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Abstract

The fundamental question of how cells maintain their characteristic size remains
open. Cell size measurements made through microscopic time-lapse imaging of
microfluidic single-cell cultivations have seriously questioned classical cell growth
models and are calling for newer, nuanced models that explain empirical findings
better. Yet current models are limited in that they explain cellular growth either only
in specific organisms and/or specific micro-environmental conditions. Together
with the fact that tools for robust analysis of said time-lapse images are not widely
available as yet, the previously mentioned point presents an opportunity to progress
the cell growth and size homeostasis discourse through generative (probabilistic)
modelling. Our contribution is a novel Model Framework for simulating microflu-
idic single-cell cultivations of rod-shaped bacteria with 36 different simulation
modalities, each integrating dominant cell growth theories and generative modelling
techniques. Our framework enables the simulation of diverse microscopic image
sequences of the said class of single-cell cultivations as well as the generation of
corresponding ground truths. More generally, our framework enables simulations
of image sequences that imperfect camera and imaging conditions can produce,
along with corresponding segmentation and tracking information. It thus enables
the generation of datasets consisting of image sequence inputs and corresponding
tabular labels, which can help develop robust machine image analysis networks
applicable to real-world microfluidic experiments aimed at progressing the cell
growth discourse. We demonstrate the usability of our framework through synthetic
experiments and conclude by presenting its limitations as well as opportunities for
further work.

1 Introduction

Rod-shaped bacteria, particularly E. coli, are model organisms of tremendous importance to the
life sciences [Blount, 2015]. Though touted as the most well-understood organisms, the extent
to which growth and size homeostasis of these cells (and more generally, single-cells of several
organisms) is understood remains limited [Leygeber et al., 2019]. Microscopic time-lapse imaging of
microfluidic single-cell cultivations provides the means for measuring cell size at spatio-temporal
resolution [Grünberger et al., 2015]. Learning complex cell growth and homeostasis dynamics directly
from image sequences without annotations is a hard problem. Sachs et al. [2022] have developed
CellSium, a BSD licensed open-source software for simulating time-lapse images of microfluidic
cultivations of single-cells with ground truth when explicitly programmed with cellular birth, growth
and reproduction (division) mechanisms. Our contribution is a framework with 36 modalities for
the generative (probabilistic) modelling of the said mechanisms, accounting for diverse bio-physical

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Top - Schematic of a real-world application marred by image-analysis bottleneck. Bottom -
Our framework allows the generation of datasets to enable (semi-)supervised machine image analysis

factors impacting cellular growth. We demonstrate here the grounding of our design principles in
dominant cellular growth theories and present evidence of the framework’s usability.

2 Model Framework

2.1 Core Principles

Our framework allows for modelling cell lengths (growth rates) on the basis of scientific hypotheses
related to two culture-level (global) considerations, namely the growth law cells obey [Schaechter
et al., 1958], [Monod, 1949] and the cell-division paradigm applicable [Amir, 2014], [Taheri-Araghi
et al., 2015], and three other factors, namely the availability of nutrients (growth medium) [Schaechter
et al., 1958], [Fantes and Nurse, 1977], the basal expression of genes regulating growth [Elowitz et al.,
2002], [Dong et al., 1995] and intrinsic cell-to-cell heterogeneity [Hashimoto et al., 2016], [Ribbe
and Maier, 2016]. A foundational premise is that prokaryotic cell-cycles consist of three distinct
phases - B-, C- and D-periods - wherein cellular growth takes place only in the second [Wang and
Levin, 2009]. For the sake of exposition, we present below one of 36 supported model classes.

2.2 Instantaneous Cell Lengths

Under the exposed model, cells obey the Linear Growth law [Schaechter et al., 1958]. Our model
of instantaneous cell lengths depends on three free parameters – τ0, the B-period duration of cells,
τ2, the D-period duration of cells, and λ1, the start length of the first generation cell. The model
assumes that the B- and D-periods of all cells are equally long and that the division of a cell births
two daughter cells of the same length. Equations characterising instantaneous length, li(ai) of a cell
i under the model are given below:

l1(a1) =


λ1, if a1 ≤ ⌊τ0/γ⌋ i.e., the cell is in its B-period
l1(a1 − 1) + g1(a1)γ, if ⌊τ0/γ⌋ < a1 ≤ n1 − ⌈τ2/γ⌉ i.e., cell in its C-period
l1(a1 − 1) = Λ1, if a1 > n1 − ⌈τ2/γ⌉ i.e., the cell in is its D-period

(1)

For all i > 1, i.e. for all cells other than the first generation cell:

li(ai) =


λi = Λ⌊i/2⌋/2, if ai ≤ ⌊τ0/γ⌋ (symmetrical division of parent, ⌊i/2⌋)
li(ai − 1) + gi(ai)γ, if ⌊τ0/γ⌋ < ai ≤ n1 − ⌈τ2/γ⌉
li(ai − 1) = Λi, otherwise, i.e. if ai > ni − ⌈τ2/γ⌉

(2)

Here, gi(ai) denotes the growth rate of cell i at age ai (i.e, the number of simulation time steps that
have elapsed between the cell’s birth and the current instant), γ denotes the duration of a simulation
time-step, and ni, the number of time-steps between birth and division of the cell.
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2.3 Instantaneous Growth Rates

In this model, we include hypotheses about how intrinsic heterogeneity, basal gene expression and
growth medium concentration impacts instantaneous growth rates of cells.

Intrinsic heterogeneity [Hashimoto et al., 2016], [Ribbe and Maier, 2016] and basal gene expression
[Elowitz et al., 2002], [Dong et al., 1995] are modelled as determining the (finite) maximum growth
rate any given cell i could possibly attain, denoted gmax(i). We motivate this ceiling on growth
rate by the simple observation that in nature bacteria have finite lifespans in which their lengths
are limited to orders of micrometers. For any cell i, we compose gmax(i) as the sum of maximum
growth rate due to heterogeneity, denoted ghet(i) and that due to basal gene expression, denoted
ggexp(i), i.e. gmax(i) := ghet(i) + ggexp(i), such that in expectation, the contributions from both
these components are equal. Being random and continuous, we desire that gmax(·) be distributed
around a mean b (a model parameter), which offers the interpretation of a population mean maximum
growth rate, with some variance, denoted v.

The Beta distribution, a member of the exponential family, is often used to model continuous variables
restricted to the support (0, 1). So for each component ghet(·) and ggexp(·), we scale a symmetrical
Beta distribution by b, so that the supports of both are restricted to (0, b) whereas that of gmax(·) is
restricted to (0, 2b). The symmetry ensures that E[gmax(·)] = E[ghet(·)]+E[ggexp(·)] = b/2+b/2 = b.
The variance desideratum is enforced so that v = vh+vg , where the summands are model parameters
representing gmax variance due to heterogeneity and gene expression respectively. These parameters
are essentially free, to the extent that they respect the integrity of the Beta distributions (i.e. the
shapes of the Beta distributions must be positive). Presented below are equations characterising ghet:

αh = b2/8vh − 1/2, where vh ∈ (0, b
2
/4)

Zh(i)
iid∼ Beta(αh, αh)

ghet(i) = bZh(i)

(3)

The model for ggexp(i), in particular, requires that there be a culture-level (global) hypothesis
about how many genes ng > 0 regulate growth rates in the same. Under this hypothesis, we
model the support of each gene’s basal expression level as the set {0, 1} (on or off ). We represent
the collection of basal expression levels of all the ng genes of a cell i as its gene configuration,
ζi ∈ {0, 1, ..., 2ng−1}. We model this variable and its implication upon ggexp(i) with two parameters
p0 ∈ (0, 1)2

ng and ptr ∈ (0, 1)2
ng×2ng , as shown below. p0 is a normalised vector of probabilities,

so that p0(j), where j ∈ {0, 1, ..., 2ng − 1} is the probability that the first generation cell has gene
configuration (i.e., ζ1) = j. ptr is a (sparse) matrix, where each row is a vector of normalised
conditional probabilities. We can interpret ptr as a transition matrix which manages the degree to
which a daughter cell inherits its gene configuration. Thus we have:

ζ1 ∼ Categorical(p0)

ζi | ζ⌊i/2⌋ ∼ Categorical(ptr(ζ⌊i/2⌋))

αg = b2/8vg(ζi)− 1/2, where vg(ζi) ∈ (0, b
2
/4) for all ζi ∈ {0, 1, ..., 2ng − 1}

Zg(i)
iid∼ Beta(αg, αg)

ggexp(i) = bZg(i)

(4)

Instantaneous growth rate gi(t) of a cell i, limited to remain in the interval [0, gmax(·)], is then
modelled as a sigmoid function of gmax(i), instantaneous medium concentration [Schaechter et al.,
1958] m(t), and a factor Ai(t), which can be interpreted as the fraction of space through which the
cell is able to access media, based on its spatial positioning amongst other competing cells in the
culture. To model the latter, we posit an (immaterial) envelope of thickness δ surrounding each cell’s
membrane. When multiple cells inhabit a dense neighbourhood, their envelopes can overlap, resulting
in ground(s) for competition. Ai(t) is then defined as the fraction of cell i’s envelope through which
it can exclusively access media plus a uniform portion of the fraction of its envelope comprising of
competition grounds. Localising competition grounds is a non-trivial problem, and we device an
algorithm for the task (see algorithm 1 in appendix).
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2.4 Cell Division

The final component of the growth dynamics model is one governing cell division. In this model, we
base cell division on the Adder paradigm [Amir, 2014], [Taheri-Araghi et al., 2015], which holds that
cell division occurs after it has added a certain critical volume since birth. Given that rod-shaped
bacteria grow only along the length dimension in diverse environments, we model cell i’s division as
occurring when it has added a critical length, ∆(i), modeled as:

∆(i)
iid∼ Gamma(µa

2/σ2
a, σ

2
a/µa) (5)

3 Experiments

A total of 180 simulations of single-cell cultivations of rod-shaped bacteria in microfluidic apparatus
were performed using five random seeds for each of the 36 models supported by our framework.
Each simulation resulted a sequence of images resembling microscopic time-lapse images captured
in a real microfluidic experiment (see fig 2 for an example) and a tabular set of annotations tracking
cells, their lineages, their physical dimensions and spatial positions in each simulated camera frame.

Figure 2: A simulated single-cell cultivation at t = 0, 4, 8, and 12 hrs respectively (left to right).

4 Discussion

Our work would bear fruit when the community develop detection and tracking networks using
labelled datasets generated by this framework. However, the quintessential issue of whether learnings
from high-quality simulation imagery and annotations would transfer to applications involving noisy
real-world microscopy still looms. To alleviate this, the framework allows users the option to add
independent white noise to simulated images as well as annotations.

In the same vein, whereas elements of our framework are indeed grounded in theories that have been
instrumental in shaping the cell-growth discourse thus far, future work could enable the inclusion of
expert knowledge in a Bayesian manner. Expert beliefs can be encoded as priors on model parameters,
for example, adding hierarchical layer(s) to the framework, thereby making the framework more
flexible, effectively extending its usability for learning more robust tracking networks that do not
overfit on fixed parameters.

Furthermore, our work is limited to modelling the development of microfluidic rod-shaped bacterial
cultures in a non-negative growth context. Antibiotics research is often concerned with how bacterial
growth is contained and future work could address impacts of growth inhibitors on cell lengths
and (negative) growth rates. Moreover gene expression levels can be modelled more realistically,
as continuous variables where we presently model them as Bernoullis. Finally, future work could
extend the framework to also model growth in prokaryotic organisms whose characteristic shapes are
different from rod-shaped bacteria, and indeed to model single-cell growth in higher organisms.
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A Appendix

Algorithm 1 Envelope Partitioning Algorithm
procedure PARTITION(E,M ) ▷ E = (E1, ..., EN ), M = (M1, ...,MN ),

where Ei is an envelope, or part thereof
(envelopelet), which can be seen as a set
of co-ordinates describing a bounded
region, and Mi is the (possibly incom-
plete) set of identifiers of cells compet-
ing for nutrition in Ei (member set), for
all i = {1, 2, ..., N}

if |E| < 2 then
return E, M ▷ Elementary instance of the problem

else
X← E1 \ E2 \ E3... \ EN ▷ Part(s) of E1 accessed exclusively
I ← E2 ∩ E1, E3 ∩ E1, ..., EN ∩ E1 ▷ Intersections of E1 with others
R← E2 \ E1, E3 \ E1, ..., EN \ E1 ▷ Remaining parts of E2:n

MX ←M1 ▷ X exclusively accessed by M1

MI ←M2 ∪M1,M3 ∪M1, ...,MN ∪M1 ▷ Intersections member set update
MR ←M \M1 ▷ Remove M1

E′,M ′ ←PARTITION(I ∪R,MI ∪MR) ▷ Recursive call
return X ∪ E′,MX ∪M ′

end if
end procedure
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