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Abstract

Few-Shot Open-Set Recognition (FSOSR) targets a critical real-world challenge,
aiming to categorize inputs into known categories, termed closed-set classes,
while identifying open-set inputs that fall outside these classes. Although transfer
learning where a model is tuned to a given few-shot task has become a prominent
paradigm in closed-world, we observe that it fails to expand to open-world. To
unlock this challenge, we propose a two-stage method which consists of open-set
aware meta-learning with open-set free transfer learning. In the open-set aware
meta-learning stage, a model is trained to establish a metric space that serves as a
beneficial starting point for the subsequent stage. During the open-set free trans-
fer learning stage, the model is further adapted to a specific target task through
transfer learning. Additionally, we introduce a strategy to simulate open-set ex-
amples by modifying the training dataset or generating pseudo open-set examples.
The proposed method achieves state-of-the-art performance on two widely recog-
nized benchmarks, miniImageNet and tieredImageNet, with only a 1.5% increase
in training effort. Our work demonstrates the effectiveness of transfer learning in
FSOSR.

1 Introduction
Few-shot learning (FSL) has got a lot of attention due to the importance in enabling models to
adapt to novel tasks using a few examples (e.g., N -way K-shot: a task involving N distinct classes,
each represented by K examples) [42, 17, 37, 34, 27, 10]. However, in practical applications, FSL
models inevitably encounter instances that do not belong to the N classes, also known as open-
set instances. Addressing this challenge has led to the emergence of the field of few-shot open-set
recognition (FSOSR) [24, 16, 19, 15, 41].

In FSOSR, if two N -way K-shot FSOSR tasks have distinct closed sets, their corresponding open
sets will also differ. This interdependence presents a key challenge when adapting to novel tasks in
FSOSR. Namely, it is essential to redefine not only the closed set but also the open set, since the
open set is inherently shaped by its closed set. Consequently, the open set lacks a universal definition
across various FSOSR tasks; instead, it requires contextual consideration based on the closed set of
a specific target task.

Despite recent advancements in the field, current works [24, 16, 19, 15, 41] have commonly focused
on leveraging prior knowledge from a large training dataset. Then, they frequently struggle to bal-
ance closed-set accuracy with open-set recognition capabilities, often prioritizing open-set recogni-
tion at the expense of closed-set accuracy. Then, FSOSR research have faced saturated performance
and struggled to achieve broad generalization across various benchmarks. In this work, we bring at-
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Figure 1: Difficulty of straightforward extension of the transfer learning from FSL methods [34,
17] to FSOSR. Compared to the pre-trained model without transfer learning (w/o TL), in open-set
recognition, [34, 17] are less effective as much as in closed-set, or even degrade the performance.

tention to the novel application of transfer learning within this field. Transfer learning [14, 7, 6, 30]
has been extensively studied and demonstrated its efficacy leveraging a pre-trained model to gen-
eralize it to other tasks. Recent FSL methods [31, 34, 39, 17, 35] have shown the efficacy of this
approach. However, when they come to FSOSR, open-set examples are inherently not present, which
significantly undermines the effect of transfer learning in terms of open-set recognition. Then, as in
Fig. 1, the naive extension of the transfer learning techniques of FSL, e.g. IER-distill [34] and Label
Halluc. [17] fails to attain the same level of improvement in open-set recognition as seen in closed
set, or even results in decreased result.

Tackling this point, we propose a two-staged FSOSR learning framework. Our method involves
two stages: open-set aware meta-learning (OAL) and open-set free transfer learning (OFL). During
the meta-learning stage, our objective extends beyond the meta-training of the feature encoder; we
also aim to establish a universal open-set representation. This equips us with a decent starting point
for the subsequent open-set free transfer learning. In the transfer learning stage, we commence by
initializing the model using the parameters obtained from the meta-learning stage. To counteract the
absence of open-set examples, we develop two alternative open-set sampling strategies. The first
approach curates a training dataset of the previous stage as a source of open-set examples for open-
set free transfer learning. For more pragmatic application, our second strategy is confined to the
closed-set examples present in the target task, and exploits an episodic learning framework. Here,
we generate pseudo FSOSR episodes by randomly dividing the closed-set categories into a closed
set and a pseudo open set. As a result, our OAL-OFL method attains a marked enhancement in
performance metrics on the standard FSOSR benchmarks as depicted in Fig. 1 while incurring a
minimal extra training expense of only 1.5% compared to training without transfer learning. This
allows OAL-OFL to surpass the existing state-of-the-art (SOTA) methods.

Our contributions: i) We introduce a novel two-staged learning called OAL-OFL, bringing transfer
learning to FSOSR for the first time with only a minimal additional cost. ii) We show the importance
of preparing the model through open-set aware meta-learning, which is a sturdy starting point for
transfer learning. iii) We suggest two breakthroughs to handle the lack of open-set examples during
the transfer learning stage. iv) By leveraging the effectiveness of transfer learning, our proposed
OAL-OFL achieves SOTA on miniImageNet and tieredImageNet datasets. This underscores its abil-
ity to generalize across various tasks, enhancing both closed-set classification accuracy and open-set
recognition capabilities.

2 Related Works

FSL [9] can be streamlined into two approaches: meta-learning and transfer learning. Meta-learning,
also known as learning-to-learn, can be categorized into optimization and metric-based methods.
Optimization-based methods [10, 11, 22, 27] involve training a meta-learner to adapt quickly to new
tasks through a few optimization steps by learning adaptation procedures. In contrast, metric-based
methods [20, 37, 40, 42] use a common feature embedding space where target classes of a new task
can be distinguished using a distance metric. Recently, transfer learning-based approaches [31, 34,
17, 35] have been suggested with superior results where a model trained on a large-scale base dataset
is fine-tuned to a few-shot task with a small number of support examples. Our approach aligns with
the transfer learning-based approaches of the few-shot classification, but transfer learning has yet to
be explored in the context of FSOSR.
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OSR aims to identify in-distribution samples within a closed set, and simultaneously detect the
out-of-distribution samples from unseen classes. Early approaches focused on the confidence level
and proposed various approaches such as using extreme value theory [1, 2, 13, 36]. Recently, there
has been a growing interest in generative model-based approaches [28, 29, 38], which leverage the
different reconstruction behavior between in-distribution and out-of-distribution samples. On the
other hand, our method aligns more closely with distance-based approaches [18, 25, 43], particularly
those that specify open-set representation [3, 45]. However, OSR methods assume the distinct and
fixed class pools for the closed and open sets, which is not feasible in FSOSR, where both sets vary
depending on a task. Then, it is hard to straightforwardly apply the conventional OSR methods to
FSOSR.

FSOSR. Compared to few-shot classification and OSR, FSOSR has been less explored.
PEELER [24] introduced FSOSR task and aimed to maximize the entropy of open-set examples
with Gaussian embeddings. They employed OSR approach [1] of detecting open-set examples based
on the largest class probability. SnaTCHer [16] used transformation consistency that similar exam-
ples remain closer after a set-to-set transformation. TANE [15] and D-ProtoNet [19] proposed a
task-dependent open-set generator using support examples. Considering low-level features as well
as semantic-level ones, GEL [41] designed a local-global energy score to measure the deviation of
the input from the closed-set examples. The aforementioned methods primarily employ the repre-
sentative metric learning approach, ProtoNets [37], and face difficulties in achieving generalization
across diverse benchmarks. Our proposed approach, however, involves a two-stage learning process.
The first stage focuses on meta-learning to train a task-independent open-set classifier that serves as
an effective initialization for the second stage of transfer learning.

3 Proposed Method

We present the proposed two-stage transfer learning process, dubbed OAL-OFL. The overall frame-
work of OAL-OFL is depicted in Fig. 2. First, we describe the first stage, open-set aware meta-
learning, where a universal FSOSR metric space is obtained by learning the feature encoder and a
learnable open-set prototype. Then, we elaborate on the open-set free transfer learning stage, espe-
cially suggesting two approaches to resolve the challenges of the absence of open-set examples.

Problem definition. The goal of FSOSR is two-fold: to classify an input query into one of the
closed-set categories or to reject it as belonging to the associated open-set categories. Formally, an
N -way K-shot FSOSR task can be represented as T = {S,Q, Q̃ ∣C, C̃}, where C denotes a set of N
closed-set categories. The closed set is described by a support set S which includes K examples for
each category, i.e. {xi, yi}∣S∣1 and ∣S∣ = NK. Here, x represents the input data, while y indicates its
corresponding label. The query set for C is denoted byQ. Distinctively, FSOSR also accommodates
open-set queries Q̃, which belong to categories, C̃, that do not intersect with C and are not explicitly
defined.

3.1 Stage-1: Open-set Aware Meta-Learning

We commence by meta-learning a metric space, which serves as a general starting point to tune
the model to a specific target task in the open-set free transfer learning of Stage-2. As in Fig. 2
(a), this meta-learning stage involves the simultaneous training of the feature encoder fθ and a
learnable open-set prototype cϕ. They are learned using FSOSR tasks drawn from the base train-
ing dataset Dbs. Though the definition of open set varies depending on C, the cϕ is desired to be
task-independent across ∀C. Given the complexities involved in learning the task-specific open set
classifier during Stage-2, the effective training of a reliable cϕ serves as a crucial link to bridge the
two stages.

In specific, given anN -wayK-shot FSOSR task, T ∼ Dbs, we conceptualize this as the (N+1)-way
classification problem. In this framework, the (N +1)th class is designated as the open-set class. For
n-th class of C, the classifier is formulated as the prototype cn which is defined as the mean feature
vector over itsK examples, i.e., cn = 1

K ∑
K
m=1 fθ(xm) [37]. Here, fθ(x) produces aD-dimensional

feature vector. Concurrently, for the open-set class, the corresponding classifier is characterized by
the learnable open-set prototype cϕ.
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Figure 2: Overall training framework of OAL-OFL. (a) In Stage 1, the feature encoder and a
learnable open-set prototype undergo distance-based meta-learning [37] with an additional class
representing the open set. (b) In Stage 2, feature encoder and prototypes are further transfer-learned
to the target task under an open-set-free condition. Open-set training examples can be alternatively
drawn from the base training dataset (green) or from a subset of the closed-set categories that is
randomly selected as a pseudo open set (purple).

Subsequently, the classification probability is

p(y = n∣x) = e−a⋅d(cϕ,fθ(x))+b

e−a⋅d(cϕ,fθ(x))+b +∑Nn′=1 e−d(cn′ ,fθ(x))
if n = N + 1,

p(y = n∣x) = e−d(cn,fθ(x))

e−a⋅d(cϕ,fθ(x))+b +∑Nn′=1 e−d(cn′ ,fθ(x))
Otherwise, (1)

where d is a distance metric. Specifically, we use the squared Euclidean distance, d(v, v′) = ∣∣v −
v′∣∣2. In addition, scalars a and b are also learned to calibrate the distance to cϕ, inspired by D-
ProtoNets [19]. This calibration enables that cϕ is solely accountable for representing open sets of
various tasks. For the loss function, we utilize the cross-entropy (CE) loss which is formulated as:

LCE(xi, yi) = − log pθ(y = yi∣xi). (2)

We further utilize the masked CE loss [45], defined as:

LMask(xi, yi) = −log pθ/yi(y = N + 1∣xi), (3)
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where pθ/yi denotes the N -way classification probability, excluding the ground-truth label yi. This
loss term effectively creates pseudo open-set tasks by disregarding the true label. More precisely,

pθ/yi(y = N + 1∣xi) =
e−dN+1

e−dN+1 +∑Nn′=1,n′≠yi e−d(cn′ ,fθ(xi))
,

where we let dN+1 = a ⋅ d(cϕ, fθ(xi)) + b for brevity.

Overall, we learn fθ, cϕ, a, and b as

θ∗1 ,ϕ
∗

1, a
∗

1, b
∗

1 = argmin
θ,ϕ,a,b

{Ex∈Q̃LCE(x,N + 1) +E(x,y)∈Q{LCE(x, y) + LMask(x, y)}}. (4)

3.2 Stage-2: Open-set Free Transfer Learning
In this stage, we consider a target task, denoted as Tte = {Ste,Qte, Q̃te ∣Cte, C̃te}, which is also
configured as an N -way K-shot task. Note that Qte and Q̃te are utilized solely for the purposes
of inference during test. The initial values of the learnable parameters are inherited from results of
Stage-1. Specifically, fθ, a and b are imprinted as fθ∗1 , a∗1 and b∗1 , respectively. We aim to train them
alongside (N + 1)-way classifiers. These classifiers are represented as {w1,⋯,wN+1}, where each
wn ∈ RD. The first N classifiers are set as the prototypes of the corresponding classes in Cte. The
open-set classifier wN+1 is initialized using cϕ∗1 .

To ensure consistency with the meta-learned metric space, we compute the classification probability
of each query based on the Euclidean distance as in Eq. (1). Then, during the transfer learning, we
optimize fθ and the classifier gψ = {w1,⋯,wN+1, a, b}.
Since Tte lacks cues to learn the open-set classifier wN+1, we suggest two approaches: i) sampling
from the base training dataset Dbs of Stage-1, and ii) sampling from the closed set Cte of Tte itself.

3.2.1 Open-set sampling from base training dataset
Notice that in the context of FSL, the closed-set categories Cte in Tte are exclusive with Dbs. As
a result, we can exploit Dbs as a pool of open-set examples for Tte. Specifically, as in the green-
colored of Fig. 2(b), we randomly select M examples from Dbs at every iteration of the transfer
learning to serve as open-set examples.

Then, the model is optimized as:

θ∗2 , ψ
∗

2 =argmin
θ,ψ

{E(x,y)∈Ste
LCE(x, y) +Ex∼Dbs

LCE(x,N + 1)}. (5)

We call this unified process of Stage-1 and 2 with the base training dataset as OAL-OFL. In the
following section, we will introduce the OAL-OFL with a more practical open-set sampling, dubbed
OAL-OFL-Lite.

3.2.2 Pseudo open-set sampling from closed set
In real-world scenarios, Tte encompasses various categories, and we cannot guarantee that the closed
set Cte is not overlapped with the categories of Dbs. Additionally, after the meta-learning stage,
the large-scale Dbs may not be affordable due to practical constraints. To address these issues, we
introduce OAL-OFL-Lite which operates with no necessity of Dbs.

Our strategy is the episodic random class sampling from the closed set Cte itself to learn the open
set. As exemplified in the purple-colored of Fig. 2(b), we iteratively partition Cte into the mutually
exclusive subsets Ćte and C̃te. Subsequently, their corresponding support sets Śte and S̃te extracted
from Ste are used to transfer-learn the closed and open sets, respectively. Hence, we call C̃te pseudo
open set. Through this iterative pseudo open-set sampling, we can effectively learn the open-set
classifier as well as the closed-set ones. Then, the model is optimized by the CE losses as

θ∗2 , ψ
∗

2 =argmin
θ,ψ

{E
(x,y)∈Śte

LCE(x, y) +Ex∈S̃te
LCE(x, ∣Ćte∣ + 1)}. (6)

where the open set is mapped to (∣Ćte∣+1)th class and detected bywN+1 in every iteration. Moreover,
we empirically found that the open-set representation tends to be overfitted to a testing task in
OAL-OFL-Lite. Hence, we freeze wN+1 once it is initialized by the cϕ∗1 . For more comprehensive
understanding, we include Algorithm 1 in Appendix.
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Table 1: Comparative results on the miniImageNet and tieredImageNet. Averages of Acc (%)
and AUROC (%) over 600 tasks are reported with 95% confidence interval (*: reproduced, †: from
[16]). For each case, bold and underlined scores indicate the best and second-best results.

Methods
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot
Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC

ProtoNets[37]† 64.01 ±0.9 51.81 ±0.9 80.09 ±0.6 60.39 ±0.9 68.26 ±1.0 60.73 ±0.8 83.40 ±0.7 64.96 ±0.8

FEAT [42]† 67.02 ±0.9 57.01 ±0.8 82.02 ±0.5 63.18 ±0.8 70.52 ±1.0 63.54 ±0.7 84.74 ±0.7 70.74 ±0.8

PEELER [24]† 65.86 ±0.9 60.57 ±0.8 80.61 ±0.6 67.35 ±0.8 69.51 ±0.9 65.20 ±0.8 84.10 ±0.7 73.27 ±0.7

SnaTCHer-F [16] 67.02 ±0.9 68.27 ±1.0 82.02 ±0.5 77.42 ±0.7 70.52 ±1.0 74.28 ±0.8 84.74 ±0.7 82.02 ±0.6

SnaTCHer-T [16] 66.60 ±0.8 70.17 ±0.9 81.77 ±0.5 76.66 ±0.8 70.45 ±1.0 74.84 ±0.8 84.42 ±0.7 82.03 ±0.7

SnaTCHer-L [16] 67.60 ±0.8 69.40 ±0.9 82.36 ±0.6 76.15 ±0.8 70.85 ±1.0 74.95 ±0.8 85.23 ±0.6 80.81 ±0.7

ATT [15] 67.64 ±0.8 71.35 ±0.7 82.31 ±0.5 79.85 ±0.6 69.34 ±1.0 72.74 ±0.8 83.82 ±0.6 78.66 ±0.7

ATT-G [15] 68.11 ±0.8 72.41 ±0.7 83.12 ±0.5 79.85 ±0.6 70.58 ±0.9 73.43 ±0.8 85.38 ±0.6 81.64 ±0.6

GEL [41] 68.26 ±0.9 73.70 ±0.8 83.05 ±0.6 82.29 ±0.6 70.50 ±0.9 75.86 ±0.8 84.60 ±0.7 81.95 ±0.7

OAL-OFL 69.78 ±0.8 73.88 ±0.7 85.49 ±0.7 83.13 ±0.6 71.73 ±0.5 75.88 ±0.6 86.75 ±0.6 83.36 ±0.6

OAL-OFL-Lite 69.15 ±0.8 72.21 ±0.9 85.61 ±0.6 81.11 ±0.6 70.80 ±0.9 73.67 ±0.7 86.66 ±0.6 82.22 ±0.6

4 Experimental Results
4.1 Implementation Details
In line with established FSOSR approaches [24, 16, 15, 41], we conducted experiments using
ResNet12 [21] as the feature encoder on miniImageNet [40] and tieredImageNet [33] benchmarks,
with pre-training of the feature encoder accomplished on the corresponding base training dataset
for each benchmark through the well-known FSL method, FEAT [42]. MiniImageNet is comprised
of 100 categories each with 600 examples. These categories are divided into 64, 16, and 20 classes
for training, validation, and testing purposes, respectively [32]. TierdImageNet consists of 608 cate-
gories and a total of 779,165 samples, which are divided into 351, 97, and 160 classes for training,
validation, and testing, respectively. More training details are in Appendix.

Evaluation protocol. We use the predicted probability for (N + 1)th class as an open-set score and
report threshold-free measurement AUROC [5, 8]. For closed-set evaluation, we predict the class
with the highest probability among closed-set categories and report top-1 accuracy (Acc).

Compared methods. We conduct a comparative analysis of our OAL-OFL method against various
existing approaches, encompassing both FSL methods such as [37, 42] and FSOSR methods [24,
16, 15, 41].

4.2 Comparative Assessment
Table 1 presents a comparison between our OAL-OFL and baselines in 5-way {1, 5}-shot settings
on miniImageNet and tieredImageNet. FSL approaches [37, 42] were not designed for FSOSR, we
applied them to FSOSR in a straightforward manner as in [16]. In brief, in the FSL methods, the
open-set detection score is computed by taking the negative of the largest classification probabil-
ity [23]. Compared to the FSOSR methods, PEELER, SnaTCHers and ATT, both OAL-OFL and
OAL-OFL-Lite show better generalized capabilities, as reflected by their Acc and AUROC across
datasets.

Nevertheless, notice that there has been no further performance improvement since GEL, highlight-
ing the challenges of progress in FSOSR. This is largely due to the inherent trade-off between Acc
and AUROC—two metrics that often conflict. For instance, although GEL achieves the best AUROC
among prior methods, it falls short of ATT-G in terms of Acc across both 1 and 5-shot settings. More
specifically, it is observed that the previous approaches exhibit a particular bias towards miniIma-
geNet. ATT-G improves ATT by using the base class prototypes to enhance closed-set prototypes.
Nevertheless, it is even worse than our OAL-OFL-Lite which does not use the base training dataset.
GEL makes predictions for both pixel-wise and semantic-wise by adding a 2D convolutional block
on top of the SnaTCHer-F. It attained the previous SOTA in miniImageNet, but not in all measures.
Whereas we achieve SOTA performance in all cases. In 1-shot setting, we slightly outperform GEL
in AUROC, but are much better in Acc (1.52% in miniImageNet and 1.23% in tieredImageNet).
Notice that in FSOSR, both closed-set classification and open-set detection are important. In 5-shot
setting, our method shows clear SOTA performance in both Acc and AUROC. In specific, 2.59% Acc
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Table 2: Ablation analysis on stages in the proposed OAL-OFL.

Stage-1 Stage-2 1-shot 5-shot

Acc. AUROC Acc. AUROC

Naive TL to closed set 66.05 62.38 84.21 69.07
Stage-2 only + regul. 56.97 67.78 78.98 76.72

✓ 56.72 67.47 78.59 76.64
✓ 67.95 71.81 82.76 80.91
✓ ✓ 69.78 73.88 85.49 83.13

(a) Stage-1 only (b) Stage-2 only (c) OAL-OFL

Figure 3: Distribution of the classification probabilities of closed-set and open-set queries to the
open-set class. Closed-set and open-set queries are represented in green and red, respectively.

and 0.84% AUROC in miniImageNet, and 2.15% Acc and 1.41% in tieredImageNet. Namely, when
only a few examples per class are increased (one to five), the proposed open-set free transfer learn-
ing more faithfully makes it beneficial. Also, even without the base training dataset, OAL-OFL-Lite
surpasses or is comparable to the existing FSOSR methods in both datasets. Therefore, we con-
clude that our two-stage approach successfully pioneers transfer learning for FSOSR. In addition,
cross-domain comparative results are provided in Appendix.

4.3 Analysis

We extensively analyze the proposed method on miniImageNet. More analyses are in the Appendix.

Difficulty of TL in FSOSR. To see the efficacy of the respective stage of our method especially
in FSOSR, we first analyze the proposed OAL-OFL comparing with two straightforward transfer
learning schemes in Table 2. First, in ‘Naive TL to closed set’ of the first row, we conduct a naive
transfer learning [34] without the base training dataset. Namely, the model is fit to N -way closed-
set classification through linear regression [4], and rejects the open-set queries thresholding max-
probability [1]. This naive approach shows severely low performance, which indicates the difficulty
of FSOSR transfer learning. Second, in ‘Stage-2 only + regul.,’ the pseudo-label-based regularization
exploits the base training dataset to compute the Kullback–Leibler divergence between the pre-
trained model and transfer-learned model, which showed promising results in transfer learning for
FSL [17]. Skipping Stage-1, we can apply this regularization technique during transfer learning
which is ‘Stage-2 only + regul.’ This approach (single-stage + regularization) shows only slight
improvement compared to the case of only Stage-2 (1st row of the lower part of Table 2). Whereas,
our OAL-OFL achieves meaningful transfer learning results by combining the two stages.

Two-stage training (OAL-OFL). To demonstrate the impact of the proposed two-stage training
approach, we first ablate the stages in Table 2 for OAL-OFL. When Stage-1 is skipped, the open-
set classifier wN+1, and scalars (a, b) are initialized in random and (1,0), respectively in Stage-2.
Relying solely on Stage-2 causes overfitting to the training examples. Then, it leads to highly degen-
erated results of 56.72% and 78.59% for 1- and 5-shot closed-set classification Acc, respectively, and
67.47% and 76.64% for 1- and 5-shot open-set detection AUROC, respectively. These results high-
light that the open-set aware meta-learning of Stage-1 is critical for the success of transfer learning
in FSOSR.

Notice that, in ATT-G [15], the base training dataset calibrates the closed-set classifiers even in
testing phase, but it marginally improves ATT [15] (see Table 1). Whereas, in the proposed OAL-
OFL, the use of the base training dataset during the open-set free training of Stage-2 gives notable
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Table 3: Ablation analysis for our OAL-OFL-Lite in Stage-2.
1-shot 5-shot Pseudo

open set
Freeze
wN+1

1-shot 5-shot

Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC

Naive TL to closed set 66.05 62.38 84.21 69.07
OAL-OFL

-Lite

68.14 71.52 84.36 80.88
Stage-2 only 57.72 68.13 78.43 79.36 ✓ 68.20 71.33 85.12 80.61

OAL-OFL-Lite 69.15 72.21 85.61 81.11 ✓ ✓ 69.15 72.21 85.61 81.11

(a) 5-way 1-shot (b) 5-way 5-shot

Figure 4: Plots of OAL-OFL on Acc (%), AUROC (%), and loss (logarithmic scale) on iterations
in Stage-2 (Best viewed in color).

improvement. Applied on top of Stage-1, Stage-2 attains notably improved results by 1.83% and
2.70% in Acc, and 2.07% and 2.22% in AUROC for 1- and 5-shot respectively.

In Fig. 3, we present a visualization of the distributions of classification probability towards the
open-set class, derived from both closed-set and open-set queries. The visualization reveals that, in
the scenario labeled as ‘Stage-2 only,’ where the open-set aware meta-learning is absent, a majority
of the queries are assigned high probabilities of belonging to the open-set, irrespective of their actual
membership to the closed or open set. Converserly, in ‘Stage-1 only’ scenario, a significant number
of closed-set queries are still attributed probabilities exceeding 0.5. On the other hand, in OAL-OFL,
it is observed that the majority of open-set queries attain significantly high probabilities of being
classified as the open-set, while the probabilities for closed-set queries are effectively suppressed.
This distinct separation in the classification probabilities for open and closed-set queries allows us to
understand and verify the robustness of OAL-OFL in dichotomizing between open and closed sets.

Two-stage training (OAL-OFL-Lite). The left part of Table 3 shows the stage ablation for OAL-
OFL-Lite. On top of the same Stage-1 model of OAL-OFL, the open-set free transfer learning of
OAL-OFL-Lite also achieves a notable improvement on the Stage-1 model in Table 2. As shown
in the ablation study on OAL-OFL, ‘Stage-2 only’ results in a large performance drop compared to
the OAL-OFL-Lite of the third row. In the following sections, we study the key components of the
open-set free transfer learning of the proposed OAL-OFL and OAL-OFL-Lite.

Pseudo open set & Frozen wN+1. OAL-OFL-Lite deals with the challenge of the absence of the
base training dataset by the episodic sampling of the pseudo open set and freezing wN+1. The right
part of Table 3 shows the importance of the two components. Without both (the first row), the model
focuses on learning closed-set classification, showing better Acc and lower AUROC than using only
Stage-1 in Table 2. Although the pseudo open-set sampling is used, transfer learning the open-set
classifier is still challenging as demonstrated in the second row. Hence, as in the last row, we freeze
the open-set classifier and perform episodic pseudo open-set sampling.

Stage-1 to prevent overfitting. Fig. 4 visualizes the changes of Acc, AUROC, and loss values
during Stage-2 training. To see the impact of Stage-1 on Stage-2, we plot ‘Stage-2 only’ and our
complete OAL-OFL. Fig. 4(a) right shows the loss curves. OAL-OFL starts from a pretty lower loss
than ‘Stage-2 only.’ And both ‘Stage-2 only’ and OAL-OFL converge, but ‘Stage-2 only’ is saturated
at a higher loss. Also, OAL-OFL shows better performance over all the iterations in the testing ACC
and AUROC of Fig. 4(a) left. We can see a similar trend in 5-shot. From this result, we can infer
that our Stage-1 can provide a favorable starting point, while mitigating the overfitting problem of
FSOSR transfer learning.

Analysis on Stage-1. We exploited the scalar factors, a and b, and masked loss Lmask to facilitate
learning task-independent open-set prototype in the meta-learning of Stage-1. Table 4 ablates these
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Table 4: Ablation analysis for Stage-1.
1-shot 5-shot

L1
mask (a, b) Acc. AUROC Acc. AUROC

66.07 70.72 82.01 80.14
✓ 66.45 71.06 81.75 80.31
✓ ✓ 67.95 71.81 82.76 80.91

Table 5: Impact of the base training dataset
varying the number of classes in Stage-2.

1-shot 5-shot

#Base categories Acc. AUROC Acc. AUROC

0 (OAL-OFL-Lite) 69.15 72.71 85.61 81.11

1 66.41 69.62 83.66 79.62
6 66.72 69.71 83.15 78.34

32 68.30 71.84 84.51 81.34
64 (OAL-OFL) 69.78 73.88 85.49 83.13

Table 6: Effect of meta-learning on the classifier of Stage-2. (Rand: random, Meta: Stage-1 meta-
learned).

OAL-OFL-Lite OAL-OFLClassifier
Initialization 1-shot 5-shot 1-shot 5-shot

{wn}Nn=1 wN+1 Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC

Rand Rand 40.34 35.29 50.90 27.19 63.03 67.52 79.97 75.95
Meta Rand 57.72 68.13 78.43 79.36 69.02 70.87 85.32 78.50
Meta Meta 69.15 72.71 85.61 81.11 69.78 73.88 85.49 83.13

components. All the components are useful, and the degraded performance in the ablated ones means
the difficulty of meta-learning the task-independent open-set prototype.

Amount ofDbs in Stage-2. In Table 5, we identify the impact of the variety of categories inDbs on
the quality of the OFL. By reducing the number of categories inDbs, the overall results are degraded.
Rather, when the number of the base categories is lower than the half, OAL-OFL-Lite shows better
results. Hence, it is crucial to configure the open-set training dataset from diverse base categories.

Meta-learned classifier. In OAL-OFL and OAL-OFL-Lite, we utilize the meta-learned feature en-
coder and open-set prototype to initialize the closed-set and open-set classifiers. As in Table 6, al-
though the feature encoder starts from the meta-learned weights, the transfer-learned model suffers
from severe performance degradation due to random initialization of both open and closed-set clas-
sifiers (Rand-Rand in Table 6). In OAL-OFL, when the closed-set classifiers are initialized by the
class-wise prototypes from the meta-learned encoder (Meta-Rand), the closed-set classification Acc
is recovered, but open-set AUROC is not. In OAL-OFL-Lite, both Acc and AUROC are quite lower
than the case of complete meta-learned weight initialization. Further, when both closed and open-set
classifiers are not initialized by the meta-learned weight, the open-set recognition ability of OAL-
OFL is worse than OAL-OFL-Lite where classifiers are initialized by the meta-learned weights.
Hence, the open-set aware meta-learning is crucial for the both closed- and open-set classifiers.

Cost for Stage-2. As mentioned in Sec. 4.1, we train the model with 20,000 tasks, an iteration per
task in Stage-1. This is de facto standard in FSOSR methods. In our Stage-2 of both OAL-OFL and
OAL-OFL-Lite, the model is further learned during 300 iterations. It is only 1.5% of Stage-1. While
the model is not more generalized in Stage-1 with the 1.5% additional iterations, our Stage-2 yields
notable improvement as in Table 2 through a tiny extra training cost.

5 Conclusions

This work introduced the two-stage learning approach for FSOSR called open-set aware meta-
learning (OAL) on a base dataset and open-set free transfer learning (OFL) on testing tasks. Our
findings highlight the significance of the meta-learned FSOSR metric space, which serves as a gen-
eral starting point in transfer learning and enables us to take advantage of transfer learning. For the
open-set free transfer learning, we provided two suggestions to configure open-set training data: 1)
sampling from the base dataset, and 2) sampling from the testing task itself. The latter one considers
a more practical scenario, not relying on the base dataset during inference. Both are beneficial for
generalizing the model to an FSOSR testing task. As a result, we achieved SOTA performance on
two benchmark datasets, namely miniImageNet and tieredImageNet.
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A Algorithm

Algorithm 1 OAL-OFL

Stage-1. Meta-Learn FSOSR Metric Space
Require: Dataset Dbs, encoder fθ.

1: Initialize cϕ, a, and b.
2: for # of training episodes do
3: Sample a task T = {S,Q, Q̃∣C, C̃} ▷ A training episode
4: cn = 1

K ∑
K
m=1 fθ(xm), for n ∈ C and ym = n ▷ Prototype

5: c1,⋯, cN = LayerTaskNorm(c1,⋯, cN) ▷ Apply LayerTaskNorm [16]
6: Update θ, ϕ, a, b =argminθ,ϕ,a,b{Ex∈Q̃LCE(x,N + 1) + E(x,y)∈Q{LCE(x, y) +
LMask(x, y)}}

7: end for
Ensure: θ∗1 , ϕ∗1, a∗1, b∗1 = θ, ϕ, a, b

Stage-2. Transfer Learning
Require: Dataset Dbs and Dte, θ∗1 , ϕ

∗

1, a
∗

1, b
∗

1

1: Initialize: fθ with θ∗1
2: cn = 1

K ∑
K
m=1 fθ(xk), for n ∈ Cte and ym = n

3: Initialize: gψ with ϕ∗1, a
∗

1, b
∗

1, c1,⋯, cN .
4: for # of iterations do
5: Update θ,ψ = argminθ,ψ{E(x,y)∈Ste

LCE(x, y) +Ex∼Dbs
LCE(x,N + 1)}

6: end for
Ensure: θ∗2 , ψ∗2 = θ,ψ

B Training details

Table 7: Training details.
Stage-1 Stage-2

Optimizer SGD SGD

Optimizer momentum 0.9 0.9

Weight decay 5e-4 5e-4

Learning rate (LR)
2e-4 for fθ, 2e-4 for fθ,

2e-5 for others 2e-3 (OAL-OFL) for others2e-4 (OAL-OFL-Lite)

LR decaying multi. 0.5 Noneevery 40 episodes

# of episodes (iterations) 20,000 300

Stage-1 employs episodic learning on the base training dataset,Dbs, and trains the model for 20,000
episodes using the SGD optimizer with the Nesterov momentum [26] and the weight decay of 5e-4.
The learning rates are initialized to 2e-4 and 2e-5 for the encoder and the learnable open-set proto-
type, respectively, and then decayed by multiplying 0.5 every 40 iterations. Each episode consists of
a combination of closed-set categories and an equal number of open-set categories, each containing
15 queries. The distance adjusting factors a and b are initialized to 1 and 0, respectively. Layer-task
normalization [16] is used as the embedding adaptation, which is discarded after the initialization of
the classifiers in Stage-2.

In Stage-2, the proposed transfer learning is performed for 300 iterations on each testing task using
the SGD optimizer. For OAL-OFL, the learning rates for the feature encoder and classifier are set to
2e-4 and 2e-3, respectively. For OAL-OFL-Lite, the learning rate is 2e-4 for both. The weight decay
and momentum are set to 5e-4 and 0.9. For episode configuration in OAL-OFL-Lite, one closed-set
class is randomly sampled as the pseudo open set at every iteration.

Pretrain encoder. In alignment with the latest developments in few-shot classification and FSOSR
methods [17, 16, 15], we have pre-trained the encoder, denoted as fθ. This was achieved using a lin-
ear classifier that categorizes all classes in the dataset Dbs. The training process spanned 500 epochs
utilizing the SGD optimizer. We employed cross-entropy loss complemented by self-knowledge dis-
tillation [12], and integrated rotation as per [15]. Additionally, data augmentation was implemented
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using the mixup [44]. This training approach aligns our work with the SOTA methods [15, 41] in
the field, facilitating fair and relevant comparisons.

Additionally, the specifics of the training setup for both Stage-1 and Stage-2 of our methodologies
are detailed in Table 7.

C Classifier design in Stage-2.

Table 8: Linear vs Euclidean classifiers in OFL.
1-shot 5-shot

Classifier Acc. AUROC Acc. AUROC

Linear 68.01 72.79 84.72 81.03
Euclidean (Ours) 69.78 73.88 85.49 83.13

Stage-1 is based on the squared Euclidean distance as the distance metric. In order to maintain
consistency in the metric space, we compute the classifier outputs under the same metric in Stage-2
of OAL-OFL. In Table 8, we compared our Euclidean classifier with the linear classifier, meaning
the significance of metric-space consistency for the collaborative use of the different two learning
approaches.

D Analysis on OAL-OFL-Lite varying iterations

Fig. 5 plots the AUROC, ACC, and loss curves for the proposed OAL-OFL-Lite framework com-
pared to its Stage-2 (open-set free transfer learning) only version. These metrics are plotted over
training iteration on the miniImageNet dataset. We can identify that the open-set aware meta-learning
plays a crucial role in preventing overfitting and enhancing the efficacy of transfer learning in OAL-
OFL-Lite as its impact in OAL-OFL.

(a) 5-way 1-shot

(b) 5-way 5-shot

Figure 5: Plots of OAL-OFL-Lite on accuracy (%), AUROC (%), and loss (logarithmic scale) in-
creasing iterations in Stage-2 on the 5-way 1- and 5-shot settings of the tieredImageNet.
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Table 9: Open-set detection on 600 testing tasks of tieredImageNet 5-way 5-shot setting

Method Accuracy (%) F1-score AUROC (%)

SnaTCHer-F [16] 55.44 0.6904 82.02
SnaTCHer-T [16] 54.42 0.6865 82.03
SnaTCHer-L [16] 70.82 0.7376 80.81

OAL-OFL 74.91 0.7697 83.36
OAL-OFL-Lite 73.66 0.7530 82.22

E Threshold-free open-set detection
To evaluate the performance of open-set recognition, we utilized the widely-used AUROC metric,
which is valued for its threshold-free nature. However, the task-specific adjustment of the threshold
values for the detection of unseen (open-set) sample poses practical challenge in real-world scenar-
ios.

In our research, the OAL-OFL yields a dedicated open-set classifier. This allows us to exploit the
possibility associated with open-set classification for detecting open-set instances. Consequently, a
feasible method for setting a threshold involves classifying an input as open-set if its probability of
being an open-set class exceeds that of being closed-set classes.

Aligning with our concern, Jeong et al. [16] proposed a distinctive approach. They primarily utilized
the distance between the average of prototypes and the farthest prototype to differentiate between
the closed and open-set data. We conducted a comparative analysis of their results with our OAL-
OFL and OAL-OFL-Lite in the context of threshold-free open-set detection in Table 9. The results
highlight the effectiveness of our proposed method in detecting open-set instances without the need
of any manually selected threshold, thereby underlining its practical utility and effectiveness.

F Ablation experiments on tieredImageNet

Table 10: Ablation analysis on stages in the proposed OAL-OFL on the tieredImageNet. Accu-
racy (%) and AUROC (%) are reported on the 5-way 1- and 5-shot settings.

Stage-1 Stage-2 1-shot 5-shot

Acc. AUROC Acc. AUROC

✓ 64.73 70.98 83.68 80.21
✓ 70.96 75.05 84.78 82.08
✓ ✓ 71.40 75.45 86.75 83.36

Table 11: Ablation analysis for the proposed OAL-OFL-Lite in Stage-2 on the tieredImageNet.
Accuracy (%) and AUROC (%) are reported on the 5-way 1- and 5-shot settings.

1-shot 5-shot

Acc. AUROC Acc. AUROC

Naive TL to closed set 71.36 58.67 86.78 61.85
Stage-2 only 65.07 68.70 85.03 77.67

OAL-OFL-Lite 70.80 73.67 86.66 82.22

Pseudo open-set Freeze wN+1

70.59 72.84 85.51 80.33
✓ 70.51 73.24 86.45 81.92
✓ ✓ 70.80 73.67 86.66 82.22

We conducted ablation studies for both OAL-OFL and OAL-OFL-Lite on tieredImageNet dataset.
The results are presented in Tables 10 and 11, respectively.
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G Cross-domain evaluation

Table 12: Cross-domain assessment. Accuracy (%) and AUROC (%) are reported.
tierd-CUB CUB-tierd CUB-CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PEELER 69.5, 67.6 84.1, 76.1 55.9, 53.8 75.0, 64.6 59.4, 58.6 78.4, 66.0
SnaTCher 70.8, 83.7 85.2, 90.2 59.4, 98.6 79.0, 99.5 59.7, 64.8 78.7, 70.7

Ours 71.3, 88.8 87.2, 92.4 60.8, 99.0 82.1, 99.8 61.9, 67.2 81.1, 73.0

We provide the cross-domain results following SnaTCher. The meta-trained model with tieredIma-
geNet is transfer-learned on three CUB200 cross-domain scenarios. Open-closed configuration are
as follows: tieredImageNet-CUB200, CUB200-tieredImageNet, CUB200-CUB200. In this experi-
ment, at least one of the closed or open sets is in an unseen domain during the Stage-1, and each
task is 5-way 5-shot. Compared to the baselines whose cross-domain results are reported, we attain
consistently better results (Acc, AUROC) in all the configurations.

H Discussions

The results achieved with OAL-OFL and OAL-OFL-Lite demonstrate that transfer learning holds
great potential for FSOSR. The superior performance of OAL-OFL over OAL-OFL-Lite can be
attributed to open-set sampling from the base training dataset. As we consider future research direc-
tions, several discussion points come to the forefront:

(i) The efficacy of OAL-OFL can be negatively impacted with a scarcity of open-set data. Although
OAL-OFL-Lite provides an effective solution in situations where the base training dataset is unavail-
able, it maintains the open-set classifier static throughout the transfer learning stage. Thus, there is
an opportunity for future research to delve into methods for optimizing the use of pseudo open-set
data further refine the open-set classifier.

(ii) In practical scenarios, it is often observed that the support examples gathered in testing environ-
ments are of sub-optimal quality. Moving forward, future research endeavors is expected to focus on
addressing the complexities associated with FSOSR transfer learning, particularly under conditions
where the support examples are disorganized. This includes scenarios where the examples originate
from varied data distribution, rather than being derived from a unified, coherent dataset, and may
even incorporate incorrectly labeled examples.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In gen-
eral, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in
a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction should clearly state the claims made, includ-
ing the contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We have included the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers dis-
cover limitations that aren’t acknowledged in the paper. The authors should use their
best judgment and recognize that individual actions in favor of transparency play an
important role in developing norms that preserve the integrity of the community. Re-
viewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described the method and datasets faithfully, and also included implemen-
tation details.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the implementation details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the standard deviation for the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative so-
cietal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, lim-
itations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

21

paperswithcode.com/datasets
paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Proposed Method
	Stage-1: Open-set Aware Meta-Learning
	Stage-2: Open-set Free Transfer Learning
	Open-set sampling from base training dataset
	Pseudo open-set sampling from closed set


	Experimental Results
	Implementation Details
	Comparative Assessment
	Analysis

	Conclusions
	Algorithm
	Training details
	Classifier design in Stage-2. 
	Analysis on OAL-OFL-Lite varying iterations
	Threshold-free open-set detection
	Ablation experiments on tieredImageNet
	Cross-domain evaluation
	Discussions

