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Abstract

We explore if it is possible to learn data structures end-to-end with neural networks,
with a focus on the problem of nearest-neighbor (NN) search. To answer this
question, we introduce a framework for data structure discovery which adapts
to the underlying data distribution and provides fine-grained control over query
and space complexity. Crucially, the data structure is learned from scratch, and
does not require careful initialization or seeding with candidate data structures. In
several settings, we are able to reverse-engineer the learned data structures and
query algorithms. For 1D nearest neighbor search, the model discovers optimal
distribution (in)dependent algorithms such as binary search and variants of inter-
polation search. In higher dimensions, the model learns solutions that resemble
k-d trees in some regimes, while in others, elements of locality-sensitive hashing
emerge. Additionally, the model learns useful representations of high-dimensional
data such as images and exploits them to design effective data structures. Beyond
NN search, we believe the framework could be a powerful tool for data structure
discovery for other problems, and adapt it to the problem of estimating frequencies
over a data stream. To encourage future work in this direction, we conclude with a
discussion on some of the opportunities and remaining challenges of learning data
structures end-to-end.3

1 Introduction
Can neural networks discover data structures from scratch?

There are several motivations for this question. The first is scientific. Deep learning models are
increasingly performing tasks once considered exclusive to humans, from image recognition and
mastering the game of Go to engaging in natural language conversations. Designing data structures
and algorithms, along with solving complex math problems, are particularly challenging tasks. They
require searching through a vast combinatorial space with a difficult to define structure. It is therefore
natural to ask what it would take for deep learning models to solve such problems. There are already
promising signs: these models have discovered fast matrix-multiplication algorithms [1], solved SAT
problems [2], and learned optimization algorithms for various learning tasks [3, 4, 5].

The second motivation is practical. Data structures are ubiquitous objects that enable efficient
querying. Traditionally, they have been designed to be worst-case optimal and therefore agnostic to
the underlying data and query distributions. However, in many applications there are patterns in these
distributions that can be exploited to design more efficient data structures. This has motivated recent
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work on learning-augmented data structures which leverages knowledge of the data distribution
to modify existing data structures with predictions [6, 7, 8, 9]. In much of this work, the goal of
the learning algorithm is to learn distributional properties of the data, while the underlying query
algorithm/data structure is hand-designed. Though this line of work clearly demonstrates the potential
of leveraging distributional information, it still relies on expert knowledge to incorporate learning into
such structures. It is natural to ask if we can go a step further and let deep learning models discover
entire data structures and query algorithms in an end-to-end manner.

In this work, we investigate the possibility of end-to-end data structure discovery, with a focus on the
nearest neighbor search problem. A priori, it is not obvious how to frame data structure discovery as
an end-to-end learning problem. What are the underlying principles that unify different data structure
problems? How can a data structure be represented and queried using neural networks? How do we
ensure some notion of efficiency is enforced? Thus a main contribution of our work is in proposing
how to frame the problem. To help chart the landscape of this paradigm and explore its scope and
limits, we focus more on understanding the kind of algorithms that end-to-end learning discovers
than results on any given benchmark.

1.1 Framework for data structure discovery

... ... ...

Figure 1: Our model has two components: 1) A
data-processing network transforms raw data into
structured data, arranging it for efficient query-
ing and generating additional statistics when given
extra space (not shown in the figure). 2) A query-
execution network performs M lookups into the
output of the data-processing network to retrieve
the answer to some query q. Each lookup i is man-
aged by a separate query model Qi, which takes q
and the lookup history Hi, and outputs a one-hot
lookup vector mi indicating the position to query.

Data structure problems are often divided into
two steps: 1) construction and 2) query execu-
tion. The first step transforms a raw dataset
D into a structured database D̂, while the sec-
ond performs lookups into D̂ to answer a query
q. The performance of a data structure is typi-
cally quantified in terms of two measures: space
complexity—the memory required to store the
structure, and query complexity—the number
of lookups needed to answer a query. One can
typically tradeoff larger space complexity for
smaller query complexity, and vice versa. We
focus on these criteria as they are well-studied
and directly impact practical efficiency.

To learn data structures, we have a data-
processing network that learns how to map a raw
dataset to a data structure, and a query network
that learns an algorithm to answer queries using
the data structure (Fig. 1). To ensure efficiency,
we impose constraints on the data structure’s
size and the number of lookups the query net-

work makes. Crucially, we propose end-to-end training of both networks such that the learned data
structure and query algorithm are optimized for one another. In settings where it is beneficial to learn
lower-dimensional representations from high-dimensional data, end-to-end training also encourages
the representations to capture features that the data structure can exploit.

Why should learning data-structures end-to-end be possible? On one hand, jointly learning the data-
processing and query networks end-to-end seems obvious, given the many successes of end-to-end
learning over the past decade. On the other hand, it can be hard to imagine such learning getting
off the ground. For instance, if the data-processing network produces a random garbled function of
the dataset, the query model cannot do anything meaningful. In fact, we do observe cases where
end-to-end learning fails. This challenge is further compounded by the discrete and combinatorial
nature of how the query model accesses the data structure and the minimal supervision provided to
the models. Despite these challenges, we find that in several settings end-to-end learning can recover
a variety of classical algorithms.

1.2 Summary of Results

We focus our investigation on the problem of nearest neighbor (NN) search in both low and high
dimensions. NN search is an ideal starting point for understanding the landscape of end-to-end data
structure discovery given the extensive theoretical work on this topic, along with its widespread
practical applications (e.g., similarity search over language/image embeddings [10]). Moreover, the
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NN search problem has a rich design space and remains an active area of research [11, 12, 13]. In
addition to NN search, we also explore the problem of frequency estimation in streaming data and
discuss other potential applications for end-to-end data structure learning (Section 3).

Our findings are:

Learning Classical Algorithms (Sections 2.2, 2.3) For 1D nearest neighbor search, the data-
processing network learns to sort, while the query network simultaneously learns to search over the
sorted data. When the data follows a uniform or Zipfian distribution, the query network exploits this
structure to outperform binary search. On harder distributions lacking structure, the network adapts
by discovering binary search, which is worst-case optimal. Importantly, the model discovers that
sorting followed by the appropriate search algorithm is effective for NN search in 1D without explicit
supervision for these primitives. Similarly, in 2D, the model learns a data structure that outperforms
k-d trees for uniform distributions and demonstrates recursive partitioning behavior, resembling k-d
trees on harder distributions, by constructing medians along alternating dimensions.

Useful representations in high dimensions (Section 2.4) For high-dimensional data, the model
learns representations that improve NN search efficiency. For instance, with data from a uniform
distribution on a 30-dimensional hypersphere, it partitions space by projecting onto a pair of vectors,
similar to locality-sensitive hashing. When trained on an extended 3-digit MNIST dataset, the model
identifies features that capture number order, sorts images accordingly, and searches within the
sorted set—all learned jointly from scratch! Moreover, it performs competitively with existing data
structures on datasets like FashionMNIST and SIFT.

Beyond NN search (Section 3) To demonstrate broader applicability of the end-to-end learning
paradigm, we study frequency estimation, a classic problem where a memory-constrained model
observes a stream and estimates a query item’s frequency. The learned structure leverages the data
distribution to outperform baselines like CountMinSketch. Moreover, we use insights from the
learned model to improve CountMinSketch on a practical dataset. We also outline several other
problems for future work.

In summary, we take a first step toward end-to-end data structure learning, showing that it is not
only feasible, but also capable of exploring a rich algorithmic space and recovering meaningful—
sometimes even classical—solutions from scratch.

At the same time, our work has important limitations. Our experiments are limited to small-scale
settings, and further work is needed to scale them up. Also, while we focus on enforcing query and
space complexity constraints—arguably the most classical measures of efficiency—other aspects,
such as preprocessing time and the inference cost of neural networks require more investigation. We
discuss these limitations and potential solutions in Section 5.

2 Nearest Neighbor Search

Given a dataset D = {x1, ..., xN} of N points where xi ∈ Rd and a query q ∈ Rd, the nearest
neighbor y of q is defined as y = argminxi∈D dist(xi, q). We mostly focus on the case where
dist(·) corresponds to Euclidean distance. Our objective is to learn a data structure D̂ for D such
that given q and a budget of M lookups, we can output a (approximate) nearest neighbor of q by
querying at most M elements in D̂. When M ≥ N , y can be trivially recovered via linear search so
D̂ = D is sufficient. Instead, we are interested in the case when M ≪ N .4

2.1 Setup

Data-processing Network Recall that the role of the data-processing network is to transform a raw
dataset into a data structure. The backbone of our data-processing network is an 8-layer transformer
model based on the NanoGPT architecture [14] (see App B.1 for all architecture details). We use a
quadratic-attention transformer to keep the data-processing model relatively general, however, we
find that in certain settings it can be possible to use a cheaper alternative such as a transformer with
linear attention [15]. See App. D.1 for a more detailed discussion.

4E.g. in 1D, binary search requires M = log(N) lookups.
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In the case of NN search, we want the data structure to preserve the original inputs and just reorder
them appropriately as the answer to the nearest neighbor query should be one of elements in the
dataset. The model achieves this by outputting a rank associated with each element in the dataset,
which is then used to reorder the elements. More precisely, the transformer takes as input the
dataset D and outputs a scalar oi ∈ R representing the rank for each point xi ∈ D. These rankings
{o1, ..., oN} are then sorted using a differentiable sort function, sort({o1, o2 . . . , oN}) [16, 17, 18],
which produces a permutation matrix P that encodes the order based on the rankings. By applying
P to the input dataset D, we obtain D̂P , where the input data points are arranged in order of their
rankings. By learning to rank rather than directly outputting the transformed dataset, the transformer
avoids the need to reproduce the exact inputs. Note that this division into a ranking model followed
by sorting is without loss of generality as the overall model can represent any arbitrary ordering of
the inputs. See App. E.2 for more information on why we learn permutations.

Query Execution Network The role of the query-execution network is to output a nearest-neighbor
of a query q given a budget of M lookups into the data structure D̂. This introduces a combinatorial
constraint—only a fixed number of discrete memory accesses are allowed—while we also require
differentiability for gradient-based training, creating a tension between discreteness and optimization.

To implement this, the network consists of M MLP query models Q1, ..., QM . The query models do
not share weights to keep the model relatively general, but we explore shared weights in App D.1.
Each query model Qi outputs a one-hot vector mi ∈ RN which represents a lookup position
in D̂. To execute the lookup, we compute the value vi at the position denoted by mi in D̂ as
vi = m⊤

i D̂. In addition to the query q, each query model Qi also takes as input the query execution
history Hi = {(m1, v1), ..., (mi−1, vi−1)} where H1 = ∅. The final answer of the network for the
nearest-neighbor query is given by ŷ = m⊤

M D̂. To enforce exactly M lookups while maintaining
differentiability, we train with softmax-based soft lookups but add noise to their logits. We find this
noise encourages sparser logits during training. At inference, we replace softmax with hardmax to
produce exact one-hot vectors. In App. B.3 we provide some intuition for why we think adding noise
to the logits induces sparsity.

Data Generation and Training Each training example is a tuple (D, q, y) consisting of a dataset
D, query q, and nearest neighbor y generated as follows: (i) sample dataset D = {x1, ..., xN} from
dataset distribution PD, (ii) sample query q from query distribution Pq , (iii) compute nearest neighbor
y = argminxi∈D dist(xi − q). Unless otherwise specified, dist corresponds to the Euclidean
distance. The dataset and query distributions PD, Pq vary across the different settings we consider
and are defined later. Given a training example (D, q, y), the data-processing network transforms D
into the data structure D̂. Subsequently, the query-execution network, conditioned on q, queries the
data structure to output ŷ. We use SGD to minimize either the squared loss between y and ŷ, or the
cross-entropy loss between the corresponding vectors encoding their positions. This is an empirical
choice, and in some settings one loss function performs better than the other. All models are trained
for at most 2 million gradient steps with early-stopping using a batch size of 1024. After training, we
test our model on 10k inputs (D, q, y) generated in the same way. See App B.1 for more details.

Evaluation and Baselines We evaluate our end-to-end model (referred to as E2E) on 1-dimensional,
2-dimensional, and high-dimensional NN search. We primarily focus on data structures that do not
use extra space, but we also explore scenarios with additional space in App B.12.

We compare against suitable NN data structures in each setting (e.g., sorting followed by binary
search in 1D), and also against several ablations to study the impact of various model components.
The E2E (frozen) model does not train the data-processing network, relying on rankings generated
by the initial weights. The E2E (no-permute) model removes the permutation component of the
data-processing network so that the transformer has to learn to transform the data points directly. The
E2E (non-adaptive) model conditions each query model Qi on only the query q and not the query
history Hi. We select the prediction that is closest to the query as the final prediction ŷ.

2.2 One-dimensional data

Uniform Distribution We consider a setting where the data distribution PD and query distribution
Pq correspond to the uniform distribution over (−1, 1), N = 100 and M = 7. We plot the accuracy,
which refers to zero-one loss in identifying the nearest neighbor, after each lookup in Fig. 2 (Left)
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Figure 2: (Left) Our model (E2E) trained with 1D data from the uniform distribution over (−1, 1)
outperforms binary search and several ablations. (Center) Distribution of lookups by the first query
model. Unlike binary search, the model does not always start in the middle but rather closer to the
query’s likely position in the sorted data. (Right) When trained on data from a “hard” distribution for
which the query value does not reveal information about the query’s relative position, the model finds
a solution similar to binary search. The figure shows an example of the model performing binary
search (‘X’ denotes the nearest neighbor location). See Fig. 13 for more examples.

(we include MSE plots as well in App. B.4). Recall that vi corresponds to the output of the i-th
lookup. Let v∗i be the closest element to the query so far: v∗i = argminv∈{v1,...,vi} ||v − q||22. For all
the methods, we plot the nearest neighbor accuracy corresponding to v∗i for each lookup index i.

A key component of 1D NN search is sorting, and we observe that the trained model does indeed learn
to sort effectively. We verify this by measuring the fraction of inputs mapped to the correct position in
the sorted order, averaging 99.5% accuracy across multiple datasets. Remarkably, the model achieves
this without explicit feedback to sort, learning the behavior through end-to-end training. While the
separate sorting function aids this process, the model still has to learn to output the correct rankings.

The second key component is the ability to search over the sorted inputs. Here, our model learns a
search algorithm that outperforms binary search, which is designed for the worst case. This is because
unlike binary search, our model exploits knowledge of the data distribution to start its search closer
to the nearest neighbor, similar to interpolation search [19]. For instance, if the query q ≈ 1, the
model begins its search near the end of the list (Fig. 2 (Center)). The minor sorting error (∼ 0.5%)
our model makes likely explains its worse performance on the final query.

To understand the relevance of different model components, we compare against various ablations.
The E2E (frozen) model (untrained transformer) positions only about 9% of inputs correctly, ex-
plaining its under-performance. This shows that the transformer must learn to rank the inputs, and
that merely using a separate function for sorting the transformer output is insufficient. The E2E
(non-adaptive) baseline, lacking query history access, underperforms as it fails to learn adaptive
solutions crucial for 1D NN search. The E2E (no-permute) ablation does not fully retain inputs and
so we do not measure accuracy for this baseline. We verify this by measuring the average minimum
distance between each of the transformer’s inputs to its outputs. These ablations highlight the crucial
role of both learned orderings and query adaptivity for our model.

Hard Distribution To verify that our model can also learn worst-case optimal algorithms such as
binary search, we set PD to a “hard” distribution, where for any query, no strong prior exists over
the position of its nearest neighbor in the sorted data (see App. B.6 for more details). To produce
a problem instance, we first sample a dataset from PD. We then generate the query by sampling a
point (uniformly at random) from this dataset, and adding standard Gaussian noise to it. The hard
distribution generates numbers at several scales, and this makes it challenging to train the model with
larger N . Thus, we use N = 15 and M = 3. In general, we find that training models is easier when
there is more structure in the distribution to be exploited.

The model does indeed discover a search algorithm similar to binary search. In Fig. 2 (Right), we
show a representative example of the model’s search behavior, resembling binary search (see Fig. 13
for more examples). The error curve in Fig. 11 also closely matches that of binary search.

Along with uniform and hard distributions, we show that end-to-end learning is possible also with a
Zipfian distribution, which is common in many practical settings (see App. B.7).

5



Figure 3: The learned data structure resembles a k-d tree in 2D. We show the average pairwise
distances (along the first, second, and both dimensions) between points for the learned structure and
the k-d tree, with darker colors indicating smaller distances. For the k-d tree, we arrange the points
by in-order traversal. It recursively splits the points into two groups based on whether their value
is smaller or larger than the median along a given dimension, alternating between dimensions at
each level, starting with dimension 1. The learned data structure approximately mirrors this pattern,
splitting by dimension 2 followed by dimension 1.

Dataset LSH E2E ITQ KMeans NeuralLSH
Hypersphere 30.0 35.0 34.4 35.3 35.1
FashionMNIST 30.2 67.2 42.7 66.2 68.2
SIFT 14.3 46.9 30.1 47.1 46.7
MNIST (3-digit) 76.2 97.7 - - -

Table 1: NN search accuracy on high-d datasets compared to locality-sensitive hashing and learning-
to-hash baselines. For a description of the baselines and a discussion on why we only compare with
LSH on the MNIST dataset, see App. B.8

In summary, in all the above settings, starting from scratch, the data-processing network discovers
that the optimal way to arrange the data is in sorted order. Simultaneously, the query-execution
network learns to efficiently query this sorted data, leveraging the properties of the data distribution.

2.3 Two-dimensional data

Beyond one dimension it is less clear how to optimally represent a collection of points as there is no
canonical notion of sorting along multiple dimensions. In fact, we observe in these experiments that
different data/query distributions lead to altogether different data structures. This reinforces the value
in learning both the data structure and query algorithm together, end-to-end.

Uniform Distribution We use a setup similar to 1D, sampling both coordinates independently from
the uniform distribution on (−1, 1). We set N = 100 and M = 6, and compare to a k-d tree baseline.
A k-d tree is a binary tree for organizing points in k-dimensional space, with each node splitting
the space along one of the k axes, cycling through the axes at each tree level. Here, the E2E model
achieves an accuracy of 75% vs 52% for the k-d tree (Fig. 7 in App. B.4). The model outperforms
the k-d tree as it can exploit distributional information. By studying the permutations, we find that the
model learns to put points that are close together in the 2D plane next to each other in the permuted
order (see Fig. 9 for an example).

Hard Distribution We also consider the case where both coordinates are sampled independently
from the hard distribution used in the 1D setup (see Fig. 14 for the error curve). We observe that the
data structure learned by the model is surprisingly similar to a k-d tree (see Fig 3). This is striking as
a k-d tree is a non-trivial data structure, requiring recursively partitioning the data and finding the
median along alternating dimensions at each level of the tree.

2.4 High-D data (Hypershere/FashionMNIST/SIFT)
High-dimensional NN search poses a challenge for traditional low-dimensional algorithms due to
the curse of dimensionality. K-d trees, for instance, can require an exponential number of queries
in high dimensions [20]. This has led to the development of approximate NN search methods such
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Figure 4: (Left) On the high-dimensional hypersphere, when trained with a single query, the model
partitions the query space based on a projection onto two vectors, similar to LSH. We show the query
projection onto the subspace spanned by these vectors and the lookup positions for different queries,
where position is encoded by color. (Center) When trained end-to-end to do nearest neighbor search
over 3-digit MNIST images, our model learns 1D features that capture the relative ordering of the
numbers. (Right) Trained on 3-digit MNIST images, our data-processing model learns to sort the
images without explicit supervision for sorting. While we train our model with datasets of size
N = 50, we show a smaller instance with 5 images for better visualization.

as locality sensitive hashing (LSH) which have a milder dependence on dimension d [21], relying
on hash functions that map closer points in the space to the same hash bucket.

We train our model on datasets uniformly sampled from the d-dimensional unit hypersphere. The
query is sampled to have a fixed inner-product ρ ∈ [0, 1] with a dataset point. When ρ = 1, the
query matches a data point, making regular hashing-based methods sufficient. For ρ < 1, LSH-
based solutions are competitive. We train our model for ρ = 0.8 and compare it to LSH [22] and
learning-to-hash baselines when N = 100,M = 6, and d = 30 (see App. B.8 for baseline details).

We observe that our model slightly outperforms the LSH baseline and performs competitively with
the learning-to-hash baselines (Table 1). To better understand the data structure the model learns
we consider a smaller setting where N = 8 and M = 1. We find that the model learns an LSH-like
solution, partitioning the space by projecting onto two vectors in R30 (see Fig. 4 (Left)). Specifically,
both the data-processing and query models learn the same partitioning of space in tandem. These
partitions serve the same role as hash functions in LSH algorithms like SimHash [22]. Like LSH
algorithms, to find a nearest-neighbor, the query model maps a point to its corresponding hash bucket
and then compares it to other points in that bucket, ultimately selecting the closest one. We provide
more details in App B.9.

We include additional high-dimensional (100D) experiments on two standard approximate NN
benchmarks, FashionMNIST and SIFT [10], to demonstrate the model’s performance on realistic data
(see App B.10 for more details). Our model performs competitively with learning-to-hash baselines
(Table 1), illustrating that E2E learning can recover reasonable solutions in a variety of settings, even
when compared to carefully hand-designed solutions. Note that we do not expect E2E to surpass
learning-to-hash baselines in these settings since query adaptivity does not appear to be helpful for
these problems. Next, we consider a setting where query adaptivity is beneficial.

Learning useful representations (MNIST) High-dimensional data often contains low-dimensional
structure which can be leveraged to improve the efficiency of NN search. Here, we explore whether
our end-to-end framework can learn representations that capture such structures, a challenging task
that requires jointly optimizing the learned representation, data structure, and query algorithm.

We consider the following task: given a dataset of distinct 3-digit MNIST images (Fig.20) and a query
image, find its nearest neighbor—defined as the image encoding the closest number to the query (i.e.,
nearest in label space). Instead of operating directly on pixel space, the data and query networks use
low-dimensional representations learned by a CNN feature model F (see App.B.11 for details).

Ideally, the feature model F should learn 1d features encoding numerical order, the data model
sorts them, and the query model performs a form of interpolation search using the fact that the data
distribution is uniform to outperform binary search. This is almost exactly what is learned end-to-end,
from scratch, without any explicit supervision about which image encodes which number. In Fig. 4
(Center) we plot the learned features. We find that the data model learns to sort the features (Fig. 4
(Right)) with 98% accuracy and the query model finds the nearest neighbor with ≈ 98% accuracy
(Table 1). Moreover, E2E learning beats LSH baselines as query adaptivity is useful here.

7



Notably, unlike hand-designed data structures that typically assume access to standard distance
metrics (e.g., Euclidean), this approach requires no supervision on the underlying metric structure.
The model only needs supervision on which dataset element is the nearest neighbor of a query,
making it applicable even when the distance metric is unknown or implicit.

Leveraging Extra Space Beyond learning effective orderings for querying, our framework can
also learn to use extra memory to accelerate search. In App. B.12 we show that in both low and
high-dimensions the data model can learn to pre-compute and store helpful statistics in extra space
that enables the query model to find the nearest neighbor with less queries.

3 Beyond Nearest Neighbor Search
Next, we illustrate the broader applicability of the end-to-end learning paradigm by applying it to the
classical problem of frequency estimation in the streaming setting. We then describe several other
problems in Section 3.2 that this paradigm can be applied to.

3.1 Frequency Estimation
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Figure 5: (Top) When es-
timating frequencies of ele-
ments drawn from a randomly
ordered Zipfian distribution,
our model outperforms the
CMS baseline given 1, 2, and
4 queries. (Bottom) By aug-
menting CMS with an update
delta (∆) < 1 we can out-
perform vanilla CMS on the
CAIDA IP dataset. For each
memory size, we plot the rela-
tive performance of the best ∆
vs the default, ∆ = 1.

Given a stream of T elements e(1), ..., e(T ) from a universe, the task
is to estimate the frequency of query element eq up to time-step
T , aiming to minimize the mean absolute error between true and
estimated counts. As in the NN setup, the key constraints are data
structure size and the number of lookups for query execution, making
this problem compatible with our framework. We explore frequency
estimation as a second task mainly because it is structurally very
different from NN search due to the streaming nature, yet E2E
learning still works. Due to space constraints, we mainly discuss our
findings here and leave implementation details to App C.2. We also
discuss how both NN search and frequency estimation fit into our
broader framework in App E.

We evaluate our model in a setting where both stream and query
distributions follow a Zipfian distribution, simulating frequency-
estimation datasets where a few “heavy hitter" elements are queried
more frequently [23]. For a given training sample, the rank order
of elements is consistent across both stream and query distributions
but randomized across different training samples. Consequently, the
model cannot rely on specific elements being more frequent—only
the overall Zipfian skew is consistent.

We compare our model with CountMinSketch (CMS), a hashing-
based algorithm for frequency estimation [24] (See App. C.1 for an
overview). Our model’s performance improves with more queries
and outperforms CMS (Figure 5).5 We find that our model learns an
algorithm similar to CMS but uses a smaller update delta,6 which
we hypothesize improves performance when collisions are frequent.

We use this insight to design a modified version of CMS that uses
a custom update delta. In Fig. 5, we show that this augmented CMS
algorithm can outperform vanilla CMS by up to a factor of ≈ 1.9×
on a real IP traffic dataset [25] consisting of a stream of 30 million
IP addresses. These results demonstrate learning data structures
end-to-end can provide useful insight into data structure design that
can be transferred to realistic settings (see App C.3 for more details
and App C.4 for additional experiments on frequency estimation in
high-dimensional settings).

5CMS degrades with more queries as for a fixed size memory (k = 32), it is more effective for this
distribution to apply a single hash function over the whole memory than to split the memory into k partitions of
size k/M and use separate hash functions.

6The update delta is the scalar increment value used to update the count of an item in the CMS hash table.
For CMS, this value is 1. See C.3 for an overview of the CMS algorithm.
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3.2 Other potential applications
Our framework is designed for problems that require efficiently answering queries over some col-
lection of data. We believe it can be applied to any problem that shares this structure—namely, one
where there is a data-processing step, a query algorithm, and constraints on space and query-time
complexity. Here, we outline several such candidate problems that could benefit from this approach.
We provide a more detailed discussion on the broader applicability of the framework and how it can
be adapted to these problems in App. E.

Graph data structures Efficient graph representations are essential for connectivity or distance
queries. Storing all distances between vertices in quadratic space enables O(1) queries, but requires
substantial memory. An alternative is storing the entire graph and running a shortest-path algorithm
at query time. The challenge is finding a balance: using sub-quadratic space while still answering
queries faster than full shortest-path computations [26].

Sparse matrices Another problem that can be framed as a data structure problem is compressing
sparse matrices. Given an M × N matrix, on one hand, one can store the full matrix and access
elements in O(1) time. However, depending on the number and distribution of 0s in the matrix, data
structures that use less than O(MN) space could be designed. There is an inherent trade-off between
how compressed the representation is and the time required to access elements of the matrix to solve
various linear algebraic tasks involving the matrix, such as matrix-vector multiplication [27, 28].

Learning statistical models Our framework can handle problems such as learning statistical models,
where the input to the data-processing network is a training dataset, and the output is a model such
as a decision tree. The query algorithm would then access a subset of the model at inference time,
such as by doing a traversal on the nodes of the decision tree. This could be used to explore optimal
algorithms and heuristics for learning decision trees, which are not properly understood [29, 30].

4 Related Work

Learning-Augmented Algorithms Recent work has shown that traditional data structures and
algorithms can be made more efficient by learning properties of the underlying data distribution.
[31] introduced the concept of learned index structures which use ML models to replace traditional
index structures in databases, resulting in significant performance improvements for certain query
workloads. By learning the cumulative distribution function of the data distribution the model has a
stronger prior over where to start the search for a record, which can lead to provable improvements
to the query time over non-learned structures [32]. Other works augment the data structure with
predictions instead of the query algorithm. For example, [8] use learned frequency estimation oracles
to estimate the priority in which elements should be stored in a treap. Perhaps more relevant to
the theme of our work is [33], which trains neural networks to learn a partitioning of the space for
efficient nearest neighbor search using locality sensitive hashing, and the body of work on learned
hash functions [34, 35, 11]. There is also work on learning the parameters of nearest neighbor search
algorithms using machine learning [36] as well as works that have explored learning-augmented
algorithms for frequency estimation [23, 37]. While these works focus on augmenting data structure
design with learning, we explore whether data structures can be discovered entirely end-to-end using
deep learning. Our approach eliminates the human-in-the-loop, making it promising for settings with
limited insights into suitable data structures. However, this comes at the cost of losing the provable
guarantees that learning-augmented methods typically offer.

Neural Algorithmic Learners There is a significant body of work on encoding and learning
algorithms with neural networks. Graves et al. [38] introduced the Neural Turing Machine which
uses external memory to learn tasks such as sorting. The neural algorithmic reasoning line of work
[39, 40, 41, 42] aims to simulate a variety of classical algorithms using neural networks. These works
typically train models with intermediate outputs of the algorithm they are trying to learn whereas
we rely on minimal supervision. There has also been work on learning algorithms in an end-to-end
fashion. Fawzi et al. [1] train a model using reinforcement learning to discover matrix multiplication
algorithms, while Selsam et al. [2] train neural networks to solve SAT problems. Garg et al. [3] show
that transformers can be trained to encode learning algorithms for function classes such as linear
functions and decision trees. A recent line of work on neural sketching algorithms [43, 44, 45] shares
several similarities to our frequency estimation experiments. Both these methods and ours can be
viewed as memory-augmented neural networks that learn to read and write from a differentiable
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memory. This line of work is more focused on developing scalable sketching algorithms whereas
we explore whether or not neural networks can discover such algorithms from scratch with minimal
inductive biases. See App C.6 for additional discussion.

5 Discussion

Limitations While our work takes a first step in exploring end-to-end data structure discovery,
there are several important limitations.

Efficiency: Our investigation focuses on the space and query efficiency of the learned data structure.
However, in practice, factors such as the neural net inference cost and the pre-processing time to
construct the data structure are also important. For example, using standard Transformers in the
data model leads to pre-processing time that scales quadratically with the number of items. In
preliminary experiments, we find that substituting the quadratic attention transformer with a more
efficient alternative, such as linear attention (App. D.1), is often feasible. Further exploration of these
architectural choices is an important direction for future work. We also benchmark the computational
overhead of our methods in App D.3.

Scale: Due to computational constraints, most of our experiments are conducted on datasets with
N = 100 (with some scaled to N = 500; see App. D.2). Practical end-to-end deployment would
require further scaling, which remains an open challenge. While increasing both the model sizes and
training time will help to scale to larger datasets to some extent, it will also be important to explore
new ideas as well such as better inductive biases that enable smaller models to handle large datasets
more effectively. For instance, sharing weights among query models may help scale the number of
queries. See App. D.2 for a more detailed discussion on scaling and preliminary experiments.

In addition to the above limitations, learned data structures lack the same level of interpretability and
provable guarantees as their classical counterparts. However, in practical settings, the benefits of
learned distribution-dependent algorithms may outweigh these limitations.

Future Applications While scaling is necessary for practical deployment, small-scale models can
still yield valuable insights that generalize to larger settings. For example, an AI-in-the-loop discovery
workflow might: (1) train a model on a target problem to surface promising heuristics (e.g., space
partitioning criteria), (2) analyze its behavior to extract actionable insights, and (3) validate those
insights theoretically or empirically. Such workflows are feasible even with small-scale models. In
Section 3, for instance, we use insights from our model to design an augmented version of CMS that
outperforms the original algorithm on a practical dataset. Moreover, the ability of E2E learning to
recover classical algorithms such as binary search, k-d trees, and LSH shows that these models can
effectively explore the data structure design space, highlighting the promise of this approach.

Conclusion We set out by asking: can neural networks discover data structures? At the outset,
many basic questions were unclear. How should data structures and queries be represented using
neural networks—especially under combinatorial constraints like limited query complexity? Even
with a reasonable setup, it was not clear if training would take off, as both networks are trained from
scratch and depend on each other for useful signal. And even if learning does take off, can it explore
the rich space of possible data structures and algorithms?

To our surprise, once we set up the training with space/query constraints and a structured lookup
interface the model did learn meaningful algorithms. It recovered classic data structures like sorting,
k-d trees, and LSH-like behavior, often adapting them to the data distribution. In more complex cases
like the extended MNIST experiment, it learned image features, built a data structure over them, and
learned a query network to search it—all from scratch and with minimal supervision.

We view this as the main contribution of the paper: framing data structure discovery as an end-to-end
learning problem and showing that it not only works, but can explore a rich solution space. We hope
this research encourages further exploration of end-to-end learning for data structures—from tackling
efficiency and scaling challenges to applying the framework to new problems and leveraging it as an
AI-in-the-loop tool for discovery.
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A Related Work

Learning-Augmented Algorithms Recent work has shown that traditional data structures and
algorithms can be made more efficient by learning properties of the underlying data distribution.
[31] introduced the concept of learned index structures which use ML models to replace traditional
index structures in databases, resulting in significant performance improvements for certain query
workloads. By learning the cumulative distribution function of the data distribution the model has a
stronger prior over where to start the search for a record, which can lead to provable improvements
to the query time over non-learned structures [32]. Other works augment the data structure with
predictions instead of the query algorithm. For example, [8] use learned frequency estimation oracles
to estimate the priority in which elements should be stored in a treap. Perhaps more relevant to
the theme of our work is [33], which trains neural networks to learn a partitioning of the space for
efficient nearest neighbor search using locality sensitive hashing, and the body of work on learned
hash functions [34, 35, 11]. There is also work on learning the parameters of nearest neighbor search
algorithms using machine learning [36]. There has also been a number of works that have explored
learning-augmented algorithms for frequency estimation [23, 37]. While all these works focus on
augmenting data structure design with learning, we explore whether data structures can be discovered
entirely end-to-end using deep learning. Our approach eliminates the human-in-the-loop, making it
promising for settings with limited insights into suitable data structures. However, this comes at the
cost of losing the provable guarantees that learning-augmented methods typically offer.

Neural Algorithmic Learners There is a significant body of work on encoding algorithms into
deep networks. Graves et al. [38] introduced the Neural Turing Machine (NTM), which uses external
memory to learn tasks like sorting and copying. Veličković et al. [39] used graph neural networks
(GNNs) to encode classical algorithms such as breadth-first search. These works train deep networks
with a great degree of supervision with the aim of encoding known algorithms. For instance, Graves
et al. [38] use the ground truth sorted list as supervision to train the model to sort. There has also
been work on learning algorithms in an end-to-end fashion. Fawzi et al. [1] train a model using
reinforcement learning to discover matrix multiplication algorithms, while Selsam et al. [2] train
neural networks to solve SAT problems. Garg et al. [3] show that transformers can be trained to
encode learning algorithms for function classes such as linear functions and decision trees. Our work
adds to this line of research on end-to-end learning, focusing on discovering data structures.

B Nearest Neighbor Experiments

B.1 Training Details

The transformer in the data-processing network is based on the NanoGPT architecture [14] and has
8 layers with 8 heads each and an embedding size of 64. Instead of using discrete tokens, we have
input and output projection layers (Linear layers) that project the input to the hidden dimension
and from the hidden dimension to the scalar output values. Each query model Qi

θ is a 3-layer MLP
with a hidden dimension of size 1024. Each hidden layer consists of a linear mapping followed by
LayerNorm [46] and the ReLU activation function [47]. In all experiments we use a batch size of
1024, 1e-3 weight decay and the Adam optimizer [48] with default PyTorch [49] settings. We do a
grid search over {0.0001, 0.00001, 0.00005} to find the best learning rate for both models. Near the
end of training when performance plateaus, we decrease learning rates to boost performance. We
apply the Gumbel Softmax [50] with a temperature of 2 to the lookup vectors to encourage sparsity.
Apart from the learning rate of the two models, we did very minimal hyperparameter tuning as the
majority of experiments worked without additional tuning. We expect additional performance gains
would come with further tuning but are more interested in understanding the general performance
landscape relative to algorithmic baselines rather than optimizing any single result. All experiments
are run on a single NVIDIA RTX8000 GPU.

Training Steps/Data set Sizes As we have direct access to the dataset distribution, for all ex-
periments (except those with real high-dimensional data), we do not use a fixed training set but
rather train ‘online’, sampling new (training) datasets directly from the dataset distribution. The
number of optimization steps we use varies across experiments but is up to 500k for most experiments
with N ≤ 100, though for experiments with N = 500 we ran for up to 2 million steps (with early
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stopping). For experiments with fixed training sets (e.g. 3-Digit MNIST/FashionMNIST/SIFT), we
resampled from their corresponding training sets (sizes 60k/60k/1M, respectively) and used their test
sets for evaluation. Given that the models perform well on test data for these distributions, it suggests
that we do not need as much unique data as we use in the online setting. We leave an exploration for
this to future work.

B.2 Training Variance

We found that the setup is robust to random model seeds, however, below we include plots of
1D/2D/30D experiments using three different seeds to showcase the variation.
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Figure 6: 1D (Uniform), 2D (Uniform), 30D (Hypersphere) experiments with different seeds.

B.3 Noise Injection for Lookup Sparsity

We find that adding noise prior to applying the soft-max on the lookup vector mi leads to sparser
queries. We hypothesize that this is because the noise injection forces the model to learn a noise-robust
solution, and the softmax output becomes robust when the logits are well-separated. Well-separated
logits, in turn, lead to sparser solutions.

Consider a simplified setup in 1D where the query model is not conditioned on q and is only allowed
one lookup (M = 1) and D is a sorted list of three elements: D = [x1, x2, x3]. For a given query q
and its nearest neighbor y, the query-execution network is trying to find the optimal vector m̂ ∈ R3

that minimizes ||y −mTD||22 where m = softmax(m̂+ ϵ), ϵ ∼ Gumbel distribution [50]. Given
that M = 1, the model cannot always make enough queries to identify y and so in the absence of
noise the model may try to predict the ’middle’ element by setting m̂1 = m̂2 = m̂3. However, when
noise is added to the logits m̂ this solution is destabilized. Instead, in the presence of noise, the
model can robustly select the middle element by making m̂2 much greater than m̂1, m̂3. We test
this intuition by running this experiment for large values of N and find that with noise the average
gradient is much larger for m̂N/2.
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B.4 Additional 1D/2D/30D Uniform Distribution Performance Plots
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Figure 7: 2D Uniform Accuracy.
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Figure 8: Mean square error plots for (Left) 1D Uniform distribution, (Center) 2D Uniform distribu-
tion, (Right) 30D Uniform distribution over unit hyper-sphere.
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Figure 9: Our model’s learned permutation on the 2D uniform distribution. The model puts elements
that are close together in the Euclidean plane next to each other in the permutation.
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Figure 10: k-d search vs. our model on the uniform distribution in 2D. Unlike the k-d tree, our model
has a stronger prior over where to begin its search.

B.6 Hard Distribution

To generate data from the hard distribution, we first sample the element at the 50th percentile from
the uniform distribution over a large range. We then sample the 25th and 75th percentile elements
from a smaller range and so on. The intuition behind this distribution is to reduce concentration such
that p(NN |q) is roughly uniform where NN denotes the index of the nearest-neighbor of q in the
sorted list.

Precisely, to sample N points from the hard distribution we generate a random balanced binary tree
of size N . All vertices are random variables of the form Uniform(0, alogn−k) where a is some
constant and k is the level in the tree that the vertice belongs to. If the i− th node in the tree is the
left-child of its parent, we generate the point xi as xi = xp(i) − di where p(i) denotes the parent of
the i− th node and di is a sample from node i of the random binary tree. Similarly, if node i is the
right child of its parent, xi = xp(i) + di. For the root element x0 = d0. In our experiments we set
a = 7. The larger the value of a, the greater the degree of anti-concentration. We found it challenging
to train models with N > 16 as the range of values that xi can take increases with N . Thus for larger
N , the model needs to deal with numbers at several scales, making learning challenging.
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Figure 11: Our model’s performance is closely aligned with binary search on the hard distribution in
1D. By design, this distribution does not have a useful prior our model can exploit and so it learns a
binary search like solution.

Figure 12: The positional distribution per lookup in the 1D Hard experiment. Our model closely
aligns with binary search, first looking at the middle element, then (approximately) either the 25th or
75th percentile elements, and so on.
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Figure 13: Binary Search vs. our model on the hard distribution in 1D.
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Figure 14: On the 2D hard distribution our model roughly tracks the performance of a k-d tree.
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B.7 1D Zipfian Experiment
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Figure 15: For 1D Zipfian query distribution, our model performs slightly better than the the
learning-augmented treap algorithm from [13] and both methods significantly outperforms binary
search.

Prior work has shown that several real-world query distributions follow a Zipfian trend whereby a
few elements are queried far more frequently than others, leading to the development of learning-
augmented algorithms aimed at exploiting this [13]. We consider a setting where PD is the discrete
uniform distribution over {1, ..., 200} and Pq is a Zipfian distribution over {1, ..., 200} skewed
towards smaller numbers such that the number i is sampled with probability proportional to 1

iα . We
set α = 1.2. Again, in this setting N = 100 and M = 7.

In Figure 15 we compare our model to both binary search and the learning-augmented treap from Lin
et al. [8]. Our model performs slightly better than the learning-augmented treap and both algorithms
significantly outperform binary search with less than log(N) queries. This setting highlights a
crucial difference in spirit between our work and much of the existing work on learning-augmented
algorithms. While the Zipfian treap incorporates learning in the algorithm, the authors still had to
figure out how an existing data structure could be modified to support learning. On the other hand, by
learning end-to-end, our framework altogether removes the need for the human-in-the-loop. This is
promising as it could be useful in settings where we lack insight on appropriate data structures. The
flip side, however, is that learning-augmented data structures usually come with provable guarantees
which are difficult to get when training models in an end-to-end fashion.

B.8 Hashing Baselines

B.8.1 Locality Sensitive Hashing (LSH)

Our LSH baseline is based on the SimHash algorithm by [22]. SimHash is particularly relevant for
our hypersphere setting as the algorithm is designed for nearest-neighbor retrieval based on cosine
similarity and all the points in our experiment fall on the unit hypersphere so minimizing euclidean
distance is equivalent to minimizing the cosine similarity. We construct the LSH baseline as follows.
We sample K random vectors r1, ..., rK from the standard normal distribution in Rd. For a given
vector v ∈ Rd, its hash code is computed as hash(v) = [sign(vTr1), ..., sign(v

TrK)]. In total,
there are 2K possible hash codes. To create a hash table, we assign each hash code a bucket of
size N/2K . For a given dataset D = {x1, ..., xN}, we place each input in its corresponding bucket
(determined by its hash code hash(xi). If the bucket is full, we place xi in a vacant bucket chosen
at random. Given a query q and a budget of M lookups, the baseline retrieves the first M vectors
in the bucket corresponding to hash(q). If there are less than M vectors in the bucket, we choose
the remaining vectors at random from other buckets. We design this setup like so to closely align
with the constraints of our model (i.e. only learning a permutation). Note that for all experiments that
compare to LSH, we choose the value of K that maximizes the performance of LSH.

B.8.2 Learning to Hash

In addition to locality-sensitive hashing, we include comparisons to several learning-to-hash baselines:
ITQ, K-Means, and NeuralLSH. See Dong et al. [33] for more details about these specific baselines.
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Similar to classical LSH methods, learning-to-hash methods aim to hash elements to buckets such
that close by elements are more likely to be mapped to the same buckets. The main difference is that
learning to hash methods learn the hash function from data while it is traditionally hand-designed.
However, note that while our framework learns the whole data structure and an adaptive query
algorithm in an end to end manner, the learning to hash methods just learn part of the data structure
while the query algorithm is the same as that of LSH and thus is not adaptive.

B.8.3 Baseline Choices for MNIST Experiment

For the 3-digit MNIST setting, we exclude the learning-to-hash methods as they cannot be applied
directly. Specifically, in our MNIST setup the metric is not given but implicitly provided via nearest
neighbor supervision. This means our model needs to learn the metric space, which learning-to-hash
methods are not designed for. However, to highlight our models’ strengths in this regime, we compare
with an oracle hash function (denoted as LSH in the table) - splitting the 200 number universe evenly
into K clusters where the first N/K elements are assigned to cluster 1, the second N/K elements
to cluster 2 and so forth. Note that no learning-to-hash method could outperform this oracle hash
function as it is an upper-bound with access to the correct metric. To execute a NN search, a query
is mapped to its corresponding bucket and the element closest to this number (defined over this 1D
label space) is chosen as the NN. When N=50 and M=7 we find that the optimal K is 8.

In Figure 19, we also compare with binary search directly operating on the digit space. To be clear,
these are unfair comparisons as our model has to learn features that capture the underlying metric
space but in this case it is provided directly for the two baselines. The oracle hashing baseline (and
thus any learning-to-hash baseline) should still underperform our model in this regime as it does
not use an adaptive query algorithm which is necessary for achieving the O(logN) performance our
model recovers.

B.9 N=8, M=1 30D LSH Experiment

To determine if our model has learned an LSH-like solution, we try to reverse engineer the query
model in a simple setting where N = 8 and M = 1. The query-execution model is only allowed
one lookup. We fit 8 one-vs-rest logistic regression classifiers using queries sampled from the query
distribution and the output of the query model (lookup position) as features and labels, respectively.
We then do PCA on the set of 8 classifier coefficients. We find that the top 2 principal components
explain all of the variance which suggests that the query model’s mapping can be explained by the
projection onto these two components. In Figure 16 we plot the projection of queries onto these
components and color them based on the position they were assigned by the query model. We do the
same for inputs xi ∈ D and color them by the position they were permuted to. The plot on the right
suggests that the data-processing network permutes the input vectors based on their projection onto
these two components. This assignment is noisy because there may be multiple inputs in a dataset
that map to the same bucket and because the model can only store a permutation, some buckets
experience overflow. Similarly, the query model does a lookup in the position that corresponds to the
query vector’s bucket. This behaviour suggests the model has learned a locality-sensitive hashing
type solution! Specifically, both the data-processing and query models learn the same partitioning
of space in tandem. These partitions serve the same role as hash functions in LSH algorithms like
SimHash [22]. Like LSH algorithms, to find a nearest-neighbor, the query model maps a point to its
corresponding hash bucket and then compares it to other points in that bucket, ultimately selecting
the closest one.

B.10 Additional High-Dimensional NN Experiments with Realistic Data

We run additional nearest-neighbor experiments on two standard high-dimensional approximate
nearest-neighbor benchmarks: SIFT and FashionMNIST (projected to 100 dimensions via PCA)
[10] to further demonstrate our model can handle more realistic data. The SIFT dataset contains
high-dimensional feature descriptors extracted using the Scale-Invariant Feature Transform (SIFT)
algorithm. It is commonly used for nearest neighbor search, image retrieval, and feature matching
tasks. The FashionMNIST dataset consists of 28×28 grayscale images of clothing items, such as
shoes, shirts, and dresses.
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Figure 16: (Left) Projection of queries onto top two PCA components of the decision boundaries of
the query model, colored by the lookup position the query is mapped to. (Right) Projection of inputs
onto the same PCA components colored by the position the data-processing model places them in.
Both the data-processing and query models map similar regions to the same positions, suggesting an
LSH-like bucketing solution has been learned.

Figure 17: Our model compared to various hashing baselines on the FashionMNIST dataset (left)
and the SIFT dataset (right). At the final query, our E2E solution performs as well as the hashing
baselines. At intermediate lookups, it slightly under-performs, however, the model is only being
trained to optimize performance at the final lookup. We do not expect our model to outperform these
baselines in this setting as it is unclear that query adaptivity should be beneficial here. Rather, we
include these results to further emphasize that our E2E model can recover reasonable solutions in a
variety of settings - even when compared to carefully hand-designed solutions.

For each dataset, we use the train split to train our model (as well as the learning-to-hash baselines)
and for evaluation we use the test split. The learning-to-hash baselines (described in B.8.2) cluster
the data into 16 partitions and we then use the same setup described in Appendix B.8.1 to execute the
NN search. We chose 16 partitions as this produces the best performance for the learning-to-hash
baselines in our setup where N = 100 and M = 6.

Our model performs competitively with these learning-to-hash baselines (Figure 17). We do not
expect our model to outperform these baselines in this setting as it is unclear that query adaptivity
should be beneficial here. Rather, we include these results to further emphasize that end-to-end
learning can recover reasonable solutions in a variety of settings - even when compared to carefully
hand-designed solutions. We also show an example of how the data-processing model learns to
transform the FashionMNIST data by organizing the images by class (Figure 18).
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Figure 18: (Left) Sample raw dataset from FashionMNIST (Right) The learned data structure. The
data-processing model learns to cluster similar items together.
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Figure 19: 3-Digit MNIST Nearest Neighbors Accuracy. Even though binary search (over the
underlying digits) is an unfair comparison, we include it as a reference to compare our model’s
performance with.

B.11 MNIST (3-digit) Experiments

We generate images of 3-digit numbers by concatenating digits from MNIST (see Fig. 20 for
image samples). To construct a nearest-neighbor dataset D, we sample N = 50 labels (each label
corresponds to a number) uniformly from 0 to 199. For each label, we then sample one of its
associated training images from 3-digit MNIST. Additionally, we sample a query label (uniformly
over {0, .., 199}) and its corresponding training image and find its nearest neighbor in D, which
corresponds to the image with the closest label. We emphasize that the model has no label supervision
but rather only has access to the query’s nearest neighbor. After training, we evaluate the model using
the same data generation process but with images sampled from the 3-digit MNIST test set.

As both the data-processing and query-execution networks should operate over the same low-
dimensional representation we train a CNN feature model (architecture described below) Fϕ as
well. Our setup remains the same as before except now the data-processing network and query-
execution network operate on {Fϕ(x1), ..., Fϕ(xN )} and Fϕ(q), respectively. As the underlying
distance metric does not correspond to the Euclidean distance, we minimize the cross-entropy loss
instead of the MSE loss. Note that the cross-entropy loss only requires supervision about the nearest
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Figure 20: Samples from 3-Digit MNIST

Model 0 2 4 8 16 32 64 128
Bucket Baseline - 5.9 11.7 23.6 44.5 65.8 81.1 89.5
E2E 44.0 47.9 52.0 58.8 71.9 75.3 88.4 91.3

Table 2: 1D NN search accuracy given varying amounts of extra space. The E2E model effectively
uses extra space and outperforms a bucketing baseline.

neighbor of the query, and does not require the exact metric structure, so it can be used even where
the exact metric structure is unknown.

CNN Feature Model Architecture Fϕ

Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
ReLU()
MaxPool2d(kernel_size=2, stride=2, padding=0)
Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
ReLU()
MaxPool2d(kernel_size=2, stride=2, padding=0)
Linear(in_features=64*7*21, out_features=128)
ReLU()
Linear(in_features=128, out_features=1)

We plot the results in Fig 19 compared to an optimal hashing and binary search baseline. Note
these are not fair comparisons as these baselines operate over numbers directly instead of their
corresponding images and are only provided for comparison. Please refer to B.8.3 for a more detailed
discussion on this.

B.12 Extra Space

We also consider scenarios where the data structure can use additional space. To support this use
case, the data-processing transformer outputs T extra vectors b1, ..., bT ∈ Rd which can be retrieved
by the query-execution network in the same way as the other outputs. We form the data structure D̂
by concatenating the permuted inputs and the extra vectors: D̂ = [D̂P , b1, ..., bT ].

B.12.1 1D Extra Space
Most of our nearest neighbor experiments show our model’s ability to learn useful orderings for
efficient querying. Data structures, however, can also leverage pre-computed information to accelerate
search. For example, with infinite space, a data structure could store the nearest neighbor for every
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possible query, enabling O(1) search. Here, we test whether the model can effectively use additional
space.

We run an experiment where the data and query distribution are uniform over (−1, 1) with N =
50,M = 2. We allow the data-processing network to output T ∈ {0, 21, 22, 23, 24, 25, 26, 27}
numbers b1, ..., bT ∈ R in addition to the N rankings. We plot the NN accuracy as a function of T in
Table 2 compared to a simple bucketing baseline (explained in App B.12.2).

Our model’s accuracy monotonically increases with extra space demonstrating that the data-processing
network learns to pre-compute useful statistics that enable efficient querying. We provide some
insights into the learned solution in App B.12.1 and show that our model can be trained to use extra
space in the high-dimensional case as well (App B.12.4).
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Figure 21: (Top) Decision boundary of the first query model. (Bottom) The regression coefficients
of the values stored in extra positions as a linear function of the (sorted) inputs.

B.12.2 Bucket Baseline

We create a simple bucket baseline that partitions [−1, 1] into T evenly sized buckets. In each bucket
bi we store argminxj∈D||xj − li|| where li is the midpoint of the segment partitioned in bi. This
baseline maps a query to its corresponding bucket and predicts the input stored in that bucket as the
nearest-neighbor. As T → ∞ this becomes an optimal hashing-like solution.

B.12.3 Understanding Extra Space Usage

By analyzing the lookup patterns of the first query model, we can better understand how the model
uses extra space. In Figure 21 we plot the decision boundary of the first query model. The plot
demonstrates that the model chunks the query space ([−1, 1]) into different buckets. To get a sense
of what the model stores in the extra space, we fit a linear function on the sorted inputs and regress
the values stored in each of the extra space tokens bi and plot the coefficients for several of the extra
spaces in Figure 21. For a given subset of the query range, the value stored at its corresponding
extra space is approximately a weighted sum of the values stored at the indices that correspond to the
percentile of that query range subset. This is useful information as it tells the model for a given query
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percentile how ’shifted’ the values in the current dataset stored in the corresponding indices are from
model’s prior.

B.12.4 30D Extra Space
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Figure 22: Our unconstrained model (E2E) and a more interpretable version (E2E (Coefficients))
both learn to effectively leverage an increasing amount of extra space in 30D, with the unconstrained
model outperforming an LSH baseline.

In high-dimensions it is less clear what solutions there are to effectively leverage extra space, and in
fact understanding optimal tradeoffs in this case is open theoretically [51].

We follow a similar setup to the 1D extra space experiments but use the data and query distributions
from section 2.4. We experiment with two versions of extra space (unrestricted) and (coefficients).
For the unrestricted version the data model can store whatever 30 dimensional vector it chooses in
each of the extra spaces. For the coefficient model, instead of outputting a 30 dimensional vector, for
each extra space, the model outputs a separate N dimensional vector of coefficients. We then take a
linear combination of the (permuted) input dataset using these coefficients and store the resulting
vector in the corresponding extra positions. While the unrestricted version is more expressive the
coefficient version is more interpretable. We include both versions to demonstrate the versatility of
our framework. If one is only interested in identifying a strong lower-bound of how well one can use a
fixed budget of extra space they may use the unrestricted model. However, if they are more concerned
with investigating specific classes of solutions or would like a greater degree of interpretability they
can easily augment the model with additional inductive biases such as linear coefficients.

We plot the performance of both models along with an LSH baseline in Figure 22. While both models
perform competitively with an LSH baseline and can effectively leverage an increasing amount of
extra space, the unrestricted model outperforms the coefficient model at a certain point.

C Frequency Estimation

C.1 CountMinSketch

CountMinSketch [24] is a probabilistic data structure used for estimating the frequency of items
in a data stream with sublinear space. It uses a two-dimensional array of counters and multiple
independent hash functions to map each item to several buckets. When a new item x arrives, the
algorithm computes d hash functions h1(x), h2(x), . . . , hd(x), each of which maps the item to
one of w buckets in different rows of the array. The counters in the corresponding buckets are
incremented by 1. To estimate the frequency of an item x, the minimum value across all counters
C[1, h1(x)], C[2, h2(x)], . . . , C[d, hd(x)] is returned. The sketch guarantees that the estimated
frequency f̂(x) of an item x is at least its true frequency f(x), and at most f(x) + ϵN , where N is
the total number of items processed, ϵ = 1

w , and w is the width of the sketch. The probability that the
estimate exceeds this bound is at most δ = 1

d , where d is the depth of the sketch (i.e., the number
of hash functions). These guarantees hold even in the presence of hash collisions, providing strong
worst-case accuracy with O(w · d) space.
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C.2 Frequency Estimation Experiment Details

Here, we outline our approach to modeling the frequency estimation problem. Following NN search,
we chose this problem to further explore the broader applicability of the end-to-end learning paradigm
for the following reason: its streaming nature makes it fundamentally different from NN search,
requiring adaptations to the framework used in NN search. In contrast, the other problems discussed
in Section 3.2 require minimal adaptations (see App E). That said, similar to NN search, the two
key constraints in this problem remain the size of the data structure and the number of lookups. As
a result, the high-level setup remains the same: we still use a data-processing network and a query
network, applying similar principles to optimize data structure efficiency. For instance, we control
space complexity by tokenizing and restricting the data structure’s size and enforce query complexity
using similar sparsity techniques on lookup vectors. Next, we describe the data-processing and query
networks. Note that while there are differences between the architectures used for NN search and
frequency estimation, we explain how both problems fit into the broader framework in section E.

Data processing Network We model the data structure as a k dimensional vector D̂ and use an
MLP as the data-processing network which is responsible for writing to D̂. When a new element
arrives in our stream, we allow the model to update M values in the data structure. Specifically, when
an element arrives at time-step t, the data-processing network outputs M k-dimensional one-hot
update position vectors u1, ..., uM and M corresponding scalar update values v1, ..., vM . We then
apply the update, obtaining D̂t+1 = D̂t +

∑M
i=1 ui ∗ vi. Unlike in the NN setting where we did not

constrain the construction complexity of the data structure, here we have limited each update to the
data structure to a budget of M lookups. We do so as in the streaming settings updates typically
occur often, so it is less reasonable to consider them as a one-time construction overhead cost.

Query processing Network Query processing is handled in a similar fashion to NN search — we
have M query MLP models that output lookup positions. Finally, we also train a MLP predictor
network ψ(v1, ..., vM ) that takes in the M values retrieved from the lookups and outputs the final
prediction.

Training Details We follow the same setup as the nearest neighbors training except for frequency
estimation, the data-processing network is a 3-layer MLP with a hidden dimension of size 1024.
We do a grid search over {0.0001, 0.00005, 0.00001} to find the best learning rate for both models.
Models are trained for 200k gradient steps with early stopping. All experiments are run on a single
NVIDIA RTX8000 GPU.

C.3 Improved Frequency Estimation with Augmented CountMinSketch

In our experiments on learning frequency estimation algorithms (Section 3.1), we found that on the
Zipfian distribution our model was able to outperform the CountMinSketch algorithm by using a
smaller update delta. We find that this can be particularly useful when the size of the data structure is
small, and collisions are frequent. We hypothesize that the better performance of the learned solution
is at least partially due to the smaller delta.

We use this insight to design a modified version of CountMinSketch that uses a custom update
delta. In Figure 23, we show that this augmented CountMinSketch algorithm can outperform vanilla
CountMinSketch on the large-scale CAIDA IP traffic dataset [25] by up to a factor of two. These
results demonstrate that even at small scale, our model can provide useful insight into data structure
design that can be transferred to realistic settings.

The CAIDA dataset [25] consists of traffic data collected in 2016 from a backbone link of a Tier-1
ISP between Chicago and Seattle. Each recording session spans approximately one hour, capturing
around 30 million packets and 1 million unique flows per minute. We use the first minute for our
experiment.

Recent work by Aamand et al. [37] independently arrived at a similar insight to the one our model
discovered automatically. They propose a modified version of CountSketch that improves over
standard CountSketch/CountMinSketch on Zipfian distributions, even without explicit predictions—
relying only on knowledge of distributional skew. In comparison, our trained model learns to lower
the update value uniformly for all elements, a strategy that mirrors the motivation behind their use
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of conservative updates, where frequency estimates for some elements are set to zero. A theoretical
comparison between the two approaches, as well as a deeper analysis of the learned update rule, is
an interesting direction for future work. More broadly, the alignment between our automatically
discovered strategy and their hand-crafted variant further supports the idea that small-scale learned
models can yield transferable insights with potential for provable guarantees.
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Figure 23: (Left) CountMinSketch performance on the CAIDA dataset with different update deltas vs.
memory size. (Right) The relative performance of the best update delta vs the default delta (∆ = 1)
for different memory sizes. In some regimes, our augmented CountMinSketch can perform up to
twice as well as vanilla CountMinSketch just by modifying the update delta.

C.4 Learning Heavy Hitter Features
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Figure 24: On the MNIST heavy-hitters frequency estimation experiment, our model significantly
outperforms CountMinSketch. This is because our model can learn features predictive of heavy
hitters, as opposed to the distribution-agnostic CountMinSketch.

In the previous experiment, the Zipfian distribution shape was fixed across training instances but
the rank ordering of elements was random. In some settings, however, it may be possible to predict
which elements are more likely to occur in the stream. While the exact elements may vary between
streams, frequently occurring items could share features across streams. For instance, Hsu et al.
[23] show that in frequency estimation for network flows, certain types of IP addresses receive
much more traffic than others. We simulate such a setting by fixing the rank ordering of the Zipfian
distribution. However, instead of using a universe of integer elements {1, ...,K}, we instead use their
corresponding 3-digit MNIST images with K = 100 (constructed as in the MNIST NN experiment).
Given a stream of integers, we map them to their corresponding MNIST labels and then for each
label we sample a corresponding image from the training set. During evaluation, we use images
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Figure 25: We show the decision boundary learned by the query/data-processing network in the
MNIST heavy hitters experiment. As images with smaller numbers occur more frequently in the
stream, the memory-constrained model learns to reserve separate memory positions for these items in
order to prevent collisions among them.

samples from the test set. As the distribution is skewed and the ranking is fixed, images with smaller
numbers are sampled much more frequently than those with larger numbers. As in the MNIST NN
experiment, we also use a feature-learning CNN model to process the images before passing them to
the data-processing and query-execution networks.

We compare our model to CountMinSketch with 1-query that is given the underlying labels instead
of the images. Our model has a significantly lower error than the baseline (0.15 vs 2.81 averaged
over a stream of size 100 (see Fig. 24)) as the latter is distribution-independent. By training from the
data-distribution end-to-end, our framework is able to simultaneously learn features of heavy hitters
(in this case, clustering images with the same label) and use this information to design an efficient
frequency estimation data structure. We investigate the learned structure and find that the model has
reserved separate memory positions for heavy hitters, thereby preventing collisions (Fig. 25).

C.5 Relation of our experiments to Hsu et al. [23]

Here, we clarify the difference between our frequency estimation experiments and the setup explored
by [23]. The frequency estimation experiment in the main paper (Figure 5 (Left)) is different from
the work of [23] as we randomize the rank ordering of elements for each dataset so there are not
consistent features of “heavy hitters” (frequently appearing elements). Rather, the models can only
leverage the fact that the distribution is skewed (without knowing the frequency of any given element).
However, in Appendix C.4 we include an experiment with MNIST data where the ranking is fixed but
the model must learn features of heavy-hitters (some numbers appear more often than others). The
model learns to do something similar to what [23] propose - using separate buckets to store counts
for heavy hitters.

C.6 Connection to neural sketching works [43, 44, 45]

The recent line of work on neural sketching algorithms [43, 44, 45] shares several similarities
with our frequency-estimation experiments. Both can be regarded as memory-augmented neural
networks that learn to read from and write to differentiable memory [38]. Although we did not
run direct comparisons, their architectures and training setups—tailored specifically for frequency
estimation—suggest performance comparable to, and potentially better than, ours, and likely offer a
more scalable path for this task. By contrast, our goal is different: rather than building in inductive
biases from known sketching algorithms to achieve scalability, we deliberately avoid such priors to
ask a more fundamental question—can neural networks discover sketching algorithms from scratch?
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C.7 Frequency Estimation Failure Mode

In our frequency estimation experiments, we found a setting where learning struggled to make
progress. Specifically, this occurs when the query and streaming distributions are Zipfian with a large
skew. For fixed training instances, the rank order of elements is consistent across both stream and
query distributions but randomized across different training instances.

We explain our hypothesis for why this occurs with a simplified setup. Imagine that the universe of
elements that the query/streaming data is drawn from only consists of two elements: {A,B}. Assume
the data structure size k = 2, thus the memory is large enough to store the counts for each element
in separate buckets and therefore incur zero estimation error. Let mA = [x, y] and mB = [u, v]
where mA denotes the initial lookup distribution for element A and mB the distribution for B. In
other words, when element A arrives, the memory D̂ is read by computing mT

AD̂ (and in a similar
fashion for B). Now, consider the case when both x > y and u > v (this applies also when x < y
and u < v). If we sample a batch of datasets, in approximately half of them the frequency of A will
be much larger than the frequency of B and in the other half the inverse will be true. Again, this is
because while the degree of skew is fixed across datasets, the rank ordering of elements is randomized.
Consequently, this means that for data sets where A is more frequent than B, the optimizer will try to
increase x and lower y and when the inverse is true, the optimizer will try to increase u and lower
v. However, this means that for both elements, the lookup positions will point to the first position
in memory over the second (the opposite is true when x < y and u < v). This will cause collisions
and increase the estimation error. This behavior can be avoided by setting v > u, or more generally,
making the lookup distributions more orthogonal.

While this is a relatively simplified setup (i.e. we’re not using any neural networks), we believe
it captures part of the more general phenomenon. It demonstrates that there are settings where
careful initialization can be required for learning to make progress. More generally, this suggests that
end-to-end learning cannot always be expected to work without additional problem specific inductive
biases. In our view, it also makes it more surprising that for the majority of settings we explored, we
did not encounter such issues!

D Efficiency & Scaling

D.1 Improving Efficiency of Data-Processing Network for NN Search

For our NN experiments, we chose to use a transformer with O(n2) complexity in order to keep
the model relatively general. This may not always be necessary. For instance, high-dimensional
hashing-based methods could be learned with a less complex model. However, data structures like
k-d trees have a higher construction complexity O(dn log(n)). Our framework does not require
using any specific model so a less (or more) complex model can trivially be substituted in for the
transformer. One way to enable scaling to larger instances would be to lower the complexity of the
data-processing model (e.g. using a linear transformer).

To demonstrate that in some settings quadratic attention can be substituted with a cheaper alternative,
we run additional experiments in 2D (uniform distribution) and in high dimensions (FashionMNIST)
with the linear attention Performer model [52].7 We use the same model hyper-parameters as the
quadratic attention model and plot the results in Figure 26. The comparable performance of the linear
attention model suggests that it could be a computationally-cheaper alternative that can enable scaling
up models to larger settings.

D.2 Scaling Up

Most of our nearest neighbor search experiments are done with input dataset sizes around N = 100,
however, we are also able to scale up to N = 500 (Figure 27 (Left/Center)), though with less than
log(N) queries. There are two primary limitations that led to relatively low N : the data-processing
cost (since all N data points are processed) and the MLP query models, which output vectors of size
N—causing heavy matrix multiplication and memory costs. While we demonstrate that useful data

7We use the Pytorch implementation from https://github.com/lucidrains/performer-pytorch/tree/main.
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Figure 26: Performance of the quadratic attention transformer vs. linear attention performer trans-
former [52] in both 2D (left) and high dimensions (100) (right).

1 2 3 4 5
Lookup Index

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Model
E2E
Binary Search

1 2 3 4 5
Lookup Index

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
ea

n 
Sq

ua
re

 E
rro

r

Model
E2E (non-adaptive)
LSH (K=5)
LSH (K=6)
LSH (K=7)

1 2 3 4 5 6 7
Lookup Index

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
E2E
E2E (shared)

Figure 27: We scale both the 1D (Left) and 30D (Center) experiments to datasets of size N = 500.
(Right) We compare our E2E model with a version where the query-execution network is only
composed of one query-model (E2E (shared)) that is used in a loop for M = 7 queries during training
on the 1D Uniform distribution, thereby conserving parameters by reusing weights. This could be a
promising direction for problem settings where there is a recursive structure to the query algorithm.

structures can still be learned at this scale, it is possible that other classes of structures only emerge
for larger datasets.

One avenue to scale end-to-end learning to larger datasets is by increasing the parameter count of
the data-processing and query-execution networks. Moreover, as transformers become increasingly
efficient at handling larger context sizes in language modeling settings, some of these modeling
advancements may also be used for scaling models in the context of data structure discovery. While
helpful, these changes would require resources beyond those available with academic compute.

Complementary to our work, it could also be valuable to explore better inductive biases for the query
and data-processing networks, and other methods to ensure sparse lookups, enabling smaller models
to scale to larger datasets. For instance, using shared weights among query models can be helpful in
scaling up the number of queries. As a first step in this direction we show that a single query model
can be used in-a-loop for NN search in 1D (Figure 27 (Right)). We leave further investigation for
future work.

Another inductive bias that could improve scaling would be some form of hierarchical indexing. For
example, the data-processing model could assign data points to partitions in a hierarchy, while the
query network outputs a smaller set of coordinates to index this hierarchy.

These are just initial ideas and there is a large space for inductive biases worth exploring in future
works. We deliberately avoided adding such inductive biases as we wanted to leave the setup relatively
general and see if anything useful could be learned even at smaller scales. We also emphasize that
many of the insights that can be derived from our models’ learned solutions would scale to larger N .
For instance, k-D trees in 2d and locality-sensitive hashing in higher dimensions. We limit ourselves
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to datasets of these sizes due to computational constraints, and because our primary goal was to
understand whether end-to-end data structure design is feasible at any reasonable scale.

Finally, we point to other works focused on algorithm learning and discovery that started at small
scale with more synthetic setups [2, 53, 54] and inspired follow-up work that then focused on scaling
up the initial set of ideas. We hope our work can serve a similar purpose - demonstrating the value in
learning data structures E2E - and inspire future work to develop methods for better scaling.

D.3 Benchmarking Computational Overhead

In this section we evaluate the throughput of the nearest neighbor models across various settings.
We emphasize that in this paper we did not optimize for practical efficiency as we were primarily
interested in the fundamental tradeoffs between space and query complexity, though these are certainly
related to runtime in practice. Nevertheless, we include our findings for completeness. We use the
same architectures from our experiments (see App B.1 for details). Benchmarking is conducted with
a batch size of 512 and the results are averaged over 10 trials on a single GPU.

Query Processing Throughput

The table below shows the number of queries processed per second when using log(n)
lookups per query. As expected, querying smaller datasets has higher throughput as the number of
lookups, and thus neural net forward inferences, is smaller.

Dim N = 64 N = 128 N = 256 N = 1024 N = 2048

32 212,943 175,559 146,495 113,960 103,476
64 211,518 173,807 149,603 113,249 105,833
128 208,741 172,275 151,533 116,607 104,858

Below, we fix N = 256 and measure how increasing the number of lookups (M ) affects throughput.
There is a clear inverse correlation between M and throughput indicating that query complexity has
implications for practical efficiency.

Dim M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8

32 1,072,476 517,067 345,946 261,705 212,202 176,503 145,927 134,165
64 1,090,290 513,129 355,654 265,753 211,991 174,031 150,917 132,594
128 1,054,366 519,691 348,347 260,985 212,237 173,406 145,191 133,278

Data-Preprocessing Throughput

The table below shows the number of raw datasets processed into a data structure per sec-
ond using quadratic and linear attention. Quadratic attention runs faster here due to flash-attention
[55], which optimizes memory access. Notably, in smaller N regimes, linear attention can be less
efficient than quadratic attention with hardware optimizations, despite its lower FLOP count.

Arch Dim N = 64 N = 128 N = 256 N = 1024 N = 2048

Linear 32 17,701 8,772 4,542 1,170 585
Linear 64 17,241 8,844 4,563 1,177 590
Linear 128 17,121 8,614 4,473 1,152 577
Quadratic 32 95,229 49,697 13,418 5,867 571
Quadratic 64 94,815 46,924 13,285 5,248 548
Quadratic 128 93,294 48,506 13,095 5,174 543

We also try fixing the input dimension to 128 and adjust the number of layers in the quadratic
transformer.
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# Layers N = 64 N = 128 N = 256 N = 1024 N = 2048

4 174,433 174,381 173,501 31,512 8,449
8 94,493 95,037 18,849 6,780 610
12 65,331 24,301 8,073 1,103 220

E Broader Applicability of Our Framework

E.1 Generality of Our Framework

Our framework is designed for problems that require efficiently answering queries over some col-
lection of data. We believe it can be applied to any problem that shares this structure—namely, one
where there is a data-processing step, a query algorithm, and constraints on space and query-time
complexity. In Section 3.2, we outline several such candidate problems that could benefit from this
approach. Many classical data structure problems share these common elements, and our framework
provides a unified way of modeling them.

A key feature of this formulation is the enforcement of query-time complexity constraints, which
requires learning sparse querying algorithms. We address this by training with noise to promote
sparsity (see App. B.3), a core mechanism that makes the framework practical in constrained settings.

In its most general form, the framework consists of three components: a data-processing network that
maps N data points into K structured chunks; a query model that performs M lookups over these
chunks based on a given query; and a predictor network that produces the final response.

In nearest neighbor search, we have N = K, and the inputs must be retained during data structure
construction. This motivates learning permutations as part of the data model. As discussed in
App. E.2, this approach does not limit generality and can apply to any setting where inputs must
be preserved. Additionally, because the final response is itself a data point, no separate predictor
network is needed.

In contrast, frequency estimation introduces a structurally different challenge: N > K (stream length
vs. memory size), and the data-processing network uses an MLP instead of a Transformer to better
suit the streaming setting. Here, we also include a predictor network to estimate frequencies, while
reusing the same query mechanism from the NN setup. We chose frequency estimation as our second
problem precisely because it is structurally different due to the streaming nature, yet E2E learning
still works under the proposed framework.

Adapting Framework for Other Problems

As nearest neighbour search is arguably the most pervasive data structure problem, there remain
many other avenues to explore end-to-end learning for nearest neighbour search beyond the settings
we discuss in our paper, including k-NN search, different distance metrics such as L1 distance, and
structures that can support insertions and deletions. Moreover, the frequency estimation setting could
be easily adapted to cover membership data structures such as bloom filters.

For new data structure problems, such as those we mention in Section 3.2, one could certainly use
the same architectures we have used, i.e. for the data-processing model, using a transformer for
the batch-setting or MLP for the streaming setting and using MLPs for the query-model. These
architectures are relatively general and therefore require minimal adaptation. To be more specific,
we discuss how each of the problems we propose in Section 3.2 can be tackled with our framework.
We focus on the batch setting as this is the more common one though similar insights apply to the
streaming setting.

Graph data structures A permutation-equivariant architecture such as a transformer (with no
positional encodings) or a graph-neural network should be used to represent the graph in the data-
processing network. Note that it has already become commonplace to use transformers to represent
graphs [56, 57]. The output size of the model would be constrained to control the space complexity
of the learned data structure. This is accomplished by either ignoring certain output tokens when less
space then the input size is desired or adding additional tokens when more space is required, as we
do in our extra space experiments. The same MLP query architecture we proposed should suffice.
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Sparse matrices As matrices are simply grids of numbers, transformer would be appropriate as
well with each token representing either a row/column of the matrix or a single element. The output
size of the model would be constrained to control the space-complexity of the learned data structure.
The same MLP query architecture we proposed should suffice.

Learning statistical models In this case, the data-processing network which operates over datasets
should likely be permutation-invariant as there is no canonical ordering to an IID dataset so a
transformer would suffice. Again, the output size of the model would be constrained to control the
size of the learned model (e.g. decision tree). The MLP query architecture would be an appropriate
choice for the query model.

While specialized architectures do exist for different domains (e.g. graph neural networks), trans-
formers can certainly be used as a starting point and are currently applied to many different types
of inputs [58, 59, 56]. There is also work that is trying to build general architectures for structured
inputs/outputs [60, 61]. Advances in this direction could lead to more general architectures for data
structures as well

In summary, our framework is general in so far as it provides a concrete way to set up the interaction
between the data structure and the queries while respecting space and query complexity constraints.
It does not require prior knowledge of specific data structures or algorithms. That said, this should be
viewed as a starting point—not an all-encompassing recipe—and using problem-specific information
can certainly improve performance.

E.2 Nearest Neighbor Permutation

A key NN constraint is that the prediction must be one of the original data points, which every NN
method (even approximate ones) satisfies. Initially, we trained a transformer to output a re-ordered
dataset directly, but training was slower because it had to recreate the original data as well as reorder it.
Instead, we trained the model to learn a permutation directly, avoiding the need to learn to reproduce
the data while still preserving expressivity, since any structure (e.g. clustering or hierarchical ordering)
can be represented as a permutation. Our experiments, such as the FashionMNIST plot in Figure 18,
confirm that this method naturally discovers clustering. Beyond NN, it can benefit any task requiring
retention of the inputs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction clearly states the claims made and also
references results that provide evidence for these claims. We also discuss the scope and
limitations in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the limitations are addressed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We have no theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to releasing the code we provide architecture and hyperparameter
details in Section B.1. All of our datasets are either generated with our code or are publicly
available (e.g. MNIST, FashioMNIST, SIFT).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We share code for the experiments and data generation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This information is detailed in Sections B.1 and C.2.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use bootstrapped confidence intervals for the majority of our experiments,
we also show the variability of the results across seeds in Section B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In section B.1 we detail the compute resources used and the number of
optimization steps.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and found no violations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As this is a more fundamental paper focused on discovering algorithms, there
is no immediate societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

42

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Neither our data nor our models pose a risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data is publicly available or has been appropriately acknowledged (i.e.
CAIDA dataset).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

43



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we release the code and include documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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