the original measure Px. A temporal improvement in the probability of the extreme region w.r.t.
to the surrogate distribution at each time step will effectively reduce the variance of the quantile estimates
in the long run and thus positively tighten the entire estimation process. Although inequality guarantees an
improvement in likelihood, it does not provide a precise measure of the extent of this improvement. However,

11
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a naive estimate of the improvement can be obtained using the Bretagnolle-Huber inequality. In fact,
›

›

›
Qθt`1 ´Qt`1

›

›

›

TV
ď

b

1 ´ exp p´KLpQt`1, Qθt`1 qq (Bretagnolle–Huber inequality)

ñ |Qθt`1 pϕpXq ě γtq ´Qt`1 pϕpXq ě γtq | ď

›

›

›
Qθt`1 ´Qt`1

›

›

›

TV
ď

b

1 ´ exp p´KLpQt`1, Qθt`1 qq

ñ Qθt`1 pϕpXq ě γtq ě Qt`1 pϕpXq ě γtq ´

b

1 ´ exp p´KLpQt`1, Qθt`1 qq

ñ Qθt`1 pϕpXq ě γtq ě 1 ´

b

1 ´ exp p´KLpQt`1, Qθt`1 qq (25)

The total variation distance is defined as }P ´Q}TV :“ supAPF |P pAq ´QpAq| with P and Q be probability
measures on pS,Fq. Here, KLpQt`1, Qθt`1 q is the approximation error incurred while projecting the zero-
variance surrogate measure Qt`1 onto the probability space F .
Lemma 2. Let P and Q be two probability measures with P ! ν and Q ! ν and pdQ{dνqpxq ě 1

υ2
Q

, @x for
some υQ ą 0. Then we have

KLpP,Qq ď υ2
Q

ż
ˆ

dP

dν
´
dQ

dν

˙2
dν

Proof.

KLpf, gq “

ż

log dP {dν

dQ{dν
dP ď log

ż

dP {dν

dQ{dν
dP (Jensen’s inequality)

“ log
ż

pdP {dνq2

dQ{dν
dν ď

ż

pdP {dνq2

dQ{dν
dν ´ 1 p7 log x ď x´ 1,@x ą 0q

“

ż

pdP {dνq2

dQ{dν
dν ´

ż

pdQ{dνq2

dQ{dν
dν “

ż

pdP {dνq2 ´ pdQ{dνq2

dQ{dν
dν

“

ż

pdP {dνq2 ` pdQ{dνq2 ´ 2pdQ{dνq2 ´ 2pdP {dνqpdQ{dνq ` 2pdP {dνqpdQ{dνq

dQ{dν
dν

“

ż

pdP {dν ´ dQ{dνq2

dQ{dν
dν ´ 2

ż

pdQ{dνq2

dQ{dν
dν ` 2

ż

pdP {dνqpdQ{dνq

dQ{dν
dν “

ż

pdP {dν ´ dQ{dνq2

dQ{dν
dν

ď υ2
Q

ż

pdP {dν ´ dQ{dνq2dν (26)

We need the following result from (Zeevi & Meir, 1997),(Petersen, 1983) and (Rana, 2002) regarding the
density of the continuously differentiable functions in the space of square integrable functions.
Lemma 3. (Theorem 8.7.10 of (Rana, 2002)) Let q P C

`

Rd
˘

with q ě 0, and
ş

qpxqdx “ 1. We define
mollifier qσpxq “ σ´dqpσ´1xq where σ ą 0. Then for any f P C

`

Rd
˘

with
ş

f2pxqdx ă 8, we have the
following

ż
ˆ
ż

qσpx´ yqfpyqdy ´ fpxq

˙2
dx Ñ 0 as σ Ó 0 (27)

Lemma 4. Let Qθ be an NEF measure. Then
ż

pdQθ{dνq
2
dν ď Cθ ă 8.

12
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Proof. Let pdQθ{dνqpxq “ hpxq exppθJΓpxq ´Kpθqq then
ż

pdQθ{dνq2dν “

ż

h2pxq expp2θJΓpxq ´ 2Kpθqqdx

“

ż

hpxq exppθJΓpxq ´Kpθqqhpxq exppθJΓpxq ´Kpθqqdx

ď Cθ
ż

hpxq exppθJΓpxq ´Kpθqqdx

„

where Cθ “ sup
x

`

hpxq exppθJΓpxq ´Kpθqq
˘

ȷ

“ Cθ ă 8.

Lemma 5. Assume sCΘ “ supθ Cθ ă 8. Let P be a probability measure with dP {dν continuous and bounded.
Then for a given arbitrary ϵ1 ą 0, there exists an L P QΘ and σ ą 0 such that ,

ż
ˆ
ż

qσpx´ yq
dP

dν
pyqdy ´

dL

dν
pxq

˙2
dx ď ϵ1 ` sCΘ ´ 1, where q P QΘ and qσpxq “ σ´d dq

dν
pσ´1xq

Proof. Let f “ dP {dν and sfpxq “
ş

qσpx´ yqfpyqdy. Since f, qσ are continuous and Riemann integrable, it
follows that sf P CONVpQΘq, where CONV represents closure of convex hull of QΘ. Hence, for ϵ1 ą 0, we have

ż

p sfpxq ´ fcpxqq2dx ď ϵ1 (28)

where fcpxq “
řm
k“1 cksgkpxq with sgk P QΘ, ck ě 0,

řm
k“1 ck “ 1, for some sufficiently large m. Let sg be

random function drawn from the set t sg1, ¨ ¨ ¨ ,Ďgmu with P
sg psg “ sgkq “ ck. Then E

sgrsgs “ fc, and

E
sg

„
ż

psgpxq ´ fcpxqq2dx

ȷ

“ E
sg

„
ż

sg2pxqdx

ȷ

´

ż

f2
c pxqdx ď sCΘ ´

ż

f2
c pxqdx (29)

Hence, there exists a g P tsg1, ¨ ¨ ¨ , sgmu such that
ż

pgpxq ´ fcpxqq2dx ď sCΘ ´

ż

f2
c pxqdx (30)

Furthermore,
ż

p sfpxq ´ gpxqq2dx ď

ż

p sfpxq ´ fcpxqq2dx`

ż

pgpxq ´ fcpxqq2dx pby Triangle Inequalityq

ď ϵ1 ` sCΘ ´

ż

f2
c pxqdx pFrom Eqs. (28) and (30)q

ď ϵ1 ` sCΘ ´

ˆ
ż

fcpxqdx

˙2
p by Jensen’s Inequalityq

“ ϵ1 ` sCΘ ´ 1

The following result offers a lower bound for the probability of the event tϕpXq ě γtu with respect to the
surrogate measure Qθt .
Theorem 1. Let υΘ “ infQθPQΘ supxpdQθ{dνqpxq ą 0. Assume dQt`1{dν is continuous everywhere except
at countable number of points. Then, for t ě 0,

Qθt`1 pϕpXq ě γtq ě 1 ´

b

1 ´ exp pυ2
Θp1 ´ ϵ´ sCΘqq.

13
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Proof. From 25 we have

Qθt`1 pϕpXq ě γtq ě 1 ´

b

1 ´ exp p´KLpQt`1, Qθt`1 qq (31)

Now, we upper bound KLpQt`1, Qθt`1 q as follows - From Lemma 3, we know that, for ϵ ą 0, there exists a
σ ϵ

2
ą 0 such that

ż
ˆ
ż

qσ ϵ
2

px´ yq
dQt`1

dν
pyqdy ´

dQt`1

dν
pxq

˙2
dx ă

ϵ

2 (32)

Also from Lemma 5, there exists a L P QΘ such that ,
ż
ˆ
ż

qσ ϵ
2

px´ yq
Qt`1

dν
pyqdy ´

dL

dν
pxq

˙2
dx ď

ϵ

2 ` sCΘ ´ 1, (33)

Now, from Lemma 2, we have the following.

KLpQt`1, Qθt`1 q ď KL pQt`1, Lq ď υ2
L

ż

ppdQt`1{dνqpxq ´ pdL{dνqpxqq2dx

ď υ2
L

˜

ż
ˆ
ż

qσ ϵ
2

px´ yq
dQt`1

dν
pyqdy ´

dQt`1

dν
pxq

˙2
dx`

ż
ˆ
ż

qσ ϵ
2

px´ yq
dQt`1

dν
pyqdy ´

dL

dν
pxq

˙2
dx

¸

pUsing Triangle Inequalityq

ď υ2
Θ

´ ϵ

2 `
ϵ

2 ` sCΘ ´ 1
¯

pFrom Eqs. (32 and 33)q

“ υ2
Θpϵ` sCΘ ´ 1q. (34)

Finally, substituting eq.(34) in eq.(31) we obtain

Qθt`1 pϕpXq ě γtq ě 1 ´

b

1 ´ exp pυ2
Θp1 ´ ϵ´ sCΘqq (35)

The above result provides a lower bound for the probability of the event tϕpXq ě γtu with respect to the
surrogate measure Qθt , expressed in terms of the space of parameterized NEF measures Qθ. It is important
to note that sCΘ and ϑΘ represent the upper and lower bounds of the Radon-Nikodyn derivatives for the NEF
measures in QΘ. Note that as C̄Θ becomes larger and ϑΘ is closer to 0, then Qθt`1 pϕpXq ě γtq becomes
closer to 0 indicating that as the Radon-Nikodyn derivates are narrow, the approximation is poor. As sCΘ
increases and ϑΘ approaches zero, the probability Qθt`1 pϕpXq ě γtq tends toward 0. This outcome suggests
that when the Radon-Nikodyn derivatives become increasingly narrow—meaning the surrogate parametrized
space is more concentrated—the approximation of the true probability becomes poorer. In other words, as
the surrogate measure becomes more “localized” or “precise” ,it may fail to adequately approximate the true
distribution, leading to a less reliable estimate of the probability of the event tϕpXq ě γtu. This highlights
the importance of ensuring that the Radon-Nikodyn derivatives maintain a sufficiently wide range for the
approximation to remain stable and accurate.

An improved bound on the probability of extreme events Qθt`1 pϕpXq ě γtq can be obtained by bounding the
total variation distance between the probability measures Qθt`1 and Qt`1, respectively. From (Zhang, 2007;
Sason, 2015) (specifically, Eq. (7) of (Sason, 2015)), we have the following expression for the total variation
distance between the probability measures induced by Qθt`1 and Qt`1

›

›

›
Qθt`1 ´Qt`1

›

›

›

TV
“ Eθt`1

„

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log
dQθt`1

dQt`1
pXq

˙

ˇ

ˇ

ˇ

ȷ

,

14
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where dQθt`1
dQt`1

is the Radon-Nikodym derivative of Qθt`1 w.r.t. Qt`1 (note that the Radon-Nikodym derivative
is well defined since Qθt`1 is absolutely continuous w.r.t. Qt`1, i.e., Qt`1pAq “ 0 ñ Qθt`1 pAq “ 0, @A P F).
Then

|Qθt`1 pϕpXq ě γtq ´Qt`1 pϕpXq ě γtq | ď

›

›

›
Qθt`1 ´Qt`1

›

›

›

TV
“ Eθt`1

„

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log
dQθt`1

dQt`1
pXq

˙

ˇ

ˇ

ˇ

ȷ

ñ |Qθt`1 pϕpXq ě γtq ´Qt`1 pϕpXq ě γtq | ď Eθt`1

„

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log
dQθt`1

dQt`1
pXq

˙

ˇ

ˇ

ˇ

ȷ

ñ |Qθt`1 pϕpXq ě γtq ´Qt`1 pϕpXq ě γtq | ď Eθt`1

»

–

ˇ

ˇ

ˇ
1 ´ exp

¨

˝´ log
pdQθt`1 {dνqpXq

pdPx{dνqpXqIpϕpXq,γt`1q`

EPx rIpϕpXq,γt`1q`s

˛

‚

ˇ

ˇ

ˇ

fi

fl

(Follows from Eq. (17))

“ Eθt`1

„

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log
EPx

rIpϕpXq, γt`1q`s pdQθt`1 {dνqpXq

pdPx{dνqpXq

˙

ˇ

ˇ

ˇ

ȷ

. (36)

Proposition 3. For t ě 0, and δ P r0, 1s, if 1 ´ δ ď
ζtpxqIpϕpxq,γtq

`

PxpϕpXqěγtq
ď 1 ` δ,@x, then

Qθt`1 pϕpXq ě γtq ě 1 ´ δ

Proof. Given that for δ P r0, 1s,

1 ´ δ ď
ζtpxqIpϕpxq, γtq

`

PxpϕpXq ě γtq
ď 1 ` δ,@x

ñ logp1 ´ δq ď ´ log
ˆ

PxptϕpXq ě γtuq

ζtpxqIpϕpxq, γtq`

˙

ď logp1 ` δq,@x

ñ p1 ´ δq ď exp
ˆ

´ log PxptϕpXq ě γtuq

ζtpxqIpϕpxq, γtq`

˙

ď p1 ` δq,@x

ñ ´δ ď 1 ´ exp
ˆ

´ log PxptϕpXq ě γtuq

ζtpxqIpϕpxq, γtq`

˙

ď δ,@x

ñ

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log PxptϕpXq ě γtuq

ζtpxqIpϕpxq, γtq`

˙

ˇ

ˇ

ˇ
ď δ,@x. (37)

Substituting Eq.(37) in E.q.(36), we get,

|Qθt`1 pϕpXq ě γtq ´Qt`1 pϕpXq ě γtq | ď Eθt`1

„

ˇ

ˇ

ˇ
1 ´ exp

ˆ

´ log PxptϕpXq ě γtuq

ζtpXqIpϕpXq, γtq`

˙

ˇ

ˇ

ˇ

ȷ

ď δ

ñ Qθt`1 pϕpXq ě γtq ě 1 ´ δ since Qt`1 pϕpXq ě γtq “ 1. (38)

3.2 Algorithm (Stochastic Approximation Version)

The key challenge is to estimate the measure parameter θt efficiently. This question is relevant since the
computation of the true values of this parameter (Eq. (22) is intractable, i.e., hard to compute (specifically,
due to the implicit hardness involved in computing

ş

dQθt
). Additionally, maintaining an incremental, online,

single-pass approach is highly desirable from a computational complexity standpoint, especially for real-time
applications where data arrives sequentially. Therefore, to estimate them, we employ an additional stochastic
approximation recursion to track the tunable parameter θt as follows:

ηt`1 “ ηt ` βtζtpYt`1qpIpϕpYt`1q, γtq
`ΓpYt`1q ´ ηtI´pϕpYt`1q, γtqq, where Yt`1 „ Qθt

(39)

Then θt is estimated as θt “ m´1pηtq. We prove in Lemma 6 that iterates ηt indeed track the ideal mpθtq and
m´1 can typically be computed in time that is proportional to a polynomial in d. For a given γt, note that the
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ideal Qθt
identifies the surrogate measure that has strong probabilistic support in the region tϕpXq ě γtu.

This requires that the θt have to be estimated with sufficient accuracy before γt can drift significantly.
This requirement regarding the asynchronicity of the convergence rates of the stochastic recursions can be
achieved by following a multi-timescale stochastic approximation framework (Borkar, 1997; 2008). In this
framework, we maintain the stochastic recursion of γt along a slower time-scale (lower convergence rate)
relative to ηt which are maintained along a faster time-scale (faster convergence rate). This setup can be
interpreted as γt being quasi-static, while ηt converges close to mpθtq with respect to the static value of
γt. The continuous nature of this coupled updating process prevents large discrete changes, thus reducing
variance and contributing to the stability of the estimates (Konda & Tsitsiklis, 2003).

Observe that at each iteration t, if the sample Xt`1 is drawn using the surrogate measure Qθt , then one
might fall prey to over-compliance i.e., scenarios where a substantial fraction of the samples belong to
the region tϕpXq ě γtu. This is because the measure Qθt

is pursued to maintain strong probabilistic
support in the region tϕpXq ě γtu. This is quite synonymous with the earlier scenario, where we had a
considerable number of samples originating from the region tϕpXq ď γtu when samples were sampled using
Px. Therefore, to achieve a balance, we follow a randomized approach, where at each iteration t, we obtain
the sampling measure pQt by choosing between the original measure Px and the surrogate measure Qθt based
on an independent Bernoulli trial with parameter λ P r0, 1s (fixed a priori), i.e., P(choosing Px) = λ and
P(choosing Qθt) = 1 ´ λ. One can indeed interpret pQt as a mixture measure, i.e., pQt “ λPx ` p1 ´ λqQθt .
In fact, for an arbitrary Borel set A and pX „ pQt, we have

pQtp pX P Aq “

ż

A

d pQt “

ż

A

λdPx ` p1 ´ λq

ż

A

dQθt

“ Ppchoosing PxqPxp pX P Aq ` Ppchoosing Qθt
qQθt

p pX P Aq.

Now to esitmate CVaR, we consider the CVaR definition from Eq. (2),

CVaRρpPxq “

ş8

VaRρpPxq
ϕpXqdPx

Pxpϕ
`

Xq ě VaRρpPxqq

“

ş

ϕpXqIpϕpXq, VaRρpPxqq`dPx
Pxpϕ

`

Xq ě VaRρpPxqq

“

ż

ϕpXqdPCVaR
x , where dPCVaR

x

dν
pxq “

Ipϕpxq, VaRρpPxqq`pdPx{dνqpxq

Pxpϕ
`

Xq ě VaRρpPxqq
(40)

By Theorem 2, the iterates γt converges to VaRρpPxq as t Ñ 8. Hence, by continuity of probability measures,
we get,

Qt “
pdPx{dνqpxqI`pϕpxq, γtq

PxpϕpXq ě γtq
Ñ

Ipϕpxq, VaRρpPxqq`pdPx{dνqpxq

Pxpϕ
`

Xq ě VaRρpPxqq
“
dPCVaR

x

dν
pxq as t Ñ 8. (41)

This implies that if Qθt
“ minθ KLpQt, Qθq which approximates Qt as closely as possible converges as t Ñ 8,

then limtÑ8 Qθt
is a good approximation of PCVaR

x . Hence,

lim
tÑ8

ż

ϕpXqdQθt
« CVaRρpPxq. (42)

Therefore, one can estimate CVaRρpPxq as follows:

sηt`1 “
1

pt` 1qc
ptcsηt ` ϕpYt`1qq with Yt`1 „ Qθt and c ě 1. (43)

This recursive formula involves iteratively updating the estimate by incorporating new samples from the
distribution Qθt

and averaging them. The parameter c controls the weight given to new samples versus pre-
vious estimates. The recursion described above involves repeatedly aggregating the samples ϕpYtq followed
by their averaging, which incrementally leads to a more accurate estimate of the CVaR as t Ñ 8.
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3.3 Gaussian Version

The Gaussian (or normal) distribution is in fact one of the most common among the NEF family. For the
Gaussian case with the parameterization given by θ “ pµ,ΣqJ with µ P Rd, Σ P Sd``, we have the following
closed-form expression for the surrogate Gaussian:

BµEθt

„

ζtpXqIpϕpXq, γtq
`

ˆ

1
2 pX ´ µqJΣ´1pX ´ µq `

1
2 log p2π|Σ|q

˙ȷ

“ 0

ñ Σ´1Eθt

“

ζtpXqIpϕpXq, γtq
`pX ´ µq

‰

“ 0
ñ Eθt

“

ζtpXqIpϕpXq, γtq
`pX ´ µq

‰

“ 0 psince Σ´1 is full rankq

ñ µt`1 “
Eθt

rζtpXqIpϕpXq, γtq
`Xs

Eθt
rζtpXqIpϕpXq, γtq`s

. (44)

Similarly, BΣEθt

„

ζtpXqIpϕpXq, γtq
`

ˆ

1
2 pX ´ µqJΣ´1pX ´ µq `

1
2 log p2π|Σ|q

˙ȷ

“ 0

ñ Eθt

„

ζtpXqIpϕpXq, γtq
`

ˆ

´
1
2Σ´T pX ´ µqpX ´ µqJΣ´T `

1
2Σ´T

˙ȷ

“ 0

ñ Eθt

“

ζtpXqIpϕpXq, γtq
`
`

´pX ´ µqpX ´ µqJΣ´T ` I
˘‰

“ 0 psince Σ´T is full rankq

ñ Σt`1 “
Eθt

“

ζtpXqIpϕpXq, γtq
`
`

pX ´ µqpX ´ µqJ
˘‰

Eθt
rζtpXqIpϕpXq, γtq`s

. (45)

In Figure(4), we illustrate the evolution of surrogate Gaussian distributions by following the update rules
given by Eqs.(44) and (45).

Figure 4: Illustration of the approximate optimal surrogate distribution obtained after projecting the optimal
surrogate distribution to the space of parametrized Gaussian distributions collected over 100 iterations each.

Here, we state some necessary assumptions:
Assumption (A1): The step-size schedules tαtutPN and tβtutPN are real-valued, positive, deterministic and
pre-determined sequences and they satisfy

ÿ

tPN

`

α2
t ` β2

t

˘

ă 8,
ÿ

tPN
αt “

ÿ

tPN
βt “ 8, lim

tÑ8

αt
βt

“ 0.
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Algorithm 1 [Extreme quantile and superquantile estimation algorithm]
1: Input parameters: αt, βt ą 0, λ, ρ P r0, 1s, T P N;
2: Initialize γ0 “ ´8, t “ 0, η0;
3: while t ă T do
4: pQt „ BernoulliptPx, Qθt

u, λq, where θt “ m´1pηtq;
5: γt`1 “ γt ` αtζtppXt`1qpp1 ´ ρqIpϕppXt`1q, γtq

` ´ ρIpϕppXt`1q, γtq
´q, where pXt`1 „ pQt;

6: ηt`1 “ ηt ` βtζtpYt`1qpIpϕpYt`1q, γtq
`ΓpYt`1q ´ ηtIpϕpYt`1q, γtq

´q, where Yt`1 „ Qθt ;
7: sηt`1 “ 1

pt`1qc ptcsηt ` ϕpYt`1qq;
8: t “ t` 1;
9: end while

10: Return yVaRρpϕq “ γT ,zCVaRρpϕq “ sηT ;

Examples of such step sizes are αt “ 1
t , βt “ 1

tc , c P p1{2, 1q; αt “ 1
1`t log t , βt “ 1

t and so on.

Assumption (A2): The given measure Px satisfies EPx
r|ΓpXq|s ă 8.

3.4 Convergence Analysis

The proposed algorithm is a two-timescale stochastic approximation algorithm where there exists a bilateral
coupling between the stochastic recursions defined in steps 5,6 and 7 of Algorithm 1. It is a known fact that
the asymptotic behaviour of the multi-timescale approximation algorithm is dependent on the relationship
between the step-sizes of the individual recursions (assuming all the regularity conditions are satisfied). Note
that the step-size schedules tαtutPN and tβtutPN satisfy αt

βt
Ñ 0, which implies that the step-size sequence

tαtutPN decays to 0 relatively faster than the sequence tβtutPN. This disparity in terms of the decay rate of
the step sizes results in the emergence of an asynchronous and coherent convergence behavior asymptotically
(Borkar, 1997), with the threshold sequence tγtu converging slower relative to the sequence tηtutPN. The
rationale being that the decrement term ζtppXt`1q∆γ

t ppXt`1q of the γt recursion (step 5) is weighted with αt,
which is order of magnitude smaller compared to that of βt asymptotically, i.e. tαtu P optβtuq. This unique
pseudo heterogeneity induces multiple perspectives, i.e., when viewed from the faster timescale recursion
(recursion controlled by βt), the slower timescale recursion (recursion controlled by αt) seems quasi-static
(‘almost a constant’) and while viewed from the slower timescale, the faster timescale recursion seems equili-
brated. This intuition is indeed theoretically corroborated in (Borkar, 1997) (or Chapter 6 of (Borkar, 2008))
where the multi-timescale stochastic approximation algorithms are analyzed and shown that the asymptotic
dynamics of a two-timescale recursion is equivalent to that of its slowest timescale component with the faster
timescale variable replaced by the limit point of the faster timescale recursion obtained by keeping the slower
timescale variable quasi-static (also assuming that the faster timescale recursion has a single limit point).
So, in this paper, we follow this line of analysis and hence we initially analyze the faster timescale recursion
(step 6) assuming that the slower timescale variable γt is quasi-static. The results are provided in Lemma
6. Further, we analyze the slower timescale recursion (step 5) after replacing ηt by their quasistatic limit
points (which happen to be unique and finite for each quasi-static variable). The results are provided in
Theorem 2. Note that sηt, is independent of the other recursions as it has unidirectional coupling with the
other recursions and hence it is analyzed independently in part 2 of following lemma.

Define the filtration tFtutPN, where the σ-field Ft :“ σ
`

γi, ηi, sηi, θi, 0 ď i ď t, pXi,Yi, 1 ď i ď t
˘

.

Lemma 6. Let η0 be integrable, i.e., E r|η0|s ă 8. Assume θt ” θ,@t and γt ” γ,@t (i.e., quasi-static). Let
Assumptions (A1) and (A2) hold. Then, almost surely,

lim
tÑ8

ηt “ η|γ,θ “

ş

IpϕpYq, γq`ΓpYqdPx
ş

IpϕpYq, γq`dPx
, and lim

tÑ8
sηt “

ż

ΓpYqdQθ.
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Proof. Here, we prove the asymptotic analysis of the sequence tηtutPN conditioned on γt ” γ and θt ” θ. We
recall here the stochastic recursion of ηt from Step 6 of Algorithm 1 with γt “ γ and θt “ θ:

ηt`1 “ ηt ` βtζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

, where Yt`1 „ Qθt

“ ηt ` βtζθpYt`1q
`

h1pηq ` Mt`1
˘

, (46)

where,

M1
t`1 “ ζt

`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

´

Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

|Ft
‰

and (47)
h1pηq “ Eθ

“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηI`pϕpYt`1q, γq
˘

|Ft
‰

“ Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηI`pϕpYt`1q, γq
˘‰

(48)

The last equality follows since Yt`1 is independent of Ft. Also, we have ηt, t ě 0 is integrable. This can be
shown by induction. The base case follows the assumption in the lemma. Now assume ηt is integrable for
t ą 0. Now consider

E r|ηt`1|s “ E
“

|ηt ` βtζt
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

|
‰

ď E r|ηt|s ` E
“

|βtζtpYt`1qI`pϕpYt`1q, γqΓpYt`1q|
‰

` E
“

|ηtI`pϕpYt`1q, γq|
‰

ď E r|ηt|s ` βtEPx
r|ΓpYt`1q|s ` E r|ηt|s ă 8 (49)

(by induction hypothesis and Assumption A2).

This establishes that M1
t is well defined. Now, we employ the ODE based analysis of the stochastic approxi-

mation algorithms proposed in Chapter 2 of (Borkar, 2008) to study the limiting behavior of the stochastic
sequence tηtutPN, where we verify the necessary conditions (as prescribed by (Borkar, 2008)) required to
establish the equivalence between the asymptotic behavior of the stochastic sequence tηtutPN to that of its
deterministic flow induced by the associated ODE d

dtηptq “ h1pηptqq. Then we study the qualitative behavior
of the solutions of the associated ODE to identify the stable equilibrium points (which will also be the limit
points of the sequence tηtutPN due to the settled equivalence).
Part 1: To establish the equivalence between the stochastic recursion (46) and its associated
ODE:
To achieve this, one has to guarantee that the vector field h1, the noise tM1

t`1utPN and the stochastic sequence
tηtutPN satisfy certain necessary conditions which are as follows:

• The vector field h1 is Lipschitz continuous.

}h1pη1q ´ h1pη2q}2 “}Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ η1I`pϕpYt`1q, γq
˘‰

´

Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ η2I`pϕpYt`1q, γq
˘‰

}2

“ PxpϕpYt`1q ě γq}η1 ´ η2}2

ď }η1 ´ η2}2.

• tM1
t`1utPN is a martingale difference noise sequence w.r.t. the filtration tFt`1utPN, i.e., M1

t`1 is
Ft`1´measurable and integrable, @t P N (follows from Eq. (49)). Also, for t ě 0, we have

E
“

M1
t`1|Ft

‰

“ E
„

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

´

Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI`pϕpYt`1q, γq
˘

|Ft
‰

ˇ

ˇ

ˇ

ˇ

Ft
ȷ

“ 0.
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• From Assumption (A2) and the fact that pQt has finite first and second moments, @t P N, we get
that DK2 P p0,8q, s.t. E

“

}M0
t`1}2|Ft

‰

ď K2p1 ` }bt}
2q,@t P N.

E
“

}M1
t`1}2|Ft

‰

“ E
„

›

›ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI´pϕpYt`1q, γq
˘

´

Eθ
“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ ηtI´pϕpYt`1q, γq
˘

|Ft
‰
›

›

2
ˇ

ˇ

ˇ

ˇ

Ft
ȷ

“ EPx rI`pϕpYt`1q, γqΓpYt`1qJΓpYt`1qs´

EPx
rI`pϕpYt`1q, γqΓpYt`1qsJEPx

rI`pϕpYt`1q, γqΓpYt`1qs`

E
“

ηJ
t ηtI`pϕpYt`1q, γq|Ft

‰

´ ηJ
t ηtE

“

I`pϕpYt`1q, γq|Ft
‰

ď 2EPx
rI`pϕpYt`1q, γq}ΓpYt`1q}2s

“ 2EPx
rI`pϕpYq, γq}ΓpYq}2s

Hence sup
t

E
“

}M1
t`1}2|Ft

‰

ď 2EPx r}ΓpYq}2s ă 8

• By appealing to the Borkar-Meyn thereom (Borkar & Meyn, 2000) (Theorem 7 of Chapter 3 in
(Borkar, 2008)), one can show that the iterates ηt are stable, i.e., tηtutPN is bounded almost surely.
The Borkar-Meyn stability theorem claims that iterates almost surely remain inside a bounded set
when the dynamics of the flow induced by the dominant component of the vector field h0 is globally
asymptotically stable at the origin. Indeed, the flow of the dominating component is defined as the
following limiting ODE:

d

dt
ηptq “ h1

8pηptqq :“ lim
rÑ8

h1prηptqq

r
, t ě 0. (50)

In our case, the above limit exists and we have

h1
8pηq “ lim

rÑ8

1
r
Eθ

“

ζθ
`

Yt`1qpI`pϕpYt`1q, γqΓpYt`1q ´ rηI`pϕpYt`1q, γq
˘‰

“ ´PxpϕpYq ě γqIdˆdη. (51)

It is now easy to verify that the limiting ODE (51) is globally asymptotically stable at origin (since all
the eigenvalues of the diagonal matrix ´PxpϕpYq ě γqIdˆd are negative, real numbers) as required.
Hence,

sup
t

}ηt} ă 8 a.s.

Since the stochastic recursion (46) confirms the hypothesis of Corollary 4 in Chapter 2 of (Borkar, 2008),
now, by appealing to the said corollary, we conclude that the limiting behavior of the stochastic recursion
(46) is equivalent to the limiting behavior of the flow induced by the following ODE:

d

dt
ηptq “ h1pηptqq, t ě 0

“ Eθ
“

ζθ
`

YqpI`pϕpYq, γqΓpYq ´ ηptqI`pϕpYq, γq
˘‰

“ EPx

“

I`pϕpYq, γqΓpYq
‰

´ ηptqEPx

“

I`pϕpYq, γq
‰

“ EPx

“

I`pϕpYq, γqΓpYq
‰

´ ηptqPx pϕpY ě γq . (52)

Part 1.2: Qualitative analysis of the limiting behavior of the associated ODE (52):
For brevity, we rewrite the ODE (52) as follows:

d

dt
ηptq “ Dηptq ` EPx

“

I`pϕpYq, γqΓpYq
‰

, t ě 0, (53)
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where D is a diagonal matrix with Dii “ ´Px pϕpY ě γq, 1 ď @i ď d. Observe that the ODE (53) is a linear,
first-order ODE and therefore, the stability of the stationary point ´D´1EPx

rI`pϕpYq, γqΓpYqs (obtained
by equating d

dtηptq to 0) is entirely characterized by the nature of the eigen-values of D. Now, since all
the eigen-values of D are negative real numbers (follows from the definition of the diagonal matrix D), we
deduce that ´D´1EPx

rI`pϕpYq, γqΓpYqs is a globally asymptotically stable equilibrium point of the ODE
(53). Finally, by appealing to the previously established asymptotic equivalence from Part 1.1 between the
stochastic recursion (46) and the ODE (53), we obtain the following result irrespective of the initial value
bp0q of the flow (53):

lim
tÑ8

ηt “ lim
tÑ8

ηptq “ ´D´1EPx

“

I`pϕpYq, γqΓpYq
‰

a.s.

“
EPx

rI`pϕpYq, γqΓpYqs

Px pϕpY ě γq
a.s.

Part 2: Proof of convergence of sηt:
We recall the stochastic recursion corresponding to sηt here:

sηt`1 “
1

pt` 1qc
ptcsηt ` ϕpYt`1qq , where sη0 “ 0. (54)

Using induction one can unfold the recursion to get,

sηt “
1
tc

t
ÿ

k“1
ϕpYkq (55)

By Birnbaum–Raymond–Zuckerman inequality, we have, for ϵ ą 0,

Pp}sηt ´ Eθ rϕpYqs } ě ϵq ď ϵ´1t1´2cEθ
“

}ϕpYq ´ Eθ rϕpYqs }2‰ . (56)

Since c ą 1, we have 1 ´ 2c ă ´1. Hence,

lim
tÑ8

Pp}sηt ´ Eθ rϕpYqs } ě ϵq “ 0. (57)

This implies that sηt converges to Eθ rΓpXqs in probability.

Consider the event Ft “ t}sηt ´ Eθ rϕpYqs } ě ϵu. Now, we have
8
ÿ

t“0
PpFtq ď

8
ÿ

t“1

1
t2c´1 ϵ

´1Eθ
“

}ϕpYq ´ Eθ rϕpYqs }2‰

“ ϵ´1Eθ
“

}ϕpYq ´ Eθ rϕpYqs }2‰
8
ÿ

t“1

1
t2c´1

ă 8 (Since 2c´ 1 ą 1q. (58)

Also,

P
ˆ

lim sup
t

Ft

˙

“ P

˜

8
č

t“1

8
ď

k“t

Fk

¸

“ lim
tÑ8

P

˜

8
ď

k“t

Fk

¸

ď lim
tÑ8

8
ÿ

k“t

PpFkq “ 0 (From Eq. (58)). (59)

This implies that

P ptω | DNω s.t., @t ě Nω, }sηtpωq ´ Eθ rϕpYqs } ě ϵuq “ 0
ñ P ptω | DNω s.t., @t ě Nω, }sηtpωq ´ Eθ rϕpYqs } ă ϵuq “ 1. (60)

Since ϵ ą 0 is arbitrary, we have,

P
´

tω | lim
tÑ8

sηtpωq “ Eθ rϕpYqsu

¯

“ 1. (61)
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Hence,

lim
tÑ8

sηt “ Eθ rϕpYqs almost surely. (62)

Theorem 2. Let the learning rates tαtutPN and tβtutPN satisfy Assumption (A1). Also, let Assumption (A2)
hold. Also let αt P Ωp1{pt` 1qcq. Then the stochastic sequences tγtutPN, tηtutPN and tsηtutPN generated by the
Algorithm 1 satisfy

lim
tÑ8

γt “ VaRρpPxq a.s., lim
tÑ8

ηt “

ş

IpϕpYq, VaRρpPxqq`ΓpYqdPx
ş

IpϕpYq, VaRρpPxqq`dPx
a.s., and

lim
tÑ8

sηt “

ż

ΓpYqdQθ˚ a.s., where θ˚ “ m´1p lim
tÑ8

ηtq.

Proof. Here, for easy reference, we recall Step 6 of Algorithm 1, viz.,

γt`1 “ γt ´ αtζtppXt`1q∆γ
t ppXt`1q, where pXt`1 „ pQt.

The above equation can be further viewed as

γt`1 “ γt ` αt

´

Mt`1 ´ E
”

ζtppXt`1q∆γ
t ppXt`1q|Ft

ı¯

, (63)

where Mt`1 :“ E
”

ζtppXt`1q∆γ
t ppXt`1q|Ft

ı

´ ζtppXt`1q∆γ
t ppXt`1q. (64)

Since tpXt`1utPN is independent, we get

E
”

ζtppXt`1q∆γ
t ppXt`1q

ˇ

ˇFt
ı

“ E
pQt

”

ζtppXt`1q∆γ
t ppXt`1q

ı

. (65)

Note that pQt is obtained using a Bernoulli trial (See Step 4 of Algorithm 1). Hence, pQt has two choices: Qθt

or Px. Now for pQt “ Qθt , we get,

E
pQt

”

ζtppXt`1q∆γ
t ppXt`1q

ı

“ EQθt

„

dPx
dQθt

ppXt`1q∆γ
t ppXt`1q

ȷ

“ EPx

”

∆γ
t ppXt`1q

ı

.

Also, the above equality directly holds in the case of pQt “ Px.

A fortiori, @t P N, we have,

E
pQt

”

ζtppXt`1q∆γ
t ppXt`1q

ı

“ EPx

”

∆γ
t ppXt`1q

ı

. (66)

Therefore, the noise term Mt`1 can be rewritten as:

Mt`1 “ EPx

”

∆γ
t ppXt`1q

ı

´ ζtppXt`1q∆γ
t ppXt`1q. (67)

Now, here we will investigate further the nature of the non-noise term EPx

”

∆γ
t ppXt`1q

ı

. We have

EPx

”

∆γ
t ppXt`1q

ı

P EPx

”

BγψpϕppXt`1q, γtq
ı

, where (68)

ψpϕpxq, γq “ p1 ´ ρqpϕpxq ´ γqIpϕpxq, γq` ` ρpγ ´ ϕpxqqIpϕpxq, γq´ (69)

and Bγψ (the sub-differential of ψp¨, γq w.r.t. γ) is a set-valued map and is defined as follows:

Bγψpϕpxq, γq “

$

&

%

´p1 ´ ρqIpϕpxq, γq` ` ρIpϕpxq, γq´, for γ ‰ ϕpxq,

r´p1 ´ ρq, ρ s , for γ “ ϕpxq.
(70)

22



Under review as submission to TMLR

For brevity, let hpγq :“ ´EPx
rBγψpϕpXq, γqs. (We consider here the r.v. X instead of pXt`1 for notational

convenience.)
Our primary objective in this proof is to analyze the limiting behaviour of the stochastic recursion (63). The
analysis involves two parts:

1. To establish the equivalence between the stochastic recursion (63) and the associated differential
inclusion (DI) given by d

dtγptq P hpγptqq; t ě 0 and

2. To perform a qualitative analysis on the associated DI to identify the stable equilibrium points.

Part 1: To establish the equivalence between the stochastic recursion (63) and the associated differential
inclusion (DI) given by d

dtγptq P hpγptqq; t ě 0, we follow the framework provided in (Benaïm et al., 2005) and
Chapter 5 of (Borkar, 2008). According to the framework, one has to guarantee that the set-valued map h
(which identifies the DI), the noise sequence tMt`1u and the iterates tγtu satisfy certain necessary conditions.

(B1): The preliminary step is to warrant that the associated DI is well-posed. To that end, we have to attest
certain conditions on h. The set-valued map h : rϕl, ϕus Ñ tsubsets of Ru satisfies the following properties:

• For each γ P rϕl, ϕus, hpγq is convex and compact: Indeed, it follows directly from Eq. (70). Note
that for each γ P rϕl, ϕus, ´hpγq is either a singleton or the closed interval r´p1 ´ ρq, ρs.

• For each γ P rϕl, ϕus, we have supyPhpγq |y| ă K1p1 ` |γ|q, for some 0 ă K1 ă 8.
Indeed, for each γ P rϕl, ϕus, ´hpγq is either the scalar
EPx

r´p1 ´ ρqIpϕpXq, γq` ` ρIpϕpXq, γq´s or the bounded closed interval r´p1 ´ ρq, ρs. Hence the
above bound exists.

• h is upper semi-continuous.
To prove this, one has to show the following: if the sequence tγnu converges to sγ and any sequence

tynu converges to sy where yn P hpγnq,@n, then sy P hpsγq. Note that for each γ P rϕl, ϕus, there are two
possibilities for ´hpγq. It is either EPx

r´p1 ´ ρqIpϕpXq, γq` ` ρIpϕpXq, γq´s or the closed interval
r´p1 ´ ρq, ρs. Also,

ż

´p1 ´ ρqIpϕpXq, γq` ` ρIpϕpXq, γq´dPx

“ ´p1 ´ ρqPxpϕpXq ě γq ` ρPxpϕpXq ď γq

P r´p1 ´ ρq, ρs. (71)

Now consider the case when ´yn “ ´hpγnq “
ş

´p1 ´ ρqIpϕpXq, γnq` ` ρIpϕpXq, γnq´dPx, then
´yn “ ´p1 ´ ρqPxpϕpXq ě γnq ` ρPxpϕpXq ď γnq converges to ´sy “ ´p1 ´ ρqPxpϕpXq ě sγq `

ρPxpϕpXq ď sγq. This follows from the continuity of probability measures (Billingsley, 2013). Now
from Eq. (71), we have ´sy P ´hpsγq, i.e., sy P hpsγq.
Now consider the case when ´yn P r´p1´ρq, ρs and ´sy “ EPx

r´p1 ´ ρqIpϕpXq, γq` ` ρIpϕpXq, γq´s.
This implies that ψp¨, γq is differentiable at γ “ sγ, while only sub-differentials exist at γ “ γn,@n P N.
This particular scenario is not possible. The reason being ψ is piece-wise linear in γ and ψp¨, γq is
differentiable at γ “ sγ. Therefore, there exists a neighbourhood around sγ such that ψp¨, γq is linear.
However, by hypothesis tγnu Ñ sγ which is impossible due to the linear behaviour of ψ around sγ
and the non-differentiability of ψ at each γn.

(B2): Further, we have to attest certain conditions on the noise term Mt`1 (defined in Eq. (64)). The noise
term Mt`1 satisfies the following properties:
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• tMt`1, t P Nu is a martingale difference noise sequence, i.e., Mt is Ft-measurable @t P Nzt0u and is
integrable. Also, ErMt`1|Fts “ 0 a.s., @t P N.

• Since ∆γ
t ppXt`1q is bounded a.s., we find that ∆γ

t ppXt`1q has finite first and second order moments.
Hence,

E
“

|Mt`1|2|Ft
‰

ď K2p1 ` |γt|
2q, 0 ă K2 ă 8.

(B3): Finally, we establish the stability (almost sure boundedness) of the sequence tγtu, i.e., suptPN |γt| ă 8

a.s.. Note that ϕpxq P rϕl, ϕus,@x. At first, we consider the case when γt0 ą ϕu, for some t0 P N. Hence,
from Step 6 of Algorithm 1, we have

γt0`1 “ γt0 ´ αt0ζt0 ppXt0`1q

´

ρIpϕppXt0`1q, γt0 q´ ´ p1 ´ ρqIpϕppXt0`1q, γt0 q

¯

“ γt0 ´ αt0ζt0 ppXt0`1q pρ` 0q

“ γt0 ´ αt0ζt0 ppXt0`1qρ. (72)

The second equality follows since ϕppXt0`1q P rϕl, ϕus and γt0 ą ϕu. Now, from Assumption (A1) we have
ř

t αt “ 8. By reason of this statement and the fact that ζtp¨, ¨q ą 0, we conclude from Eq. (72) that there
exists a t10 ą t0 such that γt1

0
ď ϕu. One can argue similarly to prove that when γt ă ϕl, for some t P N,

then there exists a t1 ą t such that γt1 ě ϕl. This implies that whenever the iterates tγtu leave the closed
interval rϕl, ϕus, they eventually drift back towards the vicinity of the closed interval rϕl, ϕus in finite time.
Also, it is easy to verify that the upper bound on the leap the iterates tγtu can generate outside of the closed
interval rϕl, ϕus is given by Q supt αt, where Q is defined in Assumption (A2). Hence,

sup
tPN

|γt| ď max t|ϕl ´Q sup
t
αt|, |ϕu `Q sup

t
αt|, |γ0|u

ă 8. (Follows from Assumption (A1)) (73)

Now, by appealing to Theorem 2 in Chapter 5 of (Borkar, 2008) along with the results from (B1-B3), we
deduce that the stochastic sequence tγtu asymptotically tracks the following differential inclusion (DI)

d

dt
γptq P hpγptqq “ ´EPx

rBγψpϕpXq, γptqqs

“ ´BγEPx
rψpϕpXq, γptqqs . (74)

Note that the interchange of EPx
r¨s and Bγ in the above DI follows by appealing to the Dominated Convergence

Theorem (Rubinstein & Shapiro, 1993).
Part 2: Now we perform a qualitative analysis of the above DI to identify its stable equilibrium points. For
brevity, let γ˚ fi VaRρpPxq.

Figure 5: Two possible scenarios considered for the qualitative analysis of the DI (74).
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Assume ϕ is not constant (If it is constant, then that constant value is the the unique solution of the DI
(74)). There are two cases to consider here:
Case 1: Consider γ1 P tγ P R | PxpϕpXq “ γq ą 0u. This case is illustrated in Case 1 of Figure 5. Note that
hpγ1q “ ´r´p1 ´ ρq, ρs (follows from Eq. (70)). Since 0 P hpγ1q, we find that γ1 is an equilibrium point of
the DI (74). We now conduct a phase space analysis in the neighbourhood of γ1 to understand the nature
of the stability of the equilibrium point γ1. To do this, choose uγ1 ą γ1. At uγ1, we have

hpuγ1q “ ´EPx

“

´p1 ´ ρqIpϕpXq, uγ1q` ` ρIpϕpXq, uγ1q´
‰

“ p1 ´ ρqPx
`

ϕpXq ě uγ1
˘

´ ρPx
`

ϕpXq ď uγ1
˘

“ Px
`

ϕpXq ě uγ1
˘

´ ρ.

The sign of Px pϕpXq ě uγ1q ´ ρ decides the direction of the drift of the DI at uγ1. Again, there are three
scenarios to consider here:
(1a): If γ1 ą γ˚, then Px pϕpXq ě uγ1q ă ρ (directly follows from the definition (1)) and hence
Px pϕpXq ě uγ1q ´ ρ ă 0. So at uγ1, the direction of the drift of the DI is towards γ1. Now we analyze
the left neighbourhood of γ1. Choose lγ1 P pγ˚, γ1q. In this case, Px

`

ϕpXq ě lγ1
˘

´ ρ ă 0 (directly follows
from the definition (1)). Hence the direction of the drift of the DI at lγ1 is away from γ1. Hence γ1 is a saddle
point and hence unstable. This scenario is illustrated in Figure 6(a).
(1b): If γ1 ă γ˚, then choose uγ1 P pγ1, γ˚q. Observe that Px pϕpXq ě uγ1q ě ρ (follows from the definition
(1)) and hence Px pϕpXq ě uγ1q ´ ρ ě 0. So at uγ1, the direction of the drift of the DI is away from γ1. Now
for the analysis of the left neighbourhood of γ1, we choose lγ1 ă γ1. In this case, Px

`

ϕpXq ě lγ1
˘

´ ρ ě 0
(directly follows from the definition (1)). Hence the direction of the drift of the DI at lγ1 is towards γ1.
Hence γ1 is a saddle point and hence unstable. This scenario is illustrated in Figure 6(b).
(1c): If γ1 “ γ˚, then for any uγ1 ą γ1, we have Px pϕpXq ě uγ1q ă ρ (again follows from the definition (1))
and hence Px pϕpXq ě uγ1q ´ ρ ă 0. So at uγ1, the direction of the drift of the DI is towards γ1. Now, choose
lγ1 from the left neighborhood of γ1, i.e., lγ1 ă γ1. In this case, Px

`

ϕpXq ě lγ1
˘

´ ρ ą 0 (directly follows
from the definition (1)). Hence, the direction of the DI drift at lγ1 is also toward γ1. Hence, γ1 “ γ˚ is a
stable equilibrium point of the DI. This scenario is illustrated in Figure 6(c).

Figure 6: Nature of the stable points of the DI (74)
Case 2: Consider the set Z “ tγ P R | PxpϕpXq “ γq “ 0u. The set Z has a non-zero probability since the
performance function ϕ is non-constant. This case is illustrated in Case 2 of Figure 5. The only root of h
that belongs to the set Z is γ˚. In fact, for γ P Z, we have

hpγq “ 0
ñ ´EPx

“

´p1 ´ ρqIpϕpXq`, γq ` ρIpϕpXq, γq´
‰

“ 0
ñ p1 ´ ρqPx pϕpXq ě γq ´ ρPx pϕpXq ď γq “ 0
ñ Px pϕpXq ě γq ´ ρ “ 0
ñ Px pϕpXq ě γq “ ρ

ñ γ “ γ˚.

In this case also, one can perform a similar analysis as given in (1c) to show that γ˚ is indeed a stable
equilibrium point of the DI (74). In addition, we define a Lyapunov function V pγq fi EPx

rψpϕpXq, γqs ´
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EPx
rψpϕpXq, γ˚qs. One can verify V pγq ą 0, @γ P Rztγ˚u. (It follows since EPx

rψpϕpXq, γqs is a convex
function and γ˚ is its global minimum). In addition, V pγ˚q “ 0. Also, note that for γ P R, we have
yhpγq ď 0, @y P BγV pγq. Therefore, γ˚ is the global attractor of the flow induced by the DI (74) (Benaïm
et al., 2005).

A fortiori, by appealing to Corollary 4 in Chapter 5 of (Borkar, 2008), we obtain that the iterates tγtu
converge almost surely to γ˚ “ VaRρpPxq. This completes the proof of Theorem 2.

The convergence of ηt and sηt is analogous to that provided in Lemma 6.

4 Superquantile Optimization Algorithm

Superquantile Optimization: Consider the collection of parametrized probability measures given by
tPω|ω P Rpu. Let CVaRρpωq “ CVaRρpPωq. In the superquantile optimization problem (Rockafellar et al.,
2000), one seeks to obtain the optimal distribution parameter that maximizes the superquantile. This is
expressed as follows:

Find ω˚ P arg max
ω

CVaRρpωq (75)

CVaR optimization focuses on adjusting the parameters of a probability distribution to maximize expected
returns in extreme scenarios. This approach ensures that risk management strategies do not only consider
the most likely returns, but also the potential gains from extreme events. Unlike traditional methods that
prioritize optimizing mean returns, CVaR optimization specifically captures the decision maker’s sensitivity
to risk. This is particularly beneficial in industries such as finance, insurance, and operations, where the
rewards from rare, high-impact events can be significant. The optimization process aids in developing
policies and strategies that are robust and capable of capitalizing on low-probability, high-reward situations.
Additionally, CVaR optimization enhances scenario planning by offering insights into how portfolios or
strategies perform under extreme conditions, ensuring a more thorough evaluation of risk by focusing on the
potential upside in rare events.

4.1 Related Work

Conditional Value-at-Risk (CVaR) optimization has been a subject of extensive research in recent years, with
various approaches proposed to improve its estimation and application. Building upon the foundational work
in (Rockafellar et al., 2000), several techniques for CVaR estimation and optimization has come to surface.
(Zhang et al., 2020) introduced an adaptive importance sampling method to enhance CVaR optimization
efficiency. In (Li & Zhou, 2021) a robust CVaR optimization framework for portfolio selection under dis-
tributional uncertainty was introduced. (Chen et al., 2022) leveraged deep learning techniques for CVaR
estimation in high-dimensional problems. (Kalogerias & Powell, 2023) presented a model-free reinforcement
learning approach for CVaR optimization in Markov decision processes. Wang and Liu (Wang & Liu, 2024)
explored non-parametric CVaR estimation using quantile regression forests. In addition to these works,
(Gao & Kleywegt, 2022) proposed a distributionally robust CVaR optimization model to address ambiguity
in probability distributions. (Takeda & Kanamori, 2021) introduced a mixture CVaR model for portfolio op-
timization, combining multiple risk measures. (Singh & Maddison, 2023) developed a gradient-based CVaR
optimization method for large-scale machine learning problems. (Cardoso & Palomar, 2022) presented an
online CVaR optimization algorithm for streaming data applications. Lastly, (Nemirovski & Shapiro, 2022)
proposed an efficient simulation-based approach for CVaR estimation in complex systems.

In our approach, we aim to preserve the incremental, online, and adaptive characteristics of our algorithm.
This means that the algorithm should continuously update its estimates as new data arrives, adapt to
changes in the data or environment, and operate efficiently with minimal computational overhead. Hence
we optimize the superquantile by callibrating the measure parameter ω in the direction of the gradient of
the CVaRρ which is estimated using the randomly perturbed finite difference method, as follows:

y∇Cρpωtq “
Cρpωt ` ct∆tq ´ Cρpωt ´ ct∆tq

2ct∆t
, (76)
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where Cρp¨q “ CVaRρp¨q, ct ą 0 with limtÑ8 ct Ó 0 and ∆t P Rp with each of the components are
∆ti

iid
„ Bernoullipt´1, 1u, 0.5q. Also, ∆´1

t “ r∆´1
t1 ,∆

´1
t2 . . .∆´1

tp sJ. The random perturbations (with zero
mean) can introduce variance in gradient estimates which gets asymptotically averaged over multiple ran-
dom perturbations during the stochastic gradient recursion. As the number of perturbations increases, the
average gradient estimate approaches the true gradient asymptotically, meaning that with enough samples,
the variance in the gradient estimate becomes negligible and the estimate becomes increasingly accurate.

Algorithm 2 [Extreme Superquantile Optimization Algorithm]
1: Require: Learning rates at, ct, αt, βt ą 0
2: Input parameters: λ, ρ P r0, 1s

3: Initialize t “ 0, γ`
0,0 “ γ´

0,0 ´ 8, η`
0,0 “ η´

0,0 “ 0
4: while Stopping criteria is not satisfied do
5: ∆ti

iid
„ Bernoullipt´1, 1u, 0.5q, @i “ 1 . . . p

6: Let ω`
t “ ωt ` ct∆t and ω´

t “ ωt ´ ct∆t, where ∆t “ r∆t1 . . .∆tp sJ

7: for k “ 0 to Nt do
8: pQ`

t,k „ BernoulliptPω`
t
, Qθ`

t,k
u, λq, where θ`

t,k “ m´1pη`
t,kq;

9: Update VaR estimate: For pX`
t,k`1 „ pQ`

t,k,

γ`
t,k`1 “ γ`

t,k ` αkζ
`
t,kppX`

t,k`1qpp1 ´ ρqIpϕppX`
t,k`1q, γ`

t,kq` ´ ρIpϕppX`
t,k`1q, γ`

t,kq´q;

10: Update surrogate parameters: For Y`
t,k`1 „ Qθ`

t,k
,

η`
t,k`1 “ η`

t,k ` βkζ
`
t,kpY`

t,k`1qpIpϕpY`
t,k`1q, γ`

t q`ΓpY`
t,k`1q ´ η`

t,kIpϕpY`
t,k`1q, γ`

t,kq´q;

11: Update CVaR gradient estimate: η̄`
t,k`1 “ 1

pk`1qc

´

tcη̄`
t,k ` ϕ

´

Y`
t,k`1

¯¯

;

12: end for
13: Repeat steps 8 - 11 for γ´

t,k, η
´
t,kand sη´

t,k;
14: Update distribution parameters

ωt`1 “ ωt `
at

2ct∆t

!

η̄`
t,Nt

´ η̄´
t,Nt

)

15: t “ t` 1
16: end while

Define the filtration tFtutPN, where the σ-field Ft :“ σ
`

ωi,∆i´1, γi, ηi, sηi, θi, 0 ď i ď t, pXi,Yi, 1 ď i ď t
˘

.
Lemma 7. Let Cp3q

ρ pωq ” B3Cρ{BωT BωT BωT exists and maxi1,i2,i3 supω }C
p3q
ρi1i2i3

pωq}8 ď α. Then for all
ω P Ω

bt “ E
”

y∇Cρpωtq ´ ∇Cρpωtq | Ft
ı

“ Opc2
t q.

Proof. By the continuity of Cp3q
ρ and ∆t being Bernoulli random variable, we have by Taylor’s theorem,

Cρpωt ` ct∆tq « Cρpωtq ` ct∆J
t ∇Cρpωtq `

c2
t

2! ∆J
t ∇2Cρpωtq∆t `

c3
t

3! ∇3Cρpωtq∆t b ∆t b ∆t,

where sωt lies on the line segment between ωt and ωt ` ct∆t. Hence,

Cρpωt ` ct∆tq ´ Cρpωt ´ ct∆tq

2ct∆t
“

∆J
t

∆t
∇Cρpωtq `

c2
t

12∆t
∇3 `Cρp sωtq ` Cρp sωt

1q
˘

∆t b ∆t b ∆t
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Let btl denotes the lth term of the bias vector bt. Then

btl “ E
”

y∇Cρpωtq ´ ∇Cρpωtq | Ft
ı

“ E
„

∆tl

∆tl

∇Cρpωtq `
c2
t

12∆tl

∇3 `Cρp sωtq ` Cρp sωt
1q
˘

∆t b ∆t b ∆t ´ ∇tCρpωtq

ˇ

ˇ

ˇ

ˇ

Ft
ȷ

(77)

where sω1
t lies on the line segment between ωt and ωt ´ ct∆t. Now note that,

E
“

∆´1
t ∆J

t ∇Cρpωtq | Ft
‰

“ p∇Cρpωtqq1E
“

∆´1
t ∆t1 | Ft

‰

` ¨ ¨ ¨ ` p∇CρpωtqqpE
“

∆´1
t ∆tp | Ft

‰

pSince, ∇Cρpωtq is measurable w.r.t Ftq

“ p∇Cρpωtqq1E

»

—

—

—

–

¨

˚

˚

˚

˝

1
∆´1
t2 ∆t1

...
∆´1
tp ∆t1

˛

‹

‹

‹

‚

| Ft

fi

ffi

ffi

ffi

fl

` ¨ ¨ ¨ ` p∇CρpωtqqpE

»

—

—

—

–

¨

˚

˚

˚

˝

∆´1
t1 ∆tp

∆´1
t2 ∆tp

...
1

˛

‹

‹

‹

‚

| Ft

fi

ffi

ffi

ffi

fl

“ p∇Cρpωtqq1

¨

˚

˚

˚

˝

1
E∆´1

t2 E∆t1
...

E∆´1
tp E∆t1

˛

‹

‹

‹

‚

` ¨ ¨ ¨ ` p∇Cρpωtqqp

¨

˚

˚

˚

˝

E∆´1
t1 E∆tp

E∆´1
t2 E∆tp

...
1

˛

‹

‹

‹

‚

pSince, E∆ti “ 0,@i P r1 . . . ps and ∆ti is independent of ∆tj @i ‰ jq

“ p∇Cρpωtqq1

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

` ¨ ¨ ¨ ` p∇Cρpωtqqp

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

“ ∇Cρpωtq (78)

Therefore, from eq.77 and eq.78 we get,

btl “
1
12E

„

1
∆tl

`

∇3Cρp sωtq ` ∇3Cρp sωt
1q
˘

s∆t b s∆t b s∆t | Ft
ȷ

(79)

We can bound the term on the right-hand side of eq. 79 in magnitude as follows

bt “
1
12E

„

1
∆tl

`

∇3Cρp sωtq ` ∇3Cρp sωt
1q
˘

s∆t b s∆t b s∆t | Ft
ȷ

ď
αc2

t

6
ÿ

i1

ÿ

i2

ÿ

i3

E
„∆ti1

∆ti2
∆ti3

∆kl

ȷ

ď
p3αc2

t

6 “ Opc2
t q,

The first inequality follows as ∇3Cρpsωq ď α,@ω and the latter inequality follows since
∆ti1

∆ti2
∆ti3

∆tl
ď 1.

Now we state our main result.
Theorem 3. Assume that Nt “ Oprpt` 1qc{2sq and at “ op1{pt` 1qcq. Then the iterates tωtu generated by
Algorithm satisfy the following:

ωt Ñ H “ tω|∇CVaRρpωq “ 0u on the event tsup
t

}ωt} ă 8u as t Ñ 8.

Further, if H is a discrete set, then we have the following.

ωt Ñ tω|∇CVaRρpωq “ 0 and ∇2CVaRpωq ű 0u on the event tsup
t

}ωt} ă 8u as t Ñ 8.
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Proof. Consider the recursion from Step 12 of the algorithm:

ωt`1 “ ωt ` at

˜

1
2ct∆t

´

η̄`
t,Nt

´ η̄´
t,Nt

¯

´ y∇Cρpωtq
looooooooooooooooooooomooooooooooooooooooooon

pt

`E
”

y∇Cρpωtq ´ ∇Cρpωtq | Ft
ı

loooooooooooooooooomoooooooooooooooooon

bt

´

E
”

y∇Cρpωtq ´ ∇Cρpωtq | Ft
ı

` y∇Cρpωtq

¸

“ ωt ` at

´

pt ` bt ` ∇Cρpωtq ` y∇Cρpωtq ´ E
”

y∇Cρpωtq | Ft
ı¯

“ ωt ` at ppt ` bt ` et ` ∇Cρpωtqq , where et “ y∇Cρpωtq ´ E
”

y∇Cρpωtq | Ft
ı

. (80)

Define

ξt`1 “

t
ÿ

i“0
atet, t ě 0. (81)

Then

E rξt`1|Fts “ E

«

t´1
ÿ

i“0
atet

ˇ

ˇ

ˇ

ˇ

Ft

ff

“

t
ÿ

i“0
atE ret|Fts ` at

´

E
”

y∇Cρpωtq|Ft
ı

´ E
”

y∇Cρpωtq | Ft
ı¯

“ ξt. (82)

This implies that tξtu is a martingale with respect to filtration tFtu. Also, since Cρ is continously differen-
tiable, we have ξt is square-integrable, @t, i.e, E

“

}ξt}
2‰ ă 8, @t. Again, by the continuous differentiability

of Cρ, we obtain
ÿ

t

E
“

}ξt`1 ´ ξt}
2|Ft

‰

“
ÿ

t

a2
tE

“

}et}
2‰ ă 8 on the set tsup

t
}ωt} ă 8u. (83)

Therefore, by Martingale convergence theorem (Yeh, 1995), we get

lim
tÑ8

ξt exists on the event tsup
t

}ωt} ă 8u. (84)

Hence, by Corollary 3, Chapter 2 and Theorem 7, Chapter 8 of (Borkar, 2008) along with the facts that
Nt “ Oprpt ` 1qc{2sq, pt Ñ 0 (from Lemma 7) and bt Ñ 0 (from Theorem 2) as t Ñ 8, the asymptotic
behavior of the sample paths belonging to the event tsupt }ωt} ă 8u is equivalent to the long-term behavior
of the dynamical system induced by the ODE

dωptq

dt
“ ∇Cρpωptqq, t ě 0. (85)

This further implies that the iterates ωt corresponding to the sample paths belonging to the event tsupt }ωt} ă

8u converge to any of the compact transitive invariant sets connected internally in chains of (85). Invariant
sets are subsets of the state space that remain unchanged under the flow of the dynamical system. The
dynamical system (85) driven by the gradient of the CVaR is a gradient flow where the only possible invariant
sets are the subsets of H “ tω|∇CVaRρpωq “ 0u (Lemma 1, Section 10.2 of (Borkar, 2008)). Further, by
invoking the LaSalle invariance principle and the Lyapunov theorem, one can obtain that the asymptotically
stable points inside H are given by tω P H|∇2CVaRρpωq ű 0u.

Remark. The aforementioned result indicates that the distribution parameters ωt converge to the local
maxima of the objective CVaRρ, provided that the iterates ωt remains bounded which is denoted by the condition
supt }ωt} ă 8. This condition is necessary because noise can cause the iterates to gradually drift outward,
potentially leading to divergence. This can be achieved by constraining the iterates to remain within a convex
compact set, and if they drift beyond its boundary, they can be projected back onto the set. The projected
version of the recursion is as follows:

ωt`1 “ ΠΩ
ˆ

ωt `
at

2ct∆t

␣

sη`
t ´ sη´

t

(

˙

, where ΠΩpvq “ arg min
ωPΩ

}v ´ ω}2
2. (86)
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Further, one can show that the projected iterates behave asymptotically similar to the long term behaviour of
the ODE

dωptq

dt
“ sΠΩ

ωptqp∇Cρpωtqq, t ě 0, (87)

where sΠΩ is the Frechet derivative which is defined as sΠω
x pyq “ limδÑ0´

ΠΩ
px`δyq´x
δ exists.

Remark. To improve the quality of the solution, one can inject a decaying Gaussian noise (Maryak & Chin,
2008) to the iterates ωt as follows:

ωt`1 “ ωt `
at

2ct∆t

␣

sη`
t ´ sη´

t

(

` qtεt,

where qt ą 0 is the step schedule and εt
iid
„ N p0, Iq. The noise term qtϵt introduces randomness into the

update process, but this randomness is controlled by qt which typically decreases over time to ensure that the
influence of noise diminishes. When the noise is suitably behaved and certain other conditions are satisfied,
the iterates ωt so generated converge to the global maxima of Cρ in the following sense:

lim
tÑ0

ErCρpωtqs “

ż

Cρdπ (88)

where π is the Dirac measure that concentrates on the global maxima of Cρ (assuming that the global maxima
are unique), which means that the measure places all its mass on the global maximum. Please refer to (Maryak
& Chin, 2008) for the conditions required to ensure convergence.

5 Extreme Risk Measure Estimation with Latent Measure

In reinforcement learning (RL) and many real-world scenarios, one often deals with uncertainty and un-
knowns. One of the challenges is that the true underlying probability distribution Px that governs the
rewards is not explicitly known. Instead, one has access to an oracle which can provide samples or real-
izations from this distribution Px. These schemes are applicable in cases where the exact dynamics are
unknown or complex, but simulation is easy to perform. Here, we propose an extension of our algorithm
that aims to perform extreme risk measurement estimation and optimization in those settings as well. The
samples we obtain provide empirical data that we use to approximate the behavior of Px by performing
moment projection into the parameterized probability measure space UK “ tUκ|κ P K Ď Rd2 u. The moment
projection technique maps empirical moments from the sample data to the specific measure space, allowing
us to approximate the characteristics of the underlying distribution despite not knowing its explicit form.
The moment projection is obtained by the following optimization problem:

κt`1 :“ arg min
κPK

KLpPx, Uκq

Further,

arg min
κPK

KLpPx, Uκq “ arg min
κPK

ż

dPx log dPx
dUκ

“ arg min
κPK

ż

pdPx{dνq log pdPx{dνqdν
loooooooooooooooomoooooooooooooooon

Does not contain κ. So we drop it.

´

ż

pdPx{dνq log pdUκ{dνqdν

“ arg min
κPK

´

ż

pdPx{dνq log pdUκ{dνqdν

“ arg max
κPK

ż

pdPx{dνq log pdUκ{dνqdν

“ arg max
κPK

ż

log pdUκ{dνqdPx
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The above optimization problem can be solved using a stochastic recursion as follows

κt`1 “ κt ` αt∇ log dUκ
dν

pZt`1q where Zt`1 „ Px (89)

Note that we follow the same timescale as that of γt since there exists a unilateral coupling between κt and
other iterates. The existence of a unilateral coupling means that while κt might affect other variables or
iterates, the reverse is not necessarily true: These other variables do not directly influence κt. Also note
that ζtpxq “ pdUκt

{dQθt
qpxq.

The algorithm for the latent case is provided in Algorithm 3.

Algorithm 3 [Extreme quantile and superquantile estimation algorithm with latent Px]
1: Require: αt, βt ą 0 and T P N
2: Input parameters: λ, ρ P r0, 1s

3: Initialize γ0 “ ´8, t “ 0, η0

4: while t ă T do
5: κt`1 “ κt ` αt∇ log ppdUκ{dνqpZt`1qq, where Zt`1 „ Px;
6: pQt „ BernoulliptdUκt {dν,Qθt u, λq, where θt “ m´1pηtq;

7: γt`1 “ γt ` αtζtppXt`1qpp1 ´ ρqI`pϕppXt`1q, γtq ´ ρI´pϕppXt`1q, γtqq, where pXt`1 „ pQt;
8: ηt`1 “ ηt ` βtζtpYt`1qpI`pϕpYt`1q, γtqΓpYt`1q ´ ηtI´pϕpYt`1q, γtqq, where Yt`1 „ Qθt

;
9: sηt`1 “ 1

pt`1qc ptcsηt ` ϕpYt`1qq;
10: t “ t` 1;
11: end while
12: Return yVaRρpϕq “ γT ,zCVaRρpϕq “ sηT ;

Theorem 4. Let the learning rates tαtutPN and tβtutPN satisfy Assumption (A1). Also, let Assumption (A2)
hold. Also let αt P Ωp1{pt` 1qcq. Then the iterates tκtu generated by Algorithm satisfy the following:

κt Ñ Gκ “

"

κ

ˇ

ˇ

ˇ

ˇ

∇E
„

log dUκ
dν

pZq

ȷ

“ 0
*

a.s. on the set tsup
t

}κt} ă 8u as t Ñ 8.

Further, if G is a discrete set, then we have the following:

κt Ñ

"

κ

ˇ

ˇ

ˇ

ˇ

∇E
„

log dUκ
dν

pZq

ȷ

“ 0 and ∇2E
„

log dUκ
dν

pZq

ȷ

ű 0
*

a.s. on the set tsup
t

}κt} ă 8u as t Ñ 8.

lim
tÑ8

γt “ VaRρpUκ˚ q a.s., lim
tÑ8

ηt “

ş

IpϕpYq, VaRρpUκ˚ qq`ΓpYqdPx
ş

IpϕpYq, VaRρpUκ˚ qq`dPx
a.s., where κ˚ P Gκ, and

lim
tÑ8

sηt “

ż

ΓpYqdQθ˚ a.s., where θ˚ “ m´1p lim
tÑ8

ηtq.

Proof. One can follow the multi-timescale approach as shown in Lemma 6 and Theorem 2. In this algorithm,
the stochastic recursion governing κt introduces an additional layer of complexity. However, this recursion
does not complicate the analysis significantly because κt evolves at the same timescale as γt, as they share a
unilateral dependency. Specifically, the evolution of γt and ηt depends on the values of κt, which determines
the samples and the sampling ratio at each time step. This unilateral dependence means that while γt
and ηt influence the behavior of κt, the reverse is not true—κt is not directly influenced by γt or ηt. As
a result, κt can be analyzed independently of the other variables. One can easily show that the recursion
89 asymptotically behaves like the gradient flow. The analysis of the remaining stochastic recursions of the
theorem follow similarly to that of Lemma 6 and Theorem 2.
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6 Experimental Results

6.1 Risk adjusted Portfolio Optimization

The importance of VaR and CVaR is monumental in the domain of finance, in various problems that consider
the inherent risk in executing trades or optimal portfolio allocation using the risk-adjusted returns which
is a direct consequence of Modern Portfolio Theory (Markowitz, 1991). In our effort to prove the resilience
of our procedure in real world scenarios we conduct experiments in two parts, primarily we see how our
algorithm fares with actual returns from a single stock then we extend this to compute the optimal risk
adjusted portfolio.

6.1.1 Single Stock

Figure 7: Estimation of VaR and CVaR at ρ “ 0.001 of $AAPL returns data from 1980-2023 using the per day
granularity on closing price shown in (c) and (d). The convergence to the true approximate values stated in
(a) is shown by the decrease in the adaptive variance of the surrogate PDF in (b).

We collect the split adjusted per day closing price for the stock $AAPL over four decades precisely, 1980 to
2023, from which we generate the empirical CDF for the sorted returns, given by

pFnptq “
1
n

n
ÿ

i“1
IXiďt

where n is the number of samples and Xi is the sample from the sorted returns. The VaR and CVaR is
then computed using Monte-Carlo and verified by fitting a double Weibull distribution to the returns using
MLE shown in Figure 7(a). We estimate the quantities precisely at ρ “ 10´3 using Algorithm 1 with the
consistently depleting error bound using our method illustrated in 7(c) and 7(d) - which is also verified by
the decay of the variance to 0 of the surrogate measure obtained from the Gaussian surrogate. Along with
the hyperparameters given Table 1 we additionally use a threshold of value 10´4 as the stopping criterion.

32



Under review as submission to TMLR

Hyperparameter Value
num_samples 10000
bootstrap_samples 100
λ 0.4
α0 0.015
αdecay 0.9
β0 0.1
βdecay 0.55
µ0 35
Σ0 1
η0 10

Table 1: Hyperparameters for $AAPL stock quantile estimation.

6.1.2 Portfolio Allocation

For this paper, we try to find the optimal CVaR portfolio, which formulated as a constrained optimization
problem. Let weight vector, w “ pw1, . . . , wnqJ denote the weights of each asset in the portfolio for n assets,
and r “ pr1, . . . , rnqJ represent the random vector of asset returns. For a portfolio, P the total return is
given by RP “ wJr and the CVaR portfolio return for a specified confidence level ρ P p0, 1q, typically 0.05 or
0.001, is defined as

min
w

CVaRρp´wJrq

subject to wJ1 “ 1
s.t. wi P r0, 1q @i P r1, ns

(90)

Figure 8: Cumulative risk-adjusted returns (top) and the draw-down risk (bottom) represented in the depth
graph for the portfolio under consideration.

this optimization problem aims to minimize the CVaR of the negative portfolio return subject to constraints
that the sum of the weigthts equal to 1 and the weights are normalized. This formulation provides a robust
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framework for portfolio optimization that accounts for tail risk, aligning with contemporary risk management
practices in quantitative finance and addressing the limitations of traditional mean-variance optimization
approaches.

The negative returns p´wJrq, represents the loss associated with a given portfolio allocation which in the
CVaR portfolio stems from the focus on downside risk (Klebaner et al., 2017), as we are primarily concerned
with potential losses rather than gains. By using negative returns, we align our optimization problem with
the conventional definition of VaR and CVaR in the spectrum of finance, which are typically expressed in terms
of losses. This approach aligns with the primary concern of many investors and regulators - minimizing the
potential for significant losses in adverse market conditions.

The matrix St P Rhˆn, represents the day close values over the selected period, where h is a predefined
window size and n is the number of assets. Each element si,j of the matrix represents the return of the asset
j at the time step (per day) t´ h` i, we refer to this as the state matrix. Formally:

St “ tri,j |i P rt´ h` 1, ts, j P r1, nsu (91)

where ri,j is the return of asset j at time i. The observation space is bounded, with St P r0, 1shˆn. At
each time step t, the state St is represented by a matrix St P Rhˆn, where, h is the window size (number of
historical time steps and n is the number of assets in the portfolio. We define the state matrix as follows:

St “

»

—

—

—

–

rt´h`1,1 rt´h`1,2 ¨ ¨ ¨ rt´h`1,n
rt´h`2,1 rt´h`2,2 ¨ ¨ ¨ rt´h`2,n

...
... . . . ...

rt,1 rt,2 ¨ ¨ ¨ rt,n

fi

ffi

ffi

ffi

fl

(92)

where ri,j represents the return of asset j at time step i. Each element si,j of the matrix St corresponds to
the return of a specific asset at a specific time:

si,j “ rt´h`i,j “
Pt´h`i,j ´ Pt´h`i´1,j

Pt´h`i´1,j
(93)

where Pt,j is the price of asset j at time t. To ensure numerical stability and consistent scale across different
assets, we bound the elements of the state matrix St P r0, 1shˆn. The rows of the matrix St represent
different time steps, with the most recent returns in the bottom row and the oldest returns in the top row.
The rows of the matrix St represent different time steps, with the most recent returns in the bottom row and
the oldest returns in the top row. This structure allows the agent to identify temporal patterns or trends in
asset returns potentially.

In our experiments, we construct our portfolio consisting of the assets [ $MSFT, $AAPL, $META, $GOOGL ] with
ρ “ 0.001 and starting with equal proportions of each of them. We choose a period of about a decade from
2015 - 2023 and solve the optimization problem in Eq. 90 using CVXPY (Diamond & Boyd, 2016) and
MOSEK (ApS, 2024) solver. The drawdown risk along with the cumulative returns is visualized in Figure8,
where it is evident that in periods of volatility, namely, during COVID (2020-2021) where see rise in the
tech stocks while there persists quantifiable amount of risk and also during the tech recession (2022-2023)
the returns are sustained even though there exists a higher draw-down risk.

The final portfolio allocation is given by the pie-chart in Figure 9(top) which is obtained under the strategy
followed by the CVAR adjusted portfolio allocation and we also verify by the efficient frontier analysis (Maiti,
2021; Banihashemi & Navidi, 2017) which suggest that to an investor no other portfolio exists that maximizes
their returns while minimizing the associated risk. For this we use the CLARABEL (Goulart & Chen, 2024)
solver with RiskFolio (Cajas, 2024), given in Figure 9(bottom).
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Figure 9: Final optimal allocation (top) and the expected efficient frontier analysis (bottom).

Drawdown risk: Drawdowns measure the decline from a historical peak in an investment’s value, capturing
both the depth (percentage drop from peak to trough) and duration (time to recover). The top graph in
Figure 8 displays historical compounded cumulative returns, showing the portfolio’s overall growth while
bottom graph highlights drawdowns, illustrating periods of decline, such as during 2019 and 2022-2023, with
a maximum drawdown of around -47%. While the portfolio shows long-term positive returns, significant
drawdowns underline the importance of balancing upside potential with downside risk.

Efficient frontier analysis: The efficient frontier analysis evaluates the trade-off between risk and return
for various portfolios. Portfolios on the frontier are optimal, offering the highest return for a given risk or the
lowest risk for a given return. The curvature reflects diversification benefits, with steeper curves indicating
greater risk reduction through diversification. We identify portfolios with superior risk-adjusted returns (e.g.,
maximizing return per unit of risk) using a color gradient, which highlights areas with optimal balance. This
analysis confirms the stability and efficiency of portfolios generated by the CVaR optimization method. In
essence, the efficient frontier provides a visual representation of the best possible risk-return combinations
an investor can achieve with a given set of assets. The specific portfolio chosen on the frontier depends on
the investor’s risk appetite.
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6.2 Risk Sensitive Reinforcement Learning

Figure 10: Rewards obtained under CVaR as risk measure at varied levels of confidence for the locomotion
tasks Hopper-v4, Swimmer-v4 and InvertedPendulum-v4 (left to right).

We assume that in the context of this paper our problem is modeled as a MDP (Puterman, 2014), defined
by the tuple pS,A, R, P, S0, γq, where S “ 1 : S and A “ 1 : A are the state space and action space which is
a set of states and actions, respectively. The given expression a : b denotes a sequence or a set a, a` 1, . . . , b.
The reward function R : S ˆ A ˆ S Ñ R represents the reward received for each state after taking an action.
Here we consider our rewards to be bounded such that rps, a, s1q P r0, rmaxs and s P S and a P A. The
transition probabilities are P : S ˆ A Ñ ∆S , where ∆S is the probability simplex in RS and for a particular
state-action pair, P p¨|s, aq is the transition probability, and P0p¨q is the initial state distribution which is
defined as P0 “ Its“s0u for some given initial state. Finally, S0 P S is the initial state and δ P p0, 1s is the
discount factor. For each state x, the set Apsq gives all available actions.

A stationary policy πp¨|sq is a probability distribution over actions that depends on current state s. Here
we consider it parameterized by a p-dimensional vector ω, which means the policy space can be written as
Πω “ tπp¨|s, ωq, s P S, ω P Ω Ď Rpu and the parameter space Ω is assumed to be a convex compact set. In
contrast to the risk neutral case, the objective function is augmented with the risk measure, ϕr.s to obtain
the risk sensitive objective as maxπωPΠ ϕrJπω s. The πω we receive is the risk-sensitive policy induced by the
risk measure ϕr¨s. Here, we consider CVaR as the risk measure and the primary objective is to maximize the
CVaR of the discounted cumulative rewards received by following policy given as

max
πωPΠ

CVaRρrJπω s where Jπω :“
τ´1
ÿ

k“0
δkR psk, ak, sk`1q with s0 „ P0, (94)

ak „ πωp¨|skq, S1 „ P p¨|sk, akq , @k P r0 : τ s and τ P N` Y t8u which is the stopping time.

When the reward is of the form R “ fωpXq, and X is a random vector, CVaR optimization can be formulated
as a stochastic program and solved using classical approaches. This structure is often found in portfolio
optimization, where the investment strategy generally does not influence asset prices. However, in the RL
context, the policy parameters affect the probability distribution of the trajectory space. Consequently, the
CVaR values are sensitive to the policy parameters. In optimizing CVaR policies, the objective is to find the
policy that achieves the optimal CVaR (Tamar et al., 2015; Chow et al., 2015).

In our experimental setting, we consider parameterization of our policy using the Gaussian distribution
which is given as, πωpa | sq “ N

`

a | ΦpsqJx, ey
˘

, with parameters ω “ rx, ysJ. Here the mean is given by
ΦpsqJx and variance as ey, with infy ey ą 0. Here, Φpsq represents a normalized feature map with which
maps a state s to a finite dimensional Euclidean space, i.e., Φ : S Ñ Rd. We carry out locomotion tasks on
the various control environments InvertedDoublePendulum-v4, Swimmer-v4 and Hopper-v4 which are part
of the MuJoCo framework (Tassa et al., 2018) to test our algorithm.
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Algorithm 4 Superquantile Policy Optimization
1: Require: Learning rates at, ct, αt, βt ą 0
2: Input parameters: ρ, δ, λ P r0, 1q, batch size M , sample size N and discount factor δ
3: Initialize policy network (πω) parameters, ω P Ω, γ`

0,0 “ γ´
0,0 “ ´8, t “ 0, η`

0,0 “ η´
0,0 “ 0

4: while Stopping criteria is not satisfied do
5: ∆ti

iid
„ Bernoullipt´1, 1u, 0.5q, @i “ 1 . . . p

6: Let ω`
t “ ωt ` ct∆t and ω´

t “ ωt ´ ct∆t, where ∆t “ r∆t1 . . .∆tp sJ

7: for k “ 0 to Nt do
8: pQ`

t,k „ BernoulliptPπ
ω

`
t

, Qθ`

t,k
u, λq, where θ`

t,k “ m´1pη`
t,kq;

9: Compute sJ`
t,k`1 “

řM´1
j“0 δjR

`

s`
t,j , a

`
t,j , s

`
t,j`1

˘

from
!

s`
t,0, a

`
t,0, s

`
t,1, . . . s

`
t,M´1, a

`
t,M´1, s

`
t,M

)

„ πω`
t

10: Update VaR estimate: For pX`
t,k`1 „ pQ`

t,k,

γ`
t,k`1 “ γ`

t,k ` αkζ
`
t,kppX`

t,k`1qpp1 ´ ρqIpϕppX`
t,k`1q, γ`

t,kq` ´ ρIpϕppX`
t,k`1q, γ`

t,kq´q;

11: Update surrogate parameters: For Y`
t,k`1 „ Qθ`

t,k
,

η`
t,k`1 “ η`

t,k ` βkζ
`
t,kpY`

t,k`1qpIpϕpY`
t`1q, γ`

t q`ΓpY`
t,k`1q ´ η`

t,kIpϕpY`
t,k`1q, γ`

t,kq´q;

12: Update CVaR gradient estimate: η̄`
t`1,k`1 “ 1

pk`1qc

´

tcη̄`
t,k ` ϕ

´

Y`
t,k`1

¯¯

;

13: end for
14: Repeat steps 8 - 12 for γ´

t,k, η
´
t,kand sη´

t,k;
15: Update distribution parameters

ωt`1 “ ωt `
at

2ct∆t

!

η̄`
t,Nt

´ η̄´
t,Nt

)

16: t “ t` 1
17: end while

To further amplify the uncertainty in the decision-making scenario, we introduce a zero-mean white noise
component to both the observation space and the action space. This augmentation reinforces the agent’s
exposure to uncertainty. The selected control environments are specifically designed with penalty terms
embedded within their reward functions, which penalize the agent for unsuccessful task completion. As a
result, these environments generate reward distributions characterized by higher variance, thereby increasing
the probability of encountering worst-case scenarios, independent of the expected rewards.

In our experiments, we evaluated the performance of a CVaR-based policy under varying levels of confidence,
specifically ρ “ r0.1, 0.01, 0.001s. The results demonstrate that the agent maintains stability despite increas-
ing levels of uncertainty associated with decreasing ρ, which is illustrated in Figure 10. From Table 2, the
seeding schedule refers to the random seed used for ensuring reproducibility of experiments. The lr_decay
parameter specifies the rate at which the learning rate decreases over time, with lr_power defining the
exponent governing this decay. Similarly, px represents the base perturbation size used for gradient approx-
imation, while px_decay controls its decay rate, and px_power sets the exponent for its decay schedule.

Notably, the agent continues to accumulate rewards effectively, and the variance in its performance remains
well-controlled, avoiding any significant escalation. These findings suggest that the CVaR policy exhibits
robust risk management capabilities, ensuring consistent performance even in highly uncertain environments.
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Hyperparameter Value
seeding schedule [42, 30, 8, 67, 52]
λ 0.4
α0 0.015
αdecay 0.9
β0 0.1
βdecay 0.55
learning_rate(at) 0.01
discount_factor 0.9
num_episodes 200
lr_decay 10´3

lr_power 0.5
px 2.0
px_decay 10´2

px_power 0.161

Table 2: Hyperparameter setup for CVaR policy.

The ability to prevent variance from exploding, even under heightened uncertainty, highlights the policy’s
efficacy in mitigating risk and maintaining stability.

6.3 Sensitivity Analysis

We study the sensitivity of varying learning rates for the gradient estimate step in our CVaR optimization
problem. Our sensitivity analysis encompasses a range of learning rates at “ r0.01, 0.1, 0.2, 0.5s, systemati-
cally evaluated across multiple random seeds to account for stochastic variations inherent in the environment
and the algorithm. To enhance the algorithm’s adaptability to the optimization landscape, we incorporate
the Adaptive Moment Estimation (ADAM) (Kingma, 2014) within our optimization algorithm. This combi-
nation allows for parameter-specific adaptive learning rates, potentially mitigating the sensitivity to initial
learning rate selection. We maintain separate moment estimates for each parameter, updating them based
on the gradient approximations. In this context of our gradient estimator with ADAM, our learning rate
parameter update rule is:

at`1 “ at ´ ψ ¨
m̂t

?
v̂t ` ϵ

where: m̂t is the bias-corrected first moment estimate and v̂t is the bias-corrected second moment estimate.
To show that under the ADAM condition the convergence is guaranteed, we need to show that Er}at´a

˚}2s Ñ

0 as t Ñ 8, where a˚ is the optimal learning rate parameter. We give a proof sketch as follows

Proof. We define
Lt “ Er}at ´ a˚}2s

Now, the expected change ErLt`1 ´ Lts “ Er}at`1 ´ a˚}2 ´ }at ´ a˚}2s, which is upper bounded as

ErLt`1 ´ Lts “ Er}at`1 ´ a˚}2 ´ }at ´ a˚}2s

“ Er}at ´ ψ
m̂t

?
v̂t ` ϵ

´ a˚}2 ´ }at ´ a˚}2s

ď ´2ψErpat ´ a˚q
m̂t

?
v̂t ` ϵ

s ` ψ2Er}
m̂t

?
v̂t ` ϵ

}2s

Choosing a decreasing learning rate schedule ψt “
ψ0?
t

and under conditions
ř8

t“1 ψt “ 8,
ř8

t“1 ψ
2
t ă 8, we

can conclude that under appropriate choice of constants and applying the above conditions, we can show
that ErLt`1 ´ Lts ď 0 for sufficiently large t, which implies convergence.
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Figure 11: Sensitivity analysis of the learning rates.

For bounding the variance Vrats, we proceed as follows

Vrat`1s “ Vrat ´ ψt
m̂t

?
v̂t ` ϵ

s

ď p1 ´ ψtλq2Vrats ` ψ2
t σ

2

where λ is related to the smallest eigenvalue of the Hessian of the objective function, and σ2 bounds the
variance of the gradient estimate. Now unrolling the recursion, we get

Vrats ď

t
ź

i“1
p1 ´ ψiλq2Vra0s `

t
ÿ

i“1
ψ2
i σ

2
t
ź

j“i`1
p1 ´ ψjλq2

Using the decreasing learning rate schedule with ψt “
ψ0?
t
, we show that Vrats “ O

´

1?
t

¯

.

As learning rate sensitivity affects both convergence and variance a higher sensitivity can lead to faster
initial convergence but may impact long-term stability. Very high sensitivity can increase the upper bound
on variance, potentially leading to less stable convergence. The adaptive nature of ADAM helps mitigate
these effects by adjusting the effective learning rate based on the moments of the gradients.

For this experiment, the environment InvertedDoublePendulum-v4 is considered with added noise and using
Algorithm 4, we generate 5 batches for each learning rate, with each batch running for 1000 iterations and
the risk sensitivity level is kept fixed at ρ “ 0.001. Here, the objective function is further augmented with a
weighted average return component, balancing risk-sensitivity with overall performance optimization.

From Figure 11(a) which depicts the movement of the iterates and Figure11(b) the total reward obtained,
it is evident that the introduction of an adaptive learning schedule for gradient estimator of CVaR controls
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Hyperparameter Value
momentum(m̂t) 0.9
ψ 0.999
ϵ 10´7

Table 3: Additional hyperparameters for ADAM

rapid movement of the iterates and is resilient against environment dynamics. When compared against
the non-adaptive case Figure 11(c) and (d), we clearly see increased movement as the initial learning rate
decreases depicting high susceptibility to the initial choice of the learning rate. The values explicitly refers to
CVaR objective function under consideration and the rewards depict rewards obtained policy the CVaR based
policy.

6.4 Glycemic Control

Type 1 diabetes mellitus (DM1) is a chronic disease characterized by the body’s inability to produce insulin,
a hormone essential for regulating blood glucose levels. Patients with DM1 must carefully monitor their
glucose levels and administer insulin exogenously to maintain homeostasis. Effective risk management is
critical for these patients, as they face the constant threat of hypo and hyperglycemic episodes that can have
severe consequences if not properly controlled. We demonstrate the capability of our algorithm to manage
high-risk situations in the administration of insulin to T1DM patients. We employ an artificial pancreatic
simulator (Man et al., 2014) that exogenously administers insulin via a controller, allowing us to test various
control algorithms in a controlled environment before deployment in clinical settings. To accomplish this we
use the Simglucose framework (Xie, 2018), which is designed to mimic real-world scenarios encountered by
patients with diabetes. In the this environment, a proportional-integral-derivative (PID) controller is used to
regulate insulin administration, adjusting the dosage based on the patient’s blood glucose levels to maintain
them within a safe range (Clarke & Kovatchev, 2009).

The environment is modeled as a Markov Decision Process (MDP), with the state space consisting of multiple
noisy glucose measurements at various time points in the past, carbohydrate intakes, and other relevant
patient information. The action is the amount of insulin to be administered, a scalar value. The reward
function takes the current and previous Continous Glucose Monitor (CGM) values along with the current
insulin intake value. The reward function has a total of three components. First component is the negative
exponent of the difference of risk index values of two CGM inputs which ensures to have decreasing risk
index. Second component is the negative square of the risk index of the current CGM value indicative that
patient has healthy glucose value and the third component is a conditional value, it is added to the whole
reward when CGM is not in normal state. By minimizing the CVaR of the glucose levels, we ensure that not
only is the average risk low, but the probability of extreme high-risk events is also minimized.

We carry out experiments on two patient profiles - one adolescent 12 and two adults Figure 13 - with the
objective of minimizing the risk of the patient entering hypo- or hyperglycemic levels with risk sensitivity
level at ρ “ 0.01. The patient profiles are given below where, CF: Carbohydrate Factor, CR: Carb Ratio
(often referred to as Carb-to-Insulin Ratio) and TDI: Total Daily Insulin

Name CR CF Age TDI
adolescent#001 12 15.0360 18 36.7339
adult#001 10 8.77310657487 61 50.416652
adult#002 8 9.2128 65 57.8688

Table 4: Patient profiles

We observe from our experiments that our algorithm is able to keep the patient at admissible levels of risk.
There are instances where the glucose breaches into the hypo- or hyperglycemic regions, but the policy is
able to course-correct and maintain a stable condition. This is crucial, as even brief excursions outside the
target glucose range can have serious consequences for patients with DM1.
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Figure 12: For patient profile adolescent#001 tests carried out over administration of insulin under con-
strained risk index which is estimated by our algorithm we observe the patient is stable for more than a day.

Figure 13: For patient profiles adult#001 and adult#002 similar tests carried out over administration of
insulin.

In our experiment we focus on the patient profiles given by Table 4 where the behavior of adolescent#001
is given by Figure 12 and the adults are given by Figure 13. From Figure 12, we see that the adolescent
survives entire day which is depicted by the top row after which it dies despite movement of the glucose
level to risky zones it adapts to it and prolongs the longevity. Similar behaviour is observed in the adults in
Figure 13.
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The custom reward function for the controller is designed to incentivize maintaining blood glucose (BG)
levels within a target range. Specifically, if the BG level in the last hour exceeds 180 mg/dL, the controller
incurs a penalty of ´1; if it drops below 70 mg/dL, the penalty is ´2. Conversely, maintaining BG levels
within the target range yields a reward of `1. This reward structure aligns with the clinical objective of
avoiding hyperglycemia and hypoglycemia while promoting stable glucose control.

Meal Timing and Carbohydrate Intake: To simulate realistic daily scenarios, meal timings and car-
bohydrate (CHO) intake are modeled using predefined scenarios. The meal schedule includes five instances:
7:00 AM (45 g CHO), 12:00 PM (70 g CHO), 4:00 PM (15 g CHO), 6:00 PM (80 g CHO), and 11:00 PM (10
g CHO). The specific timing and amount of CHO intake reflect typical meal patterns and are designed to
challenge the controller’s ability to manage varying glucose dynamics effectively. Each simulation runs for a
full day of simulated time, with time steps representing 5-minute intervals. This fine granularity enables the
accurate modeling of BG dynamics and controller responses. For meal scenarios, carbohydrate intake data
is based on predefined patterns. The experimental setup evaluates the controller’s ability to maintain BG
levels within clinical targets under varying conditions, accounting for the unique physiological characteristics
of each patient profile and the challenges posed by predefined meal scenarios.

The results of our experiments demonstrate the efficacy of our algorithm in managing the high-risk scenarios
encountered by patients with DM1. The use of a controlled simulator environment, coupled with rigorous
risk estimation techniques, allows us to develop and validate insulin administration policies that can be safely
implemented in clinical settings.

7 Conclusion

This work introduces efficient algorithms for estimating extreme Value at Risk (VaR) and Conditional Value
at Risk (CVaR). Our incremental and adaptive methods improve accuracy and computational efficiency in
high-risk domains such as finance, healthcare, and robotics. The proposed single-pass variance reduction
technique and the multi-time scale optimization approach offer efficient solutions to the challenges of extreme
risk estimation. Theoretical and empirical analyses validate the effectiveness of these approaches. These
advances contribute to more robust risk management practices in complex, dynamic systems, providing
decision-makers with improved tools to assess and mitigate extreme risks.

42



Under review as submission to TMLR

References
MOSEK ApS. MOSEK Portfolio Optimization Cookbook, 2024.

Ognjen Arandjelović, Duc-Son Pham, and Svetha Venkatesh. The adaptable buffer algorithm for high
quantile estimation in non-stationary data streams. In International Joint Conference on Neural Networks
(IJCNN), pp. 1–7. IEEE, 2015.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathe-
matical finance, 9(3):203–228, 1999.

Søren Asmussen. Conjugate processes and the simulation of ruin problems. Stochastic processes and their
applications, 20(2):213–229, 1985.

Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57. Springer,
2007.

R Raj Bahadur. A note on quantiles in large samples. The Annals of Mathematical Statistics, 37(3):577–580,
1966.

Yifei Bai, Henrik Hult, and Wenqing Kang. Importance sampling for sums of random variables with regularly
varying tails. Advances in Applied Probability, 54(1):292–316, 2022.

Shokoofeh Banihashemi and Sarah Navidi. Portfolio performance evaluation in mean-CVaR framework:
A comparison with non-parametric methods value at risk in mean-VaR analysis. Operations Research
Perspectives, 4:21–28, 2017.

Olivier Bardou, Noufel Frikha, and Gilles Pages. Computing var and cvar using stochastic approximation
and adaptive unconstrained importance sampling. Monte Carlo Methods and Applications, 15(3):173–210,
2009.

Michel Benaïm, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and differential inclusions.
SIAM Journal on Control and Optimization, 44(1):328–348, 2005.

Daniel Bienstock, Michael Chertkov, and Sean Harnett. Chance-constrained optimal power flow: Risk-aware
network control under uncertainty. Siam Review, 56(3):461–495, 2014.

Patrick Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.

Jose Blanchet and Peter Glynn. State-dependent importance sampling for regularly varying random walks.
The Annals of Applied Probability, 18(4):1457–1480, 2008.

Jose Blanchet and Henry Lam. Rare event simulation for a generalized hawkes process. Proceedings of the
2009 Winter Simulation Conference (WSC), pp. 1282–1288, 2009.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):291–294,
1997.

Vivek S. Borkar. Stochastic Approximation. Cambridge University Press, 2008.

Vivek S Borkar and Sean P Meyn. The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

Zdravko I Botev and Dirk P Lloyd. Efficient simulation of large deviation events. Mathematics of Operations
Research, 40(4):1016–1033, 2015.

Amarjit Budhiraja and Paul Dupuis. Analysis and approximation of rare events: representations and weak
convergence methods. Springer, 2019.

Dany Cajas. Riskfolio-lib (6.2.3), 2024. URL https://github.com/dcajasn/Riskfolio-Lib.

43

https://github.com/dcajasn/Riskfolio-Lib


Under review as submission to TMLR

Claire Cannamela, Josselin Garnier, and Bertrand Iooss. Controlled stratification for quantile estimation.
The Annals of Applied Statistics, pp. 1554–1580, 2008.

A. R. Cardoso and D. P. Palomar. Online cvar optimization for streaming data. IEEE Transactions on
Signal Processing, 70:3198–3213, 2022.

Biman Chakraborty. On multivariate quantile regression. Journal of Statistical Planning and Inference, 110
(1):109–132, 2003.

Z. Chen, X. Yi, and S. Zhang. Deep learning for cvar estimation in high-dimensional optimization problems.
IEEE Transactions on Neural Networks and Learning Systems, 33(9):4215–4227, 2022.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-making: a
Cvar Optimization approach. Advances in neural information processing systems, 28, 2015.

William Clarke and Boris Kovatchev. Statistical tools to analyze continuous glucose monitor data. Diabetes
technology & therapeutics, 11(S1):S–45, 2009.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the cross-entropy
method. Annals of Operations Research, 134(1):19–67, 2005.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex optimiza-
tion. Journal of Machine Learning Research, 17(83):1–5, 2016.

AB Dieker and Michel Mandjes. Fast simulation of overflow probabilities in a queue with Gaussian input.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 16(2):119–151, 2005.

Kevin Dowd and David Blake. After VaR: the theory, estimation, and insurance applications of quantile-
based risk measures. Journal of Risk and Insurance, 73(2):193–229, 2006.

Paul Dupuis and Hui Wang. Subsolutions of an HJB equation and efficient schemes for importance sampling.
Mathematics of Operations Research, 34(4):903–919, 2009.

Paul Dupuis, Ali Devin Sezer, and Hui Wang. Dynamic importance sampling for queueing networks. The
Annals of Applied Probability, 22(3):1155–1194, 2012.

Daniel Egloff and Markus Leippold. Quantile estimation with adaptive importance sampling. The Annals
of Statistics, 38(2):1244–1278, 2010.

R. Gao and A. J. Kleywegt. Distributionally robust cvar optimization with ambiguous probability measures.
Mathematical Programming, 193:293–332, 2022.

John Geweke. Bayesian inference in econometric models using Monte Carlo integration. Econometrica:
Journal of the Econometric Society, pp. 1317–1339, 1989.

Jayanta K Ghosh. A new proof of the Bahadur representation of quantiles and an application. The Annals
of Mathematical Statistics, pp. 1957–1961, 1971.

Paul Glasserman and Jingyi Li. Importance sampling for portfolio credit risk. Management science, 51(11):
1643–1656, 2005.

Paul Glasserman, Philip Heidelberger, and Perwez Shahabuddin. Variance reduction techniques for estimat-
ing value-at-risk. Management Science, 46(10):1349–1364, 2000.

Peter W Glynn. Importance sampling for Monte Carlo estimation of quantiles. In Mathematical Methods
in Stochastic Simulation and Experimental Design: Proceedings of the 2nd St. Petersburg Workshop on
Simulation, pp. 180–185. Publishing House of St. Petersburg University, 1996.

Paul J. Goulart and Yuwen Chen. Clarabel: An interior-point solver for conic programs with quadratic
objectives, 2024.

44



Under review as submission to TMLR

Peter Grassberger. Critical phenomena in complex networks. Physical Review E, 66(2):026108, 2002.

Shengyi He, Guangxin Jiang, Henry Lam, and Michael C Fu. Adaptive importance sampling for efficient
stochastic root finding and quantile estimation. Operations Research, 2023.

Philip Heidelberger. Fast simulation of rare events in queueing and reliability models. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 5(1):43–85, 1995.

JL Hodges and Erich L Lehmann. Hodges´Lehmann estimators. Encyclopedia of Statistical Sciences, 1983.

Tito Homem-de Mello. A study on the cross-entropy method for rare-event probability estimation. INFORMS
Journal on Computing, 19(3):381–394, 2007.

Zidong Hu and Liangjun Su. Bootstrap quantile estimation via importance sampling. Computational Statis-
tics & Data Analysis, 52(12):5136–5142, 2008.

Raj Jain and Imrich Chlamtac. The p2 algorithm for dynamic calculation of quantiles and histograms without
storing observations. Communications of the ACM, 28(10):1076–1085, 1985.

Philippe Jorion. Value at risk: the new benchmark for managing financial risk. McGraw-Hill, 2007.

Ajin George Joseph and Shalabh Bhatnagar. A stochastic approximation algorithm for quantile estimation.
In International Conference on Neural Information Processing, pp. 311–319. Springer, 2015.

Sandeep Juneja and Perwez Shahabuddin. Simulating heavy-tailed processes using delayed hazard rate
twisting. ACM Transactions on Modeling and Computer Simulation (TOMACS), 12(2):94–118, 2002.

D. S. Kalogerias and W. B. Powell. Model-free reinforcement learning for cvar optimization in markov
decision processes. Mathematics of Operations Research, 48(2):789–816, 2023.

George Kesidis and Jean Walrand. Efficient estimation of buffer overflow probabilities via importance sam-
pling. Proceedings of INFOCOM’93, pp. 875–884, 1993.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Fima Klebaner, Zinoviy Landsman, Udi Makov, and Jing Yao. Optimal portfolios with downside risk.
Quantitative Finance, 17(3):315–325, 2017.

Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge University Press, 2005.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. SIAM journal on Control and Optimization,
42(4):1143–1166, 2003.

Dirk P Kroese and Victor F Nicola. Efficient estimation of overflow probabilities in queues with breakdowns.
Performance Evaluation, 36:471–484, 1999.

S Kullback. Statistics and Information Theory. J. Wiley and Sons, New York, 1959.

Harold Joseph Kushner and Dean S Clark. Stochastic Approximation Methods for Constrained and Uncon-
strained Systems, volume 26. Springer Science & Business Media, 2012.

Yann Le Tallec. Robust, risk-sensitive, and data-driven control of Markov decision processes. PhD thesis,
Massachusetts Institute of Technology, 2007.

X. Li and A. Zhou. Robust cvar-based portfolio optimization under distributional uncertainty. Journal of
Computational and Applied Mathematics, 385:113199, 2021.

John C Liechty, Dennis KJ Lin, and James P McDermott. Single-pass low-storage arbitrary quantile esti-
mation for massive datasets. Statistics and Computing, 13(2):91–100, 2003.

Lennart Ljung. Strong convergence of a stochastic approximation algorithm. The Annals of Statistics, pp.
680–696, 1978.

45



Under review as submission to TMLR

Moinak Maiti. Efficient frontier and portfolio optimization. In Applied Financial Econometrics: Theory,
Method and Applications, pp. 89–111. Springer, 2021.

Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Kovatchev, and Claudio Cobelli.
The UVA/PADOVA type 1 diabetes simulator: new features. Journal of diabetes science and technology,
8(1):26–34, 2014.

Harry M Markowitz. Foundations of Portfolio Theory. The journal of finance, 46(2):469–477, 1991.

John L Maryak and Daniel C Chin. Global random optimization by simultaneous perturbation stochastic
approximation. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 53(3):781, 2008.

Jérôme Morio. Influence of input pdf parameters of a model on a failure probability estimation. Simulation
Modelling Practice and Theory, 20(1):16–26, 2012.

Carl N Morris. Natural exponential families with quadratic variance functions. The Annals of Statistics, pp.
65–80, 1982.

A. Nemirovski and A. Shapiro. Efficient simulation-based cvar estimation for complex systems. SIAM
Journal on Optimization, 32(3):2156–2179, 2022.

Victor F Nicola, Perwez Shahabuddin, and Marvin K Nakayama. Techniques for fast simulation of models
of highly dependable systems. IEEE Transactions on Reliability, 42(3):372–380, 1993.

Matthew Norton, Valentyn Khokhlov, and Stan Uryasev. Calculating cvar and bpoe for common probability
distributions with application to portfolio optimization and density estimation. Annals of Operations
Research, 299:1281–1315, 2021.

Art B Owen and Yijie Zhou. Importance sampling for sums of lognormal distributions. Journal of Applied
Probability, 56(3):858–876, 2019.

Quan Pan, José Dias-Neto, and Marco A Ferreira. Adaptive importance sampling for efficient simulation-
based optimization of a hessian matrix. INFORMS Journal on Computing, 32(4):1013–1032, 2020.

Bent E. Petersen. Introduction to the Fourier transform and pseudo-differential operators. Monographs and
studies in mathematics. Pitman Advanced Pub. Program, 1983.

J Pfanzagl. Investigating the quantile of an unknown distribution. In Contribution to Applied Statistics, pp.
111–126. Springer, 1976.

Jorion Philippe. Value at Risk: The New Benchmark for Managing Financial Risk. NY: McGraw-Hill
Professional, 2001.

James Pickands III. Statistical inference using extreme order statistics. The Annals of Statistics, pp. 119–131,
1975.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, New York, 2014.

Inder K Rana. An introduction to measure and integration, volume 45. American Mathematical Soc., 2002.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pp. 400–407, 1951.

R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss distributions. Journal
of banking & finance, 26(7):1443–1471, 2002.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal of risk, 2:
21–42, 2000.

Gerardo Rubino and Bruno Tuffin. Rare event simulation using Monte Carlo methods. John Wiley & Sons,
2009.

46



Under review as submission to TMLR

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2004.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method. John Wiley & Sons,
2016.

Reuven Y Rubinstein and Alexander Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochastic
Optimization by the Score Function Method. John Wiley & Sons Inc., 1993.

James S Sadowsky and James A Bucklew. Large deviations theory and efficient simulation of excessive
backlogs in a gi/gi/m queue. IEEE Transactions on Automatic Control, 35(12):1339–1346, 1990.

Werner Sandmann. Importance sampling for biochemical networks. EURASIP Journal on Bioinformatics
and Systems Biology, 2009:1–14, 2009.

Igal Sason. On reverse pinsker inequalities. arXiv preprint arXiv:1503.07118, 2015.

S. Singh and C. J. Maddison. Gradient-based cvar optimization for large-scale machine learning. In Pro-
ceedings of the 40th International Conference on Machine Learning, pp. 10234–10243. PMLR, 2023.

Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. CRC
press, 2018.

A. Takeda and T. Kanamori. Mixture cvar portfolio optimization. Quantitative Finance, 21(1):125–144,
2021.

Ichiro Takeuchi, Quoc V Le, Timothy D Sears, and Alexander J Smola. Nonparametric quantile estimation.
Journal of Machine Learning Research, 7(Jul):1231–1264, 2006.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 2993–2999. AAAI Press, 2015.
ISBN 0262511290.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Philip Thomas and Erik Learned-Miller. Concentration inequalities for conditional value at risk. In Inter-
national Conference on Machine Learning, pp. 6225–6233. PMLR, 2019.

Eric Vanden-Eijnden and Jonathan Weare. Rare event simulation of small noise diffusions. Communications
on Pure and Applied Mathematics, 65(12):1770–1803, 2012.

Kathrin Wächter, Nataša Krejic, and Nataša Krklec Jerinkic. Convergence of sample average approximation
with adaptive importance sampling for infinite-dimensional optimization. SIAM Journal on Optimization,
27(1):384–410, 2017.

H. Wang and Y. Liu. Non-parametric cvar estimation using quantile regression forests in financial risk
management. Journal of Banking & Finance, 140:106758, 2024.

Maik H Wolters. Estimating monetary policy reaction functions using quantile regressions. Journal of
Macroeconomics, 34(2):342–361, 2012.

J. Xie. Jxx123/simglucose: A type-1 diabetes simulator implemented in python for reinforcement learning
purpose. https://github.com/jxx123/simglucose, 2018. Accessed: 2024-05-22.

Yong Xie, Hongwei Wang, and Hui Lu. Coordination of supply chains with a retailer under the mean-cvar
criterion. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(7):1039–1053, 2016.

James J Yeh. Martingales and stochastic analysis, volume 1. World Scientific, 1995.

47

https://github.com/jxx123/simglucose


Under review as submission to TMLR

Assaf J Zeevi and Ronny Meir. Density estimation through convex combinations of densities: approximation
and estimation bounds. Neural Networks, 10(1):99–109, 1997.

Y. Zhang, R. Jiang, and S. Shen. Adaptive importance sampling for cvar optimization. Operations Research
Letters, 48(6):770–776, 2020.

Zhengmin Zhang. Estimating mutual information via Kolmogorov distance. IEEE Transactions on Infor-
mation Theory, 53(9):3280–3282, 2007.

48


	Introduction
	Related Work
	Our contribution
	Paper Outline
	Summary of Notation

	Background
	Quantile and Superquantile Estimation Algorithm
	Approximation Error Bounds
	Algorithm (Stochastic Approximation Version)
	Gaussian Version
	Convergence Analysis

	Superquantile Optimization Algorithm
	Related Work

	Extreme Risk Measure Estimation with Latent Measure
	Experimental Results
	Risk adjusted Portfolio Optimization
	Single Stock
	Portfolio Allocation

	Risk Sensitive Reinforcement Learning
	Sensitivity Analysis
	Glycemic Control

	Conclusion

