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Figure 1: Our framework, RelationAdapter, can effectively perform a variety of image editing tasks
by relying on exemplar image pairs and the original image. These tasks include (a) low-level editing,
(b) style transfer, (c) image editing, and (d) customized generation.

Abstract

Inspired by the in-context learning mechanism of large language models (LLMs),
a new paradigm of generalizable visual prompt-based image editing is emerging.
Existing single-reference methods typically focus on style or appearance adjust-
ments and struggle with non-rigid transformations. To address these limitations, we
propose leveraging source-target image pairs to extract and transfer content-aware
editing intent to novel query images. To this end, we introduce RelationAdapter,
a lightweight module that enables Diffusion Transformer (DiT) based models to
effectively capture and apply visual transformations from minimal examples. We
also introduce Relation252K, a comprehensive dataset comprising 218 diverse edit-
ing tasks, to evaluate model generalization and adaptability in visual prompt-driven
scenarios. Experiments on Relation252K show that RelationAdapter significantly
improves the model’s ability to understand and transfer editing intent, leading to
notable gains in generation quality and overall editing performance. Project page:
https://github.com/gy8888/RelationAdapter

1 Introduction

Humans excel at learning from examples. When presented with just a single pair of images, compris-
ing an original and its edited counterpart, we can intuitively infer the underlying transformation and
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apply it to new, unseen instances. This paradigm, known as edit transfer or in-context visual learning
[6} 128 158 164], provides an intuitive and data-efficient solution for building flexible visual editing
systems. Unlike instruction-based editing methods [[18} 25 161] that rely on textual prompts—where
ambiguity and limited expressiveness can hinder precision—image pairs inherently encode rich,
implicit visual semantics and transformation logic that are often difficult to articulate in language. By
directly observing visual changes, models and users alike can grasp complex edits such as stylistic
shifts, object modifications, or lighting adjustments with minimal supervision. As a result, this
paradigm offers a highly intuitive and generalizable modality for a wide range of image manipulation
tasks, from creative design to personalized photo retouching.

In-context learning-based methods [6, 23] 28] 58| 164] have proven effective in extracting editing
intent from image pairs. However, inputting image pairs into the model by concatenating them with
the original image leads to several issues, including high memory consumption during inference
and degraded performance of text prompts. To address these issues, we aim to develop a dedicated
bypass module that can efficiently extract and inject editing intent from example image pairs, thereby
facilitating image editing tasks. Nevertheless, building a scalable and general-purpose framework
for image-pair-driven editing still presents several fundamental challenges: (1) accurately extracting
visual transformation signals from a single image pair, including both semantic modifications (e.g.,
object appearance, style) and structural changes (e.g., spatial layout, geometry); (2) effectively
applying these transformations to novel images while maintaining layout consistency and high visual
fidelity; and (3) achieving strong generalization to unseen editing tasks—such as new styles or unseen
compositional edits—without requiring retraining.

In this paper, we propose a unified framework composed of modular components that explicitly
decouples the extraction of editing intent from the image generation process and enables more
interpretable and controllable visual editing.

Our main contributions are summarized as follows:

* First, we propose RelationAdapter, the first DiT-based adapter module designed to extract
visual transformations from paired images, enabling efficient conditional control for generat-
ing high-quality images with limited training samples. A dual-branch adapter is designed to
explicitly model and encode visual relationships between the pre-edit and post-edit images.
It utilizes a shared vision encoder [40,165] (e.g., SigLIP) to extract visual features, subse-
quently injecting these pairwise relational features into the Diffusion Transformer (DiT)
[37] backbone to effectively capture and transfer complex edits. As a result, our framework
robustly captures transferable edits across semantic, structural, and stylistic dimensions.

* Second, We introduce In-Context Editor, a consistency-aware framework for high-fidelity,
semantically aligned image editing with strong generalization to unseen tasks. It performs
zero-shot image editing by integrating clean condition tokens with noisy query tokens.
This mechanism enables the model to effectively align spatial structures and semantic
intentions between the input and its edited version. A key innovation introduced in this
method is positional encoding cloning, which explicitly establishes spatial correspondence
by replicating positional encodings from condition tokens to target tokens, thus ensuring
precise alignment during the editing process.

* Third, to facilitate robust generalization across a wide range of visual editing scenarios
[4] 1220 148]], we construct a large-scale dataset comprising 218 diverse editing tasks. These
scenarios span from low-level image processing to high-level semantic modifications, user-
customized generation, and style-guided transformations. The dataset consists of 33,274
image pairs, which we further perform permutation to obtain a total of 251,580 training
instances. This extensive and heterogeneous dataset improves the model’s generalization to
unseen styles and edits. Furthermore, this dataset provides a unified and scalable foundation
for training and evaluating future image-pair editing models.



2 Related Work

2.1 Diffusion Models

Diffusion models have emerged as a dominant paradigm for high-fidelity image generation [42, 69,
70l], image editing[32} 71} [72], video generation [50} 51} 156] and other applications [9} 47} 153, 154].
Foundational works such as Denoising Diffusion Probabilistic Models [20] and Stable Diffusion [42]
established the effectiveness of denoising-based iterative generation. Building on this foundation,
methods like SDEdit [32] and DreamBooth [43]] introduced structure-preserving and personalized
editing techniques. Recent advances have shifted from convolutional U-Net backbones to Transformer-
based architectures, as exemplified by Diffusion Transformers (DiT) [37,[73] and FLUX [1]]. DiT
incorporates adaptive normalization and patch-wise attention to enhance global context modeling,
while FLUX leverages large-scale training and flow-based objectives for improved sample fidelity
and diversity. These developments signal a structural evolution in diffusion model design, paving the
way for more controllable and scalable generation.

2.2 Controllable Generation

Controllability in diffusion models has attracted increasing attention, with various approaches en-
abling conditional guidance. ControlNet [[68]], T2I-Adapter [33]], and MasaCtrl [5] inject external
conditions—such as edges, poses, or style cues—into pretrained models without altering base weights.
These zero-shot or plug-and-play methods offer flexibility in structure-aware generation. In parallel,
layout- and skeleton-guided frameworks such as GLIGEN [27]] and HumanSD [24] enable high-level
spatial control. Fine-tuning-based strategies, including Concept Sliders [15] and Finestyle [66],
learn attribute directions or attention maps to enable consistent manipulations. In the era of Diffu-
sion Transformers, some methods concatenate condition tokens with denoised tokens and achieve
controllable generation through bidirectional attention mechanisms or causal attention mechanisms
[16,122,149,1511 152 155]]. Despite their success, many of these methods rely on fixed condition formats
or require significant training overhead [30, 146/ 60].

2.3 Image Editing

Text-based and visual editing with diffusion models has seen rapid development. Prompt-to-Prompt
[18] and InstructPix2Pix [4] allow fine-grained edits using prompt modifications or natural language
instructions. Paint by Example [63] and LayerDiffusion [67] exploit visual references and layered
generation to perform localized, high-quality edits. Versatile Diffusion [62] supports joint condition-
ing on text and image modalities, expanding the space of compositional control. Complementary to
existing methods that often introduce a substantial number of additional parameters, our proposed
RelationAdapter provides a lightweight yet effective solution that leverages DiT’s strong pretrained
visual representation and structural modeling capacity, enabling few-shot generalization to novel
and complex editing tasks. By injecting learned edit intent into DiT’s attention layers, our method
supports fine-grained structural control and robust style preservation.

3 Methods

In this section, we present the overall architecture of our proposed methods in Section Next,
Section [3.2] outlines our RelationAdapter module, which serves as a visual prompt mechanism to
effectively guide image generation. We then integrate the In-Context Editor module (Section 3.3)
by incorporating the Low-Rank Adaptation (LoRA) [21] fine-tuning technique into our framework.
Finally, Section [3.4] presents a novel dataset of 218 in-context image editing tasks to support a
comprehensive evaluation and future research.

3.1 Overall Architecture

As shown in our method consists of two main modules:

RelationAdapter. RelationAdapter is a lightweight module built on the DiT architecture. By
embedding a novel attention processor in each DiT block, it captures visual transformations and
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Figure 2: The overall architecture and training paradigm of RelationAdapter. We employ the
RelationAdapter to decouple inputs by injecting visual prompt features into the MM Attention module
to control the generation process. Meanwhile, a high-rank LoRA is used to train the In-Context
Editor on a large-scale dataset. During inference, the In-Context Editor encodes the source image
into conditional tokens, concatenates them with noise-added latent tokens, and directs the generation
via the MMAttention module.

injects them into the hidden states. This enhances the model’s relational reasoning over image pairs
without modifying the core DiT structure.

In-Context Editor. In-Context Editor frames image editing as a conditional generation task during
training. It jointly encodes the images and textual description, enabling bidirectional attention
between the denoising and input branches. This facilitates precise, instruction-driven editing while
preserving the pre-trained DiT architecture for compatibility and efficiency.

3.2 RelationAdapter

Our method can be formulated as a function that maps a set of multimodal inputs, namely, a visual
prompt image pair (Ipm, Iref), @ source image I, and a textual prompt Tpmy, to a post-edited image
as a target image Iy,

Itar = g(Iprm» Iref7 Isrca Tprm) =D (R(Iprm7 Iref)a Isrm Tprm) (1)

where D denotes the Diffusion Transformer, and R refers to the RelationAdapter module integrated
into the Transformer encoder blocks of the DiT architecture.

Image Encoder. Most personalized generation methods use CLIP [40] as an image encoder, but
its limited ability to preserve fine-grained visual details hinders high-fidelity customization. To
overcome this, we adopt the SigLIP-SO400M-Patchl4-384 [65] model for its superior semantic
fidelity in extracting visual prompt features from paired visual prompts Iy and Ir.r. Let cp and
cr denote the representations of the sequence of features of I, and Iy, respectively. The visual
prompt representation cy, is constructed by concatenating cp and cg.

Revisiting Visual Prompt Integration. To enhance the representational flexibility of the DiT based
model, we revisit the current mainstream image prompt based approaches (e.g., FLUX.1 Redux [3],
which directly appends visual features to the output of the TS5 encoder [31]).

Given the visual prompt features cy- and the backbone DiT input features ¢, FLUX.1 Redux applies
a bidirectional self-attention mechanism over the concatenated feature sequence. The resulting
attention output Z’ is computed as:

KT
Z' = Attention(Q, K, V) = Softmax QK A% )
Vd
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Q=cpvW,, K=cgyWi, V=cpyW, 3)

and cp v denotes the concatenation of backbone DiT input features cg and visual features cy .

Decoupled Attention Injection. A key limitation of current approaches is that visual prompts cy
are typically much longer than textual prompts cr, which can weaken or even nullify text-based
guidance. We design a separate key-value (KV) attention projection mechanism, W), and W7, for
the visual prompts. Crucially, the cross-attention layer for visual prompts shares the same query Q
with the backbone DiT branch:

KI T
Zy = Attention(Q, K', V') = Softmax (Q()) \%4 4)
Vd
Q=csW,, K =cyW, V' =c,W, )

Then, we fuse the visual attention output Zy (from the RelationAdapter) with the original DiT
attention output Z p before passing it to the Output Projection module:

Znew = ZB +ao- ZV (6)

where « is a tunable scalar coefficient that controls the influence of visual prompt attention.

3.3 In-Context Editor

In-Context Editor builds upon a DiT-based pretrained architecture, extending it into a robust in-
context image editing framework. Both the source image I and the target image I, are encoded
into latent representations, cg and z respectively, via a Variational Autoencoder (VAE) [26]. After
cloning positional encodings, the latent tokens are concatenated along the sequence dimension to
enable Multi-modal Attention [36]], formulated as:

.
MMA ([z; ¢s; er]) = softmax (%2) |4 )

Here, Z = [z; cg; cr| denotes the concatenation of noisy latent tokens z, source image tokens cg,
and text tokens cp, where z is obtained by adding noises to target image tokens.

Position Encoding Cloning. Conventional conditional image editing models often struggle with
pixel-level misalignment between source and target images, leading to structural distortions. To
address this, we propose a Position Encoding Cloning strategy that explicitly embeds latent spatial
correspondences into the generative process. Specifically, we enforce alignment between the posi-
tional encodings of the source condition representation cg and the noise variable z, establishing a
consistent pixel-wise coordinate mapping throughout the diffusion process. By sharing positional
encodings across key components, our approach provides robust spatial guidance, mitigating artifacts
such as ghosting and misplacement. This enables the DiT to more effectively learn fine-grained
correspondences, resulting in improved editing fidelity and greater theoretical consistency.

LoRA Fine-Tuning. To enhance the editing capabilities and adaptability of our framework to
diverse data, we constructed a context learning-formatted editing dataset comprising 251,580 samples
(see Section[3.4). We then applied LoRA fine-tuning to the DiT module for parameter-efficient
adaptation. Specifically, we employed high-rank LoRA by freezing the pre-trained weights Wy and
injecting trainable low-rank matrices A € R"** and B € R%*" into each model layer.

Noise-Free Paradigm for Conditional Image Features. Existing In-Context Editor frameworks
concatenate the latent representations of source and target images as input to a step-wise denoising
process. However, this often disrupts the source features, causing detail loss and reduced pixel fidelity.
To address this, we propose a noise-free paradigm that preserves the source features cg from I,
throughout all denoising stages. By maintaining these features in a clean state, we provide a stable
and accurate reference for generating the target image I,,. Combined with position encoding cloning
and a Multi-scale Modulation Attention (MMA) mechanism, this design enables precise, localized
edits while minimizing unintended modifications.



3.4 Relation252K Dataset

We curate a large-scale image editing dataset encompassing 218 diverse tasks, categorized into
four main groups based on functional characteristics: Low-Level Image Processing, Image Style
Transfer, Image Editing, and Customized Generation. The dataset contains 33,274 images and
251,580 editing samples generated through image pair permutations. Figure [3|provides an overview
of four task categories. We open-source the full dataset to encourage widespread usage and further
research in this field.
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Figure 4: Overview of the annotation pipeline
using GPT-40. GPT-40 generates a set of source
caption, target caption, and edit instruction de-
scribing the transformation from I, to Ii,.

Automatic Image Pairs Generation. We introduce a semi-automated pipeline for constructing a
high-quality dataset. A custom script interfaces with a Discord bot to send /imagine commands
to MidJourney, generating high-fidelity images. Also using the GPT-40 [35] multimodal API, we
generate context-aware images from original inputs and edits. For low-level tasks, we additionally
curate a subset of well-known benchmark datasets[[10} |13} 14} [17, 134, 38, 39, 44] through manual
collection to ensure coverage of classic image processing scenarios. Furthermore, part of our original
dataset is derived from several existing facial and human image collections, including [[11}12}[29]45]].
To improve annotation efficiency and scalability, we leverage the multimodal capabilities of GPT-40
to automatically generate image captions and editing instructions. Specifically, we concatenate the
source image (/) and the corresponding edited image (Ii,;) as a joint input to the GPT-40 APL. A
structured prompt guides the model to produce three outputs: (1) a concise description of Ig.; (2) a
concise description of Ii,; and (3) a human-readable editing instruction describing the transformation
from I to I,;. An example illustrating the pipeline is shown in Figure E} To conform with the
model’s input specification, image pairs are sampled and arranged via rotational permutation, with up
to 2,000 instances selected per task to ensure distributional balance. In each sample, the upper half is
used as visual context for the RelationAdapter, and the lower half is input to the In-Context Editor
module. Directional editing instruction (/g — I,;) are provided solely as text prompt, without
detailed content descriptions.

4 Experiments

4.1 Settings

We initialize our model with FLUX.1-dev [2] within the DiT architecture in training. To reduce
computational overhead while retaining the pretrained model’s generalization, we fine-tune the
In-Context Editor using LoRA, with a rank of 128. Training spans 100,000 iterations on 4 H20 GPUs,
with an accumulated batch size of 4. We use the AdamW optimizer and bfloat16 mixed-precision
training, with an initial learning rate of 1 x 10~%. The total number of trainable parameters is 1,569.76
million. Training takes 48 hours and consumes ~74 GB of GPU memory. At inference, the model
requires ~40 GB of GPU memory on a single H20 GPU. The RelationAdapter employs a dual-branch
SigLIP visual encoder, where each branch independently processes one image from the input pair
and outputs a 128-dimensional feature token via a two-layer linear projection network. The attention



fusion coefficient « is fixed to 1. To balance computational efficiency, input images are resized,
maintaining their aspect ratio, such that the longer side does not exceed 512 pixels prior to encoding.

4.2 Benchmark

We selected 2.6% of the dataset (6,540 samples) as a benchmark subset, covering a diverse range of
218 tasks. Among these, 6,240 samples correspond to tasks seen during training, while 300 represent
unseen tasks used to evaluate the model’s generalization capability.

4.3 Baseline Methods

To assess the performance of our method, we compare it against two baselines: Edit Transfer [6]
and VisualCloze [28]]. Both baselines follow an in-context learning setup and are evaluated within
the shared training task space to ensure a fair comparison, using the official implementation and
recommended hyperparameters to ensure reproducibility.

4.4 Evaluation Metrics

We evaluate model performance using five key metrics: Mean Squared Error (MSE), CLIP-based
Image-to-Image Similarity (CLIP-I), Fréchet Inception Distance (FID), Editing Consistency
(GPT-C), and Editing Accuracy (GPT-A). MSE [59] quantifies low-level pixel-wise differences
between the generated and ground-truth images. To capture perceptual and semantic fidelity, we
employ both CLIP-I [41] and FID [[19]. CLIP-I measures high-level semantic similarity by computing
the cosine distance between CLIP embeddings of generated and reference images, while FID evaluates
the overall realism and distributional alignment of generated images with real ones in the feature
space of a pretrained Inception network, where a lower value indicates higher visual quality. To
further assess editing quality from a human-centered perspective, we leverage GPT-40 to interpret the
intended transformation from the prompt image /.1, to the reference image I..¢, and evaluate the
predictions based on two dimensions: Editing Consistency (GPT-C), which measures alignment with
the source image I,., and Editing Accuracy (GPT-A), which assesses how faithfully the generated
image reflects the intended edit.

4.5 Comparison and Evaluation

Quantitative Evaluation. As shown in Table[I} our method consistently outperforms the baselines
in MSE, CLIP-1, and FID metrics. Compared to Edit Transfer, our model achieves a significantly
lower MSE (0.020 vs. 0.043), a higher CLIP-I score (0.905 vs. 0.827), and a reduced FID (4.201
vs. 4.908), indicating better pixel-level accuracy, semantic consistency, and overall visual quality.
Similarly, when compared with VisualCloze, our method achieves a notable improvement, reducing
the MSE from 0.049 to 0.025, boosting CLIP-I from 0.802 to 0.894, and lowering FID from 7.218
to 4.801. These results demonstrate the effectiveness of our approach in producing both visually
accurate and semantically meaningful image edits. Our method also consistently outperforms two
state-of-the-art baselines in GPT-C and GPT-A metrics.

Qualitative Evaluation. As shown in Figure[5] our method demonstrates strong editing consistency
and accuracy in both seen and unseen tasks. Notably, in the unseen task of adding glasses to a
person, our approach even outperforms Edit Transfer, which was explicitly trained on this task. In
contrast, Edit Transfer shows instability in low-level color control (e.g., clothing color degradation).
Compared to VisualCloze, our method is less affected by the reference image I, especially in tasks
like depth prediction and clothes try-on. VisualCloze tends to overly rely on I.f, reducing transfer
accuracy, while our method more reliably extracts key editing features, enabling stable transfer. On
unseen tasks, VisualCloze often shows inconsistent edits, such as foreground or background shifts.
Our method better preserves structural consistency. This may be due to VisualCloze’s bidirectional
attention causing feature spillover. Although our method retains some original color in style transfer,
it produces more coherent edits overall, indicating room to further improve generalization.

4.6 Ablation Study

To assess the effectiveness of our proposed RelationAdapter module, we conducted an ablation
study by directly concatenating the visual prompt features with the condition tokens cg. For a fair
comparison, this baseline was trained for 100,000 steps, identical to RelationAdapter. As shown in



Table 2] our model consistently outperforms the in-context learning baseline across all five evaluation
metrics on both seen and unseen tasks. This improvement is attributed to the RelationAdapter, which
enhances performance by decoupling visual features and reducing redundancy.
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Figure 5: Compared to baselines, RelationAdapter demonstrates outstanding instruction-following
ability, image consistency, and editing effectiveness on both seen and unseen tasks.

Table 1: Quantitative Comparison of Baseline  Table 2: Ablation Study on the Effectiveness of
Methods Trained on a Common Task (ET: Edit  the RelationAdapter(RA) in Seen and Unseen
Transfer, VC: VisualCloze). The best results are  Tasks (-S for Seen, -U for Unseen). The best

denoted as Bold. results are denoted as Bold.
Method MSE | CLIP-I 1 FID | GPT-C 1 GPT-A 1 Method MSE | CLIP-I 1 FID | GPT-C 1 GPT-A 1
EditTransfer ~ 0.043 0.827 4.908 4234  3.508 wioRA-S 0055 0787 5968 3909 3.597
Ours NET  0.020 0905 2201 4437 4.429 Ours -S 0.044 0852 5191 4.079 4.106
VisualCloze ~ 0.049 0.802 7.218 3.594 3411 wioRA-U 0061 0778 5571 3.840 3.566
OursNVC  0.025 0.894 4.801 4.084 3.918 Ours -U 0.053 0.812 5498 4.187 4.173

Although latent-space concatenation (i.e., directly merging four input images before VAE encoding)
is effective, it imposes a considerable computational burden during inference. This limitation restricts
the resolution of generated images and compromises fine-grained details during inference. In contrast,
our lightweight RelationAdapter provides a more efficient alternative, enabling the model to capture
and apply the semantic intent of editing instructions with minimal computational cost. Figure [6]
demonstrates that our approach yields higher editing accuracy and consistency in both task settings.
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Figure 6: Ablation study results. Our strategy shows better editorial consistency.



4.7 User Study

We conducted a user study to evaluate our method. Thirty volunteers were recruited to complete
assessment questionnaires. In each task, participants were presented with a pair of task prompt
images (representing the intended edit), one source image, and two edited results: one generated
by our proposed method and the other by a baseline method. For the in-context learning baseline,
we used the model variant from our ablation study with the RelationAdapter module removed. All
images were randomly sampled to ensure fairness across tasks. To mitigate potential bias, the order
of the two edited images was randomized for each task.

Participants were instructed to interpret the intended transformation from the prompt pair and answer
the following three questions:

1. Edit Accuracy: Which image better aligns with the editing intent implied by the prompt
pair?

2. Edit Consistency: Which image better preserves the structure and identity of the source
image?

3. Overall Preference: Which image do you prefer overall?

The aggregated results of the user study are summarized in Figure[7]] When compared with an in-
context learning-based method, our approach was preferred for tasks included in training in 73.19 %
of cases for Edit Accuracy, 80.08% for Edit Consistency, and 79.58% for Overall Preference. Even
on tasks unseen during training, users still favored our method in 57.67 %, 57.00%, and 66.33% of
cases, respectively. We also conducted comparisons against other representative baselines. Against
VisualCloze, our method was preferred in 70.98% of cases for Edit Accuracy, 72.55% for Edit
Consistency, and 69.22 % for Overall Preference. When compared to Edit Transfer, the preference
gap widened further, with our method selected in 97.11% of cases for Edit Accuracy, 78.89% for
Edit Consistency, and 75.78 % for Overall Preference.

(a) Comparison with In-context (Seen)
100%-

(b) Comparison with In-context (Unseen) (c) Comparison with VisualCloze
100%- 100%- 100%-

(d) Comparison with Edit Transfer
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Figure 7: User study results comparing our method with baselines (in-context learning, VisualCloze
and Edit Transfer) across evaluation criteria: edit accuracy, edit consistency, and overall preference.

5 Discussion

As shown in Figure [§] RelationAdapter demonstrates superior performance in various image editing
tasks. This performance can be attributed to the integration of a lightweight module that performs
weighted fusion with attention, leading to more precise edits. Notably, this suggests that leveraging
visual prompt can be effectively decoupled from conditional generation through attention fusion,
without the need for full bidirectional self-attention. This finding reveals a promising direction for
designing more efficient and scalable editing models.

Table 3: Quantitative comparison of evaluation metrics (mean =+ std) across four image generation
tasks. Best results are shown in bold.

Tasks MSE | CLIP-I 1 GPT-C 1 GPT-A 1

Low-Level (n=32) 0.028 & 0.038 0.885 + 0.067 3.943 + 0383 3.822 + 0.406
Style Transfer (n=84) 0.051 + 0.032 0.846 + 0.036 4.077 + 0.198 4.246 =+ 0.285
Image Editing (n=63) 0.031 & 0.023 0.861 + 0.055 4.173 + 0.229 4.100 =+ 0.400
Customized Generation (n=39)  0.065 & 0.048 0.816 & 0.073 4.071 &+ 0224 4.064 + 0.313

We evaluated RelationAdapter on four classification tasks of varying complexity. As shown in Table[3]
it excels in complex tasks like style transfer and customized generation, showing strong semantic



alignment and text-image consistency. In editing tasks, it balances reconstruction and semantics well.
While GPT scores slightly drop in low-level tasks, further low-level evaluations (see supplementary
materials [B-3) provide a more complete assessment.

Seen Tasks

JTRLE

Unseen Tasks

Input Images Result Input Images Result Input Images Result

Figure 8: The generated results of RelationAdapter. RelationAdapter can understand the transfor-
mations in example image editing pairs and apply them to the original image to achieve high-quality
image editing. It demonstrates a certain level of generalization capability on unseen tasks.

6 Limitation

Although our model performs well across various editing tasks, it sometimes fails to accurately render
text details in the generated images. This is a common problem with current Diffusion models. In
addition, the model may perform slightly differently on rare or previously unseen tasks, suggesting
that it is sensitive to task-specific nuances.

7 Conclusion

In this work, we propose RelationAdapter, a novel visual prompt editing framework based on
DiT, which strikes a previously unattained balance between efficiency and precision. We begin
by revisiting the limitations of existing in-context learning approaches and introduce a decoupled
strategy for re-injecting visual prompt features. Leveraging the inherent editing capabilities of DiT,
our method enhances both the stability and the generative quality of the model in the in-context
learning scenarios. To support our approach, we construct a large-scale dataset comprising 218 visual
prompt-based editing tasks. We further introduce two training paradigms-position encoding cloning
and a noise-free conditioning scheme for In-Context Editor, which significantly improve the model’s
editing capability. Extensive experiments validate the effectiveness of our method and demonstrate
its superior performance across diverse editing scenarios. We believe this efficient and accurate
framework offers new insights into visual prompt-based image editing and lays the groundwork for
future research.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize all major contributions, including the
RelationAdapter, In-Context Editor with positional encoding cloning, and the large-scale Relation252K
dataset (Section 1).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 6 discusses two key limitations: inconsistent text rendering in generated images
and sensitivity to rare editing tasks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper focuses on model design and empirical evaluation without including any
theoretical results or proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.
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 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 outlines full experimental details including architecture, dataset splits, metrics,
and training setup. Reproducibility is supported through clear implementation specifications, with
model checkpoints and dataset planned for release.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide full access to the Relation252K dataset and the codebase, including training
scripts, evaluation pipeline, and detailed instructions for reproducing all experimental results. The
links and setup instructions are included in the supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

» The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 4 details all experimental settings, including model initialization, training
configurations, data splits, evaluation metrics, and baseline procedures, sufficient to understand and
interpret the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 5 presents Table 3, which reports results as mean + standard deviation across task
groups, with task counts (n) provided. These reflect variability within tasks and support the robustness
of our conclusions.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
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10.

11.

Answer: [Yes]

Justification: Section 4.1 specifies the training setup (4xH20 GPUs, 100K iterations, 50 hours),
memory usage (74 GB training, 40 GB inference), and hardware details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research fully
complies with its principles, including data usage, fairness, transparency, and reproducibility.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This work focuses on foundational research in visual prompt-based image editing without
any direct deployment or application.

Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?
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12.

13.

14.

Answer:

Justification: Although safeguards are not yet implemented, we recognize that image generation
models may raise concerns of misuse. We intend to accompany model release with appropriate usage
instructions to promote responsible adoption.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including FLUX.1-dev, SigLIP, and CLIP-I, are
properly cited with corresponding version references. Each asset is used in compliance with its license
(e.g., Apache 2.0 for SigLIP), and license terms are included in the supplemental material where
applicable.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We introduce Relation252K, a new dataset for visual prompt-based editing, and release
accompanying code for the RelationAdapter framework. All assets are documented with details on
data construction, licensing, usage instructions, and limitations. Documentation is included in the
supplemental material and will be provided alongside the released assets.

Guidelines:

¢ The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

19


paperswithcode.com/datasets

15.

16.

Answer: [Yes]

Justification: The paper includes a small-scale user study with volunteer participants who were not
financially compensated. All participants gave informed consent, and the instructions provided to
them are included in the supplemental material.

Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: The user study involved minimal risk, all participants gave informed consent, and
the procedure adheres to our institution’s policy, which does not require IRB approval for low-risk
volunteer-based research.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for proof-reading.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendices

The Appendices provide a comprehensive overview of the experimental framework used to develop and evaluate
our method. It includes implementation details (Section[A)), comparisons with baselines (Section[B)), failure case
analysis (Section[F), user study design (Section[f.7), and additional results (Section[G).

A Implementation Details

A.1 Data Annotation

We leverage the multimodal capabilities of GPT-40 to automatically generate image captions and editing
instructions. Specifically, we concatenate the source image Iy and the corresponding target image i as a
single input to the GPT-40 API. A structured text prompt—illustrated in Figure O} —is provided to guide the
model in producing three outputs: a concise caption for Is.; a concise caption for /i, ; a human-readable
instruction describing the transformation from I to /(.. Notably, the editing instruction is provided solely
in textual form, without detailed descriptions of image content.

A.2 Inference Details

During inference, we set the guidance_scale to 3.5, the number of denoising steps to 24, and the attention
fusion weight o to 1.0. A fixed random seed of 1000 was used to ensure reproducibility.

B Details of Comparisons with Baselines

B.1 Baseline and Ablation Study Settings

We adopt the official implementations and default configurations for both VisualCloze and Edit Transfer.
During inference, since VisualCloze supports layout prompts, we specify the layout as: "4 images are organized
into a grid of 2 rows and 2 columns." Before concatenating the images into the grid layout, each individual
image is resized to a square region with an area of 512 x 512 pixels to ensure consistent resolution and layout
compatibility. We fix the random seed to 1000 and use the default 30 denoising steps. For Edit Transfer, we
similarly set the random seed to 1000, while keeping all other parameters at their default values.

In the ablation study, we remove all components related to the RelationAdapter module and directly feed the
prompt image Im and the reference image I into the In-Context Editor. Additionally, we apply Position
Encoding Cloning to each input image to retain spatial correspondence. All other configurations are kept
unchanged to ensure fair comparison.

B.2 Evaluation Details

We leverage the multimodal reasoning capabilities of GPT-4o to interpret the intended transformation from
the prompt image Iprm to the reference image I.of, and evaluate model predictions from a human-centered
perspective along two key dimensions: Editing Consistency (GPT-C) and Editing Accuracy (GPT-A).

To facilitate this evaluation, we construct composite inputs consisting of five concatenated images: the prompt
image Iprm, the reference image I,.r (representing the desired attribute or change), the source image I, and
two generated results Ipred, and Ipred,. GPT-40 is then prompted to interpret the intended edit and assess each
prediction based on the above criteria. The specific text prompt provided to GPT-4o is illustrated in Figure[I0]

B.3 Perceptual Capability Evaluation

We evaluate the model’s perceptual capability across a series of low-level image editing tasks, including depth
estimation, surface normal prediction, edge detection, and semantic segmentation. We further compare its
performance against the current state-of-the-art general-purpose image generation framework, VisualCloze,
using multiple evaluation metrics. Detailed results are provided in Tables[4] 5} [6] and[7]

B.4 Additional Explanation on Baseline Selection
RelationAdapter is designed around a unique before—after pair formulation, in which the model learns visual

transformations directly from exemplar pairs. Among existing approaches, only Edit Transfer [6] and Visual-
Cloze [28] share this paired-context setup, making them the most appropriate baselines for direct comparison.
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Table 4: Edge detection perfor- Table 5: Segmentation perfor- Table 6: Depth estimation (6;)
mance on the BSDS500 dataset. mance on the COCO dataset. on multiple datasets.

Metric VisualCloze Ours Metric VisualCloze Ours Dataset VisualCloze Ours

Precision 1 0.3476 0.2266 Pixel Acc. T 0.7817 0.7810 BSDS500 0.1492 0.1833
Recall 1 0.0837 0.3134 Mean Acc. T 0.3959 0.4722 COCO 0.1515 0.1750
Fl-score T 0.1227 0.2150 Mean IoU 1 0.3143 0.3642 BIPED 0.2954 0.3088

Table 7: Surface normal estimation results. Lower error and higher accuracy indicate better perfor-
mance. Mean/Median Angular Error measure deviation from ground truth (°), while Accuracy@X°
reports the percentage of predictions within X degrees. Best results are highlighted in bold.

Metric / Dataset BSDS500 COoCo BIPED NYUv2
VisualCloze  Ours  VisualCloze Ours  VisualCloze Ours  VisualCloze  Ours
Mean Angular Error (°) 52.29 27.15 63.30 35.62 53.15 29.83 43.19 31.69
Median Angular Error (°) 49.15 24.59 61.00 32.66 51.01 28.39 37.78 28.30
Accuracy (<11.25°) 6.76 16.12 221 11.90 4.09 12.28 447 11.46
Accuracy (<22.5°) 22.10 47.89 9.59 36.30 15.06 38.57 20.74 37.33
Accuracy (<30°) 33.52 65.88 18.13 51.68 25.56 54.87 36.38 53.75

This task formulation distinguishes our method from a broad range of existing image editing and generation
frameworks.

Methods such as Prompt-to-Prompt [18] and RF-Edit [57] operate purely in the text-driven editing paradigm
without utilizing visual exemplars, and therefore cannot model transformation relationships between images.
Zero-shot Image Editing [7] and OminiControl [55] focus on reference-conditioned generation, where
auxiliary visual signals such as edge maps, depth maps, or segmentation masks are used to guide image synthesis.
Their goal is to apply pre-defined visual conditions rather than to learn transferable transformation mappings.
UniReal [§] addresses a multi-image compositional generation task, e.g., combining the subject from one
image with the background of another under mask guidance, which fundamentally differs from exemplar-based
transformation learning.

In contrast to the above methods, RelationAdapter learns to infer the transformation itself from paired visual
exemplars, enabling the transfer of edit intent to unseen content domains. This formulation requires both a source
and an edited target image as context, providing explicit supervision for relational transformation understanding.

B.5 Comparison with Midjourney

Although Midjourney (MJ) represents a strong general-purpose image generation system, it does not support
pairwise or multi-image conditioning for transformation-based editing. Its interface only distinguishes between
a character reference (-cref) and a style reference (-sref), without the capability to process relational
transformations between two visual exemplars. In contrast, RelationAdapter interprets an exemplar pair as a
direct demonstration of the intended visual change, which constitutes a distinct learning paradigm.

For completeness, we evaluated Midjourney by assigning the source image of each exemplar pair as the -cref
and the edited image as the -sref, using the following standardized prompt format:

[text prompt] --cref <source image> --sref <edited image> --cw 90 --sw 70 --v 6.1

Table[§|reports the quantitative comparison on unseen style transfer tasks. Despite Midjourney’s strong generative
priors, RelationAdapter consistently achieves superior performance across all evaluation metrics, indicating
better perceptual consistency and transformation fidelity.

Table 8: Comparison of RelationAdapter and Midjourney (MJ) on unseen style transfer tasks. The
best results are denoted in bold.

Method MSE| CLIP-IT FID| GPI-Ct GPT-A?

MJ 0.107 0.681 5.836 3.285 3.200
Ours 0.062 0.774 5.715 4.203 4.278

C Advantage over the In-Context Based Variant

We analyze the effectiveness and efficiency gains of RelationAdapter over the in-context variant. The in-
context method required approximately 77 GB of GPU memory and 51.5 hours of training time, whereas our

22



RelationAdapter used around 74 GB of memory and completed training in about 48 hours, corresponding to a
memory saving of roughly 3 GB and a 6.8% reduction in total training time. For inference, editing a single
image at a resolution of 1024 x 1024 took over 13 seconds with the in-context method, while RelationAdapter
required less than 9 seconds, achieving a 30.8 % speed-up. These improvements stem from a crucial architectural
distinction: the in-context approach concatenates all tokens from exemplar and target contexts, leading to
increased attention computation and slower inference, whereas RelationAdapter employs a decoupled attention
mechanism that processes and fuses them more efficiently. Moreover, the same mechanism contributes to the
observed gains in editing accuracy and consistency by preventing feature contamination between the exemplar
pair and target image, enabling more targeted and coherent transformations. Both quantitative evaluations
(Table2) and qualitative visualizations (Figure[6) consistently confirm that RelationAdapter achieves superior
perceptual fidelity and structural consistency while offering notable improvements in memory efficiency and
processing speed.

D Effect of Attention Fusion Coefficient and Visual Encoder Choice

The attention fusion coefficient o controls the relative contribution between the visual prompt attention generated
by the RelationAdapter and the base Multi-Modal Attention (MMA) within the Diffusion Transformer. As
specified in Section[3.2] we set & = 1 during training to maintain a balanced integration between visual guidance
and generative consistency, and adopt the same value during inference for training—deployment consistency. To
further assess its influence, we varied « across {0.5, 1, 2} and report the results in Table@ The results indicate
that maintaining o = 1 yields the most stable and optimal generation performance across both seen (—S) and
unseen (—U) tasks, while deviating from this setting slightly degrades fidelity and consistency.

Table 9: Effect of adjusting the attention fusion coefficient & on image editing quality. “-S” and “-U”
denote seen and unseen tasks, respectively.

Method  MSE| CLIP-It FID] GPT-Ct GPT-A1?

a=2-S 0.044 0.827 5.564 3.855 3.536
a=1-S 0.044 0.852 5.191 4.115 4.258
a=05-S 0.050 0.832 5.895 4.099 3.591
a=2-U 0.054 0.794 5.805 3.858 3.527
a=1-U 0.053 0.812 5.498 4.211 4.377
a=05-U 0.056 0.808 5.724 4.149 3.620

E Effect of Model Size and Low-Rank Configuration

To assess the impact of model size on performance, we conducted an additional experiment using a lower-rank
configuration in the LoRA modules. The number of trainable LoRA parameters decreases from 358.6M to
44.8M when reducing the rank from 128 to 16, corresponding to an 87.5% reduction in trainable parameters.
As shown in Table the proposed method remains robust and effective under this lightweight configuration,
exhibiting only marginal performance degradation.

Table 10: Comparison between LoRA rank = 16 and the original configuration. “-S” and “~U” denote
seen and unseen tasks, respectively.

Method MSE| CLIP-I1t FID| GPT-Ct GPT-A%
Ours-S (Rank=16)  0.048  0.828 5757  4.035 3.607
Ours-S 0.044 0852 5191 4145 4.219
Ours-U (Rank=16) 0.064  0.792 5924  4.026 3.505
Ours-U 0.053  0.812 5498  4.195 4.239

F Failure Cases

Figure[TT]illustrates a set of challenging editing tasks. While the model successfully captures edit intentions in
several cases, it struggles with fine-grained spatial alignment and the restoration of detailed textual elements. A
future solution could involve training on higher-resolution data to better capture spatial nuances.

G Additional Results

As shown in Figures [T2] [T3] and[T4] our method demonstrates strong performance across diverse editing tasks,
effectively handling spatial transformations and capturing complex semantic modifications with high fidelity.
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Text Prompts

This is a side-by-side comparison image (left and right).

Please describe what you see on the left and right side respectively,
and provide a transformation or edit instruction from left to right.
Return only a JSON object with the following fields:

1. ’1left_image_description’

2. ’right_image_description’

3. ’edit_instruction’

Do not include any other text or explanation.

Figure 9: Structured prompt used for labeling image pairs and extracting transformation instructions.

Text Prompts

You are given a composite image with two columns.
The left column contains three images arranged vertically: Left Column: A (original image), A1l
(edited version of A), B (another original image).

The right column contains two images: B1 and B2, which are two independently edited versions
of image B.

Your task is to independently score B1 and B2 based on two dimensions:

1. Edit Consistency (1-5): How visually consistent is the edited image (B1 or B2) with the
original image B? Focus: Are key objects, colors, and structures consistent with the source?

2. Edit Accuracy (1-5): Assess how accurately the editing operation applied to B (to produce
B1 or B2) mirrors the transformation seen from A — Al. Focus: Did the editor apply similar
changes, in the correct location, with the same degree of modification?

Avoid giving tied scores unless B1 and B2 are truly indistinguishable. Ensure scores reflect
nuanced differences in both consistency and accuracy between B1 and B2. Be critical. Reserve
scores of 4-5 for highly consistent/accurate edits. Be objective and concise in your assessment.

Return your answer in the following JSON format: { "B1": ({"consistency":<1-5>,
"accuracy":<1-5>}, "B2": {"consistency":<1-5>, "accuracy":<1-5>} }

Figure 10: Evaluation prompt used to assess edit consistency and accuracy between two generated
outputs, leveraging GPT-4o for interpretation and scoring.

Input Result Input Result

Figure 11: Failure cases on gesture editing, background pedestrian removal, document rectification,
and image-to-sketch conversion. The model shows partial success with room for improvement.
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Input Result Input Result

Figure 12: Additional experimental results of RelationAdapter.
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Input Result Input Result

Figure 13: Additional experimental results of RelationAdapter.

26



Input Result Input Result

Figure 14: Additional experimental results of RelationAdapter.
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