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ABSTRACT

Sampling-based black-box optimization, e.g., zeroth-order optimization and Evo-
lution strategy, is important for the material design, molecular design and etc.
However, existing sampling-based black-box optimization methods only employ
simple parametric distribution, typically Gaussian distribution, as the sampling
distribution to generate queries. This limits the capabilities of modeling complex
distribution to generate good candidates and influence the query efficiency. In
this work, we propose a novel nonparametric black-box optimization method that
performs proximal distributional update for sampling. Particularly, we derive the
closed-form update rule based on the diffusion process (e.g., Ornstein–Uhlenbeck
process). Our sampling and updating method supports black-box target function
f(·) without accessing the ∇f , which is critical for our nonparametric distribu-
tional black-box optimization.

1 INTRODUCTION

Black-box optimization has demonstrated its success in many recent applications, such as prompt
fine-tuning for large language models (Sun et al., 2022b;a), policy search for robot control and
reinforcement learning (Choromanski et al., 2019; Lizotte et al., 2007; Barsce et al., 2017; Sali-
mans et al., 2017), automatic hyper-parameters tuning in machine learning problems (Snoek et al.,
2012), black-box architecture search in engineering design (Wang & Shan, 2007), drug discov-
ery (Negoescu et al., 2011) and accelerated simulation for scientific discovery (Maddox et al., 2021;
Hernández-Lobato et al., 2017), etc. Many efforts have been made for black-box optimization in
the literature, including Bayesian optimization (BO) methods (Srinivas et al., 2010; Gardner et al.,
2017; Nayebi et al., 2019), stochastic optimization methods like evolution strategies (ES) (Back
et al., 1991; Hansen, 2006; Wierstra et al., 2014; Lyu & Tsang, 2021; Lyu, 2023) and genetic algo-
rithms (Srinivas & Patnaik, 1994; Mirjalili & Mirjalili, 2019).

Stochastic optimization methods, e.g., ES (Rechenberg & Eigen, 1973; Nesterov & Spokoiny, 2017),
natural evolution strategies (NES) (Wierstra et al., 2014), CMAES (Hansen, 2006), and implicit nat-
ural gradient optimizer (INGO) (Lyu & Tsang, 2021), typically sampling form Gaussian distribu-
tion and approximate the (natural) gradient for the update of the Gaussian distribution parameters
for continuous optimization. However, the requirement of parametric sampling distributions, e.g.,
Gaussian distribution, may suffer from handling complex distribution. As a result, this may limit
the exploration ability and lead to the shallow local optimum.

Recently, diffusion models have shown a great success to generate samples from complex distribu-
tions Song et al. (2020). Futhermore, many works investigate the theoretical properties of diffusion
model alignment (Kawata et al., 2025), and diffusion model target generation (Lyu et al., 2024;
Tan et al., 2025). This inspires us to take advantage of the diffusion model to handle the complex
distributions in black-box optimization. Recently, Yang et al. (2020) proposed a particale-based
ditributional optimization algorithm under variational transport form. However, it cannot directly
handle black-box optimization.
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In this paper, we propose a novel nonparametric distributional black-box optimization algorithm.
Our method performs proximal distributional update and takes advantage of the diffusion SDE to
sample from the nonparametric distribution. We derive the closed-form sampling and update rule
that supports black-box target function f(·) without accessing the gradient∇f .

2 OUR METHODS

2.1 PROXIMAL DISTRIBUTIONAL UPDATE

Note that the optimization problem of f(x) w.r.t. x is equivalent to the optimization problem w.r.t.
the Dirac distribution as below:

min
x∈Rd

f(x)⇔ min
δx

EX∼δx [f(X)]. (1)

Thus, to minimize the target function f(·), we can optimize an augmented problem as Eq.(2)

min
p∈P

EX∼p[f(X)]. (2)

To optimize the above problem, we propose a proximal distributional update by iteratively solving

pk+1 = argmin
p∈P

{
Ep[f(X)] + λKL(p||pk)

}
, (3)

where pk denotes the distribution at kth iteration.

The optimal distribution that minimizes the problem in Eq.(3) has the following form:

pk+1(x) ∝ pk(x)e−
f(x)
λ (4)

We now show the property of our proximal distributional update. From the update rule of pk+1 for
each k, we know that

pk+1(x) ∝ pk(x)e−
f(x)
λ ∝ pk−1(x)e−

2f(x)
λ ∝ · · · ∝ p0(x)e−

(k+1)f(x)
λ (5)

Thus, we know the distribution pk has the following form:

pk(x) ∝ p0(x)e−
f(x)
λ/k (6)

This shows that pk is a solution of the problem Eq.(7)

pk = argmin
p∈P

{
Ep[f(X)] + λkKL(p||p0)

}
, (7)

where λk = λ
k and p0 is the prior distribution.

We can see that the parameter λk that controls the regularziation decays in a O( 1k ) rate. For f(·)
with uniqe optimal solution, the optimal distribution of problem (7) gradually converges to the Dirac
distribution δx∗ at the minimum solution x∗ of f(·).

2.2 SAMPLING VIA DIFFUSION PROCESS

There are two challenge points for our proximal distributional update: one is that pk is a complex
non-parametric distribution, which is not easy to generate samples. The other challenge is that the
target function f(x) is black-box, where the gradient∇f is not accessible. As a result, the standard
Langevin Monte Carlo sampling cannot be used due to the lack of gradient∇f .

To address these two challenges, we employ the diffusion process (e.g., Ornstein–Uhlenbeck pro-
cess) to sample from pk+1 as each iteration. Consider the forward stochastic differential equation
(SDE) of the diffusion model (Song et al., 2020) as below

dx = u(x, t)dt+ g(t)dw (8)
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where w is the standard Wiener process (Brown motion). The related backward SDE to recover
pk+1 is given as follows:

dx = [u(x, t)− g(t)2∇ log(pk+1
t (x))]dt+ g(t)dw̄ (9)

where w̄ denotes a standard Wiener process when time flows backwards from T to 0.

The score function∇ log(pk+1
t (xt)) can be derived as:

∇ log(pk+1
t (xt)) = ∇ log(

∫
pk(x0)p(xt|x0)e

− f(x0)
λ dx0) (10)

Particularly, we employ the VP diffusion process (Song et al., 2020). The forward SDE can be
written as

dx = −1

2
β(t)xdt+

√
β(t)dw (11)

The backward SDE is given as follows:

dx = [−1

2
β(t)x− β(t)∇ log(pk+1

t (x))]dt+
√

β(t)dw̄ (12)

The conditional probability p(xt|x0) is a Gaussian distribution N (αtx0, σ
2
t I), where αt =

e−
1
2

∫ t
0
β(s)ds and σt =

√
1− α2

t . Then, we can achieve the score function

∇ log(pk+1
t (xt)) = Epk(x0|xt)

[αtx0 − xt

σ2
t

e−
f(x0)

λ /Ck
t

]
(13)

where pk(x0|xt) denotes the posterior distribution at time t in the kth iteration, and Ck
t =∫

pk(x0|xt)e
− f(x0)

λ dx0. More detailed derivation can be found in the Appendix.

Discrete Time: In practice, we need to discrete the time of SDE in Eq.(12) to take samples. In
particular, we employ the DPM++ SDE solver in (Lu et al., 2022) to take samples. The concrete
sampling rule is given as follows:

xt−1 =
σt−1

σt
e−hxt + αt−1(1− e−2h)x̃0(t) + σt−1

√
1− e−2h z (14)

where z ∼ N (0, I), and h = log(αt−1

σt−1
)− log(αt

σt
), and x̃0(t) is given as follows:

x̃0(t) = Epk(x0|xt)

[
x0 · e−

f(x0)
λ /Ck

t

]
(15)

Finite Samples: We maintain a set of finite particles and employ Gaussian smooth estimation (Gaus-
sian kernel density estimation) to approximate pk(x0) at each iteration k. More specifically, given
N particles {xk

(1), · · · ,x
k
(N)} at iteration k, we employ Eq.(16) to approximate pk(x0)

pk(x0) ≈
1

N

N∑
i=1

1

(2πσ2)d/2
e−

1
2σ2 ∥x0−xk

(i)∥
2
2 (16)

where σ is a bandwidth parameter to control the smoothness.

Because the conditional probability p(xt|x0) is a Gaussian distributionN (αtx0, σ
2
t I), by the Bayes

rule, we know the posterior distribution pk(x0|xt) is a Gaussian mixture distribution:

pk(x0|xt) ≈
N∑
i=1

wiN (x0;µi, σ̄
2I) (17)

where the posterior mean is given as below:

µi =

(
α2
t

σ2
t

+ σ−2

)−1 (
αt

σ2
t

xt + σ−2xk
(i)

)
(18)

and posterior variance is given as below:

σ̄2 = (α2
t /σ

2
t + σ−2)−1 (19)
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Algorithm 1: Diffusion BO
Input: Number of iterations K, number of particles N , batch size M , number of diffusion

sampling steps T , diffusion scheme {αt}T0 , bandwidth σ.
Output: The particle set {xK

(1), · · · ,x
K
(N)}. And x̂∗ such that f(x̂∗) achieves the minimum

during the sampling process.
1 Initialize N particles {x0

(1), · · · ,x
0
(N)}

2 for k ← 0 to K − 1 do
3 do parallel for N particles update
4 Sample xT ∼ N (0, I).
5 for t← T to 1 do
6 Take M i.i.d. samples {x(1)

0 , · · · ,x(M)
0 } from pk(x0|xt) in Eq.(17).

7 Perform batch query to achieve black-box scores {f(x(1)
0 ), · · · , f(x(M)

0 )}
8 Compute x̂0(t) =

∑M
j=1 cjx

(j)
0 to approximate x̃0(t).

9 Perform diffusion sampling update xt−1 by Eq.(14) with the approximation x̂0(t).

10 Set particle xk+1
(i) = x0 with process ID i.

11 Collect particle set {xk+1
(1) , · · · ,xk+1

(N) }

And the weight wi is given as follows:

wi =
exp (−∥xt−αtx

k
(i)∥

2
2

2(α2
tσ

2+σ2
t )

)∑N
i=1 exp (−

∥xt−αtxk
(i)

∥2
2

2(α2
tσ

2+σ2
t )

)
(20)

Then, we can take M samples {x(1)
0 , · · · ,x(M)

0 } from the posterior pk(x0|xt) to approximate x̃0(t)

by x̂0(t) as x̂0(t) =
∑M

j=1 cjx
(j)
0 , where the weight cj is given as cj =

exp (−f(x
(j)
0 )/λ)∑M

j=1 exp (−f(x
(j)
0 )/λ)

. Our

detailed algorithm for distributional black-box optimization is presented in Algorithm 1.

3 EXPERIMENTS

We evaluate our Diffusion-BO on challenging benchmark test functions: Levy, Rastrigin, Nesterov,
and Rosenbrock. Rastrigin, Levy and Rosenbrock are smooth multi-mode functions, and Nesterov
is a non-smooth function. These functions are very challenging benchmarks for black-box optimiza-
tion. The problems are listed in Table 1 in Appendix. All the problems have minimum f(x∗) = 0.
The mean objective value (in log10-scale) over 10 trials is presented in Fig 1. It shows that our
Diffusion-BO can decrease the objective to a low value, especially on Levy and Rosenbrock, even
to a near optimal.

(a) Levy (b) Rasterigin10 (c) Nesterov(non-smooth) (d) Rosenbrock

Figure 1: Mean objective values (in log10 scale) v.s. number of iterations over 10 independent trials

4 CONCLUSIONS AND FUTURE WORK
We proposed a novel nonparametric black-box optimization method that performs proximal distri-
butional update for sampling. We derived the closed-form update rule based on the diffusion process
that supports black-box target function f(·) without accessing the ∇f . We leave the convergence
analysis of our method as one of our future work.
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Appendix

A DERIVATION OF EQ.(13)

∇ log(pk+1
t (xt)) = ∇ log(

∫
pk(x0)p(xt|x0)e

− f(x0)
λ dx0) (21)

=

∫
pk(x0)∇p(xt|x0)e

− f(x0)
λ dx0∫

pk(x0)p(xt|x0)e−
f(x0)

λ dx0

(22)

Note that p(xt|x0) = 1
(2πσ2

t )
d/2 exp (− 1

2σ2
t
∥xt − αtx0∥22), we have ∇p(xt|x0) =

p(xt|x0)
αtx0−xt

σ2
t

. Then, we have

∇ log(pk+1
t (xt)) =

∫
pk(x0)p(xt|x0)

αtx0−xt

σ2
t

e−
f(x0)

λ dx0∫
pk(x0)p(xt|x0)e−

f(x0)
λ dx0

(23)

=

∫
pk(x0|xt)

αtx0−xt

σ2
t

e−
f(x0)

λ dx0∫
pk(x0|xt)e−

f(x0)
λ dx0

(24)

Thus, we know that

∇ log(pk+1
t (xt)) = Epk(x0|xt)

[αtx0 − xt

σ2
t

e−
f(x0)

λ /Ck
t

]
(25)

where Ck
t =

∫
pk(x0|xt)e

− f(x0)
λ dx0

B TEST FUNCTIONS

Table 1: Test functions
name function

Levy f(x) :=
sin2(πw1) +

d−1∑
i=1

(wi − 1)
2
(1 + 10sin2(πwi + 1)) + (wd − 1)2(1 + sin2(2πwd))

where wi = 1 + (xi − 1)/4, i ∈ {1, ..., d}

Rastrigin10 f(x) := 10d+
d∑

i=1

(10
i−1
d−1xi)

2 − 10 cos
(
2π10

i−1
d−1xi

)
Nesterov (nonsmooth) f(x) := 1

4 |x1 − 1|+
∑d−1

i=1 |xi+1 − 2|xi|+ 1|
Rosenbrock f(x) :=

∑d−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2]
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