000 001 002 003 DYNAMIC MULTI-PRODUCT SELECTION AND PRICING UNDER PREFERENCE FEEDBACK

Anonymous authors

Paper under double-blind review

ABSTRACT

In this study, we investigate the problem of dynamic multi-product selection and pricing by introducing a novel framework based on a *censored multinomial logit* (C-MNL) choice model. In this model, sellers present a set of products with prices, and buyers filter out products priced above their valuation, purchasing at most one product from the remaining options based on their preferences. The goal is to maximize seller revenue by dynamically adjusting product offerings and prices, while learning both product valuations and buyer preferences through purchase feedback. To achieve this, we propose a Lower Confidence Bound (LCB) pricing strategy. By combining this pricing strategy with either an Upper Confidence Bound (UCB) or Thompson Sampling (TS) product selection approach, our algorithms achieve regret bounds of $\widetilde{O}(d^{\frac{3}{2}}\sqrt{T})$ and $\widetilde{O}(d^2\sqrt{T})$, respectively. Finally, we validate the performance of our methods through simulations, demonstrating their effectiveness.

023 024 025

1 INTRODUCTION

026 027

028 029 030 031 032 033 034 035 036 037 The rapid growth of online markets has underscored the critical importance of developing strategies for dynamic pricing to maximize revenue. In these markets, sellers have the flexibility to adjust the prices of products sequentially in response to buyer behavior. However, optimizing prices is not a trivial task. To effectively set prices, sellers must learn the underlying demand parameters, as buyers make purchasing decisions based on their preferences and willingness to pay, as modeled by demand functions [\(Bertsimas & Perakis, 2006;](#page-10-0) [Cheung et al., 2017;](#page-10-1) [den Boer & Zwart, 2015;](#page-10-2) [Javanmard &](#page-11-0) [Nazerzadeh, 2019;](#page-11-0) [Cohen et al., 2020;](#page-10-3) [Javanmard & Nazerzadeh, 2019;](#page-11-0) [Luo et al., 2022;](#page-11-1) [Fan et al.,](#page-10-4) [2024;](#page-10-4) [Shah et al., 2019;](#page-11-2) [Xu & Wang, 2021;](#page-11-3) [Choi et al., 2023\)](#page-10-5). While the prior work has focused on dynamically adjusting prices for single products, real-world applications such as e-commerce, hotel reservations, and air travel often involve multiple products, further complicating the pricing strategy [\(Den Boer, 2014;](#page-10-6) [Ferreira et al., 2018;](#page-11-4) [Javanmard et al., 2020;](#page-11-5) [Goyal & Perivier, 2021\)](#page-11-6).

038 039 040 041 042 043 In practice, sellers must do more than just set prices—they also need to determine which products to offer. Buyers purcahse a product based on their preferences for available items, and this purchasing process is influenced by the price. Higher prices reduce the likelihood of a purchase, as buyers filter out products priced above their perceived value. This dynamic interplay between pricing and buyer preferences is a fundamental aspect of real-world online markets, making it essential to model both product selection and pricing together.

044 045 046 047 048 049 050 051 052 In this work, we tackle the problem of dynamic multi-product pricing and selection by developing a novel framework that captures the censored behavior of buyers—where buyers consider only those products priced below their valuation and purchase one product from the remaining options. To model this behavior, we extend the widely used multinomial logit (MNL) choice model [\(Agrawal](#page-10-7) [et al., 2017a](#page-10-7)[;b;](#page-10-8) [Oh & Iyengar, 2021;](#page-11-7) [2019\)](#page-11-8) to a censored MNL (C-MNL) model. This model allows us to capture buyer behavior more accurately in scenarios where product prices impact buyer choices. In our framework, sellers dynamically learn both the product valuations and buyer preferences, all while facing the challenge of not receiving feedback on which products buyers filtered out due to high prices, reflecting real-world conditions.

053 To address the inherent uncertainty in buyer behavior, we propose a novel Lower Confidence Bound (LCB) pricing strategy, which sets lower initial prices to encourage exploration and avoid price

054 055 056 057 058 censorship. In combination with Upper Confidence Bound (UCB) or Thompson Sampling (TS) strategies for product assortment selection, we provide algorithms that not only maximize revenue but also efficiently balance exploration and exploitation in the face of censored feedback. Through theoretical analysis, we derive regret bounds for our algorithms, and we validate their performance using synthetic datasets.

060 Summary of Our Contributions.

059

077

- We propose a novel framework for dynamic multi-product selection and pricing that incorporates a censored version of the multinomial logit (C-MNL) model. In this model, buyers filter out overpriced products and choose from the remaining options based on their preferences.
	- We introduce a Lower Confidence Bound (LCB)-based pricing strategy to promote exploration by setting lower prices, avoiding buyer censorship, and facilitating the learning of buyer preferences and product valuations.
	- We develop two algorithms that combine LCB pricing with Upper Confidence Bound (UCB) and Thompson Sampling (TS) for assortment selection, achieving regret bounds of $\widetilde{O}(d^{\frac{3}{2}}\sqrt{T})$ and $\widetilde{O}(d^2\sqrt{T})$, respectively.
- We provide extensive theoretical analysis, including regret bounds, and validate the effectiveness of our algorithms using synthetic datasets, demonstrating their superiority over existing approaches.
- **076** 2 RELATED WORK

078 079 080 081 082 083 084 085 Dynamic Pricing and Learning Dynamic pricing with learning demand functions or market values has been widely studied [\(Bertsimas & Perakis, 2006;](#page-10-0) [Cheung et al., 2017;](#page-10-1) [den Boer & Zwart,](#page-10-2) [2015;](#page-10-2) [Javanmard & Nazerzadeh, 2019;](#page-11-0) [Cohen et al., 2020;](#page-10-3) [Luo et al., 2022;](#page-11-1) [Xu & Wang, 2021;](#page-11-3) [Fan](#page-10-4) [et al., 2024;](#page-10-4) [Shah et al., 2019;](#page-11-2) [Choi et al., 2023;](#page-10-5) [Den Boer, 2014;](#page-10-6) [Ferreira et al., 2018;](#page-11-4) [Javanmard](#page-11-5) [et al., 2020;](#page-11-5) [Goyal & Perivier, 2021\)](#page-11-6). However, previous work typically assumes that products are introduced arbitrarily or stochastically, meaning the products themselves are given rather than being part of the decision-making process. In contrast, our study incorporates a preference model for dynamic selection and pricing, where the agent must determine the assortment of products to offer with prices.

086 087 088 089 090 091 092 093 We note that [Javanmard et al.](#page-11-5) [\(2020\)](#page-11-5); [Goyal & Perivier](#page-11-6) [\(2021\)](#page-11-6); [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9) considered MNL structure for dynamic pricing, which was widely considered in the assortment bandits literature [\(Agrawal et al., 2017a](#page-10-7)[;b;](#page-10-8) [Oh & Iyengar, 2021;](#page-11-7) [2019\)](#page-11-8). Based on the MNL structure, the previous pricing strategies have focused solely on optimizing revenue function. Notably, [Javanmard](#page-11-5) [et al.](#page-11-5) [\(2020\)](#page-11-5); [Perivier & Goyal](#page-11-9) [\(2022\)](#page-11-9) examined scenarios where the assortment is predetermined rather than chosen by the agent under the dynamic pricing problems, and [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9) directly extended [Goyal & Perivier](#page-11-6) [\(2021\)](#page-11-6) by considering assortment selection under the same MNL structure. Moreover, [Javanmard et al.](#page-11-5) [\(2020\)](#page-11-5) consider i.i.d feature vectors fixed over time.

094 095 096 097 098 099 100 101 In our study, we utilize the MNL model with arbitrary features at each time to capture buyer preferences. Inspired by real-world scenarios, we further incorporate activation functions to address the non-continuous nature of buyer behavior, specifically their acceptable price thresholds. The presence of activation functions in our MNL model prevents a direct conversion to the standard MNL structure, distinguishing our work from that of [Javanmard et al.](#page-11-5) [\(2020\)](#page-11-5); [Goyal & Perivier](#page-11-6) [\(2021\)](#page-11-6); [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9). Furthermore, we address a multi-product setting where the agent not only prices but also selects products at each time. As a result, we must develop a novel strategy for both pricing and assortment selection to address this challenge.

102 103 104 105 106 107 Notably, while activation functions for buyer demand have been considered in Javanmard $\&$ Naz[erzadeh](#page-11-0) [\(2019\)](#page-11-0); [Cohen et al.](#page-10-3) [\(2020\)](#page-10-3); [Luo et al.](#page-11-1) [\(2022\)](#page-11-1); [Xu & Wang](#page-11-3) [\(2021\)](#page-11-3); [Fan et al.](#page-10-4) [\(2024\)](#page-10-4); [Shah](#page-11-2) [et al.](#page-11-2) [\(2019\)](#page-11-2); [Choi et al.](#page-10-5) [\(2023\)](#page-10-5), these studies focused on single-product offered by the environment with single binary feedback at each time indicating whether the product was purchased or not. In contrast, we examine a multi-product setting where the agent must both select and price multiple products while receiving preference feedback, a scenario commonly observed in real-world online markets.

2 3 4 5 6 2 4 5 S_t with prices $p_{i,t}$ for $i \in S_t$ is offered to the user. $p_{2,t}$ $p_{4,t}$ $p_{5.t}$ (a) The agent offer an assortment of arms S_t with price $p_{i,t}$

 S_t

1

Arms

for $i \in S_t$. (b) Arms $i \in S_t$ satisfying $p_{i,t} > v_{i,t}$ are censored by the user.

(c) The user purchases an arm from the remaining arms in S_t based on preference.

Figure 1: The illustration describes the process involved in making a purchase.

3 PROBLEM STATEMENT

128 129 130 131 132 133 134 135 There are N arms (products) in the market. As illustrated in Figure [1,](#page-2-0) at each time $t \in [T]$, (a) an agent (seller) selects a set of arms $S_t \subseteq [N]$, referred to as 'assortment,' to a user (buyer) with a size constraint $|S_t| \le K(\le N)$. At the same time, the agent prices each arm $i \in S_t$ as $p_{i,t} \in \mathbb{R}_{\ge 0}$ and suggests the assortment with the corresponding prices to the user. (b) Then, based on the valuation $v_{i,t}$ and price $p_{i,t}$ for each arm $i \in S_t$, the user filters out any arms $i \in S_t$ where the price exceeds their valuation, i.e., $v_{i,t} < p_{i,t}$. (c) Finally, the user purchases at most one arm from the remaining options based on preference. In what follows, we describe our models for the user behavior and the revenue of the agent in more detail.

136 137 138 139 140 141 142 There are latent parameters θ_v and $\theta_\alpha \in \mathbb{R}^d$ (unknown to the agent) for valuation and price sensitivity, respectively. At each time t, each arm $i \in [N]$ has known feature information $x_{i,t}$ and $w_{i,t} \in \mathbb{R}^d$ for its valuation and price sensitivity, respectively. Then the (latent) valuation of each arm i for the user is defined as $v_{i,t} := x_{i,t}^\top \theta_v \ge 0$. We also consider that there are (latent) price sensitivity parameters as $\alpha_{i,t} := w_{i,t}^\top \theta_\alpha \ge 0$. In this work, we propose a modification of the conventional MNL choice model with threshold-based activation functions, which we name as the *censored multinomial logit* (C-MNL) choice model.

143 144 145 146 Definition 1 (Censored multinomial logit choice model) Let set of prices $p_t := \{p_{i,t}\}_{i \in S_t}$. Then, *given* S_t *and* p_t *, the user purchases an arm* $i \in S_t$ *by paying* $p_{i,t}$ *according to the probability defined as follows:*

$$
\mathbb{P}_{t}(i|S_{t}, p_{t}) := \frac{\exp(v_{i,t} - \alpha_{i,t}p_{i,t})\mathbb{1}(p_{i,t} \le v_{i,t})}{1 + \sum_{j \in S_{t}} \exp(v_{j,t} - \alpha_{j,t}p_{j,t})\mathbb{1}(p_{j,t} \le v_{j,t})}.
$$
\n(1)

From the activation function in the above definition, the user considers purchasing only the arms $i \in S_t$ satisfying that its price is lower than the user's valuation (or willingness to pay) as $p_{i,t} \leq v_{i,t}$. We also note that a higher price for an arm decreases the user's preference for it, while a higher valuation indicates a stronger preference. For notation simplicity, we use $\theta^* := [\theta_v; \theta_\alpha] \in \mathbb{R}^{2d}$ and $z_{i,t}(p) := [x_{i,t}; -pw_{i,t}] \in \mathbb{R}^{2d}$. Then the C-MNL of [\(1\)](#page-2-1) can be represented as

$$
\mathbb{P}_t(i|S_t, p_t) = \frac{\exp(x_{i,t}^\top \theta_v - w_{i,t}^\top \theta_\alpha p_{i,t}) \mathbbm{1}(p_{i,t} \leq x_{i,t}^\top \theta_v)}{1 + \sum_{j \in S_t} \exp(x_{j,t}^\top \theta_v - w_{j,t}^\top \theta_\alpha p_{j,t}) \mathbbm{1}(p_{j,t} \leq x_{i,t}^\top \theta_v)}
$$

156 157

158

- **159** $=\frac{\exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbbm{1}(p_{i,t} \leq x_{i,t}^\top \theta_v)}{\mathbbm{1} \cdot \sum_{i=1}^{n} (p_{i,t} - \sum_{i=1}^{n} p_{i,t}^T \mathbbm{1}(p_{i,t} - \theta_v)) \mathbbm{1}(p_{i,t} - \theta_v)}$ $\frac{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \leq x_{j,t}^\top \theta_v)}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \leq x_{j,t}^\top \theta_v)}.$
- **160 161** As in the previous literature for MNL, it is allowed for each user to choose an outside option (i_0) , or not to choose any, as $\mathbb{P}_t(i_0|S_t, p_t) = \frac{1}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \le x_{j,t}^\top \theta_v)}$. Importantly, at each

126 127

162 163 164 165 166 time t, the agent only observes feedback of chosen arm i_t but does *not* observe feedback on which arms are censored from the activation function based on the latent user's valuation. This makes it challenging to learn the valuation from the preference feedback and the naive pricing strategies for maximizing revenue [\(Javanmard et al., 2020;](#page-11-5) [Goyal & Perivier, 2021;](#page-11-6) [Erginbas et al., 2023\)](#page-10-9) do not work properly for our model.

The expected revenue from chosen arm $i \in S_t$ is represented as $R_{i,t}(S_t) = p_{i,t} P_t(i|S_t, p_t)$. Then the overall expected revenue for the agent is formulated as

$$
R_t(S_t, p_t) = \sum_{i \in S_t} R_{i,t}(S_t) = \sum_{i \in S_t} \frac{p_{i,t} \exp(z_{i,t}(p_{i,t})^{\top} \theta^*) \mathbb{1}(p_{i,t} \le x_{i,t}^{\top} \theta_v)}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^{\top} \theta^*) \mathbb{1}(p_{j,t} \le x_{j,t}^{\top} \theta_v)}.
$$

For notation simplicity, we use $p = \{p_i\}_{i \in [N]}$. Then we define an oracle policy (with prior knowledge of θ^*) regarding assortment and prices such that

$$
(S_t^*, p_t^*) \in \mathop{\arg\max}_{S \subseteq [N], p \in \mathbb{R}^N_{\geq 0}: |S| \leq K,} R_t(S, p).
$$

Then given S_t and p_t for all t from a policy π , regret is defined as

$$
R^{\pi}(T) = \sum_{t \in [T]} \mathbb{E} [R_t(S_t^*, p_t^*) - R_t(S_t, p_t)].
$$

The goal of this problem is to find a policy π that minimizes regret.

4 ALGORITHMS AND REGRET ANALYSES

4.1 UCB-BASED ASSORTMENT-SELECTION WITH LCB PRICING: UCBA-LCBP

189 190 191 192 193 194 195 Here we propose a UCB-based assortment-selection with LCB pricing algorithm (Algorithm [1\)](#page-5-0) as follows. We denote by $P_{t,\theta}(i|S,p) := \frac{\exp(z_{i,t}(p_i)^{\top} \theta)}{1+\sum_{i} \exp(z_{i,t}(p_i)}$ $\frac{\exp(z_i, t(p_i) - \theta)}{1 + \sum_{j \in S} \exp(z_j, t(p_j)^\top \theta)}$ the choice probability without the activation functions. We also use $\theta^{n:m}$ for representing a vector consisting of elements from index *n* to *m* in $\theta \in \mathbb{R}^{2d}$. Let the negative log-likelihood $\tilde{f}_t(\theta) := -\sum_{i \in S_t \cup \{i_0\}} y_{i,t} \log P_{t,\theta}(i|S_t, p_t)$ where $y_{i,t} \in \{0,1\}$ is observed preference feedback (1 denotes a choice, and 0 otherwise) and define the gradient of the likelihood as

$$
g_t(\theta) := \nabla_{\theta} f_t(\theta) = \sum_{i \in S_t} (P_{t,\theta}(i|S_t, p_t) - y_{i,t}) z_{i,t}(p_{i,t}).
$$
\n(2)

We also define gram matrices from $\nabla^2_{\theta} f(\theta)$ as follows:

$$
G_t(\theta) := \sum_{i \in S_t} P_{t,\theta}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top - \sum_{i,j \in S_t} P_{t,\theta}(i|S_t, p_t) P_{t,\theta}(j|S_t, p_t) z_{i,t}(p_{i,t}) z_{j,t}(p_{j,t})^\top,
$$

$$
G_{v,t}(\theta) := \sum_{i \in S_t} P_{t,\theta}(i|S_t, p_t) x_{i,t} x_{i,t}^\top - \sum_{i,j \in S_t} P_{t,\theta}(i|S_t, p_t) P_{t,\theta}(j|S_t, p_t) x_{i,t} x_{j,t}^\top.
$$
\n(3)

206 207 208 Then we construct the estimator of $\hat{\theta}_t \in \mathbb{R}^{2d}$ for θ^* from the online mirror descent with [\(2\)](#page-3-0) and [\(3\)](#page-3-1), as studied by [Zhang & Sugiyama](#page-11-10) [\(2024\)](#page-11-11); [Lee & Oh](#page-11-11) (2024), within the range of $\Theta = \{ \theta \in \mathbb{R}^{2d} :$ $\|\theta^{1:d}\|_2 \leq 1$ and $\|\theta^{d+1:2d}\|_2 \leq 1$, which is described in Line [5.](#page-5-1)

209 210 211 212 213 214 215 Now we explain the details regarding the strategy for the decision of price and assortment. For the price strategy, we construct the lower confidence bound (LCB) of the valuation of arms. Let $\beta_{\tau} = C_1 \sqrt{d\tau} \log(T) \log(K)$ where τ is the number of estimator updates for price, $H_t = \lambda I_{2d} +$ $\sum_{s=1}^{t-1} G_s(\hat{\theta}_s)$, and $H_{v,t} = \lambda I_d + \sum_{s=1}^{t-1} G_{v,s}(\hat{\theta}_s)$ for some constant $C_1 > 0$ and $\lambda > 0$. We use $\theta^{n,m}$ for representing a vector consisting of elements from index n to m in $\theta \in \mathbb{R}^{2d}$. Then we denote the estimator regarding valuation by $\hat{\theta}_{v,t} := \hat{\theta}_t^{1:d}$. Let t_{τ} be the time step when τ -th update of the estimation for price occurs and we use $\theta_{v,(\tau)} := \theta_{v,t_\tau}$ for the pricing strategy. Then with a constant

216 217 218 $C > 1$, for the time steps t corresponding to the τ -th update, we construct the lower confidence bound (LCB) of the valuation of arm $i \in [N]$ as

$$
\underline{v}_{i,t} := x_{i,t}^\top \widehat{\theta}_{v,(\tau)} - \sqrt{C} \beta_\tau ||x_{i,t}||_{H_{v,t}^{-1}}
$$

.

220 221 222 We use notation $x^+ = \max\{x, 0\}$ for $x \in \mathbb{R}$. Then, for the LCB pricing strategy, we set the price of arm i using its LCB as

 $p_{i,t} = \underline{v}_{i,t}^{+}.$

224 225 226 227 228 229 230 Importantly, from this pricing strategy, the algorithm can effectively explore arms avoiding censorship because the arm having a small price is likely to be activated from the user's threshold in the C-MNL choice model. In the analysis, under the condition of a favorable event regarding the LCB, we can appropriately handle the preference feedback from C-MNL for estimating θ^* with $\hat{\theta}_t$. However, the conditional analysis for estimation introduces regret with each update. To solve this issue, we periodically update the estimator $\theta_{v,(\tau)}$ for LCB with constant $C > 1$, as described in Line [6,](#page-5-2) without hurting regret (in order) from estimation error.

232 Next, for the assortment selection, we construct upper confidence bounds (UCB) for valuation $v_{i,t}$ and preference utility $u_{i,t}$ as $\overline{v}_{i,t}$ and $\overline{u}_{i,t}$, respectively. We construct UCB for the valuation as

$$
\overline{v}_{i,t} := x_{i,t}^\top \widehat{\theta}_{v,t} + \beta_\tau \|x_{i,t}\|_{H^{-1}_{v,t}}.
$$

Interestingly, when constructing $\overline{u}_{i,t}$ regarding utility $u_{i,t} = z_{i,t}(p_{i,t}^*)^\top \theta^*$, it is required to consider enhanced-exploration under the uncertainty regarding both θ_t and $p_{i,t}$ (in $z_{i,t}(p_{i,t})$). We construct

$$
\overline{u}_{i,t} := z_{i,t}(p_{i,t})^\top \widehat{\theta}_t + \beta_\tau \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + 2\sqrt{C}\beta_\tau \|x_{i,t}\|_{H_{v,t}^{-1}},
$$

where $\beta_{\tau} || z_{i,t}(p_{i,t}) ||_{H_t^{-1}}$ comes from uncertainty of θ_t and 2 √ $C\beta_{\tau}||x_{i,t}||_{H_{v,t}^{-1}}$ comes from that of $p_{i,t}$ in $z_{i,t}(p_{i,t})$. Then, using the UCB indexes, the assortment is chosen from

$$
S_t \in \underset{S \subseteq [N]:|S| \le K}{\arg \max} \sum_{i \in S} \frac{\overline{v}_{i,t} \exp(\overline{u}_{i,t})}{1 + \sum_{j \in S} \exp(\overline{u}_{j,t})}.
$$

We set $\eta = \frac{1}{2} \log(K + 1) + 3$ and $\lambda = \max\{84d\eta, 192\sqrt{2}\eta\}$ for the algorithm.

4.2 REGRET ANALYSIS OF ALGORITHM [1](#page-5-0) (UCBA-LCBP)

Similar to previous work for logistic and MNL bandit [\(Oh & Iyengar, 2019;](#page-11-8) [2021;](#page-11-7) [Lee & Oh, 2024;](#page-11-11) [Goyal & Perivier, 2021;](#page-11-6) [Erginbas et al., 2023;](#page-10-9) [Faury et al., 2020;](#page-11-12) [Abeille et al., 2021\)](#page-10-10), we consider the following regularity condition and definition for regret analysis.

Assumption 1
$$
\|\theta_v\|_2 \le 1
$$
, $\|\theta_\alpha\|_2 \le 1$, $\|x_{i,t}\|_2 \le 1$, and $\|w_{i,t}\|_2 \le 1$ for all $i \in [N]$, $t \in [T]$

256 257 Recall $\Theta = \{ \theta \in \mathbb{R}^{2d} : ||\theta^{1:d}||_2 \leq 1 \}$ and $||\theta^{d+1:2d}||_2 \leq 1$. Then we define a problem-dependent quantity regarding non-linearlity of the MNL structure as follows.

$$
\kappa:=\inf_{t\in[T],\theta\in\Theta,i\in S\subseteq[N],p\in[0,1]^N}P_{t,\theta}(i|S,p)P_{t,\theta}(i_0|S,p).
$$

We note that in the worst-case, $1/\kappa = O(K^2)$ from the definition of $P_{t,\theta}(\cdot|S,p)$ with Assumption [1.](#page-4-0) Then Algorithm [1](#page-5-0) achieves the regret bound in the following.

Theorem 1 *Under Assumption [1,](#page-4-0) the policy* π *of Algorithm [1](#page-5-0) achieves a regret bound of*

$$
R^{\pi}(T) = \widetilde{O}\left(d^{\frac{3}{2}}\sqrt{T} + \frac{d^3}{\kappa}\right).
$$

268 269 Proof The full version of the proof is provided in Appendix [A.2.](#page-12-0) Here we provide a proof sketch. We first define event $E_t = \{ ||\hat{\theta}_s - \theta^*||_{H_s} \leq \beta_{\tau_s}, \forall s \leq t \}$ and E_T holds with a high probability. In what follows, we assume that E_t holds at each time t.

```
262
263
264
```
265 266 267

219

223

231

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 Algorithm 1 UCB-based Assortment-selection with LCB Pricing (UCBA-LCBP) **Input:** $\lambda, \eta, \beta_\tau, C > 1$ **Init:** $\tau \leftarrow 1, t_1 \leftarrow 1, \theta_{v,(1)} \leftarrow \mathbf{0}_d$ 1 for $t = 1, \ldots, T$ do 2 $\hat{H}_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-2} G_s(\hat{\theta}_s) + \eta G_{t-1}(\hat{\theta}_{t-1})$ with [\(3\)](#page-3-1) $3 \quad H_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-1} G_s(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) 4 $H_{v,t} \leftarrow \lambda I_d + \sum_{s=1}^{t-1} G_{v,s}(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) $\hat{\theta}_t \leftarrow \arg \min_{\theta \in \Theta} g_{t-1}(\hat{\theta}_{t-1})^\top \theta + \frac{1}{2\eta} \|\theta - \hat{\theta}_{t-1}\|_{\widetilde{H}_t^{-1}}^2$ ▷ Estimation 6 if $\det(H_t) > C \det(H_{t_\tau})$ then 7 $\vert \tau \leftarrow \tau + 1; t_{\tau} \leftarrow t$ $\mathbf{s} \quad \bigsqcup \quad \widehat{\theta}_{v,(\tau)} \leftarrow \widehat{\theta}_{v,t_{\tau}} (= \widehat{\theta}_{t_{\tau}}^{1:d})$ 9 for $i \in [N]$ do 10 $\frac{v_{i,t}}{\sqrt{v_{i,t}}}\leftarrow x_{i,t}^{\top}\widehat{\theta}_{v,(\tau)}$ – √ $C\beta_{\tau}\|x_{i,t}\|_{H_{v,t}^{-1}}$; ▷ LCB for valuation $\begin{array}{ccc} \texttt{11} & \mid & p_{i,t} \leftarrow \underline{v}_{i,t}^{+} \, ; \end{array} \qquad \qquad \qquad \qquad \triangleright \texttt{ Price selection w/ LCB}$ $\begin{array}{c|c} \textbf{12} & \bar{v}_{i,t} \leftarrow x_{i,t}^{\top} \hat{\theta}_{v,t} + \beta_{\tau} \|x_{i,t}\|_{H_{v,t}^{-1}} \end{array}$; ▷ UCB for valuation 13 $\left[\begin{array}{c} \begin{array}{c} \vdots \end{array} & \begin{array}{c} \vdots \end{array} &$ 14 $S_t \in \arg\max_{S \subseteq [N]:|S| \le L} \sum_{i \in S} \frac{\overline{v}_{i,t} \exp(\overline{u}_{i,t})}{1 + \sum_{j \in S} \exp(\overline{u}_{j,t})}; \; \triangleright \textbf{Association w/ UCB}$ 15 Offer S_t with prices $p_t = \{p_{i,t}\}_{i \in S_t}$ 16 Observe preference (purchase) feedback $y_{i,t} \in \{0, 1\}$ for $i \in S_t$

For notation simplicity, we use $v_{i,t} := x_{i,t}^\top \theta_v$, $u_{i,t} := z_{i,t}(p_{i,t}^*)^\top \theta^*$, and $u_{i,t}^p := z_{i,t}(p_{i,t})^\top \theta^*$. Then we can show that for all $i \in [N]$ and $t \in [T]$, we have

$$
\underline{v}_{i,t}^+ \le v_{i,t} \le \overline{v}_{i,t} \text{ and } u_{i,t} \le \overline{u}_{i,t}.\tag{4}
$$

For the regret analysis, we need to obtain a bound for

$$
R_t(S_t^*, p_t^*) - R_t(S_t, p_t)
$$

=
$$
\sum_{i \in S_t^*} \frac{p_{i,t}^* \exp(u_{i,t}) \mathbb{1}(p_{i,t}^* \le v_{i,t})}{1 + \sum_{j \in S_t^*} \exp(u_{j,t}) \mathbb{1}(p_{j,t}^* \le v_{j,t})} - \sum_{i \in S_t} \frac{p_{i,t} \exp(u_{i,t}^p) \mathbb{1}(p_{i,t} \le v_{i,t})}{1 + \sum_{j \in S_t} \exp(u_{j,t}^p) \mathbb{1}(p_{j,t} \le v_{j,t})}.
$$
 (5)

For the purpose of analysis, we define $\overline{u}'_{i,t} = z_{i,t}(p_{i,t})^{\top} \theta^* + 2\beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}} + \sqrt{\sum_{i=1}^n \gamma_i^2}$ $2\sqrt{C}\beta_{\tau_t}\|x_{i,t}\|_{H_{v,t}^{-1}}$ so that $\overline{u}_{i,t} \leq \overline{u}'_{i,t}$. For the first term in [\(5\)](#page-5-3), with [\(4\)](#page-5-4) and the UCB-based assortment selection policy, we can show that

$$
\sum_{i \in S_t^*} \frac{p_{i,t}^* \exp(u_{i,t}) \mathbb{1}(p_{i,t}^* \le v_{i,t})}{1 + \sum_{j \in S_t^*} \exp(u_{j,t}) \mathbb{1}(p_{j,t}^* \le v_{j,t})} \le \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}')}.
$$
(6)

312 For the second term in [\(5\)](#page-5-3), with [\(4\)](#page-5-4) and the LCB-based pricing, we have

$$
\sum_{i \in S_t} \frac{p_{i,t} \exp(u_{i,t}^p) \mathbb{1}(p_{i,t} \le v_{i,t})}{1 + \sum_{j \in S_t} \exp(u_{j,t}^p) \mathbb{1}(p_{j,t} \le v_{j,t})} = \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}.
$$
(7)

From [\(5\)](#page-5-3), [\(6\)](#page-5-5), and [\(7\)](#page-5-6), we have

318
\n319
\n320
\n321
\n
$$
R_t(S_t^*, p_t^*) - R_t(S_t, p_t) \le \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}')} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}
$$
\n321
\n321
\n322
\n323
\n
$$
\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}')} - \sum_{i \in S_t} \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)} - \sum_{i \in S_t} \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}
$$

$$
\frac{321}{322} = \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^t)}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^t)} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t}^t)}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^t)} + \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t}^t)}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^t)} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}.
$$
\n(8)

 $\mathbb{E}\left[\Big(\frac{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t}')}{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t}')}\Big)\right]$

 $\mathbb{E}\Big[\Big(\beta_{\tau_t}\sum\limits$

 $\frac{\sum_{i \in S_t} \sum_{i \in I} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})}$

 \sum $t \in [T]$

 $= O\left(\sum_{i=1}^{n} a_i\right)$

 $t \in [T]$

324 325 326 327 Let τ_t be the value of τ at the time step t. We can show that $\mathbb{E}[\beta_{\tau_T}] = \widetilde{O}(d)$ and $\mathbb{E}[\beta_{\tau_T}^2] = \widetilde{O}(d^2)$. Then, for a bound of the first two terms in [\(8\)](#page-5-7), with expectation bounds for β_{τ_T} and $\beta_{\tau_T}^2$ in the above and elliptical potential bounds, we show that

 $\sum_{i \in S_t} P_{t, \widehat{\theta}_t}(i | S_t, p_t) \|x_{i,t}\|_{H^{-1}_{v,t}}$

328 329

330 331

332 333

334

335 336 337

 $+\beta_{\tau_t}^2$ $\left(\, \max_{i \in S_t} \|x_{i,t}\|_{H_{v,t}^{-1}}^2 + \max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}}^2 \right) \Big) \mathbbm{1}(E_t) \Bigg] \Bigg)$ $=\widetilde{O}\left(d^{\frac{3}{2}}\sqrt{\right)$ $\overline{T} + \frac{d^3}{ }$ κ \setminus . (9)

 $\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t}')$ $\frac{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})}{\sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})}$

 $\bigg)$ $\mathbb{1}(E_t)$

338 339 340

372 373

377

Likewise, for the bound of the last two terms in [\(8\)](#page-5-7), we can show that

$$
\sum_{t \in [T]} \mathbb{E}\left[\left(\frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)} \right) \mathbb{1}(E_t) \right] = \widetilde{O}\left(d^{\frac{3}{2}} \sqrt{T} + \frac{d^3}{\kappa}\right), \quad (10)
$$

which conclude the proof with [\(8\)](#page-5-7), [\(9\)](#page-6-0), and the fact that E_T holds with a high probability.

345 346 347 348 349 350 351 352 353 354 355 356 357 358 Under the C-MNL model, our algorithm can achieve the tight regret bound with respect to T as those established in standard MNL bandits [\(Oh & Iyengar, 2021\)](#page-11-7) and dynamic pricing under MNL with arbitrary features [\(Goyal & Perivier, 2021;](#page-11-6) [Erginbas et al., 2023\)](#page-10-9). Additionally, our regret bound does not contain $1/\kappa$ in the leading term, allowing it to remain $O(\sqrt{T})$ for large enough T even in the worst case where $1/\kappa = O(K^2)$. In contrast, the regret bounds of [Goyal & Perivier](#page-11-6) [\(2021\)](#page-11-6); [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9) for the MNL dynamic pricing problems include $1/\kappa$ in the leading term where, in their work, κ was assumed to be a constant term. In the worst case where κ is not constant, their regret bounds become $\tilde{O}(K^2\sqrt{T})$. Moreover, the previous works [\(Goyal & Perivier,](#page-11-6) [2021;](#page-11-6) [Erginbas et al., 2023\)](#page-10-9) assumed that $x_{i,t}^\top \theta_\alpha \geq L$ with a positive constant $L > 0$ and their regret bounds include $1/L^n$ for $n \geq 1$. This leads to trivial regret bounds in the worst case when L is small, whereas our regret bound does not depend on L . Regarding the dimensionality, the analysis of our new censored MNL model is significantly more challenging and involved due to the presence of activation functions, which adds complexity. As a result, our regret bound scales with $d^{\frac{3}{2}}$. However, whether this dependency can be improved remains an open question.

359 360 361 362 363 364 365 366 367 We now discuss the algorithmic differences between our method and the one proposed in [Goyal](#page-11-6) [& Perivier](#page-11-6) [\(2021\)](#page-11-6); [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9). In the prior work of [Goyal & Perivier](#page-11-6) [\(2021\)](#page-11-6); [Erginbas](#page-10-9) [et al.](#page-10-9) [\(2023\)](#page-10-9), the price is determined by maximizing revenue at each time. However, in our C-MNL framework, we cannot estimate θ^* using the revenue-maximizing price due to the hidden nature of non-purchased feedback regarding whether it is due to stochastic preference or elimination by an activation function. To address this issue, we employ an LCB pricing strategy that enhances exploration across all arms by adhering to acceptable user prices. Since our pessimistic pricing strategy introduces a gap from the optimal price, we further incorporate an exploration-enhanced strategy for choosing assortments.

368 369 370 371 Additionally, our algorithm is computationally more efficient since it does not require solving an optimization problem for pricing decisions, which was necessary in the previous work.^{[1](#page-6-1)} We also note that regarding the computational costs of assortment selection, which is common in all MNL bandit literature, the assortment optimization can be computed by solving an LP [\(Davis et al., 2013\)](#page-10-11).

4.3 TS-BASED ASSORTMENT-SELECTION WITH LCB PRICING: TSA-LCBP

374 375 376 Here we propose a Thompson sampling (TS)-based assortment-selection with LCB pricing algo-rithm (Algorithm [2\)](#page-7-0). As in Algorithm [1,](#page-5-0) we first estimate $\hat{\theta}_t$ using the online mirror descent

¹Although [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9) suggested an approximation for the optimization, the regret bound under this approximation was not guaranteed.

Algorithm 2 TS-based Assortment-selection with LCB Pricing (TSA-LCBP) **Input:** $\lambda, \eta, M, \beta_\tau, C > 1$ **Init:** $\tau \leftarrow 1, t_1 \leftarrow 1, \theta_{v,(1)} \leftarrow \mathbf{0}_d$ for $t = 1, \ldots, T$ do $\widetilde{H}_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-2} G_s(\widehat{\theta}_s) + \eta G_{t-1}(\widehat{\theta}_{t-1})$ with [\(3\)](#page-3-1) $H_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-1} G_s(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) $H_{v,t} \leftarrow \lambda I_d + \sum_{s=1}^{t-1} G_{v,s}(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) $\hat{\theta}_t \leftarrow \arg \min_{\theta \in \Theta} g_t(\hat{\theta}_{t-1})^\top \theta + \frac{1}{2\eta} \|\theta - \hat{\theta}_{t-1}\|_{\widetilde{H}_t^{-1}}^2$ ▷ Estimation Sample $\{\widetilde{\theta}_{v,t}^{(m)}\}_{m\in[M]}$ independently from $\mathcal{N}(\widehat{\theta}_{v,t} (= \widehat{\theta}_t^{1:d}), \beta_\tau^2 H_{v,t}^{-1})$ Sample $\{\widetilde{\theta}_t^{(m)}\}_{m\in[M]}$ independently from $\mathcal{N}(\widehat{\theta}_t, 2\beta_\tau^2 H_t^{-1})$ if $\det(H_t) > C \det(H_{t_\tau})$ then $\tau \leftarrow \tau + 1; t_{\tau} \leftarrow t$ $\widehat{\theta}_{v,(\tau)} \leftarrow \widehat{\theta}_{v,t_{\tau}} (=\widehat{\theta}_{t_{\tau}}^{1:d})$ for $i \in [N]$ do $\underline{v}_{i,t} \leftarrow x_{i,t}^{\top} \widehat{\theta}_{v,(\tau)}$ – √ $C\beta_{\tau}\|x_{i,t}\|_{H_{v,t}^{-1}}$ ▷ LCB for valuation $p_{i,t} \leftarrow \underline{v}_{i}^{+}$ ▷ Price selection w/ LCB $\widetilde{v}_{i,t} \leftarrow \arg \max_{m \in [M]} x_{i,t}^{\top} \widetilde{\theta}_{v,t}^{(m)}$
 $\widetilde{\eta}_{i,t} \leftarrow \widetilde{v}_{i,t} - x_{i,t}^{\top} \widehat{\theta}_{v,t}$ ▷ TS for valuation $\widetilde{\eta}_{i,t} \leftarrow \widetilde{v}_{i,t} - x$ $\widetilde{u}_{i,t} \leftarrow \arg \max_{m \in [M]} z_{i,t}(p_{i,t})^\top \widetilde{\theta}_t^{(m)}$ $t^{(m)} + 8C\widetilde{\eta}_{i,t}$; \triangleright TS for utility $S_t \in \arg\max_{S \subseteq [N]:|S| \leq K} \sum_{i \in S} \frac{\widetilde{v}_{i,t} \exp(\widetilde{u}_{i,t})}{1 + \sum_{j \in S} \exp(\widetilde{u}_{j,t})} ~;~~\triangleright~~ \textbf{Association w/ TS}$ Offer S_t with prices $p_t = \{p_{i,t}\}_{i \in S_t}$ Observe preference (purchase) feedback $y_{i,t} \in \{0, 1\}$ for $i \in S_t$

within the range of $\Theta = \{ \theta \in \mathbb{R}^{2d} : ||\theta^{1:d}||_2 \leq 1 \text{ and } ||\theta^{d+1:2d}||_2 \leq 1 \}.$ For determining price, we utilize the LCB pricing as $p_{i,t} = \underline{v}_{i,t}^+$, where, recall, $\underline{v}_{i,t} = x_{i,t}^\top \widehat{\theta}_{v,(\tau)} - \beta_\tau \|x_{i,t}\|_{H_{v,t}^{-1}}$ with $\beta_{\tau} = C_1 \sqrt{d\tau} \log(T) \log(K).$

410 411 412 413 414 For choosing the assortment, we sample two different types of instances from Gaussian distributions; one is for valuation and the other is for preference utility, each of which is sampled for M times as $\widetilde{\theta}_{v,t}^{(m)} \in \mathbb{R}^d$ and $\widetilde{\theta}_t^{(m)} \in \mathbb{R}^{2d}$ for $m \in [M]$, respectively. We set $M = \lceil 1 - \frac{\log(2N)}{\log(1 - 1/4\sqrt{N})} \rceil$ $\frac{\log(2N)}{\log(1-1/4\sqrt{e\pi})}$. Then we construct TS indexes regarding the valuation and utility as

$$
\widetilde{v}_{i,t} := \underset{m \in [M]}{\arg \max} x_{i,t}^{\top} \widetilde{\theta}_{v,t}^{(m)} \text{ and } \widetilde{u}_{i,t} := \underset{m \in [M]}{\arg \max} z_{i,t} (p_{i,t})^{\top} \widetilde{\theta}_{t}^{(m)} + 16 \widetilde{\eta}_{i,t}, \text{ respectively,}
$$

415 416 417

418 419 where $\widetilde{\eta}_{i,t} = \widetilde{v}_{i,t} - x_{i,t}^\top \theta_{v,t}$. For the utility of $\widetilde{u}_{i,t}$, we have to consider the uncertainty regarding $p_{i,t}$ as well as $\hat{\theta}_t$, which leads to requiring an additional exploration term $\tilde{\eta}_{i,t}$. Then the assortment is determined from

$$
S_t \in \underset{S \subseteq [N]:|S| \le K}{\arg \max} \sum_{i \in S} \frac{\widetilde{v}_{i,t} \exp(\widetilde{u}_{i,t})}{1 + \sum_{j \in S} \exp(\widetilde{u}_{j,t})}.
$$

In the following, we provide a regret bound of the algorithm by setting $\eta = \frac{1}{2} \log(K + 1) + 3$ and $λ = max{84dη, 192√2η}.$

4.4 REGRET ANALYSIS OF ALGORITHM [2](#page-7-0) (TSA-LCBP)

Theorem 2 *Under Assumption [1,](#page-4-0) the policy* π *of Algorithm [2](#page-7-0) achieves a regret bound of*

$$
R^{\pi}(T) = \widetilde{O}\left(d^2\sqrt{T} + \frac{d^4}{\kappa}\right)
$$

432 433 434 435 436 437 Proof The full version of the proof is provided in Appendix [A.3.](#page-23-0) Here we provide some key components of the proof. We first define event $E_t = {\|\hat{\theta}_s - \theta^*\|_{H_s} \leq \beta_t, \forall s \leq t\}}$ and E_T holds with a high probability. Let $A_t^* = \{i \in S_t^* : p_{i,t}^* \le v_{i,t}\}$ and, recall, $v_{i,t} = x_{i,t}^\top \theta_v, u_{i,t} = z_{i,t} (p_{i,t}^*)^\top \theta^*$, and $u_{i,t}^p = z_{i,t}(p_{i,t})^\top \theta^*$. Then under E_t , from the pricing and assortment selection strategies, we can show that

$$
R_t(S_t^*, p_t^*) - R_t(S_t, p_t) \le \frac{\sum_{i \in A_t^*} v_{i,t} \exp(u_{i,t})}{1 + \sum_{i \in A_t^*} \exp(u_{i,t})} - \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}.
$$
(11)

We define event $\widetilde{E}_t^{(a)}$ such that for all $i \in [N]$, we have

$$
|\widetilde{v}_{i,t} - x_{i,t}^\top \widehat{\theta}_{v,t}| \leq \gamma_t \|x_{i,t}\|_{H_{v,t}^{-1}} \text{ and } |\widetilde{u}_{i,t} - z_{i,t}(p_{i,t})^\top \widehat{\theta}_t| \leq 8C\gamma_t (\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}}),
$$

which is shown to hold with a high probability. We also define event $\widetilde{E}_t^{(b)}$ such that for all $i \in [N]$, we have $\widetilde{v}_{i,t} \ge v_{i,t}$ and $\widetilde{u}_{i,t} \ge u_{i,t}$, which is shown to holds at least a positive constant. Let $\widetilde{v}_{i} = \widetilde{v}_{i}^{(a)} \circ \widetilde{v}_{i}^{(b)}$ $\widetilde{E}_t = \widetilde{E}_t^{(a)} \cap \widetilde{E}_t^{(b)}$. Then we can show that $\mathbb{P}(\widetilde{E}_t | \mathcal{F}_{t-1}, E_t) \geq 1/8\sqrt{e\pi}$ where \mathcal{F}_{t-1} is the filtration containing information before t.

Let $\widetilde{z}_{i,t} = z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}(\cdot | S_t, p_t)}[z_{i,t}(p_{i,t})]$ and $\widetilde{x}_{i,t} = x_{i,t} - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}(\cdot | S_t, p_t)}[x_{i,t}]$ and $\gamma_t =$ $\beta_{\tau_t} \sqrt{8d \log(Mt)}$ where τ_t is the value of τ at time t. For the ease of presentation, we use

$$
L_{t} = \gamma_{t}^{2} (\max_{i \in S_{t}} \|z_{i,t}(p_{i,t})\|_{H_{t}^{-1}}^{2} + \max_{i \in S_{t}} \|x_{i,t}\|_{H_{v,t}^{-1}}^{2}) + \gamma_{t}^{2} (\max_{i \in S_{t}} \|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}^{2} + \max_{i \in S_{t}} \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^{2}) + \gamma_{t} \sum_{i \in S_{t}} P_{t,\widehat{\theta}_{t}}(i|S_{t}, p_{t}) (\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}} + \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}}).
$$

With a constant lower bound for $\mathbb{P}(\widetilde{E}_t|\mathcal{F}_{t-1}, E_t)$ and elliptical potential bounds, by omitting some details, we can show that

$$
\mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_t^*} v_{i,t} \exp(u_{i,t})}{1 + \sum_{i\in A_t^*} \exp(u_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i\in S_t} \exp(u_{i,t}^p)}\right) \mathbb{1}(E_t) \mid \mathcal{F}_{t-1}\right]\right]
$$

= $O\left(\mathbb{E}\left[\mathbb{E}\left[L_t \mid \mathcal{F}_{t-1}, \widetilde{E}_t, E_t\right] \mathbb{P}(E_t | \mathcal{F}_{t-1})\right]\right) = \widetilde{O}\left(d^2\sqrt{T} + \frac{d^4}{\kappa}\right),$

which concludes the proof with [\(11\)](#page-8-0) and the fact that E_T holds with a high probability.

467 468 469 470 471 472 473 474 475 476 477 478 To the best of our knowledge, this is the first work to apply Thompson Sampling (TS) to dynamic pricing under MNL functions, whereas the previous related works focused on UCB method [\(Ergin](#page-10-9)[bas et al., 2023\)](#page-10-9) (or did not consider assortment selection [\(Goyal & Perivier, 2021\)](#page-11-6)). Additionally, prior work on TS for MNL bandits [\(Oh & Iyengar, 2019\)](#page-11-8) includes $1/\kappa$ in the regret bound so that $\widetilde{O}(K^2\sqrt{T})$ for the worst-case of $1/\kappa = O(K^2)$ and requires computationally intensive estimation
with an $O(4)$ seet at each time star t. In sections, by using soling minor decent undates, sur TS with an $O(t)$ cost at each time step t. In contrast, by using online mirror descent updates, our TS algorithm eliminates the κ dependency in the main term of the regret bound with $O(\sqrt{T})$ for large enough T and provides computationally efficient online updates with an $O(1)$ cost for estimation in enough T and provides complitationally efficient online updates with an $O(1)$ cost for estimation in
MNL bandits. It is also worth noting that our TS regret bound has an additional \sqrt{d} term compared to the UCB algorithm (Algorithm [1\)](#page-5-0). This phenomenon of increased regret with respect to d , compared to that of UCB, is consistent with observations from previous TS-based bandit literature [\(Oh](#page-11-8) [& Iyengar, 2019;](#page-11-8) [Agrawal & Goyal, 2013;](#page-10-12) [Abeille & Lazaric, 2017\)](#page-10-13).

479 480

481

5 EXPERIMENTS

482 483 484 485 Here, we present numerical results using synthetic datasets with varying numbers of products N. For the experiments, we generate each element in θ_v and θ_α from the uniform distribution $(0, 1)$ and normalize them. We also generate features in the same way. We set $K = 5$ and $d = 4$. Unfortunately, there is no algorithm that can be directly applied to our novel setting. Therefore, for the benchmarks, we utilize previous algorithms proposed for dynamic pricing under MNL model

such as DASP-MNL proposed in [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9) and ONM (online newton method) in [Goyal](#page-11-6) [& Perivier](#page-11-6) [\(2021\)](#page-11-6). We note that ONM works under a given assortment rather than selecting one, so we adjust the method by adopting the method for the assortment optimization in [Erginbas et al.](#page-10-9) [\(2023\)](#page-10-9). We also utilize the method of Explore-then-commit (ETC) (Lattimore & Szepesvári, 2020) as a benchmark, which conducts exploration over the first $T^{2/3}$ time steps and then exploits for the remainder of the time. In Figure [2,](#page-9-0) we can observe other benchmarks do not work properly in our setting and our algorithms outperform the benchmarks with sublinear regret. Our algorithms demonstrate comparable performance, with TSA-LCBP slightly outperforming UCB-LCBP when N becomes sufficiently large.

6 EXTENSIONS TO MORE GENERAL PROBLEMS

 Randomness in Activation Function. We further investigate the presence of randomness in the activation function in C-MNL. Let $\zeta_{i,t}$ be a zero-mean random noise drawn from the range of $[-c, c]$ for some $0 < c \leq 1$. we consider

$$
\frac{313}{514}
$$

 $\frac{\sum_{j \in S_t} \exp(z_{i,t}(p_{i,t}) - y) - (r_{i,t} - (w_{i,t} + b) + s_{i,t})}{\sum_{j \in S_t} \exp(z_{j,t}(p_{j,t}) + \theta^*) \mathbb{1}(p_{j,t} \leq (x_{j,t}^{\top} \theta_v + \zeta_{j,t})^+)}$ We propose a variant of Algorithm [1](#page-5-0) (Algorithm [3](#page-31-0) in Appendix [A.4\)](#page-30-0) using an enhanced LCB pricing strategy, which achieves $\widetilde{O}(d^{\frac{3}{2}}\sqrt{T})$ when $c = O(1/\sqrt{T})$. Further details on the algorithm and theorem can be found in Appendix [A.4.](#page-30-0)

 $\widetilde{\mathbb{P}}_t(i|S_t, p_t) = \frac{\exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \leq (x_{i,t}^\top \theta_v + \zeta_{i,t})^+)}{1 + \sum_{i \in \mathcal{S}} \exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \leq (x_\cdot^\top \theta_v + \zeta_{i,t})^+)}$

 Extension to RL with Once-per-episode Feedback. We also study the extension to reinforcement learning (RL) with once-per-episode feedback. In this framework, we consider that at each time, the seller suggests up to K trajectories each consisting of H state-action pairs (s, a) with associated prices for each trajectory. The buyer then purchases at most one trajectory based on the C-MNL model (without price sensitivity). In this problem, we account for the latent transition probability $\mathbb{P}(\cdot|s,a)$ with Eluder dimension $d_{\mathbb{P}}$, as well as the latent valuation of the trajectory. We propose an algorithm (Algorithm [4](#page-34-0) in Appendix [A.5\)](#page-31-1) that uses an LCB pricing strategy and UCB-based assortment selection, considering uncertainty in both transition probability and trajectory valuation– key differences from the bandit setting. Our algorithm achieves a regret bound of $\widetilde{O}(d^{\frac{3}{2}}\sqrt{T} + \sqrt{T} + \sqrt{T}$ $\sqrt{d_P KHT}$) (omitting the logarithmic dependency on the covering number), where the second term arises from learning the transition probability. Further details on the problem statement, algorithm, and theorem for the RL extension are provided in Appendix [A.5.](#page-31-1)

7 CONCLUSION

 In this study, we explore dynamic multi-product selection and pricing within a new framework of the censored multi-nomial logit choice model. We introduce algorithms that incorporate an LCB pricing strategy along with either a UCB or TS product selection strategy. These algorithms achieve regret bounds of $\widetilde{O}(d^{\frac{3}{2}}\sqrt{T})$ and $\widetilde{O}(d^2\sqrt{T})$, respectively. Lastly, we validate our algorithms through experiments with synthetic datasets.

 Reproducibility Statement. Source code is submitted as supplementary material and complete proofs of the theorems are included in the appendix.

540 541 REFERENCES

561

580 581

- **544 545 546** Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In *Artificial Intelligence and Statistics*, pp. 176–184. PMLR, 2017.
- **547 548 549** Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms for logistic bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 3691– 3699. PMLR, 2021.
- **550 551 552** Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In *International conference on machine learning*, pp. 127–135. PMLR, 2013.
- **553 554** Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Mnl-bandit: A dynamic learning approach to assortment selection. *arXiv preprint arXiv:1706.03880*, 2017a.
- **555 556 557** Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Thompson sampling for the mnl-bandit. In *Conference on learning theory*, pp. 76–78. PMLR, 2017b.
- **558 559 560** Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement learning with value-targeted regression. In *International Conference on Machine Learning*, pp. 463–474. PMLR, 2020.
- **562 563** Dimitris Bertsimas and Georgia Perakis. Dynamic pricing: A learning approach. *Mathematical and computational models for congestion charging*, pp. 45–79, 2006.
- **564 565 566** Niladri Chatterji, Aldo Pacchiano, Peter Bartlett, and Michael Jordan. On the theory of reinforcement learning with once-per-episode feedback. *Advances in Neural Information Processing Systems*, 34:3401–3412, 2021.
	- Xiaoyu Chen, Jiachen Hu, Lin F Yang, and Liwei Wang. Near-optimal reward-free exploration for linear mixture mdps with plug-in solver. *arXiv preprint arXiv:2110.03244*, 2021.
	- Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop: Provably efficient preference-based reinforcement learning with general function approximation. In *International Conference on Machine Learning*, pp. 3773–3793. PMLR, 2022.
- **574 575** Wang Chi Cheung, David Simchi-Levi, and He Wang. Dynamic pricing and demand learning with limited price experimentation. *Operations Research*, 65(6):1722–1731, 2017.
- **576 577 578 579** Young-Geun Choi, Gi-Soo Kim, Choi Yunseo, Wooseong Cho, Myunghee Cho Paik, and Min-hwan Oh. Semi-parametric contextual pricing algorithm using cox proportional hazards model. In *International Conference on Machine Learning*, pp. 5771–5786. PMLR, 2023.
	- Maxime C Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic pricing. *Management Science*, 66(11):4921–4943, 2020.
- **582 583 584** James Davis, Guillermo Gallego, and Huseyin Topaloglu. Assortment planning under the multinomial logit model with totally unimodular constraint structures. *Work in Progress*, 2013.
- **585 586** Arnoud V Den Boer. Dynamic pricing with multiple products and partially specified demand distribution. *Mathematics of operations research*, 39(3):863–888, 2014.
- **587 588 589** Arnoud V den Boer and Bert Zwart. Dynamic pricing and learning with finite inventories. *Operations research*, 63(4):965–978, 2015.
- **590 591** Yigit Efe Erginbas, Kannan Ramchandran, and Thomas Courtade. Dynamic assortment selection and pricing with learning. In *Openreview*, 2023.
- **593** Jianqing Fan, Yongyi Guo, and Mengxin Yu. Policy optimization using semiparametric models for dynamic pricing. *Journal of the American Statistical Association*, 119(545):552–564, 2024.

A APPENDIX

A.1 NOTATION TABLE FOR THE PROOFS

651 652 653

648 649 650

A.2 PROOF OF THEOREM [1](#page-4-1)

691 692 693 694 695 696 Let τ_t be the value of τ at time t according to the update procedure in the algorithm. We first define event $E_t = \{ \|\hat{\theta}_s - \theta^*\|_{H_s} \leq \beta_{\tau_s}, \forall s \leq t \}.$ Then we have $E_T \subset E_{T-1}, \ldots, \subset E_1$ and E_T holds with a high probability (to be shown). In what follows, we first assume that E_t holds for each t. Under this event, we provide inequalities regarding the upper and lower bounds of valuation and utility function in the following. For notation simplicity, we use $v_{i,t} := x_{i,t}^\top \theta_v, u_{i,t} := z_{i,t} (p_{i,t}^*)^\top \theta^*,$ and $x_{i,t}^o := [x_{i,t}; \mathbf{0}_d]$.

697 698 699

Lemma 1 *For* $t > 0$ *, under* E_t *, for all* $i \in [N]$ *we have*

700 701

 $\underline{v}_{i,t}^+ \le v_{i,t} \le \overline{v}_{i,t}$ and $u_{i,t} \le \overline{u}_{i,t}$.

702 703 Proof For $t_{\tau} \le t \le t_{\tau+1} - 1$ for $\tau \ge 1$, under E_t , we have

$$
|x_{i,t}^{\top} \theta_v - x_{i,t}^{\top} \widehat{\theta}_{v,(\tau)}| = |x_{i,t}^o|^{\top} \theta^* - x_{i,t}^o|^{\top} \widehat{\theta}_{t_{\tau}}|
$$

$$
\leq ||x_{i,t}^o||_{H_t^{-1}} ||\theta^* - \widehat{\theta}_{t_{\tau}}||_{H_t}
$$

$$
707\n\n708\n\n709\n\n709\n\n710\n\n711\n\n712\n\n
$$
\leq \|x_{i,t}^o\|_{H_t^{-1}} \sqrt{\frac{\det(H_t)}{\det(H_{t_\tau})}} \|\theta^* - \hat{\theta}_{t_\tau}\|_{H_{t_\tau}}
$$
\n
\n711\n
\n
$$
\leq \|x_{i,t}^o\|_{H_{v,t}^{-1}} \sqrt{C} \beta_{\tau_t},
$$
$$

714 where the second inequality is obtained from Lemma [14](#page-41-0) with the update procedure of $\theta_{v,(\tau)}$ in the algorithm. This implies $\underline{v}_{i,t} \le v_{i,t}$. Then with $v_{i,t} \ge 0$, we have

 $\underline{v}_{i,t}^+ \leq v_{i,t}.$

Under
$$
E_t
$$
, we also have

$$
|x_{i,t}^{\top} \theta_v - x_{i,t}^{\top} \widehat{\theta}_{v,t}| = |x_{i,t}^{o}^{\top} \theta^* - x_{i,t}^{o}^{\top} \widehat{\theta}_t| \leq ||x_{i,t}^{o}||_{H_t^{-1}} ||\theta^* - \widehat{\theta}_t||_{H_t} \leq ||x_{i,t}||_{H_{v,t}^{-1}} \beta_{\tau_t},
$$

 $v_{i,t} \leq \overline{v}_{i,t}.$

which implies

704 705 706

713

Now we provide the proof for the upper bound of $u_{i,t}$. Under E_t , we have

$$
z_{i,t}(p_{i,t}^*)^\top \theta^* - z_{i,t}(p_{i,t})^\top \hat{\theta}_t = z_{i,t}(p_{i,t}^*)^\top \theta^* - z_{i,t}(p_{i,t})^\top \theta^* + z_{i,t}(p_{i,t})^\top \theta^* - z_{i,t}(p_{i,t})^\top \hat{\theta}_t
$$

\n
$$
\leq z_{i,t}(p_{i,t}^*)^\top \theta^* - z_{i,t}(p_{i,t})^\top \theta^* + |z_{i,t}(p_{i,t})^\top \hat{\theta}_t - z_{i,t}(p_{i,t})^\top \theta^*|
$$

\n
$$
\leq p_{i,t}^* w_{i,t}^\top \theta_\alpha - p_{i,t} w_{i,t}^\top \theta_\alpha + ||z_{i,t}(p_{i,t})||_{H_t^{-1}} ||\hat{\theta}_t - \theta^*||_{H_t}
$$

\n
$$
\leq (p_{i,t}^* - p_{i,t}) w_{i,t}^\top \theta_\alpha + \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}}
$$

\n
$$
\leq (v_{i,t} - \underline{v}_{i,t}) + \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}}
$$

\n
$$
\leq (v_{i,t} - \underline{v}_{i,t}) + \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}}
$$

\n
$$
\leq 2\sqrt{C} \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} + \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}},
$$

734 736 where the third last inequality comes from $p_{i,t}^* \le v_{i,t}$, $p_{i,t} = v_{i,t}^+$, $v_{i,t} \ge v_{i,t}^+$, and (positive sensitivity) $0 \le w_{i,t}^{\top} \theta_{\alpha} \le 1$. This concludes the proof.

We have

735

737 738

$$
R_t(S_t^*, p_t^*) - R_t(S_t, p_t)
$$

=
$$
\sum_{i \in S_t^*} \frac{p_{i,t}^* \exp(z_{i,t}(p_{i,t}^*)^\top \theta^*) \mathbb{1}(p_{i,t}^* \le x_{i,t}^\top \theta_v)}{1 + \sum_{j \in S_t^*} \exp(z_{j,t}(p_{j,t}^*)^\top \theta^*) \mathbb{1}(p_{j,t}^* \le x_{j,t}^\top \theta_v)}
$$

-
$$
\sum_{i \in S_t} \frac{p_{i,t} \exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \le x_{i,t}^\top \theta_v)}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \le x_{j,t}^\top \theta_v)}.
$$
 (12)

 \blacksquare

747 748 749 750 751 Let $\overline{u}'_{i,t} = z_{i,t}(p_{i,t})^\top \theta^* + 2\sqrt{C} \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}} + 2\sqrt{C} \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}}$. Then under E_t , we have $z_{i,t}(p_{i,t})^{\top} \widehat{\theta}_t - \beta_{\tau_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}} \leq z_{i,t}(p_{i,t})^{\top} \theta^*$, which implies $\overline{u}_{i,t} \leq \overline{u}'_{i,t}$. In what follows, we provide lemmas for the bounds of each term in the above instantaneous regret. For notation simplicity, we use $u_{i,t}^p := z_{i,t}(p_{i,t})^\top \theta^*$.

Lemma 2 For
$$
t > 0
$$
, under E_t we have

\n753

\n754

\n755

\n
$$
\sum_{i \in S_t^*} \frac{p_{i,t}^* \exp(z_{i,t}(p_{i,t}^*)^\top \theta^*) \mathbb{1}(p_{i,t}^* \leq x_{i,t}^\top \theta_v)}{1 + \sum_{j \in S_t^*} \exp(z_{j,t}(p_{j,t}^*)^\top \theta^*) \mathbb{1}(p_{j,t}^* \leq x_{j,t}^\top \theta_v)} \leq \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^\prime)}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^\prime)}
$$

756

and

$$
\sum_{i \in S_t} \frac{p_{i,t} \exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \le x_{i,t}^\top \theta_v)}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \le x_{j,t}^\top \theta_v)} = \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}.
$$

Proof First, we provide a proof for the inequality in this lemma. We define $A_t^* = \{i \in S_t^* : p_{i,t}^* \leq \}$ $v_{i,t}$. We observe that $A_t^* = \arg \max_{S \subseteq [N]: |S| \le K} \frac{\sum_{i \in S} p_{i,t}^* \exp(u_{i,t})}{1 + \sum_{i \in S} \exp(u_{i,t})}$. Then, from Lemma A.3 in [Agrawal et al.](#page-10-7) [\(2017a\)](#page-10-7) and $u_{i,t} \leq \overline{u}_{i,t}$ from Lemma [1,](#page-12-1) we can show that

$$
\frac{\sum_{i \in A_t^*} p_{i,t}^* \exp(u_{i,t})}{1 + \sum_{i \in A_t^*} \exp(u_{i,t})} \le \frac{\sum_{i \in A_t^*} p_{i,t}^* \exp(\overline{u}_{i,t})}{1 + \sum_{i \in A_t^*} \exp(\overline{u}_{i,t})}.
$$
\n(13)

From the above, under E_t , we have

776 777 778 779 780 781 782 783 784 785 786 787 788 789 Rt(S ∗ t , p[∗] t) = P i∈A[∗] t p ∗ i,t exp(ui,t) 1 + P i∈A[∗] t exp(ui,t) ≤ P i∈A[∗] t p ∗ i,t exp(ui,t) 1 + P i∈A[∗] t exp(ui,t) ≤ P i∈A[∗] t vi,t exp(ui,t) 1 + P i∈A[∗] t exp(ui,t) ≤ P i∈A[∗] t vi,t exp(ui,t) 1 + P i∈A[∗] t exp(ui,t) ≤ P i∈S^t vi,t exp(ui,t) 1 + P i∈S^t exp(ui,t) , (14)

where the first inequality is obtained from [\(13\)](#page-14-0), the second last inequality is obtained from $v_{i,t} \leq \overline{v}_{i,t}$ from Lemma [1,](#page-12-1) and the last inequality is obtained from the policy π of constructing S_t . Then from the definition of S_t , as in Lemma H.2 in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11), we can show that

$$
\frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})} \le \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\overline{u}'_{i,t})}.
$$
\n(15)

> Here we provide a proof for the equation in this lemma. Since $p_{i,t} = \underline{v}_{i,t}^+$ from the policy π and $\underline{v}_{i,t}^+ \le v_{i,t}$ from Lemma [1,](#page-12-1) we have

$$
R_t(S_t, p_t) = \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p) \mathbb{1}(\underline{v}_{i,t}^+ \le v_{i,t})}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p) \mathbb{1}(\underline{v}_{i,t}^+ \le v_{i,t})} = \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)},
$$
(16)

which concludes the proof.

810 811 From [\(12\)](#page-13-0) and Lemma [2,](#page-13-1) under E_t , we have

812 813

$$
R_{t}(S_{t}^{*}, p_{t}^{*}) - R_{t}(S_{t}, p_{t})
$$
\n
$$
= \sum_{i \in S_{t}^{*}} \frac{p_{i,t}^{*} \exp(z_{i,t}(p_{i,t})^{\top} \theta^{*}) \mathbb{1}(p_{i,t}^{*} \leq x_{i,t}^{\top} \theta_{v})}{1 + \sum_{j \in S_{t}^{*}} \exp(z_{j,t}(p_{j,t})^{\top} \theta^{*}) \mathbb{1}(p_{j,t}^{*} \leq x_{j,t}^{\top} \theta_{v})}
$$
\n
$$
= \sum_{i \in S_{t}} \frac{p_{i,t} \exp(z_{i,t}(p_{i,t})^{\top} \theta^{*}) \mathbb{1}(p_{i,t} \leq x_{i,t}^{\top} \theta_{v})}{1 + \sum_{j \in S_{t}} \exp(z_{j,t}(p_{j,t})^{\top} \theta^{*}) \mathbb{1}(p_{j,t} \leq x_{j,t}^{\top} \theta_{v})}
$$
\n
$$
\leq \frac{\sum_{i \in S_{t}} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}^{\prime})} - \frac{\sum_{i \in S_{t}} \underline{v}_{i,t}^{+} \exp(u_{i,t}^{p})}{1 + \sum_{i \in S_{t}} \exp(u_{i,t}^{p})}
$$
\n
$$
= \frac{\sum_{i \in S_{t}} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}^{\prime})} - \frac{\sum_{i \in S_{t}} \underline{v}_{i,t}^{+} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}^{\prime})} + \frac{\sum_{i \in S_{t}} \underline{v}_{i,t}^{+} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}^{\prime})} - \frac{\sum_{i \in S_{t}} \underline{v}_{i,t}^{+} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}^{\prime})}
$$
\n
$$
= \frac{\sum_{i \in S
$$

To obtain a bound for the above, we provide the following lemmas.

Lemma 3 *For* $t > 0$ *, under* E_t *we have*

$$
\frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^{+} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})}
$$
\n
$$
= O\left(\beta_{\tau_t}^{2} \max_{i \in S_t} ||x_{i,t}||_{H_{v,t}^{-1}}^{2} + \beta_{\tau_t}^{2} \max_{i \in S_t} ||z_{i,t}(p_{i,t})||_{H_{t}^{-1}}^{2} + \beta_{\tau_t} \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) ||x_{i,t}||_{H_{v,t}^{-1}}\right).
$$

Proof For $\tau \ge 0$ and $t_{\tau} \le t \le t_{\tau+1} - 1$, under E_t , we have

$$
\overline{v}_{i,t} - \underline{v}_{i,t} = x_{i,t}^{\top} \widehat{\theta}_{v,t} - x_{i,t}^{\top} \widehat{\theta}_{v,(\tau_t)} + (\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \n= x_{i,t}^{\top} \widehat{\theta}_{v,t} - x_{i,t}^{\top} \theta_v + x_{i,t}^{\top} \theta_v - x_{i,t}^{\top} \widehat{\theta}_{v,(\tau_t)} + (\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \n= x_{i,t}^{\sigma} \widehat{\tau}_{\theta} - x_{i,t}^{\sigma} \widehat{\tau}_{\theta} + x_{i,t}^{\sigma} \widehat{\tau}_{\theta} + x_{i,t}^{\sigma} \widehat{\theta}_{t_{\tau}} + (\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \n\leq ||\widehat{\theta}_{t} - \theta^{*} ||_{H_{t}} ||x_{i,t}^{\sigma} ||_{H_{t}^{-1}} + ||\widehat{\theta}_{t_{\tau}} - \theta^{*} ||_{H_{t}} ||x_{i,t}^{\sigma} ||_{H_{t}^{-1}} + (\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \n\leq \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} + \sqrt{\frac{\det(H_t)}{\det(H_{t_{\tau}})}} ||\widehat{\theta}_{t_{\tau}} - \theta^{*} ||_{H_{t_{\tau}}} ||x_{i,t}^{\sigma} ||_{H_{t}^{-1}} + (\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \n\leq 2(\sqrt{C} + 1) \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}},
$$

where the second inequality is obtained from Lemma [14.](#page-41-0)

Let $\widehat{u}_{i,t} = z_{i,t}(p_{i,t})^\top \widehat{\theta}_t$. Using the above inequality, under E_t , we have

$$
\frac{\sum_{i \in S_{t}} \overline{v}_{i,t} \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}')} - \frac{\sum_{i \in S_{t}} v_{i,t}^{+} \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}')} \n= \frac{\sum_{i \in S_{t}} (\overline{v}_{i,t} - v_{i,t}^{+}) \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}')} \n\leq \frac{\sum_{i \in S_{t}} (\overline{v}_{i,t} - v_{i,t}) \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}')} \n= \frac{\sum_{i \in S_{t}} 2(\sqrt{C} + 1)\beta_{\tau_{t}} ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_{t}} \exp(\overline{u}_{i,t}')} - \frac{\sum_{i \in S_{t}} 2(\sqrt{C} + 1)\beta_{\tau_{t}} ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\widehat{u}_{i,t})}{1 + \sum_{i \in S_{t}} \exp(\widehat{u}_{i,t}')} \n+ \frac{\sum_{i \in S_{t}} 2(\sqrt{C} + 1)\beta_{\tau_{t}} ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\widehat{u}_{i,t})}{1 + \sum_{i \in S_{t}} \exp(\widehat{u}_{i,t})}.
$$
\n(18)

16

841 842 843

864 865 866 867 Let $P_{i,t}(u) = \frac{\exp(u_i)}{1 + \sum_{j \in S_t} \exp(u_j)}$, $\widehat{u}_t = [\widehat{u}_{i,t} : i \in S_t]$, and $\overline{u}'_t = [\overline{u}'_{i,t} : i \in S_t]$. For the first two terms in the above, by using the mean value theorem, there exists $\xi_t = (1 - c)\hat{u}_t + c\overline{u}'_t$ for some $c \in (0, 1)$
such that such that

$$
\sum_{i \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\overline{u}_{i,t}') - \sum_{i \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\widehat{u}_{i,t})
$$
\n
$$
= \sum_{i \in S_t} \sum_{j \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{j,t}||_{H_{v,t}^{-1}} \nabla_i P_{j,t}(\xi_t)(\overline{u}_{i,t}' - \widehat{u}_{i,t})
$$
\n
$$
= \sum_{i \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} P_{i,t}(\xi_t)(\overline{u}_{i,t}' - \widehat{u}_{i,t})
$$
\n
$$
- \sum_{i \in S_t} \sum_{j \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} P_{j,t}(\xi_t)(\overline{u}_{i,t}' - \widehat{u}_{i,t})
$$
\n
$$
- \sum_{i \in S_t} \sum_{j \in S_t} 2(\sqrt{C} + 1)\beta_{\tau_t} ||x_{j,t}||_{H_{v,t}^{-1}} P_{j,t}(\xi_t) P_{i,t}(\xi_t)(\overline{u}_{i,t}' - \widehat{u}_{i,t})
$$
\n
$$
= O\left(\sum_{i \in S_t} \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}} P_{i,t}(\xi_t)(\beta_{\tau_t} || z_{i,t}(p_{i,t})||_{H_{t}^{-1}} + \beta_{\tau_t} ||x_{i,t}||_{H_{v,t}^{-1}}) \right)
$$
\n
$$
= O\left(\sum_{i \in S_t} \beta_{\tau_t}^2 P_{i,t}(\xi_t) (||x_{i,t}||_{H_{v,t}^{-1}}^2 + \beta_{\tau_t}^2 P_{i,t}(\xi_t) ||z_{i,t}(p_{i,t})||_{H_{t}^{-1}}^2) \right)
$$
\n
$$
= O\left(\sum_{i \in S_t} \beta_{\tau_t}^2 P_{i,t}(\xi_t) ||x_{i,t}||_{H_{v,t}^{-1}}^2 + \beta_{\tau_t}^2 P_{i,t}(\
$$

where the third equality is obtained from $0 \le \overline{u}'_{i,t} - \widehat{u}_{i,t} \le ||z_{i,t}(p_{i,t})||_{H_t^{-1}} ||\widehat{\theta}_t - \theta^*||_{H_t} +$ $2\sqrt{C}\beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + 2\sqrt{C}\beta_{\tau_t} \|x_{i,t}\|_{H_{v,t}^{-1}} \leq (2\sqrt{C}+1)\beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + 2\sqrt{C}\beta_{\tau_t} \|x_{i,t}\|_{H_{v,t}^{-1}}$ under E_t , and the firth equality is from $ab \leq \frac{1}{2}(a^2 + b^2)$. Then from [\(18\)](#page-15-0) and [\(19\)](#page-16-0), we conclude the proof of (a) by

$$
\begin{aligned} &\frac{\sum_{i\in S_t}\overline{v}_{i,t}^+\exp(\overline{u}_{i,t}')}{1+\sum_{i\in S_t}\exp(\overline{u}_{i,t}')}-\frac{\sum_{i\in S_t}\underline{v}_{i,t}^+\exp(\overline{u}_{i,t}')}{1+\sum_{i\in S_t}\exp(\overline{u}_{i,t}')}\\ &=O\left(\beta_{\tau_t}^2\max_{i\in S_t}\|x_{i,t}\|_{H_{v,t}^{-1}}^2+\beta_{\tau_t}^2\max_{i\in S_t}\|z_{i,t}\|_{H_{t}^{-1}}^2+\beta_{\tau_t}\sum_{i\in S_t}P_{t,\widehat{\theta}_t}(i|S_t,p_t)\|x_{i,t}\|_{H_{v,t}^{-1}}\right). \end{aligned}
$$

П

$$
\text{Let } \widetilde{z}_{i,t} = z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}(\cdot | S_t, p_t)}[z_{j,t}(p_{j,t})] \text{ and } \widetilde{x}_{i,t} = x_{i,t} - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}(\cdot | S_t, p_t)}[x_{j,t}].
$$

Lemma 4 *For* $t > 0$ *, under* E_t *we have*

$$
\frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}')} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}
$$
\n
$$
= O\left(\beta_{\tau_t}^2 (\max_{i \in S_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}}^2 + \max_{i \in S_t} ||x_{i,t}||_{H_{v,t}^{-1}}^2) + \beta_{\tau_t}^2 (\max_{i \in S_t} ||\widetilde{z}_{i,t}||_{H_t^{-1}}^2 + \max_{i \in S_t} ||\widetilde{x}_{i,t}||_{H_{v,t}^{-1}}^2) + \beta_{\tau_t}^2 \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t)(\|\widetilde{z}_{i,t}||_{H_t^{-1}} + \|\widetilde{x}_{i,t}||_{H_{v,t}^{-1}})\right).
$$

911 912 913

Proof *The proof is provided in Appendix [A.6](#page-38-0)*

In the below, we provide elliptical potential lemmas.

918 919 920 921 922 923 924 925 926 927 928 Lemma 5 $\sum_{i=1}^{T}$ $t=1$ $\max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t^{-1}} 1\!\!1(E_t) \leq (4d/\kappa) \log(1 + (2TK/d\lambda)),$ $\sum_{i=1}^{T}$ $t=1$ $\max_{i \in S_t} ||\widetilde{z}_{i,t}||_{H_t^{-1}}^2 \mathbb{1}(E_t) \leq (4d/\kappa) \log(1 + (8TK/d\lambda)),$ $\sum_{i=1}^{T}$ $t=1$ $\max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \| \widetilde{z}_{i,t} \|_{H_t^{-1}}^2 \mathbb{1}(E_t) \leq 4d \log(1 + (8TK/d\lambda)).$

Proof Define

$$
\widetilde{G}_t(\widehat{\theta}_t)
$$
\n
$$
:= \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbb{1}(E_t)
$$
\n
$$
- \sum_{i \in S_t} \sum_{j \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) P_{t,\widehat{\theta}_t}(j|S_t, p_t) z_{i,t}(p_{i,t}) z_{j,t}(p_{j,t})^\top \mathbb{1}(E_t).
$$
\n(20)

Then we first have

$$
\tilde{G}_{t}(\hat{\theta}_{t})
$$
\n
$$
= \sum_{i \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) z_{i,t} (p_{i,t}) z_{i,t} (p_{i,t})^{\top} \mathbb{1}(E_{t})
$$
\n
$$
- \sum_{i \in S_{t}} \sum_{j \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) z_{i,t} (p_{i,t}) z_{j,t} (p_{i,t}) z_{j,t} (p_{j,t})^{\top} \mathbb{1}(E_{t})
$$
\n
$$
= \sum_{i \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) z_{i,t} (p_{i,t}) z_{i,t} (p_{i,t})^{\top} \mathbb{1}(E_{t})
$$
\n
$$
- \frac{1}{2} \sum_{i \in S_{t}} \sum_{j \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) P_{t,\hat{\theta}_{t}}(j|S_{t}, p_{t}) (z_{i,t} (p_{i,t}) z_{j,t} (p_{j,t})^{\top} + z_{j,t} (p_{j,t}) z_{i,t} (p_{i,t})^{\top}) \mathbb{1}(E_{t})
$$
\n
$$
\geq \sum_{i \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) z_{i,t} (p_{i,t}) z_{i,t} (p_{i,t})^{\top} \mathbb{1}(E_{t})
$$
\n
$$
- \frac{1}{2} \sum_{i \in S_{t}} \sum_{j \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) P_{t,\hat{\theta}_{t}}(j|S_{t}, p_{t}) (z_{i,t} (p_{i,t}) z_{i,t} (p_{i,t})^{\top} + z_{j,t} (p_{j,t}) z_{j,t} (p_{j,t})^{\top}) \mathbb{1}(E_{t})
$$
\n
$$
= \sum_{i \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) z_{i,t} (p_{i,t})^{\top} \mathbb{1}(E_{t})
$$
\n
$$
- \sum_{i \in S_{t}} \sum_{j \in S_{t}} P_{t,\hat{\theta}_{t}}(i|S_{t}, p_{t}) P_{t,\
$$

Define $H'_t := \lambda I_{2d} + \sum_{s=1}^{t-1} \widetilde{G}_s(\widehat{\theta}_s)$. Then we have $H'_{t+1} = H'_{t} + \widetilde{G}_{t}(\widehat{\theta}_{t}) \succeq H'_{t} + \sum$ $i \in S_t$ $\kappa z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^{\top} \mathbb{1}(E_t),$ (22)

 $=\det(H'_t)(1+\sum$

 $s=1$

 $i \in S_t$

972 973 which implies that

974 975

976 977

978 979 980

$$
\det(H'_{t+1}) = \det(H'_t + \widetilde{G}_t(\widehat{\theta}_t))
$$

\n
$$
\geq \det(H'_t + \sum \kappa z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbb{1}(E_t))
$$

$$
\overline{i \in S_t}
$$

= det(H'_t) det(I_{2d} + $\sum_{i \in S_t} \kappa H'_t^{-1/2} z_{i,t}(p_{i,t}) (H'_t^{-1/2} z_{i,t}(p_{i,t}))^{\top} \mathbb{1}(E_t)$)

$$
\begin{array}{c} 981 \\ 982 \\ 983 \end{array}
$$

984 985 986

987 988 989

990 991 992

$$
f_{\rm{max}}
$$

$$
\geq \det(\lambda I_{2d}) \prod_{s=1}^{t} \left(1 + \sum_{i \in S_s} \kappa ||z_{i,s}(p_{i,s})||_{H_s'^{-1}}^2 \mathbb{1}(E_s)) \right)
$$

\n
$$
\geq \lambda^{2d} \prod_{s=1}^{t} \left(1 + \max_{i \in S_s} \kappa ||z_{i,s}(p_{i,s})||_{H_s'^{-1}}^2 \mathbb{1}(E_s)) \right)
$$

\n
$$
\geq \lambda^{2d} \prod_{i \in S_s} \left(1 + \max_{i \in S_s} \kappa ||z_{i,s}(p_{i,s})||_{H_s'^{-1}}^2 \mathbb{1}(E_s) \right).
$$

 (23)

 $\kappa ||z_{i,t}(p_{i,t})||_{H_t'^{-1}}^2 \mathbbm{1}(E_t))$

993 994 995

Since $p_{i,t} = \underline{v}_{i,t}^+ \le v_{i,t} \le 1$ under E_t , we have $||z_{i,t}(p_{i,t})||_2^2 \le (||x_{i,t}||_2 + ||w_{i,t}||_2)^2 \le 4$. Then under E_t , from the above inequality, $\lambda \geq 4$, and $0 < \kappa \leq 1$, using the fact that $x \leq 2\log(1+x)$ for any $x \in [0,1]$ and $\kappa \max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t^{t-1}} 1\!\!1(E_t) \leq \max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_2 1\!\!1(\overline{E_t})/\lambda \leq 1$, we have

$$
\sum_{t \in [T]} \kappa \max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{t-1}}^2 \mathbb{1}(E_t) \le 2 \sum_{t \in [T]} \log \left(1 + \kappa \max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{t-1}}^2 \mathbb{1}(E_t)\right)
$$

$$
= 2 \log \prod_{t \in [T]} \left(1 + \kappa \max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{t-1}}^2 \mathbb{1}(E_t)\right)
$$

$$
\le 2 \log \left(\frac{\det(H_{t+1}^t)}{\lambda^{2d}}\right).
$$
 (24)

1009 1010 1011

1012 1013 1014 Using Lemma [15,](#page-41-1) $|S_t| \le K$, $H'_t \preceq \lambda I_{2d} + \sum_{s=1}^{t-1} z_{i,s}(p_{i,s}) z_{i,s}(p_{i,s})^\top \mathbb{1}(E_t)$, $||z_{i,t}(p_{i,t})||_2 \le 2$ under E_t , and $z_{i,t}(p_{i,t}) \in \mathbb{R}^{2d}$, we can show that

$$
\det(H'_{t+1}) \le (\lambda + (2TK/d))^{2d}.
$$

1017 1018 1019

1015 1016

1020 1021 Then from the above inequality, [\(24\)](#page-18-0), and using the fact that $0 \lt H'_t \leq H_t$ from $G_t(\theta) \geq 0$, we can conclude

1022 1023

1025
$$
\sum_{t=1}^T \max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t^{-1}} \mathbb{1}(E_t) \leq \sum_{t=1}^T \max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t'^{-1}} \mathbb{1}(E_t) \leq (4d/\kappa) \log(1 + (2TK/d\lambda)).
$$

1026 1027 1028 Now we provide a proof for the second inequality of this lemma. Let $x_{i_0,t} = \mathbf{0}_d$ and $w_{i_0,t} = \mathbf{0}_d$ which implies $z_{i_0,t} = \mathbf{0}_{2d}$. Then we have

1029 1030

 $\widetilde{G}_{t}(\widehat{\theta}_{t})$ $:=$ \sum

$$
\begin{array}{c} 1036 \\ 1037 \end{array}
$$

1038 1039

1040 1041

$$
:= \sum_{i \in S_t} P_{t,\hat{\theta}_t}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbbm{1}(E_t) - \sum_{i \in S_t} \sum_{j \in S_t} P_{t,\hat{\theta}_t}(i|S_t, p_t) P_{t,\hat{\theta}_t}(j|S_t, p_t) z_{i,t}(p_{i,t}) z_{j,t}(p_{j,t})^\top \mathbbm{1}(E_t) = \sum_{i \in S_t} P_{t,\hat{\theta}_t}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbbm{1}(E_t) - \sum_{i \in S_t \cup \{i_0\}} \sum_{j \in S_t \cup \{i_0\}} P_{t,\hat{\theta}_t}(i|S_t, p_t) P_{t,\hat{\theta}_t}(j|S_t, p_t) z_{i,t}(p_{j,t}) z_{j,t}(p_{j,t})^\top \mathbbm{1}(E_t) = \mathbb{E}_{i \sim P_{t,\hat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top] \mathbbm{1}(E_t) - \mathbb{E}_{i \sim P_{t,\hat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t})] \mathbb{E}_{i \sim P_{t,\hat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t})]^\top \mathbbm{1}(E_t) = \mathbb{E}_{i \sim P_{t,\hat{\theta}_t}(\cdot|S_t, p_t)} [\tilde{z}_{i,t} \tilde{z}_{i,t}^\top] \mathbbm{1}(E_t) \succeq \sum_{i \in S_t} P_{t,\hat{\theta}_t}(i|S_t, p_t) \tilde{z}_{i,t} \tilde{z}_{i,t}^\top \mathbbm{1}(E_t) \succeq \sum_{i \in S_t} \kappa \tilde{z}_{i,t} \tilde{z}_{i,t}^\top \mathbbm{1}(E_t).
$$
\n(25)

1049 1050 1051

Define $H'_t := \lambda I_{2d} + \sum_{s=1}^{t-1} \widetilde{G}_s(\widehat{\theta}_s)$. Then by following the same proof steps of the first inequality of this lemma, we can show that

$$
\det(H'_{t+1}) \ge \lambda^{2d} \prod_{s=1}^{t} \left(1 + \kappa \max_{i \in S_s} \|\widetilde{z}_{i,s}\|_{H'^{-1}_s} \mathbb{1}(E_s) \right) \tag{26}
$$

1060 1061 1062 1063 Since, under E_t , we have $||z_{i,t}(p_{i,t})||_2 \le ||x_{i,t}||_2 + ||w_{i,t}||_2 \le 2$ implying that $||\tilde{z}_{i,t}||_2^2 \le 16$. Then, from the above inequality and $\lambda > 16$ using the fact that $x \le 2 \log(1 + x)$ for any $x \in [0, 1]$ and from the above inequality and $\lambda \ge 16$, using the fact that $x \le 2\log(1+x)$ for any $x \in [0,1]$ and $\kappa \max_{i \in S_t} ||\widetilde{z}_{i,t}||_{H_t^{t-1}}^2 \mathbb{1}(E_t) \le \max_{i \in S_t} ||\widetilde{z}_{i,t}||_2^2 \mathbb{1}(E_t)/\lambda \le 1$, we have

$$
\sum_{t \in [T]} \kappa \max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \le 2 \sum_{t \in [T]} \log \left(1 + \kappa \max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \right)
$$

=
$$
2 \log \prod_{t \in [T]} \left(1 + \kappa \max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \right)
$$

$$
\le 2 \log \left(\frac{\det(H_{t+1}')}{\lambda^{2d}} \right).
$$
 (27)

1075 1076 Since we have $\det(H'_{t+1}) \leq (\lambda + (8TK/d))^{2d}$ and $0 \prec H'_{t} \preceq H_t$, from the above inequality and [\(27\)](#page-19-0), we can conclude

1079
\n
$$
\sum_{t=1}^{T} \max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t^{-1}}^2 \mathbb{1}(E_t) \leq \sum_{t=1}^{T} \max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \leq (4d/\kappa) \log(1 + (8TK/d\lambda)).
$$

1080 1081 Now we provide a proof for the third inequality in this lemma. Then we have

 $\sum_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbb{1}(E_t)$

1082 1083

1084

$$
\widetilde{G}_t(\widehat{\theta}_t) = \sum_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top \mathbb{1}(E_t)
$$

 \sum

− X $i \in S_t$

 $=$ \sum

1085 1086

1087 1088

$$
\begin{array}{c} 1089 \\ 1090 \end{array}
$$

1091

$$
\begin{array}{c} 1092 \\ 1093 \\ 1094 \\ 1095 \end{array}
$$

$$
- \sum_{i \in S_t \cup \{i_0\}} \sum_{j \in S_t \cup \{i_0\}} P_{t,\widehat{\theta}_t}(i|S_t, p_t) P_{t,\widehat{\theta}_t}(j|S_t, p_t) z_{i,t}(p_{i,t}) z_{j,t}(p_{j,t})^\top \mathbb{1}(E_t)
$$

\n
$$
= \mathbb{E}_{i \sim P_{t,\widehat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t}) z_{i,t}(p_{i,t})^\top] \mathbb{1}(E_t)
$$

\n
$$
- \mathbb{E}_{i \sim P_{t,\widehat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t})] \mathbb{E}_{i \sim P_{t,\widehat{\theta}_t}(\cdot|S_t, p_t)} [z_{i,t}(p_{i,t})]^\top \mathbb{1}(E_t)
$$

\n
$$
= \mathbb{E}_{i \sim P_{t,\widehat{\theta}_t}(\cdot|S_t, p_t)} [\widetilde{z}_{i,t} \widetilde{z}_{i,t}^\top] \mathbb{1}(E_t)
$$

\n
$$
\succeq \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) \widetilde{z}_{i,t} \widetilde{z}_{i,t}^\top \mathbb{1}(E_t).
$$
\n(28)

 $\sum_{j \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) P_{t, \widehat{\theta}_t}(j|S_t, p_t) z_{i,t}(p_{i,t}) z_{j,t}(p_{j,t})^\top \mathbbm{1}(E_t)$

1099 1100 1101

1096 1097 1098

Define $H'_t := \lambda I_{2d} + \sum_{s=1}^{t-1} \widetilde{G}_s(\widehat{\theta}_s)$. Then by following the same proof steps, we can show that

1106

1111 1112

1117

1122

$$
\det(H'_{t+1}) \ge (2\lambda)^{2d} \prod_{s=1}^{t} \left(1 + \max_{i \in S_s} P_{s,\widehat{\theta}_s}(i|S_s, p_s) \|\widetilde{z}_{i,s}\|_{H_s'^{-1}} \mathbb{1}(E_s) \right)
$$
(29)

1107 1108 1109 1110 Since, under E_t , we have $||z_{i,t}(p_{i,t})||_2 \le ||x_{i,t}||_2 + ||w_{i,t}||_2 \le 2$ implying that $||\tilde{z}_{i,t}||_2^2 \le 16$. Then, from the above inequality and $\lambda > 16$ using the fact that $x \le 2 \log(1 + x)$ for any $x \in [0, 1]$ and from the above inequality and $\lambda \ge 16$, using the fact that $x \le 2\log(1+x)$ for any $x \in [0,1]$ and $\max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \|\tilde{\tilde{z}}_{i,t}\|_{H_t'}^2 \leq \|\tilde{\mathcal{X}}_{t'}\| \leq \max_{i \in S_t} \|\tilde{z}_{i,t}\|_2^2 \mathbb{1}(\overline{E_t})/\lambda \leq 1$, we have

$$
\sum_{\substack{1114 \\ 1115 \\ 1115}} \sum_{t \in [T]} \max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \| \widetilde{z}_{i,t} \|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \le 2 \sum_{t \in [T]} \log \left(1 + \max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \| \widetilde{z}_{i,t} \|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \right)
$$
\n
$$
= 2 \log \prod_{t \in [T]} \left(1 + \max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \| \widetilde{z}_{i,t} \|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \right)
$$
\n
$$
\le 2 \log \left(\frac{\det(H_{t+1}'}{\lambda^{2d}} \right).
$$
\n
$$
\le 2 \log \left(\frac{\det(H_{t+1}'}{\lambda^{2d}} \right).
$$
\n
$$
(30)
$$

1123 1124 1125 Since we have $\det(H'_{t+1}) \leq (\lambda + (8TK/d))^{2d}$ and $0 \prec H'_{t} \preceq H_t$, from the above inequality and [\(30\)](#page-20-0), we can conclude

$$
\sum_{t=1}^{T} \max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \|\widetilde{z}_{i,t}\|_{H_t^{-1}}^2 \mathbb{1}(E_t) \le \sum_{t=1}^{T} \max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \|\widetilde{z}_{i,t}\|_{H_t'^{-1}}^2 \mathbb{1}(E_t) \le 4d \log(1 + (8TK/d\lambda)).
$$

1130 1131

 $\sum_{i=1}^{T}$

 $t=1$

1134 Lemma 6

1135 1136

1137

1138

1139 1140 1141 1142 $t=1$ $\sum_{i=1}^{T}$ $t=1$ $\max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \|x_{i,t}\|_{H_{v,t}^{-1}} \leq 2d \log(1 + (TK/d\lambda)),$ $\sum_{i=1}^{T}$ $\max_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t) \| \widetilde{x}_{i,t} \|_{H_{v,t}^{-1}} \leq 2d \log(1 + (4TK/d\lambda)).$

1143 1144 1145

Proof By following proof steps in Lemma [6,](#page-21-0) we can prove the inequalities.

1146 1147 1148

1153 1154

1161 1162

1164 1165 1166

Here we provide a lemma regarding the probability of the good event E_t . We define

1149
\n1150
\n1151
\n
$$
\beta_1^2 := \eta (6 \log(1 + (K+1)t) + 6) \left(\frac{17}{16} \lambda + 2\sqrt{\lambda} \log (2\sqrt{1 + 2t}) + 16 (\log(2\sqrt{1 + 2t})^2) + 4\eta + 2\eta \sqrt{6}cd \log(1 + (t+1)/2\lambda) + 16\lambda \right)
$$

 $\max_{i \in S_t} ||x_{i,t}||_{H_{v,t}^{-1}}^2 \leq (2d/\kappa) \log(1 + (TK/d\lambda)),$

and for $\tau > 1$,

$$
1155 \qquad \beta_{\tau+1}^2 := \eta (6 \log(1 + (K+1)t) + 6) \left(\frac{17}{16} \lambda + 2\sqrt{\lambda} \log (2\sqrt{1+2t}) + 16 (\log(2\sqrt{1+2t})^2) + 4\eta + 2\eta \sqrt{6}cd \log(1 + (t+1)/2\lambda) + \beta_{\tau}^2
$$
\n
$$
1158 \qquad \qquad + 2\eta \sqrt{6}cd \log(1 + (t+1)/2\lambda) + \beta_{\tau}^2.
$$

1159 1160 Lemma 7 Let $c = 2\eta$, $\lambda \ge \max\{192\sqrt{2}\eta, 84d\eta\}$, and $\eta = \frac{1}{2}\log(K+1) + 3$. Then for $1 \le t \le t_2$, *we have*

$$
\mathbb{P}(E_t) \ge 1 - \frac{1}{T^2},
$$

1163 *and for* $\tau \geq 2$ *and* $t_{\tau} + 1 \leq t \leq t_{\tau+1}$ *, we have*

$$
\mathbb{P}(E_t|E_{t_\tau}) \geq 1 - \frac{1}{T^2}.
$$

П

1167 1168 Proof The proof is provided in Appendix [A.7](#page-40-0)

1169 1170

1173 1174

1171

1172 Lemma 8

$$
\mathbb{P}(E_T) \ge 1 - \frac{2}{T}.
$$

1175 1176 1177 1178 1179 Proof Recall $E_t = \{\|\hat{\theta}_s - \theta^*\|_{H_s} \leq \beta_s, \forall s \leq t\}$. For the time step $t_\tau + 1 \leq t \leq t_{\tau+1}$ for $\tau \geq 2$, since $E_1 \subseteq E_2, \ldots, \subseteq E_T$, from Lemma [7](#page-21-1) we have $\mathbb{P}(E_t|E_{t_\tau}) = \mathbb{P}(E_t)/\mathbb{P}(E_{t_\tau}) \geq 1 - \frac{1}{T^2}$ implying $\mathbb{P}(E_t) \geq \left(1 - \frac{1}{T^2}\right) \mathbb{P}(E_{t_\tau})$. Likewise, we have $\mathbb{P}(E_{t_\tau}) \geq \left(1 - \frac{1}{T^2}\right) \mathbb{P}(E_{t_{\tau-1}})$. We also have $\mathbb{P}(E_t) \geq 1 - \frac{1}{T^2}$ for $1 \leq t \leq t_2$.

1180 Therefore, from $\tau_T \leq T$, we can obtain

1181
\n1182
\n1183
\n1184
\n1185
\n
$$
\mathbb{P}(E_T) \ge \left(1 - \frac{1}{T^2}\right) \mathbb{P}(E_{t_{\tau_T}})
$$
\n
$$
\ge \left(1 - \frac{1}{T^2}\right)^{T-1} \mathbb{P}(E_{t_2})
$$

1186
1187
$$
\geq \left(1-\frac{1}{T^2}\right)^T.
$$

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 Let $X = \left(1 - \frac{1}{T^2}\right)^T$. By using the fact that $1 - \frac{1}{x} \le \log(x) \le x - 1$ for $x > 0$, we have $X-1 \geq \log(X) = T \log \left(1 - \frac{1}{T}\right)$ $\, T^2$ $\geq T\left(1-\frac{1}{1-\frac$ $1 - \frac{1}{T^2}$ $= \frac{-T}{\varpi^2}$ $\frac{1}{T^2-1},$ which conclude that $\mathbb{P}(E_T) \geq 1 - \frac{T}{T^2-1} \geq 1 - \frac{2}{T}$. Now we provide a bound for the total number of estimation updates, τ_T . Using Lemma [15,](#page-41-1) under E_T , with $||z_{i,t}(p_{i,t})||_2 \leq 2$ and $z_{i,t}(p_{i,t}) \in \mathbb{R}^{2d}$, we can show that $\det(\hat{H}_{T+1}) \leq (\lambda + (2TK/d))^{2d}$. Therefore, from the update procedure in the algorithm, τ_T satisfies $2^{\tau_T} \leq 2(\lambda + (TK/2d))^{2d}$, which implies $\tau_T = O(d \log(TK))$. Then we have $\mathbb{E}[\beta_{\tau_T}] = \mathbb{E}[\beta_{\tau_T} | E_T] \mathbb{P}(E_T) + \mathbb{E}[\beta_{\tau_T} | E_T^c] \mathbb{P}(E_T^c)$ $\leq C_1 d \sqrt{\log(KT)} \log(T) \log(K) + \mathbb{E}[\beta_{\tau_T} | E_T^c] \mathbb{P}(E_T^c)$ $\leq C_1 d \sqrt{\log(KT)} \log(T) \log(K) + C_1$ √ $dT \log(T) \log(K) (2/T)$ $= O(d),$ (31) where the second inequality is obtained from $\mathbb{P}(E_T^c) \leq \frac{2}{T}$ and $\tau_T \leq T$. Likewise, we have $\mathbb{E}[\beta_{\tau_T}^2] = \mathbb{E}[\beta_{\tau_T}^2|E_T]\mathbb{P}(E_T) + \mathbb{E}[\beta_{\tau_T}^2|E_T^c]\mathbb{P}(E_T^c)$ $\leq C_1^2 d^2 \log (KT) \log(T)^2 \log(K)^2 + \mathbb{E}[\beta_{\tau_T}^2 | E_T^c] \mathbb{P}(E_T^c)$ $\leq C_1^2 d^2 \log(KT) \log(T)^2 \log(K)^2 + C_1^2 dT \log(T)^2 \log(K)^2 (2/T)$ $= \widetilde{O}(d^2)$ $),$ (32) Then from Lemmas [3,](#page-15-1) [4,](#page-16-1) [5,](#page-17-0) [8,](#page-21-2) and [\(17\)](#page-15-2), [\(31\)](#page-22-0), [\(32\)](#page-22-1), using the fact that $E_1^c \subseteq E_2^c, \ldots, \subseteq E_T^c$, we obtain $R^{\pi}(T) = \sum$ $t \in [T]$ $\mathbb{E}[R_t(S_t^*, p_t^*) - R_t(S_t, p_t)]$ $=$ \sum $t \in [T]$ $\mathbb{E}[(R_t(S_t^*, p_t^*) - R_t(S_t, p_t))1\mathbb{1}(E_t)] + \sum$ $t \in [T]$ $\mathbb{E}[(R_t(S_t^*, p_t^*) - R_t(S_t, p_t)) \mathbb{1}(E_t^c)]$ ≤ X $t \in [T]$ $\mathbb{E}[(R_t(S_t^*, p_t^*) - R_t(S_t, p_t))1(E_t)] + \sum$ $t \in [T]$ $\mathbb{P}(E_T^c)$ ≤ X $t \in [T]$ $\mathbb{E}\Big[\Big(\frac{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t})}{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t})}\Big]$ $\frac{\sum_{i \in S_t} c_{i,t} \sum_{i \in S_t} c_{i,t}}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})}$ $\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)$ $1 + \sum_{i \in S_t} \exp(u_{i,t}^p)$ $\bigg\} 1(E_t)$ $+ O(1)$ ≤ X $t \in [T]$ $\mathbb{E}\bigg[\Big(\frac{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t})}{\sum_{i\in S_t}\overline{v}_{i,t}\exp(\overline{u}_{i,t})}\bigg]$ $\frac{\sum_{i \in S_t} \sum_{i \in I} \exp(\overline{u}_{i,t})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})}$ $\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t})$ $1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})$ $\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(\overline{u}_{i,t})$ $\sum_{i \in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)$ $\bigg)$ $\mathbb{1}(E_t)$

 $^{+}$

 $\frac{\sum_{i \in S_t} z_{i,t} \cdots_{\mathbf{r}} (\alpha_{i,t})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t})}$

 $1 + \sum_{i \in S_t} \exp(u_{i,t}^p)$

 $+ O(1)$

$$
{}^{1242}_{1243} = O\left(\mathbb{E}\left[\beta_{\tau_{T}}\sum_{t\in T}\left(\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})\left(\|x_{i,t}\|_{H_{v,t}^{-1}}+\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}+\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}\right)\right)\mathbbm{1}(E_{t})\right]
$$
\n
$$
{}^{1243}_{1244} + \mathbb{E}\left[\beta_{\tau_{T}}^{2}\sum_{t\in[T]}\left(\max_{i\in S_{t}}\|x_{i,t}\|_{H_{v,t}^{-1}}^{2}+\max_{i\in S_{t}}\|z_{i,t}(p_{i,t})\|_{H_{t}^{-1}}^{2}+\max_{i\in S_{t}}\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^{2}+\max_{i\in S_{t}}\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}^{2}\right)\mathbbm{1}(E_{t})\right]\right)
$$
\n
$$
= \widetilde{O}\left(\mathbb{E}\left[\beta_{\tau_{T}}\sqrt{\sum_{t\in[T]}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})}\left(\sqrt{\sum_{t\in[T]}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})\|x_{i,t}\|_{H_{v,t}^{-1}}^{2}\right}\right)\mathbbm{1}(E_{t})\right]
$$
\n
$$
+ \sqrt{\sum_{t\in[T]}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^{2}} + \sqrt{\sum_{t\in[T]}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}^{2}}\right)\mathbbm{1}(E_{t})\right]+\frac{d}{\kappa}\mathbb{E}[\beta_{\tau_{T}}^{2}]\right)
$$
\n
$$
= \widetilde{O}\left(\mathbb{E}[\beta_{\tau_{T}}]\sqrt{dT} + \frac{d^{3}}{\kappa}\right)
$$
\n
$$
= \widetilde{O}\left(d^{3/
$$

A.3 PROOF OF THEOREM [2](#page-7-1)

1250 1251 1252

1254

1257

1261 1262

1267 1268 1269

1263 1264 1265 1266 Let τ_t be the value of τ at time t according to the update procedure in the algorithm. We first define event $E_t = \{\|\hat{\theta}_s - \theta^*\|_{H_s} \leq \beta_{\tau_s}, \forall s \leq t\}$. Then we can observe $E_T \subset E_{T-1}, \dots, \subset E_1$ and $\mathbb{P}(E_T) \ge 1 - 1/T$ from Lemma [8.](#page-21-2) From Lemma [1,](#page-12-1) under E_t , we have

$$
\underline{v}_{i,t}^+ \le v_{i,t}.\tag{33}
$$

1270 1271 1272 We let $\gamma_t = \beta_{\tau_t} \sqrt{8d \log(Mt)}$ and filtration \mathcal{F}_{t-1} be the σ -algebra generated by random variables before time t . In the following, we provide a lemma for error bounds of TS indexes.

1273 1274 Lemma 9 *For any given* \mathcal{F}_{t-1} *, with probability at least* $1 - \mathcal{O}(1/t^2)$ *, for all* $i \in [N]$ *, we have*

$$
\begin{aligned}\n\|\tilde{v}_{i,t} - x_{i,t}^{\top}\hat{\theta}_{v,t}\| &\leq \gamma_t \|x_{i,t}\|_{H_{v,t}^{-1}} \text{ and } |\tilde{u}_{i,t} - z_{i,t}(p_{i,t})^{\top}\hat{\theta}_t| \leq 8C\gamma_t (\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}}). \\
\|277\|\n\end{aligned}
$$

1278 1279 1280 1281 1282 Proof We can show this lemma by adopting proof techniques of Lemma 10 in [Oh & Iyengar](#page-11-8) [\(2019\)](#page-11-8). We first provide a proof of the first inequality in this lemma. Given \mathcal{F}_{t-1} , Gaussian random variable $x_{i,t}^{\top} \tilde{\theta}_{v,t}^{(m)}$ has mean $x_{i,t}^{\top} \hat{\theta}_t$ and standard deviation $\beta_{\tau_t} || x_{i,t} ||_{H_t^{-1}}$. Let $m' = \arg \max_{m \in M} x_{i,t}^{\top} \tilde{\theta}_{v,t}^{(m)}$. Then we have

$$
\| \max_{m \in [M]} x_{i,t}^{\top} \tilde{\theta}_{v,t}^{(m)} - x_{i,t}^{\top} \hat{\theta}_t \| = \| x_{i,t}^{\top} (\tilde{\theta}_{v,t}^{(m')} - \hat{\theta}_t) \|
$$

\n
$$
= \| x_{i,t}^{\top} H_{v,t}^{-1/2} H_{v,t}^{1/2} (\tilde{\theta}_{v,t}^{(m')} - \hat{\theta}_t) \|
$$

\n
$$
\leq \beta_{\tau_t} \| x_{i,t} \|_{H_{v,t}^{-1}} \| \beta_{\tau_t}^{-1} H_{v,t}^{1/2} (\tilde{\theta}_{v,t}^{(m')} - \hat{\theta}_t) \|_2
$$

\n
$$
\leq \beta_{\tau_t} \| x_{i,t} \|_{H_{v,t}^{-1}} \max_{m \in [M]} \| \beta_{\tau_t}^{-1} H_{v,t}^{1/2} (\tilde{\theta}_{v,t}^{(m)} - \hat{\theta}_t) \|_2
$$

\n
$$
= \beta_{\tau_t} \| x_{i,t} \|_{H_{v,t}^{-1}} \max_{m \in [M]} \| \xi_{v,m} \|_2,
$$

1293 1294 1295 where each element in $\xi_{v,m}$ is a standard normal random variable, which concludes the proof of the last inequality in this lemma from $\max_{m\in[M]}\|\xi_{v,m}\|_2\leq \sqrt{4d\log (Mt)}$ with probability at least $1-\frac{1}{t^2}.$

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 Now we provide a proof for the second inequality in this lemma. Let $m^* = \arg \max_{m \in [M]} x_{i,t}^\top \widetilde{\theta}_t^{(m)}$. Then we have $\big| \max_{m \in [M]} z_{i,t}(p_{i,t})^\top \widetilde{\theta}^{(m)}_t - z_{i,t}(p_{i,t})^\top \widehat{\theta}_t + 8C\widetilde{\eta}_{i,t} \big|$ $\leq |z_{i,t}(p_{i,t})^\top (\widetilde{\theta}^{(m^*)}_t - \widehat{\theta}_t)| + 8C |x_{i,t}^\top (\widetilde{\theta}^{(m')}_{v,t} - \widehat{\theta}_{v,t})|$ $=|z_{i,t}(p_{i,t})^\top H_t^{-1/2}H_t^{1/2}(\widetilde{\theta}_t^{(m^*)}-\widehat{\theta}_t)|+8C|x_{i,t}^\top H_{v,t}^{-1/2}H_{v,t}^{1/2}(\widetilde{\theta}_{v,t}^{(m^{\prime})}-\widehat{\theta}_{v,t})|$ ≤ √ $2\beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} \|$ √ $\frac{1}{2}\beta_{\tau_{t}})^{-1}H_{t}^{1/2}(\widetilde{\theta}_{t}^{(m^*)}-\widehat{\theta}_{t})\|_{2}+8C\beta_{\tau_{t}}\|x_{i,t}\|_{H_{v,t}^{-1}}\|\beta_{\tau_{t}}^{-1}H_{v,t}^{1/2}(\widetilde{\theta}_{v,t}^{(m^{\prime})}-\widehat{\theta}_{v,t})\|_{2}$ ≤ √ $2\beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} \max_{m \in [M]} \|$ √ $\overline{2}\beta_{\tau_t}$ ⁻¹ $H_t^{1/2}(\widetilde{\theta}_t^{(m)} - \widehat{\theta}_t)$ ||₂ $+ 8C\beta_{\tau_t} \|x_{i,t}\|_{H_{v,t}^{-1}} \max_{m \in [M]} \|\beta_{\tau_t}^{-1} H_{v,t}^{1/2}(\widetilde{\theta}_{v,t}^{(m)} - \widehat{\theta}_{v,t})\|_2$ = √ $2\beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} \max_{m \in [M]} \|\xi_m\|_2 + 8C\beta_{\tau_t} \|x_{i,t}\|_{H_{v,t}^{-1}} \max_{m \in [M]} \|\xi_{v,m}\|_2,$ where each element in ξ_m and $\xi_{v,m}$ is a standard normal random variable. We use the fact that $\|\xi_m\|_2 \leq \sqrt{8d \log(t)}$ and $\|\xi_{v,m}\|_2 \leq \sqrt{4d \log(t)}$ with probability at least $1 - \frac{2}{t^2}$. By using union bound for all $m \in [M]$, with probability at least $1 - O(1/t^2)$, we have

$$
\begin{aligned}\n\max_{1316} \quad & \left| \max_{m \in [M]} z_{i,t}(p_{i,t})^\top \tilde{\theta}_t^{(m)} - z_{i,t}(p_{i,t})^\top \hat{\theta}_t \right| \leq \left(\sqrt{8d \log(Mt)} \right) \beta_{\tau_t}(\sqrt{2} \| z_{i,t}(p_{i,t}) \|_{H_t^{-1}} + 8C \| x_{i,t} \|_{H_{v,t}^{-1}}) \\
& \leq 8C \gamma_t(\| z_{i,t}(p_{i,t}) \|_{H_t^{-1}} + \| x_{i,t} \|_{H_{v,t}^{-1}}),\n\end{aligned}
$$
\n1319

1320 which concludes the proof.

1321 1322

1296

1323

1324 1325 For notation simplicity, we use $u_{i,t}^p = z_{i,t}(p_{i,t})^\top \theta^*$. We define $A_t^* = \{i \in S_t^* : p_{i,t}^* \le v_{i,t}\}$. As in [\(14\)](#page-14-1) and [\(16\)](#page-14-2), under E_t , we have

1326
\n1327
\n1328
\n1329
\n1329
\n1329
\n1330
\n1331
\n1332
\n1333
\n1334
\n1335
\n1335
\n1336
\n1337
\n1338
\n1339
\n1330
\n1331
\n1334
\n1335
\n1336
\n1337
\n1338
\n1339
\n1330
\n1331
\n1332
\n1334
\n1335
\n1336
\n1337
\n1338
\n1339
\n1339
\n1330
\n1331
\n1332
\n
$$
\frac{\sum_{i\in A_t^*} v_{i,t} \exp(u_{i,t})}{1 + \sum_{i\in A_t^*} \exp(u_{i,t})} - \frac{\sum_{i\in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p) \mathbb{1}(\underline{v}_{i,t}^+ \le v_{i,t})}{1 + \sum_{i\in S_t} \exp(u_{i,t}^p) \mathbb{1}(\underline{v}_{i,t}^+ \le v_{i,t})}
$$

\n1334
\n1335
\n1336
\n137
\n1387
\n1398
\n1309
\n1319
\n150
\n151
\n
$$
\frac{\sum_{i\in A_t^*} v_{i,t} \exp(u_{i,t})}{1 + \sum_{i\in A_t^*} \exp(u_{i,t})} - \frac{\sum_{i\in S_t} \underline{v}_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i\in S_t} \exp(u_{i,t}^p)}
$$

\n134
\n135
\n136
\n137
\n138
\n139
\n130
\n131
\n132
\n133
\n1334
\n134
\n135
\n136
\n137
\n14
\n151
\n16
\n17
\n18
\n19
\n11
\n11
\n132
\n14
\n152
\n16
\n17
\n18
\

1337 1338 1339 In what follows, we provide several definitions of sets and events for the analysis of Thompson sampling. Regarding the valuation, we first define $\tilde{v}_{i,t}(\Theta_v) = \max_{m \in [M]} x_{i,t}^{\top} \theta_v^{(m)}$ for $\Theta_v = \{ \theta_v^{(m)} \in \mathbb{R}^d \}$ \mathbb{R}^d }_{*m*∈[*M*]} and define sets

$$
\widetilde{\Theta}_{v,t} = \left\{ \Theta_v \in \mathbb{R}^{d \times M} : \left| \widetilde{v}_{i,t}(\Theta_v) - x_{i,t}^\top \widehat{\theta}_{v,t} \right| \leq \gamma_t \| x_{i,t} \|_{H_{v,t}^{-1}} \ \forall i \in [N] \right\}
$$
 and

1346

1340 1341

1336

$$
\widetilde{\Theta}_{v,t}' = \left\{ \Theta_v \in \mathbb{R}^{d \times M} : \widetilde{v}_{i,t}(\Theta) \ge v_{i,t} \ \forall i \in [N] \right\} \cap \widetilde{\Theta}_t.
$$

1347 Then we define event $\widetilde{E}_{v,t} = {\{\{\widetilde{\theta}_{v,t}^{(m)}\}_{m \in [M]} \in \widetilde{\Theta}'_{v,t}\}}.$

$$
\begin{array}{ll}\n^{1348} & \text{Regarding} \quad \text{the} \quad \text{utility,} \\
^{1349} & \text{max}_{m \in [M]} z_{i,t}(p_{i,t})^\top (\theta_v^{(m)} - \widehat{\theta}_{v,t}) \text{ for } \Theta_u = \{\theta^{(m)} \in \mathbb{R}^{2d}\}_{m \in [M]} \text{ and } \Theta_v = \{\theta_v^{(m)} \in \mathbb{R}^d\}_{m \in [M]}, \\
\end{array}
$$

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 and define sets $\widetilde{\Theta}_t = \bigg\{\Theta_u\times \Theta_v\in\mathbb{R}^{2d\times M}\times\mathbb{R}^{d\times M}:\Big|\widetilde{u}_{i,t}(\Theta_u,\Theta_v) - z_{i,t}(p_{i,t})^\top\widehat{\theta}_t\Big|$ $\leq 8C\gamma_t(||z_{i,t}(p_{i,t})||_{H_t^{-1}} + ||x_{i,t}||_{H_{v,t}^{-1}}) \ \forall i \in [N]$ $\operatorname{and}\nolimits\widetilde\Theta'_t=\left\{\Theta_u\times\Theta_v\in\mathbb{R}^{2d\times M}\times\mathbb{R}^{d\times M}: \widetilde u_{i,t}(\Theta_u,\Theta_v)\geq u_{i,t} \ \forall i\in[N]\right\}\cap\widetilde\Theta_t$

1363 1364 1365 Then we define event $\widetilde{E}_{u,t} = \{\{\widetilde{\theta}_t^{(m)}\}_{m \in [M]} \times \{\widetilde{\theta}_{v,t}^{(m)}\}_{m \in [M]} \in \widetilde{\Theta}'_t\}$. For the ease of presentation, we define $E_t = E_{v,t} \cap E_{u,t}$. In the following, we provide a lemma that will be used for following regret analysis. Let $\widetilde{z}_{i,t} = z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}}(\cdot | s_t, p_t) [z_{i,t}(p_{i,t})]$ and $\widetilde{x}_{i,t} = x_{i,t} - \mathbb{E}_{j \sim P_{t,\widehat{\theta}_t}}(\cdot | s_t, p_t) [x_{i,t}].$

Lemma 10 *For* $t \in [T]$ *, under* $\widetilde{E}_{u,t}$ *and* E_t *, we have*

$$
\sup_{\Theta_{u}\times\Theta_{v}\in\widetilde{\Theta}_{t}}\left(\frac{\sum_{i\in S_{t}}\widetilde{v}_{i,t}\exp(\widetilde{u}_{i,t})}{1+\sum_{i\in S_{t}}\exp(\widetilde{u}_{i,t})}-\frac{\sum_{i\in S_{t}}\underline{v}_{i,t}^{+}\exp(\widetilde{u}_{i,t}(\Theta_{u},\Theta_{v}))}{1+\sum_{i\in S_{t}}\exp(\widetilde{u}_{i,t}(\Theta_{u},\Theta_{v}))}\right) \n=O\left(\gamma_{t}^{2}(\max_{i\in S_{t}}\|z_{i,t}(p_{i,t})\|_{H_{t}^{-1}}^{2}+\max_{i\in S_{t}}\|x_{i,t}\|_{H_{v,t}^{-1}}^{2})+\gamma_{t}^{2}(\max_{i\in S_{t}}\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}^{2}+\max_{i\in S_{t}}\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^{2})+\gamma_{t}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})(\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}+\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}+\|x_{i,t}\|_{H_{v,t}^{-1}})\right).
$$

1375 1376 1377

1389 1390 1391

1378 1379 1380 Proof We define $\tilde{u}'_{i,t} = z_{i,t}(p_{i,t})^\top \theta^* + 9C\gamma_t(||z_{i,t}(p_{i,t})||_{H_t^{-1}} + ||x_{i,t}||_{H_{v,t}^{-1}})$. Then from $\tilde{E}_{u,t}$ and E_t , we have

$$
\widetilde{u}_{i,t} \leq z_{i,t}(p_{i,t})^\top \widehat{\theta}_t + 8C\gamma_t (\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}})
$$
\n
$$
\leq z_{i,t}(p_{i,t})^\top \theta^* + \beta_{\tau_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + 8C\gamma_t (\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}})
$$
\n
$$
\leq \widetilde{u}'_{i,t}.
$$

1386 1387 1388 From the definition of S_t , we have $\tilde{v}_{i,t} \geq 0$ for $i \in S_t$. This is because if $\tilde{v}_{i,t} < 0$ for some $i \in [N]$ then $i \notin S_t$. Then as in [\(15\)](#page-14-3), we can show that

$$
\frac{\sum_{i \in S_t} \widetilde{v}_{i,t} \exp(\widetilde{u}_{i,t})}{1 + \sum_{i \in S_t} \exp(\widetilde{u}_{i,t})} \le \frac{\sum_{i \in S_t} \widetilde{v}_{i,t} \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\widetilde{u}'_{i,t})}.
$$

1392 Then we have

1393
\n1394
\n1395
\n1496
\n1597
\n1598
\n1399
\n1398
\n1399
\n1400
\n1401
\n1402
\n1599
\n1590
\n
$$
\frac{\sum_{i\in S_t} \widetilde{v}_{i,t} \exp(\widetilde{u}_{i,t})}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}_{i,t}(\Theta_u, \Theta_v))}{1 + \sum_{i\in S_t} \exp(\widetilde{u}_{i,t}(\Theta_u, \Theta_v))}
$$
\n
$$
\leq \frac{\sum_{i\in S_t} \widetilde{v}_{i,t} \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}_{i,t}(\Theta_u, \Theta_v))}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} + \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(\widetilde{u}'_{i,t}(\Theta_u, \Theta_v))}{1 + \sum_{i\in S_t} \exp(\widetilde{u}'_{i,t}(\Theta_u, \Theta_v))}.
$$
\n(35)

We define $\hat{u}_{i,t} = z_{i,t}(p_{i,t})^\top \hat{\theta}_t$. Then, for the first two terms in the above, we have

1404

1405
\n1406
\n1407
\n1408
\n1409
\n
$$
\frac{\sum_{i \in S_t} \tilde{v}_{i,t} \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})} - \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1408
\n
$$
= \frac{\sum_{i \in S_t} (\tilde{v}_{i,t} - \underline{v}_{i,t}) \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1411
\n1412
\n
$$
\leq \frac{\sum_{i \in S_t} (\tilde{v}_{i,t} - \underline{v}_{i,t}) \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1413
\n1414
\n
$$
\leq \frac{\sum_{i \in S_t} (\tilde{v}_{i,t} - x_{i,t}^\top \hat{\theta}_{v,t}| + |x_{i,t}^\top \hat{\theta}_{v,t} - \underline{v}_{i,t}|) \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1416
\n1417
\n
$$
= \frac{\sum_{i \in S_t} (\gamma_t + \beta_t) ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1420
\n1421
\n1422
\n
$$
= \frac{\sum_{i \in S_t} 2\gamma_t ||x_{i,t}||_{H_{v,t}^{-1}} \exp(\tilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\tilde{u}'_{i,t})}
$$
\n1423
\n1424
\n1425
\n1426
\n1427
\n1428
\n1429
\n1425
\n1428
\n1429
\n1425
\n1429
\n1425
\n1421
\n1426
\n1428
\n14

1426 1427 1428 1429 Let $P_{i,t}(u) = \frac{\exp(u_i)}{1 + \sum_{j \in S_t} \exp(u_j)}$, $\hat{u}_t = [\hat{u}_{i,t} : i \in S_t]$, and $\tilde{u}'_t = [\tilde{u}'_{i,t} : i \in S_t]$. For the first two terms in the above, by using the mean value theorem, there exists $\xi_t = (1 - c)\hat{u}_t + c\tilde{u}'_t$ for some $c \in (0, 1)$
such that such that

1430
\n
$$
\sum_{i \in S_t} 2\gamma_t \|x_{i,t}\|_{H_{v,t}^{-1}} \exp(\tilde{u}'_{i,t}) - \sum_{i \in S_t} 2\gamma_t \|x_{j,t}\|_{H_{v,t}^{-1}} \exp(\hat{u}_{i,t})
$$
\n1431
\n1432
\n
$$
= \sum_{i \in S_t} \sum_{j \in S_t} 2\gamma_t \|x_{j,t}\|_{H_{v,t}^{-1}} \nabla_i P_{j,t}(\xi_t) (\tilde{u}'_{i,t} - \hat{u}_{i,t})
$$
\n1433
\n1434
\n1435
\n
$$
= \sum_{i \in S_t} 2\gamma_t \|x_{i,t}\|_{H_{v,t}^{-1}} P_{i,t}(\xi_t) (\tilde{u}'_{i,t} - \hat{u}_{i,t}) - \sum_{i \in S_t} \sum_{j \in S_t} 2\gamma_t \|x_{j,t}\|_{H_{v,t}^{-1}} P_{j,t}(\xi_t) P_{i,t}(\xi_t) (\tilde{u}'_{i,t} - \hat{u}_{i,t})
$$
\n1435
\n1436
\n1437
\n1438
\n1440
\n1440
\n1441
\n1442
\n1444
\n1441
\n1442
\n1443
\n1444
\n1445
\n1446
\n1447
\n1448
\n1449
\n1440
\n1441
\n1442
\n1443
\n
$$
= O\left(\sum_{i \in S_t} \gamma_t^2 P_{i,t}(\xi_t) (\|x_{i,t}\|_{H_{v,t}^{-1}}^2 + \|z_{i,t}(p_{i,t})\|_{H_{t}^{-1}}^2) + \gamma_t^2 P_{i,t}(\xi_t) \|x_{i,t}\|_{H_{v,t}^{-1}}^2\right)
$$
\n1444
\n1445
\n1446
\n1447
\n1488
\n149
\n140
\n1410
\n1411
\n1411
\n1421
\n1433
\n
$$
= O\left(\sum_{i \in S_t} \gamma_t^2 P_{i,t}(\xi_t) \|x_{i,t}\|_{H_{v,t}^{-1}}^
$$

1449 1450 1451 where the third equality is obtained from $\tilde{u}'_{i,t} \geq \hat{u}_{i,t}$ and $\tilde{u}'_{i,t} - \hat{u}_{i,t} \leq 3\gamma_t(||z_{i,t}(p_{i,t})||_{H_t^{-1}} +$ $||x_{i,t}||_{H_{v,t}^{-1}}$ under E_t with $\gamma_t \geq \beta_t$, and the firth equality is from $ab \leq \frac{1}{2}(a^2 + b^2)$. Then from [\(36\)](#page-26-0) and (37) , we have

$$
\frac{1}{4}
$$

$$
\frac{\sum_{i \in S_t} \widetilde{v}_{i,t} \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\widetilde{u}'_{i,t})} - \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(\widetilde{u}'_{i,t})}{1 + \sum_{i \in S_t} \exp(\widetilde{u}'_{i,t})}
$$
\n
$$
\frac{1455}{1457} = O\left(\gamma_t^2 \max_{i \in S_t} \|x_{i,t}\|_{H_{v,t}^{-1}}^2 + \gamma_t^2 \max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}}^2 + \gamma_t \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) \|x_{i,t}\|_{H_{v,t}^{-1}}\right). (38)
$$

1458 1459 1460 1461 1462 For the latter two terms in [\(35\)](#page-25-0), by following the same proof technique in Lemma [4](#page-16-1) and using the fact that $|\tilde{u}'_{i,t} - \tilde{u}_{i,t}(\Theta_u, \Theta_v)| \leq |\tilde{u}'_{i,t} - z_{i,t}(p_{i,t})^\top \hat{\theta}_t| + |z_{i,t}(p_{i,t})^\top \hat{\theta}_t - \tilde{u}_{i,t}(\Theta_u, \Theta_v)| =$ $O(\gamma_t(\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}}))$ from E_t and $\Theta_u \times \Theta_v \in \Theta_t$ with $\beta_t \leq \gamma_t$, we can show that

1463 1464 1465

$$
\sup_{\Theta_{u}\times\Theta_{v}\in\widetilde{\Theta}_{t}}\left(\frac{\sum_{i\in S_{t}}\underline{v}_{i,t}^{+}\exp(\widetilde{u}_{i,t}^{\prime})}{1+\sum_{i\in S_{t}}\exp(\widetilde{u}_{i,t}^{\prime})}-\frac{\sum_{i\in S_{t}}\underline{v}_{i,t}^{+}\exp(\widetilde{u}_{i,t}(\Theta_{u},\Theta_{v}))}{1+\sum_{i\in S_{t}}\exp(\widetilde{u}_{i,t}(\Theta_{u},\Theta_{v}))}\right) \n=O\left(\gamma_{t}^{2}(\max_{i\in S_{t}}\|z_{i,t}(p_{i,t})\|_{H_{t}^{-1}}^{2}+\max_{i\in S_{t}}\|x_{i,t}\|_{H_{v,t}^{-1}}^{2})+\gamma_{t}^{2}(\max_{i\in S_{t}}\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}^{2}+\max_{i\in S_{t}}\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^{2})\right) \n+\gamma_{t}\sum_{i\in S_{t}}P_{t,\widehat{\theta}_{t}}(i|S_{t},p_{t})(\|\widetilde{z}_{i,t}\|_{H_{t}^{-1}}+\|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}})\right),
$$
\n(39)

 \blacksquare

1470 1471 1472

1473 1474 1475 We can conclude the proof from (35) , (38) , and (39) .

Then, for a bound of instantaneous regret of [\(34\)](#page-24-0), we have

1476
\n
$$
\mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_i^*}v_{i,t}\exp(u_{i,t})}{1+\sum_{i\in A_i^*}\exp(u_{i,t})}-\frac{\sum_{i\in S_i}v_{i,t}^+ \exp(v_{i,t}^p)}{1+\sum_{i\in S_i}\exp(u_{i,t}^p)}\right)1(E_t)\mid\mathcal{F}_{t-1}\right]\right]
$$
\n1479
\n
$$
\leq \mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_i^*}v_{i,t}\exp(u_{i,t})}{1+\sum_{i\in A_i^*}\exp(u_{i,t})}-\lim_{\omega_x\in\Theta_r\in\widetilde{\Theta}_t}S\mathbb{E}[N_i]\mathbb{E}|\leq K\mathbf{1}+\sum_{i\in S}\exp(\widetilde{u}_{i,t}(\Theta_u,\Theta_v))\right)1(E_t)\mid\mathcal{F}_{t-1}\right]\right]
$$
\n1488
\n
$$
=\mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_i^*}v_{i,t}\exp(u_{i,t})}{1+\sum_{i\in A_i^*}\exp(u_{i,t})}-\lim_{\omega_x\in\Theta_r\in\widetilde{\Theta}_t}S\mathbb{E}[N_i]\mathbb{E}|\leq K\mathbf{1}+\sum_{i\in S}\exp(\widetilde{u}_{i,t}(\Theta_u,\Theta_v))\right)1(E_t)\mid\mathcal{F}_{t-1},\widetilde{E}_t\right]\right]
$$
\n1489
\n
$$
\leq \mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_i^*}v_{i,t}\exp(\widetilde{u}_{i,t})}{1+\sum_{i\in A_i^*}\exp(\widetilde{u}_{i,t})}-\lim_{\omega_x\in\Theta_r\in\widetilde{\Theta}_t} \frac{\sum_{i\in S_i}v_{i,t}^+ \exp(\widetilde{u}_{i,t}(\Theta_u,\Theta_v))}{1+\sum_{i\in S_i}\exp(\widetilde{u}_{i,t}(\Theta_u,\Theta_v))}\right)1(E_t)\mid\mathcal{F}_{t-1},\widetilde{E}_t\right]\right]
$$
\n1498
\n
$$
\leq \mathbb{E}\left[\mathbb{E}\left[\left(\frac{\sum_{i\in A_i^*}v_{i,t}\exp(\widetilde{u}_{i,t})
$$

1512 1513 1514 1515 1516 where the first equality comes from the independency of E_t given \mathcal{F}_{t-1} , the second inequality is obtained from $u_{i,t} \leq \tilde{u}_{i,t}$ under the event \tilde{E}_t and from the definition of S_t , the third inequality is obtained from the fact that $v_{i,t}^+ \leq \tilde{v}_{i,t}^+$ under \tilde{E}_t , the third last equality is obtained from Lemma [10,](#page-25-1) and the last equality comes from independence between E_t and E_t given \mathcal{F}_{t-1} .

1517 1518 We provide a lemma below for further analysis.

1519 Lemma 11 *For all* $t \in [T]$ *, we have*

1520 1521

1522

 $\mathbb{P}\left(\widetilde{v}_{i,t} \geq v_{i,t} \text{ and } \widetilde{u}_{i,t} \geq u_{i,t} \ \forall i \in [N] \ | \ \mathcal{F}_{t-1}, E_t \right) \geq \frac{1}{4\sqrt{6}}$ $\frac{1}{4\sqrt{e\pi}}$.

1523 1524 1525 Proof Given $\mathcal{F}_{t-1}, x_{i,t}^{\top} \widetilde{\theta}_{v,t}^{(m)}$ follows Gaussian distribution with mean $x_{i,t}^{\top} \widehat{\theta}_{v,t}$ and standard deviation $\beta_{\tau_t} || x_{i,t} ||_{H_{v,t}^{-1}}$. Then we have

1526
1527

$$
\mathbb{P}\left(\max_{m\in[M]} x_{i,t}^{\top} \widetilde{\theta}_{v,t}^{(m)} \geq x_{i,t}^{\top} \theta_v \ \forall i \in [N] | \mathcal{F}_{t-1}, E_t\right)
$$

1528
1529
$$
\geq 1 - N \mathbb{P}\left(x_{i,t}^\top \widetilde{\theta}_{v,t}^{(m)} < x_{i,t}^\top \theta_v \ \forall m \in [M] | \mathcal{F}_{t-1}, E_t\right)
$$

$$
\geq 1 - N \mathbb{P}\left(Z_m < \frac{x_{i,t}^\top \theta_v - x_{i,t}^\top \widehat{\theta}_{v,t}}{\beta_{\tau_t} \|x_{i,t}\|_{H_{v,t}^{-1}}} \,\forall m \in [M] | \mathcal{F}_{t-1}, E_t\right)
$$

$$
\geq 1 - N \mathbb{P} \left(Z < 1 \right)^M,
$$

1535 where Z_m and Z are standard normal random variables. Likewise, we have

1536
\n
$$
\mathbb{P}\left(\max_{m_{i}\in[M]}z_{i,t}(p_{i,t})^{\top}\tilde{\theta}_{t}^{(m_{1})} + 8C\max_{m_{2}\in[M]}(x_{i,t}^{\top}\tilde{\theta}_{v,t}^{(m_{2})} - x_{i,t}^{\top}\hat{\theta}_{v,t}) \geq z_{i,t}(p_{i,t}^{*})^{\top}\theta^{*} \forall i \in[N] \mid \mathcal{F}_{t-1}, E_{t}\right)
$$
\n1539
\n
$$
\geq \mathbb{P}\left(\max_{m\in[M]}z_{i,t}(p_{i,t})^{\top}\tilde{\theta}_{t}^{(m)} + 8C(x_{i,t}^{\top}\tilde{\theta}_{v,t}^{(m)} - x_{i,t}^{\top}\hat{\theta}_{v,t}) \geq z_{i,t}(p_{i,t}^{*})^{\top}\theta^{*} \forall i \in[N] \mid \mathcal{F}_{t-1}, E_{t}\right)
$$
\n1541
\n1542
\n1543
\n1544
\n1545
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n1542
\n1543
\n1544
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n1542
\n1543
\n1544
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n1542
\n1543
\n1544
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n1541
\n1542
\n1543
\n1544
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n1541
\n1542
\n1543
\n1544
\n1545
\n1546
\n1547
\n1548
\n1549
\n1540
\n1541
\n154

1564 1565 where the third last inequality is obtained from the fact that the variance of $z_{i,t}(p_{i,t})^{\top} \widetilde{\theta}_t^{(m)}$ – $z_{i,t}(p_{i,t})^{\top} \widehat{\theta}_t + 8C(x_{i,t}^{\top} \widetilde{\theta}_{v,t}^{(m)} - x_{i,t}^{\top} \widehat{\theta}_{v,t})$ is $\beta_{\tau_t}^2 (2||z_{i,t}(p_{i,t})||^2_{H_t^{-1}} + 8C||x_{i,t}||^2_{H_{v,t}^{-1}})$ and second last in-

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 equality is obtained from $\sqrt{2(a^2 + b^2)} \ge (a+b)$, and the last inequality is obtained from $u_{i,t} \le \overline{u}_{i,t}$ in Lemma [1](#page-12-1) and independency for M samples. Then using union bound, we have $\mathbb{P}\left(\widetilde{v}_{i,t} \geq v_{i,t} \text{ and } \widetilde{u}_{i,t} \geq u_{i,t} \ \forall i \in [N] | \mathcal{F}_{t-1}, E_t\right)$ $> 1 - 2N \mathbb{P} (Z < 1)^M$. $\geq 1-2N(1-\frac{1}{1-\frac{1}{2}})$ $\frac{1}{4\sqrt{e\pi}})^M$ $\geq \frac{1}{1}$ $\frac{1}{4\sqrt{e\pi}},$ where the second last inequality is obtained from $\mathbb{P}(Z \leq 1) \leq 1 - 1/4\sqrt{e\pi}$ using the anti-concentration of standard normal distribution, and the last inequality comes from $M = \left[1 - \frac{\log 2N}{\log (1 - 1/A)}\right]$ $\frac{\log 2N}{\log(1-1/4\sqrt{e\pi})}$. This concludes the proof. From Lemmas [9](#page-23-1) and [11,](#page-28-0) for $t \ge t_0$ for some constant $t_0 > 0$, we have $\mathbb{P}(\widetilde{E}_t|\mathcal{F}_{t-1}, E_t)$ $=\mathbb{P}\left(\widetilde{u}_{i,t}\geq u_{i,t}, \widetilde{v}_{i,t}\geq v_{i,t} \ \forall i\in [N] \ \text{and} \ \{\widetilde{\theta}_{v,t}^{(m)}\}_{m\in[M]}\in \widetilde{\Theta}_{v,t}, \{\widetilde{\theta}_{t}^{(m)}\}_{m\in[M]}\times \{\widetilde{\theta}_{v,t}^{(m)}\}_{m\in[M]}\in \widetilde{\Theta}_{t}|\mathcal{F}_{t-1},E_{t}\right)$ $=\mathbb{P}\left\{\widetilde{u}_{i,t}\geq u_{i,t},\widetilde{v}_{i,t}\geq v_{i,t}\ \forall i\in[N]|\mathcal{F}_{t-1},E_t\right\}$ $- \, \mathbb{P} \left(\{ \widetilde{\theta}^{(m)}_{v,t} \}_{m \in [M]} \notin \widetilde{\Theta}_{v,t}, \{ \widetilde{\theta}^{(m)}_t \}_{m \in [M]} \times \{ \widetilde{\theta}^{(m)}_{v,t} \}_{m \in [M]} \notin \widetilde{\Theta}_t | \mathcal{F}_{t-1}, E_t \right)$ $\geq 1/4\sqrt{e\pi} - \mathcal{O}(1/t^2)$ $\geq 1/8\sqrt{e\pi}$. For simplicity of the proof, we ignore the time steps before (constant) t_0 , which does not affect our final result. For simplicity, we also use $L_t = \gamma_t^2 (\max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t^{-1}} + \max_{i \in S_t} ||x_{i,t}||^2_{H_{v,t}^{-1}}) + \gamma_t^2 (\max_{i \in S_t} ||\widetilde{z}_{i,t}||^2_{H_t^{-1}} + \max_{i \in S_t} ||\widetilde{x}_{i,t}||^2_{H_{v,t}^{-1}})$ $+\gamma_t\sum$ $\sum_{i\in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t)(\|\widetilde{z}_{i,t}\|_{H_t^{-1}} + \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}}).$

Hence, we have

1605 1606 1607

$$
\mathbb{E}\left[L_t \mid \mathcal{F}_{t-1}, E_t\right] \geq \mathbb{E}\left[L_t \mid \mathcal{F}_{t-1}, E_t, \widetilde{E}_t\right] \mathbb{P}(\widetilde{E}_t | \mathcal{F}_{t-1}, E_t) \\
\geq \mathbb{E}\left[L_t \mid \mathcal{F}_{t-1}, E_t, \widetilde{E}_t\right] \frac{1}{8\sqrt{e\pi}}.\n\tag{41}
$$

With [\(40\)](#page-27-1) and [\(41\)](#page-29-0), we have

$$
\mathbb{E}\left[\left(\frac{\sum_{i\in A_t^*} v_{i,t} \exp(u_{i,t})}{1 + \sum_{i\in A_t^*} \exp(u_{i,t})} - \frac{\sum_{i\in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i\in S_t} \exp(u_{i,t}^p)}\right) \mathbb{1}(E_t) | \mathcal{F}_{t-1}\right]
$$
\n
$$
= O\left(\mathbb{E}\left[L_t | \mathcal{F}_{t-1}, \widetilde{E}_t, E_t\right] \mathbb{P}(E_t | \mathcal{F}_{t-1})\right)
$$
\n
$$
= O\left(\mathbb{E}\left[L_t | \mathcal{F}_{t-1}, E_t\right] \mathbb{P}(E_t | \mathcal{F}_{t-1})\right). \tag{42}
$$

1617 1618 1619

Then from [\(34\)](#page-24-0), [\(42\)](#page-29-1), [\(31\)](#page-22-0), [\(32\)](#page-22-1) and Lemma [5,](#page-17-0) [6,](#page-21-0) [8,](#page-21-2) with $E_T^c \supset E_{T-1}^c, \ldots, \supset E_1^c$, we have

1620 1621

$$
R^{\pi}(T) = \sum_{t \in [T]} \mathbb{E}[R_t(S_t^*, p_t^*) - R_t(S_t, p_t) \mathbbm{1}(E_t)] + \sum_{t \in [T]} \mathbb{E}[R_t(S_t^*, p_t^*) - R_t(S_t, p_t) \mathbbm{1}(E_t^c)]
$$

\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1628
\n1629
\n1621
\n1628
\n1629
\n1621
\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1628
\n1629
\n1621
\n1629
\n1621
\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1628
\n1629
\n1621
\n1629
\n1621
\n1620
\n1621
\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1628
\n1629
\n1621
\n1629
\n1621
\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1629
\n1620
\n1621
\n1622
\n1623
\n1624
\n1625
\n1629
\n1621
\n1622
\n1623
\n1624
\n1625
\n1626
\n1627
\n1628
\n1629
\n1620
\n1621
\n1629
\n1621
\n1622
\n1623
\n1624
\n1625
\n1629
\n1621
\n1629
\n1620
\n1621
\n1622
\n1623
\n1624
\n1625
\n1629
\n1621
\n1629
\n1620
\n1621
\n1622
\n162

A.4 RANDOMNESS IN ACTIVATION FUNCTION

In this section, we study the case where there exists randomness in the activation function of C-MNL. Let $\zeta_{i,t}$ be a zero-mean random noise drawn from the range of $[-c, c]$ for some $0 < c \leq 1$. Then the noisy activation is modeled in C-MNL as

 $\frac{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \leq (x_{j,t}^\top \theta^* + \zeta_{j,t})^+)}{1 + \sum_{j \in S_t} \exp(z_{j,t}(p_{j,t})^\top \theta^*) \mathbb{1}(p_{j,t} \leq (x_{j,t}^\top \theta^* + \zeta_{j,t})^+)}$

 $\widetilde{\mathbb{P}}_t(i|S_t, p_t) = \frac{\exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \leq (x_{i,t}^\top \theta_v + \zeta_{i,t})^+)}{1 + \sum_{i \in \mathcal{S}} \exp(z_{i,t}(p_{i,t})^\top \theta^*) \mathbb{1}(p_{i,t} \leq (x_\cdot^\top \theta_v + \zeta_{i,t})^+)}$

1650 1651

$$
\frac{1652}{1653}
$$

1654

A.4.1 ALGORITHM & REGRET ANALYSIS

1655 1656 1657 1658 Here we provide an algorithm (Algorithm [3\)](#page-31-0) for the random activation C-MNL. The different part from Algorithm [1](#page-5-0) is in pricing strategy such that $p_{i,t} = (\underline{v}_{i,t} - c)^+$. The remaining parts are the same.

Now we provide a regret bound of the algorithm in the following.

Theorem 3 *Under Assumption [1,](#page-4-0) the policy* π *of Algorithm [3](#page-31-0) achieves a regret bound of*

$$
R^{\pi}(T) = \widetilde{O}\left(d^{\frac{3}{2}}\sqrt{T} + cT\right).
$$

1663 1664 1665 Therefore, if we have $c = O(1/$ √ \overline{T}), the regret bound in the above theorem becomes $\widetilde{O}(d^{\frac{3}{2}}\sqrt{2})$ $\scriptstyle T)$ same as that in Theorem [1](#page-4-1) for the case without the noise in activation functions.

1666 1667 1668 1669 1670 Proof Here we provide only the different parts from the proof of Theorem [1.](#page-4-1) Let $\underline{v}_{i,t}^c = (\underline{v}_{i,t} - c)$ and $\overline{u}_{i,t}^{ic} = z_{i,t}(p_{i,t})^{\top} \theta^* + 2\sqrt{2\beta_{\tau_t}} ||z_{i,t}(p_{i,t})||_{H_t^{-1}} + 2\sqrt{2\beta_{\tau_t}} ||x_{i,t}||_{H_{v,t}^{-1}} + c$. Then we can observe that under E_t , $p_{i,t} \le v_{i,t} + \zeta_{i,t}$ and $\overline{u}_{i,t} \le \overline{u}'_{i,t}$. From [\(12\)](#page-13-0) and Lemma [2,](#page-13-1) under E_t , we have $R_t(S_t^*, p_t^*) - R_t(S_t, p_t)$

$$
\frac{1671}{1672} \leq \frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^{\prime c})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime c})} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^{c+} \exp(\overline{u}_{i,t}^{\prime c})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime c})} + \frac{\sum_{i \in S_t} \underline{v}_{i,t}^{c+} \exp(\overline{u}_{i,t}^{\prime c})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime c})} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^{c+} \exp(u_{i,t}^{p})}{1 + \sum_{i \in S_t} \exp(u_{i,t}^{p})}.
$$
\n(43)

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 Algorithm 3 UCB-based Assortment-selection with Enhanced-LCB Pricing (UCBA-ELCBP) **Input:** $\lambda, \eta, \beta_\tau, c$ **Init:** $\tau \leftarrow 1, t_1 \leftarrow 1, \theta_{v,(1)} \leftarrow \mathbf{0}_d$ for $t = 1, \ldots, T$ do $\widetilde{H}_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-2} G_s(\widehat{\theta}_s) + \eta G_{t-1}(\widehat{\theta}_{t-1})$ with [\(3\)](#page-3-1) $H_t \leftarrow \lambda I_{2d} + \sum_{s=1}^{t-1} G_s(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) $H_{v,t} \leftarrow \lambda I_d + \sum_{s=1}^{t-1} G_{v,s}(\widehat{\theta}_s)$ with [\(3\)](#page-3-1) $\widehat{\theta}_t \leftarrow \argmin_{\theta \in \Theta} g_t(\widehat{\theta}_{t-1})^\top \theta + \frac{1}{2\eta} \|\theta - \widehat{\theta}_{t-1}\|_{\widetilde{H}_t^{-1}}^2$ ▷ Estimation if $\det(H_t) > 2 \det(H_{t_\tau})$ then $\tau \leftarrow \tau + 1; t_{\tau} \leftarrow t$ $\widehat{\theta}_{v,(\tau)} \leftarrow \widehat{\theta}_{v,t_{\tau}} (= \widehat{\theta}^{1:d}_{t_{\tau}})$ for $i \in [N]$ do $\underline{v}_{i,t} \leftarrow x_{i,t}^{\top} \widehat{\theta}_{v,(\tau)}$ – √ $2\beta_t\|x_{i,t}\|_{H^{-1}_{v,t}}$; ▷ LCB for valuation $p_{i,t} \leftarrow (\underline{v}_{i,t} - c)^+$; \triangleright Price selection w/ LCB $\overline{v}_{i,t} \leftarrow x_{i,t}^{\top} \hat{\theta}_{v,t} + \beta_t \|x_{i,t}\|_{H_{v,t}^{-1}}$;

⊳ UCB for valuation $\overline{u}_{i,t}^c \leftarrow z_{i,t}(p_{i,t})^\top \widehat{\theta}_t + \beta_t \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + 2\sqrt{2}\beta_t \|x_{i,t}\|_{H_{v,t}^{-1}} + c$;⊳ UCB for utility $S_t \leftarrow \arg \max_{S \subseteq [N]:|S| \leq L} \sum_{i \in S} \frac{v_{i,t} \exp(u_{i,t})}{1 + \sum_{j \in S} \exp(\overline{u}_{j,t})}$ $\sum_{i\in S}\frac{\overline{v}_{i,t}\exp(\overline{u}_{i,t})}{1+\sum_{\exp(\overline{u}_{i,t})};}$ \triangleright Assortment selection w/ UCB Offer S_t with prices $p_t = \{p_{i,t}\}_{i \in S_t}$ Observe preference (purchase) feedback $y_{i,t} \in \{0, 1\}$ for $i \in S_t$

By following the proof of Lemmas [3](#page-15-1) and [4,](#page-16-1) under E_t , we can show that

$$
1701\n1702\n1703\n(a)
$$
\frac{\sum_{i \in S_t} \overline{v}_{i,t} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})} - \frac{\sum_{i \in S_t} \underline{v}_{i,t}^{c+} \exp(\overline{u}_{i,t}^{\prime})}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}^{\prime})}
$$
\n
$$
1704\n1705\n1706\n1707\n(b)
$$
\frac{\sum_{i \in S_t} \sum_{i \in S_t} ||x_{i,t}||_{H_{v,t}^{-1}}^2 + \beta_{\tau_t}^2 \max_{i \in S_t} ||z_{i,t}(p_{i,t})||_{H_t^{-1}}^2 + \beta_{\tau_t} \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) ||x_{i,t}||_{H_{v,t}^{-1}} + c \bigg),
$$
\n
$$
1707\n1708\n1709\n1709\n1709\n1709\n1709\n1709\n1700\n180\n191\n192\n193\n195\n196\n197\n198\n199\n199\n199\n199\n199\n199\n190\n190\n191\n191\n191\n192\n193\n195\n195\n196\n197\n198\n199\n199\n190\n191\n191\n191\n195\n196\n197\n198\n199\n199\n190\n190\n191\n191\n192\n193\n195\n196\n197\n198\n199\n199\n190\n190\n191\n190\n191\n192\n193\n194\n1
$$
$$
$$

$$
= O\left(\beta_{\tau_t}^2(\max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}}^2 + \max_{i \in S_t} \|x_{i,t}\|_{H_{v,t}^{-1}}^2) + \beta_{\tau_t}^2(\max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t^{-1}}^2 + \max_{i \in S_t} \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^2) + \beta_{\tau_t} \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t)(\|\widetilde{z}_{i,t}\|_{H_t^{-1}} + \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}) + c\right).
$$

1711 1712

1710

1724

 $\sum_{i \in S_t} P_{t, \widehat{\theta}_t}(i|S_t, p_t)(\|\widetilde{z}_{i,t}\|_{H_t^{-1}} + \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}) + c$

Then by following the proof steps of Theorem [1,](#page-4-1) we can show that

$$
R^{\pi}(T) = \widetilde{O}\left(d^{\frac{3}{2}}\sqrt{T} + cT + \frac{d^3}{\kappa}\right)
$$

Г

1723 A.5 EXTENSION TO RL WITH ONCE-PER-EPISODE FEEDBACK

1725 1726 1727 In this section, we adopt the RL framework with once-per-episode preference feedback, as described by [\(Chen et al., 2022;](#page-10-14) [Pacchiano et al., 2021\)](#page-11-14). The main difference from previous literature is that we consider dynamic pricing to maximize revenue based on the model. Furthermore, we consider the multinomial logit model for the preference model, which allows feedback among up to K options

1728 1729 1730 1731 rather than a duel between two options, which was considered in the previous work. In our model, an agent proposes up to K different trajectories with prices for each trajectory, and the user purchases at most one trajectory based on their preference.

1732 A.5.1 PROBLEM STATEMENT

1733 1734 1735 1736 1737 1738 1739 1740 1741 We consider T-episode, H-horizon RL ($\mathbb{P}, \mathcal{S}, \mathcal{A}, H, \rho$) where S is a finite set of states, A is a set of actions, $\mathbb{P}(\cdot|s, a)$ is the *latent* MDP transition probabilities given a state and action pair (s, a) , H is the length of an episode, ρ denotes the initial distribution over states. We denote a trajectory during H steps as $l = (s_{1,l}, a_{1,l}, \ldots, s_{H,l}, a_{H,l}) \in \mathcal{T}$ where \mathcal{T} is the set of all possible trajectories of length H . Then at each time t , an agent selects a set of policies for sampling trajectory assortment denoted as $\Pi_t = \{\pi_{i,t} \in \Pi : i \in [K_t]\}\$ with $0 \leq K_t \leq K$ where Π is the set of all feasible policies. Then a set of trajectories (assortment) is sampled from the transition probability under Π_t as $\Gamma_t = \{l_i \sim \mathbb{P}^{\pi_{i,t}} : i \in [K_t]\}$ with $\Gamma_t \subseteq \mathcal{T}$. At the same time, the agent prices each trajectory $l \in \Gamma_t$ as $p_{l,t}$ and suggests the trajectory assortment to a user.

1742 1743 1744 1745 1746 1747 We define an embedding function for a trajectory l as $\phi_t(l) \in \mathbb{R}^d$. There is a latent parameter $\theta_v \in \mathbb{R}^d$, and the valuation of each trajectory l is defined as $v_{l,t} := \phi_t(l)^\top \theta_v \geq 0$. For simplicity, we consider $\|\phi_t(l)\|_2 \leq 1$ and $\|\theta_v\|_2 \leq 1$. Let $p_t := \{p_{l,t}\}_{l \in \mathcal{T}}$. Given Γ_t and p_t , the user chooses (purchases) a trajectory $l \in \Gamma_t$ by paying $p_{l_t,t}$ according to the probability of the censored MNL as follows:

$$
\frac{1}{4}
$$

1781

$$
1748\\
$$

$$
\mathbb{P}_{t}(l|\Gamma_{t}, p_{t}) = \frac{\exp(v_{l,t}) \mathbb{1}(p_{l,t} \leq v_{l,t})}{1 + \sum_{l' \in \Gamma_{t}} \exp(v_{l',t}) \mathbb{1}(p_{l',t} \leq v_{l',t})}.
$$

1749 1750 1751 1752 1753 It is allowed for the user to choose an outside option (l_0) as $\mathbb{P}_t(l_0|\Gamma_t, p_t)$ $\frac{1}{1+\sum_{l'\in\Gamma_t}\exp(v_{l',t})\mathbbm{1}(p_{l',t}\leq v_{l',t})}$. In this extension of MDPs, we consider the nested MNL model without a price-sensitivty. It is an open problem to consider a price-sensitivity in the MDP setting.

1754 1755 1756 1757 1758 1759 We adopt the generalized function approximation for transition probability in [Chen et al.](#page-10-14) [\(2022\)](#page-10-14); [Ayoub et al.](#page-10-15) [\(2020\)](#page-10-15). For the latent state transition probability \mathbb{P} , we consider that $\mathbb P$ belongs to a given transition set P. We define a set of functions $V = \{v : S \to [0,1]\}\.$ Then for the complexity of the model class, we consider a generalized function approximation regarding the transition probability such that $\mathcal{F}_{\mathbb{P}} = \{f : \exists \mathbb{P} \in \mathcal{P} \text{ s.t. } \forall (s, a, \nu) \in \mathcal{S} \times \mathcal{A} \times \mathcal{V}, f(s, a, \nu) = \int \mathbb{P}(\mathbb{d}s' \mid s, a)\nu(s'))\}\.$ We describe the concept of Eluder dimension introduced by [Russo & Van Roy](#page-11-15) [\(2013\)](#page-11-15).

1760 1761 1762 1763 Definition 2 (α -independent) Let F be a function class defined in X, and $\{x, 1, x_2, \ldots, x_n\} \in \mathcal{X}$. *We say* $x \in \mathcal{X}$ *is* α -independent of $\{x_1, x_2, \ldots, x_n\}$ with respect to \mathcal{F} if there exists $f_1, f_2 \in \mathcal{F}$ such *that* $\sqrt{\sum_{i=1}^{n} (f_1(x_i) - f_2(x_i))^2} \le \alpha$ *but* $f_1(x) - f_2(x) \ge \alpha$ *.*

1764 1765 1766 Definition 3 (Eluder Dimension) *Suppose* $\mathcal F$ *is a function class defined in* $\mathcal X$ *, the* α *-Eluder dimension is the longest sequence* $\{x_1, x_2, \ldots, x_n\} \in \mathcal{X}$ *such that there exists* $\alpha' \geq \alpha$ *where* x_i *is* α' -independent of $\{x_1, \ldots, x_{i-1}\}$ *for all* $i \in [n]$ *.*

1767 1768 1769 1770 By using the concept of Eluder dimension, we define $d_{\mathbb{P}} = dim(\mathcal{F}_{\mathbb{P}}, \alpha)$ to be the α -Eluder dimension of $\mathcal{F}_{\mathbb{P}}$. As described in [Chen et al.](#page-10-14) [\(2022\)](#page-10-14); [Ayoub et al.](#page-10-15) [\(2020\)](#page-10-15), the generalized model includes linear mixture models where $d_{\mathbb{P}} = O(d \log(1/\alpha)).$

1771 1772 1773 1774 1775 1776 The expected revenue from trajectory l is represented as $R_{l,t}(\Gamma_t) = p_{l,t} \mathbb{P}_{\theta,t} (l_t)$ $l|\Gamma_t, p_t|$. Then the overall expected revenue for the agent is formulated as $R_t(\Pi_t, p_t)$ = $\mathbb{E}_{\Gamma \sim {\{\mathbb{P}^{\pi} : \pi \in \Pi_t\}}} \left[\sum_{l \in \Gamma} R_{l,t}(\Gamma) \right]$. For notation simplicity, we use $p = \{p_l\}_{l \in \Gamma}$. Then we define an oracle policy under known $\mathbb P$ and θ regarding assortment and prices such that $\Pi_t^* \in$ $\arg \max_{\Pi' \subseteq \Pi : |\Pi'| \leq K} \mathbb{E}_{\Gamma \sim \Pi'} \left[\max_{0 \leq p_l \leq 1} \forall l \in \Gamma \right] R_t(\Gamma, p) \right]$. We can observe that given Γ , the optimal price is $p_{l,t}^* = v_{l,t}$ for $l \in \Gamma$ from censored MNL. Then for Π_t and p_t , the regret is defined as

1777
1778
1779

$$
R(T) = \sum_{t \in [T]} \mathbb{E} [R_t(\Pi_t^*, p_t^*)] - \mathbb{E} [R_t(\Pi_t, p_t)].
$$

1780 Now we introduce regularity assumption and definition similar to the bandit setting.

Assumption 2 $\|\theta_v\|_2 \leq 1$ *and* $\|\phi_t(l)\|_2 \leq 1$ *for all* $l \in \mathcal{T}$ *and* $t \in [T]$

1782 1783 1784 1785 1786 1787 For the ease of presentation, we denote by $P_{t,\theta}(l|\Gamma,p) = \frac{\exp(\phi_t(l)^{\top} \theta)}{1+\sum_{i} \exp(\phi_i(l))}$ $\frac{\exp(\phi_t(t) - \theta)}{1 + \sum_{t' \in \Gamma} \exp(\phi_t(t') \top \theta)}$ the choice probability without the activation functions. Same as previous work for logistic and MNL bandit [\(Oh](#page-11-8) [& Iyengar, 2019;](#page-11-8) [2021;](#page-11-7) [Goyal & Perivier, 2021;](#page-11-6) [Erginbas et al., 2023;](#page-10-9) [Faury et al., 2020;](#page-11-12) [Abeille](#page-10-10) [et al., 2021\)](#page-10-10), here we define a problem-dependent quantity regarding the non-linearlity of the MNL structure as follows.

$$
\kappa:=\inf_{\theta\in\mathbb{R}^d,p\in[0,1]^N:\|\theta\|_2\leq 1}P_{t,\theta}(l|\Gamma',p)P_{t,\theta}(l_0|\Gamma',p).
$$

1788 1789

1798 1799 1800

1803 1804

1790 1791 A.5.2 ALGORITHM & REGRET ANALYSIS

1792 1793 1794 1795 For dealing with the activation function in MNL, we utilize LCB for the price strategy. The main difference from the bandit setting is in selecting policy Π_t for suggesting trajectory assortment. For the assortment strategy, we consider exploration not only for learning valuation but also for learning transition probability. We describe our algorithm (Algorithm [4\)](#page-34-0) in what follows.

1796 1797 Let $f_t(\theta) := -\sum_{l \in \Gamma_t \cup \{l_0\}} y_{l,t} \log P_{t,\theta}(l|\Gamma_t, p_t)$ where $y_{l,t} \in \{0,1\}$ is observed preference feedback (1 denotes choice, otherwise 0) and define the gradient of the likelihood as

$$
g_t(\theta) = \nabla_{\theta} f_t(\theta) = \sum_{l \in \Gamma_t} (P_{t,\theta}(l|\Gamma_t, p_t) - y_{l,t}) \phi_t(l). \tag{44}
$$

1801 1802 We also define gram matrices from $\nabla^2_{\theta} f(\theta)$ as follows:

$$
G_t(\theta) := \sum_{l \in \Gamma_t} P_{t,\theta}(l|S_t, p_t) \phi_t(l) \phi_t(l)^{\top} - \sum_{l,l' \in \Gamma_t} P_{t,\theta}(l|S_t, p_t) P_{t,\theta}(l'|S_t, p_t) \phi_t(l) \phi_t(l')^{\top}, \quad (45)
$$

1805 1806 1807 1808 1809 1810 1811 1812 1813 Then we construct the estimator of $\hat{\theta}_t \in \mathbb{R}^d$ for θ_v from the online mirror descent within the range of $\Theta = \{ \theta \in \mathbb{R}^d : ||\theta||_2 \leq 1 \}$. Let $\beta_l = C_1$ √ of $\Theta = \{\theta \in \mathbb{R}^d : \|\theta\|_2 \leq 1\}$. Let $\beta_l = C_1 \sqrt{dl} \log(T) \log(K)$ and $H_t = \lambda I_d + \sum_{s=1}^{t-1} G_s(\widehat{\theta}_s)$ for some constants $C_1 > 0$, $\lambda > 0$. We first construct the lower confidence bound (LCB) of the valuation of trajectory l as $\underline{v}_{l,t} = \phi_t(l)^\top \widehat{\theta}_{v,(\tau)} - \beta_\tau \|\phi_t(l)\|_{H_t^{-1}}$, where $\widehat{\theta}_{(\tau)} = \widehat{\theta}_{t_\tau}$ and t_τ is the time step for τ -th update of the estimation for price. Then, for the LCB pricing strategy, we set the price of trajectory l using its LCB as $p_{l,t} = \dot{v}_{l,t}^+$. Furthermore, for constructing assortment policy, we construct upper confidence bounds (UCB) for valuation $v_{l,t}$ as $\overline{v}_{l,t} = \phi_t(l)^\top \widehat{\theta}_t + \beta_t ||\phi_t(l)||_{H_t^{-1}}$. Now we describe the procedure regarding latent transition probability. In our setting of pref-

1814 1815 1816 1817 1818 1819 1820 1821 1822 erence feedback without reward information, we cannot calculate the value estimation for each given state. To tackle this, we utilize the approach introduced in [Chen et al.](#page-10-14) [\(2022\)](#page-10-14). Given $V_{n,h,l} \in [0,1]^{|\mathcal{S}|}$ for $0 < n < t$ (to be specified), we estimate the transition probability as $\widehat{\mathbb{P}}_t = \arg \min_{\mathbb{P}' \in \mathcal{P}} \sum_{n=1}^{t-1} \sum_{l \in \Gamma_l} \sum_{h=1}^{H-1} \left(\sum_{s \in \mathcal{S}} \mathbb{P}'(s | s_{h,l}, a_{h,l}) V_{n,h,l}(s) - V_{n,h,l}(s_{h+1,l}) \right)^2$. We denote by $\mathcal{N}(\mathcal{F}, \alpha, \|\cdot\|_{\infty})$ the α -covering number of $\mathcal F$ in the sup-norm $\|\cdot\|_{\infty}$. Let $\beta_{\mathbb{P}} =$ $C_2 \log(T\mathcal{N}(\mathcal{F}_{\mathbb{P}},1/THK,\|\cdot\|_{\infty}))$ for some constant $C_2 > 0$ and $\mathcal{B}_{\mathbb{P},t} = \{\mathbb{P}' \in \mathcal{P}: L_t(\mathbb{P}',\widehat{\mathbb{P}}_t) \leq$ $\beta_{\mathbb{P}}$ } where $L_{t}(\mathbb{P}_{1}, \mathbb{P}_{2}) = \sum_{n=1}^{t-1} \sum_{l \in \Gamma_{l}} \sum_{h=1}^{H} (\langle \mathbb{P}_{1}(\cdot | s_{h,l}, a_{h,l}) - \mathbb{P}_{2}(\cdot | s_{h,l}, a_{h,l}), V_{n,h,l} \rangle)^{2}$. Then for $V \in V$, $s \in S$, $a \in A$, we construct a confidence bound for the transition probability as

$$
b_{\mathbb{P},t}(s,a,V) = \max_{\mathbb{P}_1, \mathbb{P}_2 \in \mathcal{B}_{\mathbb{P},t}} \sum_{s' \in \mathcal{S}} (\mathbb{P}_1(s'|s,a) - \mathbb{P}_2(s'|s,a)) V(s'). \tag{46}
$$

1826 Then we define

$$
f_{\rm{max}}
$$

1823 1824 1825

1827 1828

$$
V_{t,h,l} = \underset{V \in \mathcal{V}}{\arg \max} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V), \tag{47}
$$

1829 1830 which is similar to the reward-free exploration for MDPs in [Chen et al.](#page-10-16) [\(2021\)](#page-10-16). Using the confidence bound, we select a set of policies Π_t for sampling trajectory assortment $\Gamma_t \sim \mathbb{P}^{\Pi_t}$ as follows:

$$
\Pi_t = \arg\max_{\Pi' \subseteq \Pi : |\Pi'| \leq K} \mathbb{E}_{\Gamma \sim \widehat{\mathbb{P}}_t(\Pi')} \left[\sum_{l \in \Gamma} \left(\frac{\overline{v}_{l,t} \exp(\overline{v}_{l,t})}{1 + \sum_{l' \in \Gamma} \exp(\overline{v}_{l',t})} + \sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right) \right].
$$

1835 We set $\eta = \frac{1}{2} \log(K + 1) + 3$ and $\lambda = \max\{84d\eta, 192\sqrt{2}\eta\}$ for the algorithm. Then the algorithm achieves the regret bound in the following theorem.

1876

1885 1886 1887 Algorithm 4 UCB-based Trajectory Assortment-selection with LCB Pricing (UCBTA-LCBP) **Input:** λ , η , β_t , $\beta_{\mathbb{P}}$ **Init:** $\tau \leftarrow 1, t_1 \leftarrow 1, \theta_{v,(1)} \leftarrow \mathbf{0}_d$ for $t = 1, \ldots, T$ do $H_t \leftarrow \lambda I_d + \sum_{s=1}^{t-1} G_s(\widehat{\theta}_s)$ with [\(45\)](#page-33-0) $\widetilde{H}_t \leftarrow \lambda I_d + \sum_{s=1}^{t-2} G_s(\widehat{\theta}_s) + \eta G_{t-1}(\widehat{\theta}_{t-1})$ $\widehat{\theta}_t \leftarrow \argmin_{\theta \in \Theta} g_t(\widehat{\theta}_{t-1})^\top \theta + \frac{1}{2\eta} \|\theta - \widehat{\theta}_{t-1}\|_{\widetilde{H}_t^{-1}}^2$ ▷ Estimation if $\det(H_t) > 2 \det(H_{t_\tau})$ then $\tau \leftarrow \tau + 1; t_{\tau} \leftarrow t$ $\theta_{(\tau)} \leftarrow \theta_{t_{\tau}}$ for $l \in \mathcal{T}$ do $\underline{v}_{l,t} \leftarrow \phi_t(l)^\top \widehat{\theta}_{(\tau)} - \beta_t ||\phi_t(l)||_{V_t^{-1}}$ $p_{i,t} \leftarrow \underline{v}_{i,t}^+$ $\overline{v}_{l,t} \leftarrow \phi_t(l)^\top \widehat{\theta}_t + \beta_t ||\phi_t(l)||_{V_t^{-1}}$ $\widehat{\mathbb{P}}_t \leftarrow \argmin_{\mathbb{P}' \in \mathcal{P}}$ $\sum_{ }^{t-1}$ $n=1$ \sum $l \in \Gamma_l$ $\sum_{h=1}^{H-1}$ $\left($ $\sum_{s \in S}$ $\mathbb{P}'(s|s_{h,l}, a_{h,l})V_{n,h,l}(s) - V_{n,h,l}(s_{h+1,l})$ \setminus^2 with [\(47\)](#page-33-2) $\Pi_t \leftarrow$ arg max $\argmax_{\Pi' \subseteq \Pi : |\Pi'| \leq K} \mathbb{E}_{\Gamma \sim \widehat{\mathbb{P}}_t(\Pi')} \left[\sum_{l \in \Gamma} \right]$ l∈Γ $\int \overline{v}_{l,t} \exp(\overline{v}_{l,t})$ $\frac{\partial u(t, \exp(v_t, t))}{1 + \sum_{l' \in \Gamma} \exp(\overline{v}_{l',t})} +$ \sum^{H-1} $h=1$ $b_{\mathbb{P},t}(s_{h,l},a_{h,l},V_{t,h})$ \setminus 1 with [\(46\)](#page-33-3) $\Gamma_t \sim \mathbb{P}^{\Pi_t}$; ▷ **Trajectory assortment selection w/ UCB** $p_{l,t} \leftarrow \underline{v}_{l,t}^+$ **▷ Price selection w/ LCB** Offer Γ_t with prices $p_t = \{p_{l,t} : l \in \Gamma_t\}$ and observe $y_{l,t} \in \{0,1\}$ for $l \in \Gamma_t$

Theorem 4 *Under Assumption [2,](#page-32-0) the policy* π *of Algorithm [4](#page-34-0) achieves a regret bound of*

$$
R^{\pi}(T) = \widetilde{O}\left(d\sqrt{T} + \sqrt{d_{\mathbb{P}}KHT\log(\mathcal{N}(\mathcal{F}_{\mathbb{P}}, 1/THK, \|\cdot\|_{\infty}))}\right).
$$

1870 Compared to the regret bound for the bandit setting, in MDP, there exists an additional term of $\sqrt{d_{\mathbb{P}} KHT \log(N(\mathcal{F}_{\mathbb{P}}, 1/THK, \|\cdot\|_{\infty}))}$ regarding the latent transition probability.

1871 1872 A.5.3 PROOF OF REGRET BOUND IN THEOREM [4](#page-34-1)

1873 1874 1875 For the estimation of θ_v , define event $E_t^{(1)} = {\|\widehat{\theta}_s - \theta_v\|_{V_s}} \leq \beta_{\tau_s}, \forall s \leq t$. Then we have $\mathbb{P}(E_T^{(1)}$ $T(T(T) \geq 1-2/T$ from Lemma [8.](#page-21-2) We also provide a confidence bound for the transition probability in the following lemma.

1877 Lemma 12 (Lemma A.2 [Chen et al.](#page-10-14) [\(2022\)](#page-10-14)) *With probability at least* $1 - 1/T$ *, for all* $t \in [T]$ *,*

$$
L_t(\mathbb{P}, \widehat{\mathbb{P}}_t) = \sum_{n=1}^{t-1} \sum_{l \in \Gamma_l} \sum_{h=1}^{H-1} \left(\sum_{s \in \mathcal{S}} (\mathbb{P}(s|s_{h,l}, a_{h,l}) - \widehat{\mathbb{P}}_t(s|s_{h,l}, a_{h,l})) V_{n,h,l}(s) \right)^2 \leq \beta_{\mathbb{P}}.
$$

1882 1883 1884 Define event $E^{(2)} = \{L_t(\mathbb{P}, \hat{\mathbb{P}}_t) \leq \beta_{\mathbb{P}}, \text{for all } t \in [T]\},$ which holds with probability at least $1-1/T$ from the above lemma. Then we define $E_t = \{E_t^{(1)} \cap E^{(2)}\}.$

Lemma 13 *Under* E_t , for any scalar function $f(\Gamma)$ that depends on a trajectory set Γ and satisfies $f(\Gamma) \in [0, 1]$ *and for any policy set* $\Pi \subseteq \Pi$ *with* $|\Pi| \leq K$ *, we have*

1889
$$
\mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | s_1)}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi}(\cdot | s_1)}[f(\Gamma)] \le \sum_{\pi \in \Pi} \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi}(\cdot | s_1)}\left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l})\right] \text{ and }
$$

1890
\n1891
\n
$$
\mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi}(\cdot | s_1)}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | s_1)}[f(\Gamma)] \le \sum_{\pi \in \Pi} \mathbb{E}_{s_1 \sim \rho, l \sim \mathbb{P}^{\pi}(\cdot | s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right].
$$

1893

1894 1895 1896 1897 1898 1899 Proof Here we utilize some proof techniques in Lemma A.3 in [Chen et al.](#page-10-14) [\(2022\)](#page-10-14) and Lemma B.1 in [Chatterji et al.](#page-10-17) [\(2021\)](#page-10-17). For given $K_t \leq K$, let $\Gamma = \{l_k : k \in [K_t]\}, \Gamma^{i:j} = \{l_k : i \leq k \leq j\}$, and $\Pi^{i:j} = \{\pi_k : i \leq k \leq j\}$. We define \mathbb{P}^{π}_{h} to be a trajectory distribution where $s_1 \sim \rho$, the state-action pairs up to the end of step h are drawn from $\hat{\mathbb{P}}_t^{\pi}$, and the state-action pairs from step $h + 1$ up until the last step H are drawn from \mathbb{P}^{π} . We let s₁ be a vector for the initial state for the trajectories of Γ in which each element is i.i.d drawn from ρ . Then we have

1900 1901

1904 1905

1902 1903

$$
\mathbb{E}_{\mathbf{s}_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | \mathbf{s}_1)}[f(\Gamma)] - \mathbb{E}_{\mathbf{s}_1 \sim \rho, l_1 \sim \mathbb{P}^{\pi_1}(\cdot | \mathbf{s}_1), \Gamma^{2:K_t} \sim \mathbb{P}^{\Pi^{2:K_t}}(\cdot | \mathbf{s}_1)}[f(\Gamma)]
$$
\n
$$
= \sum_{h=1}^{H} \mathbb{E}_{\mathbf{s}_1 \sim \rho, l_1 \sim \mathbb{P}^{\pi_1}(\cdot | \mathbf{s}_1)}[f(\Gamma)] - \mathbb{E}_{\mathbf{s}_1 \sim \rho, l_1 \sim \mathbb{P}^{\pi_1}(\cdot | \mathbf{s}_1)}[f(\Gamma)]
$$
 (48)

1906 1907 Let $l_h = (s_1, a_1, \ldots, s_h, a_h)$. We also define $\pi_{h,1}$ is a policy of π_1 at step h. For the gap in the above equation when $h = 1$,

$$
\mathbb{E}_{\mathbf{s}_{1}\sim\rho,l_{1}\sim\mathbb{P}_{0}^{\pi_{1}},\Gamma^{2:K_{t}}\sim\mathbb{P}^{\Pi^{2:K_{t}}}(\cdot|\mathbf{s}_{1})}[f(\Gamma)]-\mathbb{E}_{\mathbf{s}_{1}\sim\rho,l_{1}\sim\mathbb{P}_{1}^{\pi_{1}},\Gamma^{2:K_{t}}\sim\mathbb{P}^{\Pi^{2:K_{t}}}(\cdot|\mathbf{s}_{1})}[f(\Gamma)]
$$
\n
$$
=\mathbb{E}_{\mathbf{s}_{1}\sim\rho}\mathbb{E}_{l_{1}\sim\mathbb{P}_{0}^{\pi_{1}},\Gamma^{2:K_{t}}\sim\mathbb{P}^{\Pi^{2:K_{t}}}(\cdot|\mathbf{s}_{1})}[f(\Gamma)]-\mathbb{E}_{\mathbf{s}_{1}\sim\rho}\mathbb{E}_{l_{1}\sim\mathbb{P}_{0}^{\pi_{1}},\Gamma^{2:K_{t}}\sim\mathbb{P}^{\Pi^{2:K_{t}}}(\cdot|\mathbf{s}_{1})}[f(\Gamma)]
$$
\n
$$
=0.
$$
\n(49)

1914 1915 Now we consider $h \geq 2$. For simplicity, we omit the expectation expression for $s_1^{2:K_t}$, which is the initial state vector for $\Gamma^{2:K_t}$, and $\Gamma^{2:K_t}$ in what follows. Then we have

1916
\n1917
\n
$$
\mathbb{E}_{l \sim \mathbb{P}_{h-1}^{\pi_1}}[f(\Gamma)] - \mathbb{E}_{l \sim \mathbb{P}_{h}^{\pi_1}}[f(\Gamma)]
$$
\n= $\mathbb{E}_{s_1 \sim \rho, l_{h-1} \sim \widehat{\mathbb{P}}_{t}^{\pi_1}(\cdot | s_1)}^{\pi_1}[\mathbb{E}_{l \sim \mathbb{P}_{h-1}^{\pi_1}}[f(\Gamma)|l_{h-1}] - \mathbb{E}_{l \sim \mathbb{P}_{h}^{\pi_1}}[f(\Gamma)|l_{h-1}]]$
\n1919
\n1920
\n1921
\n1922
\n
$$
= \mathbb{E}_{s_1 \sim \rho, l_{h-1} \sim \widehat{\mathbb{P}}_{t}^{\pi_1}(\cdot | s_1)}^{\pi_1}[\mathbb{E}_{s_h \sim \mathbb{P}(\cdot | s_{h-1}, a_{h-1})}[\mathbb{E}_{a_h \sim \pi_{h,1}(\cdot | s_h, l_{h-1})}[\mathbb{E}_{l \sim \mathbb{P}_{h-1}^{\pi_1}}[f(\Gamma)|l_{h-1}, s_h, a_h]]]
$$

\n1922
\n1923
\n1924
\n1925
\n1926
\n1926
\n1927
\n
$$
\leq \mathbb{E}_{s_1 \sim \rho, l_{h-1} \sim \widehat{\mathbb{P}}_{t}^{\pi_1}(\cdot | s_1)}\left[\max_{V \in V} \sum_{s \in S} (\mathbb{P}(s|s_{h-1}, a_{h-1}) - \widehat{\mathbb{P}}_{t}(s|s_{h-1}, a_{h-1}))V(s)\right]
$$

\n1928
\n1929
\n1928
\n1929
\n1928
\n1928
\n1929
\n1928
\n1929
\n1928
\n1929
\n1928
\n1929
\n1928
\n1929
\n1928
\n1929
\n1920
\n1928
\n1929
\n1920
\n1921
\n1928
\n1929
\n1920

where the last inequality is obtained from $E^{(2)}$. From [\(48\)](#page-35-0), [\(49\)](#page-35-1), and [\(50\)](#page-35-2), we have

$$
\mathbb{E}_{\mathbf{s}_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | \mathbf{s}_1)}[f(\Gamma)] - \mathbb{E}_{\mathbf{s}_1 \sim \rho, l_1 \sim \widehat{\mathbb{P}}_t^{\pi_1}(\cdot | \mathbf{s}_1), \Gamma^{2:K_t} \sim \mathbb{P}^{\Pi^{2:K_t}}(\cdot | \mathbf{s}_1)}[f(\Gamma)]
$$
\n
$$
= \sum_{h=1}^{H} \mathbb{E}_{l \sim \mathbb{P}_{h-1}^{\pi_1}}[f(\Gamma)] - \mathbb{E}_{l \sim \mathbb{P}_h^{\pi_1}}[f(\Gamma)]
$$
\n
$$
H
$$

$$
\leq \sum_{h=2}^{}\mathbb{E}_{s_1\sim \rho, l_{h-1}\sim \widehat{\mathbb{P}}_t^{\pi_1}(\cdot|s_1)}\left[b_{\mathbb{P},t}(s_{h-1},a_{h-1})\right]
$$

1938 1939

1939
\n
$$
\leq \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi_1}(\cdot | s_1)} \left[\sum_{h=2}^H \max_{V \in \mathcal{V}} b_{\mathbb{P},t}(s_{h-1,l}, a_{h-1,l}, V) \right]
$$
\n1941

1942

$$
= \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi_1}(\cdot | s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right].
$$

1944 1945 From the above, we can show the following inequalities:

$$
\begin{array}{c} 1946 \\ 1947 \\ 1948 \end{array}
$$

$$
\mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | s_1)}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, l_1 \sim \mathbb{P}^{\pi_1}(\cdot | s_1), \Gamma^{2:K_t} \sim \mathbb{P}^{\Pi^{2:K_t}}(\cdot | s_1)}[f(\Gamma)]
$$
\n
$$
\leq \mathbb{E}_{s_1 \sim \rho, l \sim \mathbb{P}^{\pi_1}(\cdot | s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right],
$$
\n
$$
\mathbb{E}_{s_1 \sim \rho, l_1 \sim \mathbb{P}^{\pi_1}(\cdot | s_1), \Gamma^{2:K_t} \sim \mathbb{P}^{\Pi^{2:K_t}}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma^{1:2} \sim \mathbb{P}^{\Pi^{1:2}}_t(\cdot | s_1), \Gamma^{3:K_t} \sim \mathbb{P}^{\Pi^{3:K_t}}(\cdot | s_1)}[f(\Gamma)]
$$
\n
$$
\leq \mathbb{E}_{s_1 \sim \rho, l_0 \sim \mathbb{P}^{\pi_2}(\cdot | s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right],
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi_2}(\cdot | s_1)} \left[\sum_{h=1}^{n-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$

:

$$
\begin{array}{c} 1954 \\ 1955 \\ 1956 \end{array}
$$

$$
\mathbb{E}_{s_1 \sim \rho, \Gamma^{1:K_t-1} \sim \widehat{\mathbb{P}}_t^{\Pi^{1:K_t-1}}(\cdot | s_1), l_{K_t} \sim \mathbb{P}^{\pi_{K_t}}}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi}(\cdot | s_1)}[f(\Gamma)]
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi_{K_t}}(\cdot | s_1)}\left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l})\right].
$$

By summing the above inequalities, we have

$$
\mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot | s_1)}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi}(\cdot | s_1)}[f(\Gamma)] \le \sum_{\pi \in \Pi} \mathbb{E}_{s_1 \sim \rho, l \sim \widehat{\mathbb{P}}_t^{\pi}(\cdot | s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right].
$$

By following the same procedure, we can easily show that

$$
\begin{array}{ll}\n\text{1966} & \text{By following the same procedure, we can classify show that} \\
\text{1967} & \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi}(\cdot \mid s_1)}[f(\Gamma)] - \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi}(\cdot \mid s_1)}[f(\Gamma)] \leq \sum_{\pi \in \Pi} \mathbb{E}_{s_1 \sim \rho, l \sim \mathbb{P}^{\pi}(\cdot \mid s_1)} \left[\sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right], \\
\text{1968} & \text{which concludes the proof.} \n\end{array}
$$

1969 1970

1971 1972 1973 1974 1975 1976 1977 We can show that $\frac{\sum_{l \in \Gamma} v_l \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l)}$ $\frac{\sum_{l \in \Gamma} v_l \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l)}$ is non-decreasing function with respect to $v_l \in \mathbb{R}$ as follows. We consider v'_l for $l \in \Gamma$ such that $v_l \le v'_l$. Since $\frac{\partial}{\partial v_l}$ $\frac{v_l \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l)} \geq 0$, we have $\frac{v_l^+ \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l)}$ $\frac{v_l^{\vee} \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l)} \leq$ $v_l^{\prime +} \exp(v_l)$ $\frac{v_l^{(1)} \exp(v_l)}{1 + \sum_{l \in \Gamma} \exp(v_l')}$. Let $v_{l,t}' = \phi_t(l)^\top \theta_v + 2\beta_t ||\phi_t(l)||_{H_t^{-1}}$. Under E_t , we can observe that $v_{l,t} \leq \overline{v}_{l,t} \leq$ $v'_{l,t}$. Then, from the above and Lemma [13,](#page-34-2) we can show that

$$
R_t(\Pi_t^*, p_t^*) = \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi^*}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} p_{l,t}^* \exp(v_{l,t}) \mathbbm{1}(p_{l,t}^* \le v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t}) \mathbbm{1}(p_{l,t}^* \le v_{l,t})} \right]
$$

$$
= \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi^*}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} v_{l,t} \exp(v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t})} \right]
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi^*}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} v_{l,t} \exp(v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi^*}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} \overline{v}_{l,t} \exp(\overline{v}_{l,t})}{1 + \sum_{l \in \Gamma} \exp(\overline{v}_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \widehat{\mathbb{P}}_t^{\Pi_t}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} \overline{v}_{l,t} \exp(\overline{v}_{l,t})}{1 + \sum_{l \in \Gamma} \exp(\overline{v}_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$

$$
\leq \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi_t}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} \overline{v}_{l,t} \exp(\overline{v}_{l,t})}{1 + \sum_{l \in \Gamma} \exp(\overline{v}_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$

1995
\n1996
\n
$$
\leq \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi_t}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} v'_{l,t} \exp(v'_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v'_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right],
$$
\n(51)

1998 1999 2000 where the second equality is obtained from $p_{l,t}^* = v_{l,t}$, and the third last inequality is obtained from the algorithm's policy selection rule.

Since $p_{l,t} = \underline{v}_{l,t}^+$ from the algorithm and $\underline{v}_{l,t}^+ \le v_{l,t}$ under E_t , we have

2001 2002 2003

2015 2016

2020

2023

2045

$$
R_t(\Pi_t, p_t) = \mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi_t}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} \underline{v}_{l,t}^+ \exp(v_{l,t}) \mathbb{1}(\underline{v}_{l,t}^+ \le v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t}) \mathbb{1}(\underline{v}_{l,t}^+ \le v_{l,t})} \right]
$$

=
$$
\mathbb{E}_{s_1 \sim \rho, \Gamma \sim \mathbb{P}^{\Pi_t}(\cdot | s_1)} \left[\frac{\sum_{l \in \Gamma} \underline{v}_{l,t}^+ \exp(v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t})} \right].
$$
 (52)

From [\(51\)](#page-36-0) and [\(52\)](#page-37-0), under E_t we have

$$
R_{t}(\Pi_{t}^{*}, p_{t}^{*}) - R_{t}(\Pi_{t}, p_{t})
$$
\n
$$
= \mathbb{E}_{s_{1} \sim \rho, \Gamma \sim \mathbb{P}^{\Pi_{t}}(\cdot | s_{1})} \left[\frac{\sum_{l \in \Gamma} v_{l,t}^{*} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t}^{*})} - \frac{\sum_{l \in \Gamma} v_{l,t}^{+} \exp(v_{l,t})}{1 + \sum_{l \in \Gamma} \exp(v_{l,t})} + \sum_{l \in \Gamma} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$
\n
$$
= \mathbb{E}_{\Gamma_{t}} \left[\frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{*} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t}^{*})} - \frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{+} \exp(v_{l,t})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t})} + \sum_{l \in \Gamma_{t}} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right]
$$
\n
$$
= \mathbb{E}_{\Gamma_{t}} \left[\frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{*} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t}^{*})} - \frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{+} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t}^{*})} + \frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{+} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t}^{*})} - \frac{\sum_{l \in \Gamma_{t}} v_{l,t}^{+} \exp(v_{l,t}^{*})}{1 + \sum_{l \in \Gamma_{t}} \exp(v_{l,t}^{*})} \right]
$$
\n
$$
+ \mathbb{E}_{\Gamma_{t}} \left[\sum_{l \in \Gamma_{t}} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right].
$$
\

Let $\widetilde{\phi}_t(l) = \phi_t(l) - \mathbb{E}_{l' \sim P_{t,\theta_0}(\cdot | \Gamma_t, p_t)}[\phi_t(l')]$. By following the proof steps in Lemmas [3,](#page-15-1)[4,](#page-16-1) and [5,](#page-17-0) with $v'_{l,t} - \underline{v}_{l,t} = O(\beta_{\tau_t} || \phi_t(\tilde{l}) ||_{H_t^{-1}})$, we can show that

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2046 2047 2048 2049 2050 2051 $\sum_{i=1}^{T}$ $t=1$ $\mathbb{E}\left[\left(\frac{\sum_{l\in\Gamma_t}v_{l,t}^{\prime+}\exp(v_{l,t}^\prime)}\right)$ $\frac{\sum_{l\in\Gamma_t}v_{l,t}-\sum_{l\in\Gamma_t}\exp(v'_{l,t})}{1+\sum_{l\in\Gamma_t}\exp(v'_{l,t})} \sum_{l \in \Gamma_t} \underline{v}_{l,t}^+ \exp(v_{l,t}')$ $1 + \sum_{l \in \Gamma_t} \exp(v'_{l,t})$ $^{+}$ $\sum_{l \in \Gamma_t} \underline{v}_{l,t}^+ \exp(v_{l,t}')$ $\frac{\sum_{l\in\Gamma_t}\sum_{t\in\Gamma_t}\exp(v'_{l,t})}{1+\sum_{l\in\Gamma_t}\exp(v'_{l,t})} \sum_{l \in \Gamma_t} \underline{v}_{l,t}^+ \exp(v_{l,t})$ $1 + \sum_{l \in \Gamma_t} \exp(v_{l,t})$ $\bigg\} 1(E_t)$ $= O\left(\sum_{i=1}^{T} \right)$ $t=1$ $\mathbb{E}\left[\left(\beta_{\tau_{t}}^{2}\right) \right]$ $\left(\max_{l \in \Gamma_t} \|\phi_t(l)\|_{H_t^{-1}}^2 + \max_{l \in \Gamma_t} \|\widetilde{\phi}_t(l)\|_{H_t^{-1}}^2 \right)$ \setminus $+\beta_{\tau_t} \sum$ $\left(\sum_{l\in\Gamma_t} P_{t,\widehat{\theta}_t}(l|\Gamma_t, p_t) \left(\|\phi_t(l)\|_{H_t^{-1}} + \|\widetilde{\phi}_t(l)\|_{H_t^{-1}} \right) \right) \mathbbm{1}(E_t) \right]$ $=$ \overline{O} $\sqrt{ }$ $\Big|\mathbb{E}$ \lceil β_{τ_T} $\sqrt{ }$ $\sqrt{\sum}$ $t \in [T]$ \sum $\sum_{l \in \Gamma_t} P_{t,\widehat{\theta}_t}(l|\Gamma_t, p_t)$ $\sqrt{ }$ $\sqrt{\sum}$ $t \in [T]$ \sum $\sum_{l\in\Gamma_t} P_{t,\widehat{\theta}_t}(l|\Gamma_t, p_t) \|\phi_t(l)\|_{H_t^{-1}}^2$ $+\sqrt{\sum}$ $t \in [T]$ \sum $\sum_{l\in\Gamma_t} P_{t,\widehat{\theta}_t}(l|\Gamma_t, p_t) \|\widecheck{\phi}_t(l)\|_{H_t^{-1}}^2$ \setminus $\overline{1}$ \setminus $+\frac{d}{\kappa}$ $\frac{a}{\kappa} \beta_{\tau_{T}}^{2}$ 1 $\overline{1}$ \setminus \vert $= \widetilde{O}\left(\mathbb{E}[\beta_{\tau_T}] \right)$ √ $\overline{dT}+\frac{d^3}{ }$ κ $\bigg) = \widetilde{O}\left(d^{\frac{3}{2}}\sqrt{\frac{3}{2}}\right)$ $\overline{T} + \frac{d^3}{ }$ κ \setminus . (54)

2052 2053 From [\(53\)](#page-37-1) and [\(54\)](#page-37-2) and Lemma [18,](#page-41-2) we have

$$
\sum_{t=1}^{T} \mathbb{E} \left[(R_t(\Pi_t^*, p_t^*) - R_t(\Pi_t, p_t)) \mathbb{1}(E_t) \right]
$$
\n
$$
\leq \sum_{t \in [T]} \mathbb{E} \left[\left(\frac{\sum_{l \in \Gamma_t} v_{l,t}^{\prime +} \exp(v_{l,t}^{\prime})}{1 + \sum_{l \in \Gamma_t} \exp(v_{l,t}^{\prime})} - \frac{\sum_{l \in \Gamma_t} v_{l,t}^{\prime +} \exp(v_{l,t})}{1 + \sum_{l \in \Gamma_t} \exp(v_{l,t})} + \sum_{l \in \Gamma_t} \sum_{h=1}^{H-1} 2b_{\mathbb{P},t}(s_{h,l}, a_{h,l}, V_{t,h,l}) \right) \mathbb{1}(E_t) \right]
$$
\n
$$
= \widetilde{O} \left(d^{\frac{3}{2}} \sqrt{T} + \sqrt{d_{\mathbb{P}} K HT \log(\mathcal{N}(\mathcal{F}_{\mathbb{P}}, 1/THK, ||\cdot||_{\infty}))} + \frac{d^3}{\kappa} \right).
$$

From $\mathbb{P}(E_T^c) = O(1/T)$ and $E_1^c \subseteq E_2^c, \dots, \subseteq E_T^c$, we can conclude the proof by

$$
\sum_{t=1}^{T} \mathbb{E} \left[(R_t(\Pi_t^*, p_t^*) - R_t(\Pi_t, p_t)) \mathbb{1}(E_t^c) \right] \le \sum_{t=1}^{T} \mathbb{P}(E_T^c) = O(1).
$$

2068 2069 2070

A.6 PROOF OF LEMMA [4](#page-16-1)

2071 2072 2073 2074 2075 Here we utilize some proof techniques in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11). Let $Q(u) = \frac{\sum_{i \in S_t} v_{i,t}^{\dagger} \exp(u_i)}{1 + \sum_{i} \exp(u_i)}$ $\frac{\sum_{i \in S_t} v_{i,t} \exp(u_i)}{1 + \sum_{i \in S_t} \exp(u_i)}$ and $u_t^p =$ $[u_{i,t}^p : i \in S_t]$. Then by applying a second-order Taylor expansion, there exists $\xi_t^i = (1-c)u_t^p + c\overline{u}_t^i$ for some $c \in (0, 1)$ such that

$$
\frac{\sum_{i \in S_t} v_{i,t}^+ \exp(\overline{u}_{i,t}')}{1 + \sum_{i \in S_t} \exp(\overline{u}_{i,t}')} - \frac{\sum_{i \in S_t} v_{i,t}^+ \exp(u_{i,t}^p)}{1 + \sum_{i \in S_t} \exp(u_{i,t}^p)}
$$
\n
$$
= \sum_{i \in S_t} \nabla_i Q(u_t) (\overline{u}_{i,t}^{\prime} - u_{i,t}^p) + \frac{1}{2} \sum_{i \in S_t} \sum_{j \in S_t} (\overline{u}_{i,t}^{\prime} - u_{i,t}^p) \nabla_{ij} Q(\xi_t^{\prime}) (\overline{u}_{i,t}^{\prime} - u_{i,t}^p). \tag{55}
$$

2084

> Let $x_{i_0,t} = \mathbf{0}_d$ and $w_{i_0,t} = \mathbf{0}_d$ implying $z_{i_0,t} = \mathbf{0}_{2d}$. Then for the first order term in the above, we have

2085
\n2086
\n2088
\n2089
\n
$$
= \sum_{i \in S_t} \sum_{i} t_i P_{i,t}(u_t) (\overline{u}'_{i,t} - u_{i,t}^p) - \sum_{i,j \in S_t} \sum_{i,t} t_i P_{i,t}(u_t) P_{j,t}(u_t) (\overline{u}'_{j,t} - u_{j,t}^p)
$$
\n2090
\n2091
\n2092
\n2093
\n2094
\n2095
\n2096
\n2097
\n2098
\n2099
\n2099
\n2091
\n2092
\n2093
\n2094
\n2095
\n2096
\n2097
\n2098
\n2099
\n2099
\n2099
\n2091
\n2094
\n2095
\n2096
\n2097
\n2098
\n2099
\n2099
\n2099
\n2091
\n2091
\n2092
\n2094
\n2095
\n2096
\n2097
\n2098
\n2099
\n2099
\n2099
\n2099
\n2091
\n2010
\n2011
\n2022
\n2032
\n2033
\n2044
\n205
\n206
\n207
\n208
\n2098
\n2099
\n2099
\n2010
\n2011
\n2011
\n2022
\n2032
\n2033
\n204
\n204
\n205
\n206
\n207
\n
$$
\beta_t \underline{t}_t P_{i,t}(u_t) (\|z_{i,t}(p_{i,t})\|_{H_t^{-1}} + \|x_{i,t}\|_{H_{v,t}^{-1}})
$$
\n2099
\n2102
\n2103
\n2104
\n2105
\n2104
\n2105

2106 2107 For the first two terms in the above, we have

$$
\frac{2108}{2109}
$$

$$
||z_{i,t}(p_{i,t})||_{H_t^{-1}} - \sum_{j \in S_t} P_{j,t}(u_t)||z_{j,t}(p_{j,t})||_{H_t^{-1}}
$$

2110 2111

2117 2118

$$
= \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} - \sum_{j \in S_t \cup \{i_0\}} P_{j,t}(u_t) \|z_{j,t}(p_{j,t})\|_{H_t^{-1}}
$$

 $= \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} - \mathbb{E}_{j \sim P_{t,\theta^*}(\cdot | S_t, p_t)} \left[\|z_{j,t}(p_{j,t})\|_{H_t^{-1}} \right]$

2112 2113

2114

$$
\leq \|z_{i,t}(p_{i,t})\|_{H_t^{-1}} - \left\|\mathbb{E}_{j \sim P_{t,\theta^*}(\cdot|S_t, p_t)}[z_{j,t}(p_{j,t})]\right\|_{H_t^{-1}}
$$

2116

$$
\leq \left\| z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\theta^*}(\cdot | S_{t}, p_t)} \left[z_{j,t}(p_{j,t}) \right] \right\|_{H_t^{-1}},
$$

2119 2120 2121 2122 where the first inequality is obtained from Jensen's inequality and the last inequality is from $||a|| =$ $||a - b + b|| \le ||a - b|| + ||b||$. By following the proof steps in (H.1), (H.2), (H.3), and (H.4) in [Lee](#page-11-11) [& Oh](#page-11-11) [\(2024\)](#page-11-11), we can show that

$$
\sum_{i \in S_t} \sum_{i,t}^{t} P_{i,t}(u_t) \| z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\theta^*}(\cdot | S_t, p_t)} [z_{j,t}(p_{j,t})] \|_{H_t^{-1}} \n\leq \sum_{i \in S_t} P_{i,t}(u_t) \| z_{i,t}(p_{i,t}) - \mathbb{E}_{j \sim P_{t,\theta^*}(\cdot | S_t, p_t)} [z_{j,t}(p_{j,t})] \|_{H_t^{-1}} \n= O\left(\beta_{\tau_t} \max_{i \in S_t} \| z_{i,t}(p_{i,t}) \|_{H_t^{-1}}^2 + \beta_{\tau_t} \max_{i \in S_t} \| \widetilde{z}_{i,t} \|_{H_t^{-1}}^2 + \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i | S_t, p_t) \| \widetilde{z}_{i,t} \|_{H_t^{-1}} \right)
$$

,

where the first inequality is obtained from $0 \le \underline{v}_{i,t}^+ \le 1$ under E_t .

Then, likewise, we can show that

$$
\begin{array}{c} 2132 \\ 2133 \\ 2134 \\ 2135 \end{array}
$$

$$
\sum_{i \in S_t} \sum_{t=1}^{t} P_{i,t}(u_t) \left(\|x_{i,t}\|_{H_{v,t}^{-1}} - \sum_{j \in S_t} P_{j,t}(u_t) \|x_{j,t}\|_{H_{v,t}^{-1}} \right)
$$
\n
$$
\leq \sum_{i \in S_t} P_{i,t}(u_t) \|x_{i,t} - \mathbb{E}_{j \sim P_{t,\theta^*}(\cdot | S_t, p_t)} [x_{j,t}] \|_{H_{v,t}^{-1}}
$$

$$
= O\left(\beta_{\tau_t} \max_{i \in S_t} ||x_{i,t}||_{H_{v,t}^{-1}}^2 + \beta_{\tau_t} \max_{i \in S_t} ||\widetilde{x}_{i,t}||_{H_{v,t}^{-1}}^2 + \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) ||\widetilde{x}_{i,t}||_{H_{v,t}^{-1}}\right).
$$

2143 2144 Putting the above results together, for the first-order term, we have

$$
\sum_{i \in S_t} \nabla_i Q(u_t) (\overline{u}_{i,t}^{\prime} - u_{i,t})
$$
\n
$$
= O\left(\beta_{\tau_t}^2 (\max_{i \in S_t} \|z_{i,t}(p_{i,t})\|_{H_t^{-1}}^2 + \max_{i \in S_t} \|x_{i,t}\|_{H_{v,t}^{-1}}^2) + \beta_{\tau_t}^2 (\max_{i \in S_t} \|\widetilde{z}_{i,t}\|_{H_t^{-1}}^2 + \max_{i \in S_t} \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}}^2) + \beta_{\tau_t} \sum_{i \in S_t} P_{t,\widehat{\theta}_t}(i|S_t, p_t) (\|\widetilde{z}_{i,t}\|_{H_t^{-1}} + \|\widetilde{x}_{i,t}\|_{H_{v,t}^{-1}})\right).
$$
\n(56)

2153 2154 Now we provide a bound for the second order term. By following the proof steps in $(H.6)$ in Lee $\&$ [Oh](#page-11-11) [\(2024\)](#page-11-11) with $0 \le \underline{v}_{i,t}^+ \le 1$ under E_t , we can show that

$$
\frac{1}{2} \sum_{i,j \in S_t} (\overline{u}'_{i,t} - u_{i,t}) \nabla_{ij} Q(\xi'_t) (\overline{u}'_{i,t} - u_{i,t}) = O\left(\beta_{\tau_t}^2 (\max_{i \in S_t} ||z_{i,t}(p_{i,t})||^2_{H_t^{-1}} + \max_{i \in S_t} ||x_{i,t}||^2_{H_{v,t}^{-1}})\right).
$$
\n(57)

Then we can conclude the proof by [\(55\)](#page-38-1), [\(56\)](#page-39-0), and [\(57\)](#page-39-1).

2160 2161 A.7 PROOF OF LEMMA [7](#page-21-1)

2162 2163 For $1 \le t \le t_2 - 1$, since $p_{i,t} = 0$ from the algorithm, we have $y_{i,t} \sim \mathbb{P}_t(\cdot | S_t, p_t) = P_{t,\theta^*}(\cdot | S_t, p_t)$. Then from Lemma 1 in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11), for $1 \le t \le t_2$, we can show that $\mathbb{P}(E_t) \ge 1 - \frac{1}{T^2}$.

2164 2165 2166 2167 2168 2169 Now, we provide a proof for the time steps $t_{\tau} + 1 \leq t \leq t_{\tau+1}$ for $\tau \geq 2$. We utilize the proof procedure in Lemma 1 in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11). The main difference lies in focusing on the *conditional* probability for a good event in our proof. Under $E_{t_{\tau}}$, for $t_{\tau} \le t \le t_{\tau+1} - 1$, since $\underline{v}_{i,t} \le v_{i,t}$, we have $y_{i,t} \sim \mathbb{P}_t(\cdot|S_t, p_t) = P_{t,\theta^*}(\cdot|S_t, p_t)$. Then from Lemma F.1 in the previous work, we can show that for $t_{\tau} + 1 \le t \le t_{\tau+1}$, with $\eta = \frac{1}{2} \log(K+1) + 3$ and $\lambda \ge 1$, we have

$$
2170
$$
\n
$$
2171
$$
\n
$$
2172
$$
\n
$$
2172
$$
\n
$$
2173
$$
\n
$$
2174
$$
\n
$$
2175
$$
\n
$$
2176
$$
\n
$$
(58)
$$

Then from Lemmas [16](#page-41-3) and [17,](#page-41-4) for any $c > 0$ with $\lambda \geq 84d\eta$, we can show that with probability at least $1 - \delta$,

$$
\sum_{s=t_{\tau}}^{t-1} f_s(\theta^*) - f_s(\widehat{\theta}_{s+1})
$$
\n
$$
\leq (3\log(1 + (K+1)t) + 3) \left(\frac{17}{16}\lambda + 2\sqrt{\lambda}\log\left(2\sqrt{1+2t}/\delta\right) + 16\left(\log(2\sqrt{1+2t}/\delta)\right)^2\right) + 2
$$
\n
$$
+ \frac{1}{2c} \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_s - \widehat{\theta}_{s+1}\|_{H_s}^2 + 2\sqrt{6}cd\log(1 + (t+1)/2\lambda). \tag{59}
$$

2208

2210 2211

By setting $c = 2\eta$ and with $\lambda \ge 192\sqrt{2}\eta$, we have

$$
96\sqrt{2}\eta \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_{s+1} - \widehat{\theta}_{s}\|_{2}^{2} + \left(\frac{\eta}{c} - 1\right) \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_{s+1} - \widehat{\theta}_{s}\|_{H_{s}}^{2}
$$

=
$$
96\sqrt{2}\eta \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_{s+1} - \widehat{\theta}_{s}\|_{2}^{2} + \left(\frac{\eta}{c} - 1\right) \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_{s+1} - \widehat{\theta}_{s}\|_{H_{s}}^{2}
$$

$$
\leq \left(96\sqrt{2}\eta - \frac{\lambda}{2}\right) \sum_{s=t_{\tau}}^{t} \|\widehat{\theta}_{s+1} - \widehat{\theta}_{s}\|_{2}^{2} \leq 0,
$$
 (60)

where the first inequality comes from $H_s \succeq \lambda I_{2d}$. Set $\delta = 1/T^2$. Then under $E_{t_{\tau}}$, from [\(58\)](#page-40-1), [\(59\)](#page-40-2), [\(60\)](#page-40-3), with probability at least $1 - 1/T^2$, we obtain

$$
2203
$$
\n
$$
2204
$$
\n
$$
2205
$$
\n
$$
2205
$$
\n
$$
2206
$$
\n
$$
2207
$$
\n
$$
4\eta\sqrt{6}cd\log(1 + (K+1)t) + 6) \left(\frac{17}{16}\lambda + 2\sqrt{\lambda}\log(2\sqrt{1 + 2t}) + 16(\log(2\sqrt{1 + 2t})^2) + 4\eta
$$
\n
$$
2207
$$
\n
$$
4\eta\sqrt{6}cd\log(1 + (t+1)/2\lambda) + \|\hat{\theta}_{t_\tau} - \theta^*\|_{H_{t_\tau}}^2
$$
\n
$$
2208
$$
\n
$$
2209
$$
\n
$$
2200
$$
\n
$$
2210
$$
\n
$$
2211
$$
\n
$$
4\eta\sqrt{6}cd\log(1 + (K+1)t) + 6) \left(\frac{17}{16}\lambda + 2\sqrt{\lambda}\log(2\sqrt{1 + 2t}) + 16(\log(2\sqrt{1 + 2t})^2) + 4\eta
$$
\n
$$
2212
$$
\n
$$
2212
$$

2213 Finally, we can conclude that, for $1 \le t \le t_2$, we have $\mathbb{P}(E_t) \ge 1 - \frac{1}{T^2}$, and for $\tau \ge 2$ and $t_{\tau} + 1 \le t \le t_{\tau+1}$, we have $\mathbb{P}(E_t|E_{t_{\tau}}) \ge 1 - \frac{1}{T^2}$.

2214 2215 A.8 NECESSARY LEMMAS

2216 2217 Lemma 14 (Lemma 12 in [Abbasi-Yadkori et al.](#page-10-18) [\(2011\)](#page-10-18)) *Let* A, B, *and* C *be positive semidefinite matrices such that* $A = B + C$ *. Then we have*

$$
\sup_{x \neq 0} \frac{x^{\top} A x}{x^{\top} B x} \le \frac{\det(A)}{\det(B)}.
$$

2221 2222 2223 Lemma 15 (Lemma 10 in [Abbasi-Yadkori et al.](#page-10-18) [\(2011\)](#page-10-18)) *Suppose* $X_1, X_2, \ldots, X_t \in \mathbb{R}^d$ and for $\|a\|_2 \leq s \leq t$, $\|X_s\|_2 \leq L$ *. Let* $V_{t+1} = \lambda I + \sum_{s=1}^t X_s X_s^\top$ for some $\lambda > 0$ *. Then we have*

$$
\det(V_{t+1}) \le (\lambda + tL^2/d))^d.
$$

2225 2226

2224

2218 2219 2220

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 We define $\sigma_t(z) : \mathbb{R}^{S_t} \to \mathbb{R}^{S_t}$ such that $[\sigma_t(z)]_i = \frac{\exp(z_i)}{1 + \sum_{j=1}^{S_t} \exp(z_j)}$. We also denote the probability of choosing the outside option as $[\sigma_t(z)]_0 = \frac{1}{1+\sum_{j=1}^{S_t} \exp(z_j)}$ with $i_0 := 0$. We define a pseudoinverse function of $\sigma_t(\cdot)$ such that $\sigma(\sigma^+(p)) = p$ for any $q \in \{p \in [0,1]^{S_t} \mid ||p||_1 < 1\}$. We can observe that $\sigma_t^+ : \mathbb{R}^{S_t} \to \mathbb{R}^{S_t}$ where $[\sigma_t^+(q)]_i = \log(q_i/(1 - ||q||_1))$ for any $q \in \{p \in$ $[0,1]^{S_t} \|\|p\|_1 < 1$. We also define $\widetilde{z}_s = \sigma_s^+ (\mathbb{E}_{w \sim P_s}[\sigma_s([z_{i,t}(p_{i,t})^\top w]_{i \in S_s})])$ and $P_s = \mathcal{N}(\widehat{\theta}_s, (1 + \mathbb{E}_{w \sim P_s}[\sigma_s([z_{i,t}(p_{i,t})^\top w]_{i \in S_s}))_{i \in S_s})$ cH_s^{-1})) for a positive constant $c > 0$. We define $f_t(z, y) = \sum_{i=0}^{S_t} \mathbb{1}(y_{i,t}) \log(\frac{1}{[\sigma_t(z)]_i})$. Then we have the following lemmas.

2237 2238 Lemma 16 (Lemma F.2 in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11)) *Let* $\delta \in (0,1]$ *and* $\lambda \geq 1$ *. For* $\tau > 2$ *and* $t_{\tau} + 1 \leq$ $t \leq t_{\tau+1}$, under $E_{t_{\tau}}$, with probability at least $1 - \delta$, we have

$$
\sum_{\substack{2240\\2242\\2243}}^{t-1} \sum_{s=t_{\tau}}^{t-1} f_s(\theta^*) - \sum_{s=1}^t f_s(\widetilde{z}_s, y_s)
$$
\n
$$
\leq (3\log(1 + (K+1)t) + 3) \left(\frac{17}{16} \lambda + 2\sqrt{\lambda} \log\left(\frac{2\sqrt{1+2t}}{\delta}\right) + 16\left(\log\left(\frac{2\sqrt{1+2t}}{\delta}\right)\right)^2 \right) + 2.
$$
\n
$$
\sum_{\substack{2245\\2245}}^{t-1} \sum_{s=1}^{t-1} f_s(\widetilde{z}_s, y_s) = 3\log(1 + (K+1)t) + 3\log(1 + 2t) + 3\log(1
$$

2247 2248 Lemma 17 (Lemma F.3 in [Lee & Oh](#page-11-11) [\(2024\)](#page-11-11)) *For any* $c > 0$ *, let* $\lambda \ge \max\{2, 72cd\}$ *. For* $\tau > 2$ \int t_{τ} + $1 \leq t \leq t_{\tau+1}$, under $E_{t_{\tau}}$, we have

$$
\sum_{s=t_{\tau}}^{t-1} f_s(\widetilde{z}_s, y_s) - f_s(\widehat{\theta}_{s+1}) \leq \frac{1}{2c} \sum_{s=t_{\tau}}^{t-1} \|\widehat{\theta}_s - \widehat{\theta}_{s+1}\|_{H_s}^2 + \sqrt{6}cd \log \left(1 + \frac{t+1}{2\lambda}\right).
$$

2252 2253 2254

224

2246

2249 2250 2251

Lemma 18 *Under* $E^{(2)}$ *, we have*

$$
\sum_{t=1}^{T} \sum_{\tau \in \Gamma_t} b_{\mathbb{P},t}(s_{h,\tau}, a_{h,\tau}, V_{t,h,\tau}) = O\left(\sqrt{d_{\mathbb{P}} KHT \log(T\mathcal{N}(\mathcal{F}_{\mathbb{P}}, 1/THK, \|\cdot\|_{\infty}))}\right)
$$

Proof We can show this proof by using Lemma D.6 in [Chen et al.](#page-10-14) [\(2022\)](#page-10-14), Lemma 8 in [Ayoub et al.](#page-10-15) [\(2020\)](#page-10-15), and $|\Gamma_t| \leq K$.

2262 2263 2264

2265

2266